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Abstract:
In this paper, we construct MacDonald codes of type « over the ring F3 + v F3,
where v2 = 1, F3 = {0, 1,2} is the field of three elements and investigate some of
their properties such as torsion codes and weight distributions..
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1. Introduction

The binary MacDonald codes were introduced in [9] and g—ary version
(¢ > 2) MacDonald code over the finite field F, was studied in [10]. In
[5], C.J.Colbourn and M.Gupta obtained two families of MacDonald codes
over the ring Z4 from Z4-simplex codes of types o and 3, Si¥ and S,f . They
studied some fundamental properties of the codes. In [1], it was shown that
the results of [5] concerning the codes over the ring Z4 are valid for the ring
Fy + uFy where u? = 0 and F; is a field of two elements. In [2], the Mac-
Donald codes over the ring Fh +uFs +u?F, were constructed, where u3 = 0
and F, = {0, 1} by using simplex codes over the ring Fy+uFy+u>Fy. Their
properties were described. In [6], the MacDonald codes over Fy +vF» were
constructed where v? = v.
In [3], the simplex codes of type a over the ring F3 + vF3 where v? = 1,
F3 = {0,1,2} were introduced and the minimum Hamming, Lee and Ba-
choc weights of these codes were obtained.
In this paper, we construct MacDonald codes over the ring F3 4 vF3 by
using the simplex codes over the ring F3 +vF3 of type «, where v? = 1 and
we study torsion codes and weight distributions.
2. Preliminaries The alphabet R = F3 + vF3 = {0,1,2,v,2v,a =

l14+v,b=24v,c=142v,d =2+ 2v} is a commutative ring with nine
elements where v2 = 1 and F3 = {0,1,2}. The elements 1,2, v, 2v are units.
Addition and multiplication operation over R are given in the following ta-
bles,

+ 10 1 2 | vi|2v|a|b|c|d
0] 0 1 2 | vi|2v|a|b|c|d
1 1 21 0|a|c|b]|v|d]|2v
21210 1| b|d|v|a]|2v] c
vi|iv | ial|b|2v] 0] c]|d 1 2
2vi2v| c | d | 0| v |1 2 al|b
al|lal|b|v]|c 1| d|2v| 2|0
b|b|v]|al|d|2]|2v]c|0]1
c c | d|2v] 1 al| 2]0]|b|v
d| d|2v]| ¢ 2| b |0 1| v | a




- 1011 2 | vi2v|jal|b|lc|d
0O/0|0]0|O0O]0]0|0]0]O0
1 0] 1 2 | vi|i2v|jal|b|lc|d
2 10| 2 1 |2v| v |d|c|b]a
v | 0| v |2v] 1 2 lalc|b|d
2v |0 2v| v | 2 1 |d|{bjc|a
a|0|la|d|a|d|dl 0]|]0]a
b|0| b | c c | b|0O|b|lc]|O
c |0l c|b|b|c|0|c|b|O
d|0|d|a|]d|]aljal0|0]|d

A linear code C of length n over R is an R-submodule of R™. An element of
C is called a codeword of C'. There are three well known different weights
for codes over R, namely Hamming, Lee and Bachoc weights.

The Hamming weight wtg(z) of a codeword = = (x1,22,...,2,) € R"
is the number of nonzero components. The minimum weight wtg(C) of a
code C' is the smallest weight among all its nonzero codewords.

The Lee weight for the codeword x = (z1,x2,...,2,) € R" is defined
by, wtp(x) = 3it; wip(wi) where,

0 if Ty = 0
wtr(x;) =< 1 if ;i =1,2,v or 20
2 if ri=14v,24+v,1+2v or 24 2v

In [4], the Bachoc weight for the codeword = = (x1,x2,...,2,) € R" is
defined by, wtp(z) = Y iv, wtp(x;) where,

if T; — 0
wtp(x;)) =< 1 if ri=14+v,24+v,1+2v or 24+ 20
3 if r;=1,2,v or 2v

The minimum Lee weight wty(C) and the minimum Bachoc weight
wtp(C) of code C are defined analogously.

For ¢ = (x1,22,...,2n),y = (Y1,%2,---,Yn) € R", dg(z,y) = |{i|x; #
y; }| is called distance between x and y € R™ and it is denoted by,

du(z,y) = wtg(z —y)



The minimum Hamming distance between distinct pairs of codewords
of a code C'is called the minimum distance of C' and denoted by dy(C) or
shortly dp.

The Lee distance and Bachoc distance between x and y € R™ is defined
by,

() = wip (e —y) = 3wty (i — i)
=1

dp(z,y) = wtp(z —y) = ith(wi — Yi)
=1

respectively.

The minimum Lee and Bachoc distance between distinct pairs of code-
words of a code C are called the minimum distance of C' and denoted by
dr,(C) and dp(C) or shortly dr, and dp, respectively.

If C is a linear code, then dy(C) = wty(C), dr.(C) = wtr(C), dg(C) =
wt B(C )

A generator matrix of C' is a matrix whose rows generate C.

Two codes are equivalent if one can be obtained from the other by
permuting the coordinates.

In [4], it was shown that the ring R has two maximal ideals. These are
mp =<b>=<v—1>>=<v+2>={0,v+2,1+4+ 20} and my = <
v+1>=1{0,1+v,24 2v}. Moreover m; N'mg = {0}. The following map,

¢:R— R/mi x R/ms

a— (¢1(a), p2(a))

is an isomorphism where these maps ¢; : R — R/m,; are canonical homo-
morphisms for i = 1,2. It is easy to see that R/m; is isomorphic to Fj, for
i = 1,2. The map ¢! is a ring isomorphism by the generalized Chinese
Remainder Theorem and R is isomorphic to R/my x R/mg = F3 x F3, see
[8]. This map can be extended from R" to F2" in the following way:

The Gray map ¢ from R" to F2" is defined as
¢: R" — Fi"

T+ oy (2,y)

where z,y € F3'. The Lee weight of z 4 vy is the Hamming weight of its
Gray image. Note that ¢ is linear.



Let wy,wa,...,wgk be vectors in R". Then wi,wsa,..., Wy are in-
dependent if ) ajw; = 0 implies that a;w; = 0 for all j. The vectors
W1, W3, ..., Wi in R" are modular independent if ¢(w1), p(wa),. .., d(wy)
are linearly independent for some i, see [7].

In [7], it was shown that a generating set that is both independent and
modular independent is a minimal generating set.

Let w = (ay,...,a,) be a nonzero vector then < (ay,...,a,) > is either
mi,mg or R. Let I(w) =|< (a1,...,a,) >|. Hence I(w) =3 or 9.

Theorem 2.1 Let C be a code with minimal generating set {w1, wa, ..., W},
then | C' |=[I;—; I(w;), where |C| mean the number of codewords in C.

Proof The summations Y a;w; are distinct when each a;wj is not zero
and there are 9 choices for a; if I(w;) =9 and there are 3 choices for a; if
I(w;) = 3.

Corollary 2.2 Let {w1,wg,..., W} be a minimal generating set for
a linear code C over R where there are k1 vectors having 0,1, 2, v, 2v,a,b, ¢
and d and ky vectors having only 0 , b and ¢ or only 0, ¢ and d among
them. Then | C' |= 9%13F2,

In [4], it was shown that any code over R is permutation equivalent to
a code generated by the following matrix

Ikl (1 — U)Bl (U + 1)A1 (1 + U)Ag + (1 - U)Bg (1 + U)A3 + (1 — U)Bg

0 (14 ), 0 (1+v)Ay 0

0 0 (1 —v)Ik, 0 (1 —v)By
where A; and B; are ternary matrices over F3, by the properties of Chinese
Remainder Theorem. Such a code is said to have rank {9%1, 32 3k3}. If

H is a code over R, let H' (resp. H~) be the ternary code such that
(1+v)H™ (resp. (1—v)H™) is read H mod (1 —v) (resp. H mod (1+v)).

In [4], it was obtained that,
H=(1+vH"®(1—-v)H"
with
H™ = {s|3t € F}|(1+v)s+ (1 —v)t € H}
H™ ={t|3s e F¥|1+v)s+ (1 —v)tc H}

The code H™ is permutation equivalent to a code with generator matrix
of the form



I, 0 24, 24, 2A,
0 I, 0 Ay 0

where A; are ternary matrices for ¢ = 1,2,3,4 and ternary code H™ is
permutation equivalent to a code with generator matrix of the form

I, 2B 0 2B, 2B
0 0 Iy 0 B
where B; are ternary matrices for ¢ = 1,2,3,4 in [4].

In [3], the simplex codes over the ring R of type a were constructed as
the following;

Let G be a k x 32k matrix over R defined inductively by,

oo 0...0 | 1...1 | 2...2 | w...v | 20...2v | a...a | b...b | c...c | d...d
= [e% [e3 [e3 (o3 [e3
k Gk*l ‘ Gk*l ‘ Gk*l ‘ kal ‘ G

where

ff‘z(OlQU%abcd)

The columns of Gf} consist of all distinct k-tuples over R. The code S}
generated by G¢ has length 32%, see [3].

In [3], it was shown that the minimum weights of S are dg = 6.32*~1) d; =
4.3%~1 and dg = 2.32F"1 |

Now, some facts about ternary simplex codes, will be given.

Let G(Sk) (columns consisting of all non zero ternary k-tuples) be a
generator matrix for an [n, k] ternary simplex code Si. Then the extended
ternary simplex code Si generated by the matrix

G(Sk) = (0|G(Sk))

Inductively,

with



(

Lemma 2.2 The H" (or H™) ternary codes of S are equivalent to
the 3% copies of Sj.

Proof It will be proved by induction, firstly for H.Observe that the
ternary H' code of S is the set of codewords obtained by replacing a by
1 and d by 2 in all a-linear combination of the rows of the matrix aGy. For
k = 2, the result holds.

GZ:( 0...0 | 1...1 | 2...2 | w...v | 20...20 | a...a | b...b | c...

012v2vabed | S | S | S | S | S | R |

gt - 0...0 | 1...1 | 2...2 | 1...1 | 2...2 | 2...2 | 0...0 | 0...0
=\ o12122001 | | | | | | |

If aGj_1 is permutation equivalent 3*~! copies of a aG(S’k_l), then the

matrix a(G}, takes the form
0...0 | a...a | d...d | a...a | d...d | d...d | 0...0 | 0...0 |

aG(S‘k,l):.:aG(S‘k,l) | | | | | | | |

Regrouping the columns gives the desired result. The proof for the H~
case is similar to the above case.

3. MacDonald codes of type «

In [3], the simplex codes had been obtained. A simplex code Sj of
type a is a linear [32%, 2k, 6.32(k—1) 4,321 9 32k=1] and inductive generator
matrix given by

o | 1...1 | 2...2 | w...v | 2v...2v | a...a |
1

0...
Gy =
i (o

with
?:(OIQUQUabcd)

We define the MacDonald codes via the generator matrices of simplex
codes. Let Gy, be the matrix obtained from G by deleting columns cor-
responding to the columns of G, for 1 <u <k —1 i.e.

b= (CGF N )

012v2vabed

1

01212001

d

1

aG(S,_1) . aG(S;_1)

d

)

a

)

)



where 0 is a (k—u)x 3% zero matrix and (A\B) denotes the matrix obtained
from the matrix A by deleting the columns of the matrix B.

The code M, generated by the matrix G, is the punctured code of
Sy and is a MacDonald code.

M,‘j‘u is a code of length n = 32k — 32u and dimension 2k; + k.

Remark We define HT or H~ of M,?u as torsion code for the code

Lemma 3.1 The Torsion code of M’ is ternary linear [32F — 32 2k +
ko, Sk U 6.8.32u=2+(2n=2)] code with weight distribution Az (0) = 1, Ay (6.3%72) =
3k=v — 1 and A (X F246.8.32u-2+(2n=2)) — gh—u(gu _ 1)

Proof First we will prove the HT case by induction on k. Since the
H™ code of M o 18 the set of codewords obtained by replacing a by 1 and d
by 2 in all a-linear combination of the rows of the matrix aGy . For k =2
and u = 1 the result holds. Suppose that the result holds for k¥ — 1 and
1<u<k—2 Then for k and 1 < k < k — 1 the matrix aGg’u takes the
form

aG, = (oGt \ a5 )

Each non zero codeword of aMy’, has Hamming weight either 6.3%=2 or

SkTu6.8.32u=2+(2n=2)) " then there will be 3*~* — 1 codewords of ham-
ming weight 6.3%*~2 and the number of codewords with Hamming weight
SokTu6.8.32u=2+(2n2)) ig 3k—u(3u _1). The prove for the H™ case is similar
to the above case

Remark Each of the first k£ —u rows has total number of units 4.32F—2
and total number of non-unit elements 4.3%%=2. Each of the last u rows has
total number of units Zf:f 4.8.3(2u=2)+(2n-2) and total number of non-unit
elements Y F~%4.8.3(2u=2)+(2n-2)

Lemma 3.2 Let t € My, ,t # 0. If at least one component of ¢ ele-
ments is a unit then there are four type of codewords;
L wi(t) = wat) = wy(t) = wa(t) = we(t) = wp(t) = we(t) = wq(t) =
32]{‘72’ 'll)()(t) — 32k72 _ 32u
1. wi(t) = wa(t) = wy(t) = woy(t) = wy(t) = we(t) = 322 W (t) =
wd(t) —_ wo(t) = 32k=2 _ g2u—1
MLawi (t) = wa(t) = wy(t) = way(t) = we(t) = wy(t) = 32k~2 ,we(t) =
wb(t) — wo(t) = 32k=2 _ g2u—1
VI wo(t) = wi(t) = wa(t) = wy(t) = wa(t) = we(t) = wp(t) = we(t) =



wd(t) — 32k—2 _ 32u—2

otherwise

L we(t) = wq(t) = 3% wy(t) = 32k—1 — 32u
ILwe(t) = wy(t) = 3271, wo(t) = 321 — 3%
II1. wy(t) =

VI we(t) = wy(t) = wo(t) = 321 — 32u~1

Proof By induction on k.

Theorem 3.3 The Hamming and Lee weight distributions of M, are

Ap(0)=1
Ap(83%7%) =4
AH(6.32k72 4 2(32k 2 32k 1)) (32k 2 3)
AH(8(32k—2 _ 32u—2)) 3(32k: 2 + 3
Ap(23°71) =4
AH(2(3%_1 _ 32u—1)) _ 2(32k—2 —3)

Ap(4.3%72 4 4.2.3%72) = 32(k—w) _
AL(4(32k72 — 3%y ¢ 4.2(32’“*2 —3%2)) = 32k—2u(32u —1)

Proof By Lemma 3.2, each non-zero codeword of My', has Hamming
weight either 8.328=2 6.32F—2 4 2(32k—2 _ 32k—1) g(32k—2 _ 32u=2) (9 32k—1)
or 2(3%k=1 —32v=1) and Lee weight either (4.32%72 +4.2.3%=2) or 4(3%+2 —
32u=2) 1+ 4.2(3%%-2 - 32v=2) The method for counting the weight are similar
to one used for Sy in [3]
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