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Abstract:
In this paper, we construct MacDonald codes of type α over the ring F3+vF3,

where v2 = 1, F3 = {0, 1, 2} is the field of three elements and investigate some of

their properties such as torsion codes and weight distributions..
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1. Introduction

The binary MacDonald codes were introduced in [9] and q−ary version
(q ≥ 2) MacDonald code over the finite field Fq was studied in [10]. In
[5], C.J.Colbourn and M.Gupta obtained two families of MacDonald codes

over the ring Z4 from Z4-simplex codes of types α and β, Sα
k and Sβ

k . They
studied some fundamental properties of the codes. In [1], it was shown that
the results of [5] concerning the codes over the ring Z4 are valid for the ring
F2 + uF2 where u2 = 0 and F2 is a field of two elements. In [2], the Mac-
Donald codes over the ring F2+uF2+u2F2 were constructed, where u

3 = 0
and F2 = {0, 1} by using simplex codes over the ring F2+uF2+u2F2. Their
properties were described. In [6], the MacDonald codes over F2+ vF2 were
constructed where v2 = v.
In [3], the simplex codes of type α over the ring F3 + vF3 where v2 = 1,
F3 = {0, 1, 2} were introduced and the minimum Hamming, Lee and Ba-
choc weights of these codes were obtained.
In this paper, we construct MacDonald codes over the ring F3 + vF3 by
using the simplex codes over the ring F3+ vF3 of type α, where v2 = 1 and
we study torsion codes and weight distributions.
2. Preliminaries The alphabet R = F3 + vF3 = {0, 1, 2, v, 2v, a =

1 + v, b = 2 + v, c = 1 + 2v, d = 2 + 2v} is a commutative ring with nine
elements where v2 = 1 and F3 = {0, 1, 2}. The elements 1, 2, v, 2v are units.
Addition and multiplication operation over R are given in the following ta-
bles,

+ 0 1 2 v 2v a b c d

0 0 1 2 v 2v a b c d

1 1 2 0 a c b v d 2v

2 2 0 1 b d v a 2v c

v v a b 2v 0 c d 1 2

2v 2v c d 0 v 1 2 a b

a a b v c 1 d 2v 2 0

b b v a d 2 2v c 0 1

c c d 2v 1 a 2 0 b v

d d 2v c 2 b 0 1 v a



· 0 1 2 v 2v a b c d

0 0 0 0 0 0 0 0 0 0

1 0 1 2 v 2v a b c d

2 0 2 1 2v v d c b a

v 0 v 2v 1 2 a c b d

2v 0 2v v 2 1 d b c a

a 0 a d a d d 0 0 a

b 0 b c c b 0 b c 0

c 0 c b b c 0 c b 0

d 0 d a d a a 0 0 d

A linear code C of length n over R is an R-submodule of Rn. An element of
C is called a codeword of C. There are three well known different weights
for codes over R, namely Hamming, Lee and Bachoc weights.

The Hamming weight wtH(x) of a codeword x = (x1, x2, . . . , xn) ∈ Rn

is the number of nonzero components. The minimum weight wtH(C) of a
code C is the smallest weight among all its nonzero codewords.

The Lee weight for the codeword x = (x1, x2, . . . , xn) ∈ Rn is defined
by, wtL(x) =

∑n
i=1wtL(xi) where,

wtL(xi) =





0 if xi = 0
1 if xi = 1, 2, v or 2v
2 if xi = 1 + v, 2 + v, 1 + 2v or 2 + 2v

In [4], the Bachoc weight for the codeword x = (x1, x2, . . . , xn) ∈ Rn is
defined by, wtB(x) =

∑n
i=1wtB(xi) where,

wtB(xi) =





0 if xi = 0
1 if xi = 1 + v, 2 + v, 1 + 2v or 2 + 2v
3 if xi = 1, 2, v or 2v

The minimum Lee weight wtL(C) and the minimum Bachoc weight
wtB(C) of code C are defined analogously.

For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn, dH(x, y) = |{i|xi 6=
yi}| is called distance between x and y ∈ Rn and it is denoted by,

dH(x, y) = wtH(x− y)



The minimum Hamming distance between distinct pairs of codewords
of a code C is called the minimum distance of C and denoted by dH(C) or
shortly dH .

The Lee distance and Bachoc distance between x and y ∈ Rn is defined
by,

dL(x, y) = wtL(x− y) =
n∑

i=1

wtL(xi − yi)

dB(x, y) = wtB(x− y) =
n∑

i=1

wtB(xi − yi)

respectively.
The minimum Lee and Bachoc distance between distinct pairs of code-

words of a code C are called the minimum distance of C and denoted by
dL(C) and dB(C) or shortly dL and dB, respectively.

If C is a linear code, then dH(C) = wtH(C), dL(C) = wtL(C), dB(C) =
wtB(C).

A generator matrix of C is a matrix whose rows generate C.
Two codes are equivalent if one can be obtained from the other by

permuting the coordinates.

In [4], it was shown that the ring R has two maximal ideals. These are
m1 =< b >=< v − 1 >=< v + 2 >= {0, v + 2, 1 + 2v} and m2 = <
v + 1 >= {0, 1 + v, 2 + 2v}. Moreover m1 ∩m2 = {0}. The following map,

φ : R → R/m1 ×R/m2

a 7→ (φ1(a), φ2(a))

is an isomorphism where these maps φi : R 7→ R/mi are canonical homo-
morphisms for i = 1, 2. It is easy to see that R/mi is isomorphic to F3, for
i = 1, 2. The map φ−1 is a ring isomorphism by the generalized Chinese
Remainder Theorem and R is isomorphic to R/m1 ×R/m2

∼= F3 × F3, see
[8]. This map can be extended from Rn to F 2n

3 in the following way:

The Gray map φ from Rn to F 2n
3 is defined as

φ : Rn → F 2n
3

x+ vy 7→ (x, y)

where x, y ∈ Fn
3 . The Lee weight of x + vy is the Hamming weight of its

Gray image. Note that φ is linear.



Let w1,w2, . . . ,wk be vectors in Rn. Then w1,w2, . . . ,wk are in-
dependent if

∑
ajwj = 0 implies that ajwj = 0 for all j. The vectors

w1,w2, . . . ,wk in Rn are modular independent if φ(w1), φ(w2), . . . , φ(wk)
are linearly independent for some i, see [7].

In [7], it was shown that a generating set that is both independent and
modular independent is a minimal generating set.

Let w = (a1, . . . , an) be a nonzero vector then < (a1, . . . , an) > is either
m1,m2 or R. Let I(w) =|< (a1, . . . , an) >|. Hence I(w) = 3 or 9.

Theorem 2.1 Let C be a code with minimal generating set {w1,w2, . . . ,ws},
then | C |= ∏s

i=1 I(wi), where |C| mean the number of codewords in C.

Proof The summations
∑

aiwi are distinct when each aiwi is not zero
and there are 9 choices for ai if I(wi) = 9 and there are 3 choices for ai if
I(wi) = 3.

Corollary 2.2 Let {w1,w2, . . . ,wk} be a minimal generating set for
a linear code C over R where there are k1 vectors having 0, 1, 2, v, 2v, a, b, c
and d and k2 vectors having only 0 , b and c or only 0, a and d among
them. Then | C |= 9k13k2 .

In [4], it was shown that any code over R is permutation equivalent to
a code generated by the following matrix



Ik1 (1− v)B1 (v + 1)A1 (1 + v)A2 + (1− v)B2 (1 + v)A3 + (1− v)B3

0 (1 + v)Ik2 0 (1 + v)A4 0
0 0 (1− v)Ik3 0 (1− v)B4




where Ai and Bj are ternary matrices over F3, by the properties of Chinese
Remainder Theorem. Such a code is said to have rank {9k1 , 3k2 , 3k3}. If
H is a code over R, let H+ (resp. H−) be the ternary code such that
(1+ v)H+ (resp. (1− v)H−) is read H mod (1− v) (resp. H mod (1+ v)).

In [4], it was obtained that,

H = (1 + v)H+ ⊕ (1− v)H−

with
H+ = {s|∃t ∈ Fn

3 |(1 + v)s+ (1− v)t ∈ H}
H− = {t|∃s ∈ Fn

3 |(1 + v)s+ (1− v)t ∈ H}

The code H+ is permutation equivalent to a code with generator matrix
of the form



(
Ik1 0 2A1 2A2 2A3

0 Ik2 0 A4 0

)

where Ai are ternary matrices for i = 1, 2, 3, 4 and ternary code H− is
permutation equivalent to a code with generator matrix of the form

(
Ik1 2B1 0 2B2 2B3

0 0 Ik3 0 B4

)

where Bi are ternary matrices for i = 1, 2, 3, 4 in [4].

In [3], the simplex codes over the ring R of type α were constructed as
the following;

Let Gα
k be a k × 32k matrix over R defined inductively by,

G
α
k =

(
0 . . . 0 | 1 . . . 1 | 2 . . . 2 | v . . . v | 2v . . . 2v | a . . . a | b . . . b | c . . . c | d . . . d
Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1

)

where

Gα
1 =

(
0 1 2 v 2v a b c d

)

The columns of Gα
k consist of all distinct k-tuples over R. The code Sα

k

generated by Gα
k has length 32k, see [3].

In [3], it was shown that the minimum weights of Sα
k are dH = 6.32(k−1), dL =

4.32k−1 and dB = 2.32k−1 .

Now, some facts about ternary simplex codes, will be given.

Let G(Sk) (columns consisting of all non zero ternary k-tuples) be a
generator matrix for an [n, k] ternary simplex code Sk. Then the extended
ternary simplex code Ŝk generated by the matrix

G(Ŝk) = (0|G(Sk))

Inductively,

G(Ŝk) =

(
0 . . . 0 | 1 . . . 1 | 2 . . . 2

G(Ŝk−1) | G(Ŝk−1) | G(Ŝk−1)

)

with

G(Ŝ1) = (012)



Lemma 2.2 The H+ (or H−) ternary codes of Sα
k are equivalent to

the 3k copies of Ŝk.

Proof It will be proved by induction, firstly for H+.Observe that the
ternary H+ code of Sα

k is the set of codewords obtained by replacing a by
1 and d by 2 in all a-linear combination of the rows of the matrix aGk. For
k = 2, the result holds.

G2 =

(
0 . . . 0 | 1 . . . 1 | 2 . . . 2 | v . . . v | 2v . . . 2v | a . . . a | b . . . b | c . . . c | d . . . d

012v2vabcd | . . . | . . . | . . . | . . . | . . . | . . . | . . . | 012v2vabcd

)

H
+

=

(
0 . . . 0 | 1 . . . 1 | 2 . . . 2 | 1 . . . 1 | 2 . . . 2 | 2 . . . 2 | 0 . . . 0 | 0 . . . 0 | 1 . . . 1

012122001 | . . . | . . . | . . . | . . . | . . . | . . . | . . . | 01212001

)

If aGk−1 is permutation equivalent 3k−1 copies of a aG(Ŝk−1), then the
matrix aGk takes the form(
0 . . . 0 | a . . . a | d . . . d | a . . . a | d . . . d | d . . . d | 0 . . . 0 | 0 . . . 0 | a . . . a

aG(Ŝk−1) . . . aG(Ŝk−1) | . . . | . . . | . . . | . . . | . . . | . . . | . . . | aG(Ŝk−1) . . . aG(Ŝk−1)

)

Regrouping the columns gives the desired result. The proof for the H−

case is similar to the above case.

3. MacDonald codes of type α

In [3], the simplex codes had been obtained. A simplex code Sα
k of

type α is a linear [32k, 2k, 6.32(k−1), 4.32k−1, 2.32k−1] and inductive generator
matrix given by

G
α
k =

(
0 . . . 0 | 1 . . . 1 | 2 . . . 2 | v . . . v | 2v . . . 2v | a . . . a | b . . . b | c . . . c | d . . . d
Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1
| Gα

k−1

)

with
Gα

1 =
(

0 1 2 v 2v a b c d
)

We define the MacDonald codes via the generator matrices of simplex
codes. Let Gα

k,u be the matrix obtained from Gα
k by deleting columns cor-

responding to the columns of Gα
u , for 1 ≤ u ≤ k − 1 i.e.

Gα
k,u =

(
Gα

k \ 0
Gα

u

)



where 0 is a (k−u)×32u zero matrix and (A\B) denotes the matrix obtained
from the matrix A by deleting the columns of the matrix B.

The code Mα
k,u generated by the matrix Gα

k,u is the punctured code of
Sα
k and is a MacDonald code.

Mα
k,u is a code of length n = 32k − 32u and dimension 2k1 + k2.

Remark We define H+ or H− of Mα
k,u as torsion code for the code

Mα
k,u.

Lemma 3.1 The Torsion code of Mα
k,u is ternary linear [32k−32u, 2k1+

k2,
∑k−u

n=1 6.8.3
2u−2+(2n−2)] code with weight distributionAH(0) = 1, AH(6.32k−2) =

3k−u − 1 and AH(
∑k−u

n=1 6.8.3
2u−2+(2n−2)) = 3k−u(3u − 1)

Proof First we will prove the H+ case by induction on k. Since the
H+ code of Mα

k,u is the set of codewords obtained by replacing a by 1 and d
by 2 in all a-linear combination of the rows of the matrix aGα

k,u. For k = 2
and u = 1 the result holds. Suppose that the result holds for k − 1 and
1 ≤ u ≤ k − 2. Then for k and 1 ≤ k ≤ k − 1 the matrix aGα

k,u takes the
form

aGα
k,u =

(
aGα

k \ 0
aGα

u

)
.

Each non zero codeword of aMα
k,u has Hamming weight either 6.32k−2 or∑k−u

n=1 6.8.3
2u−2+(2n−2)), then there will be 3k−u − 1 codewords of ham-

ming weight 6.32k−2 and the number of codewords with Hamming weight∑k−u
n=1 6.8.3

2u−2+(2n−2)) is 3k−u(3u−1). The prove for theH− case is similar
to the above case

Remark Each of the first k−u rows has total number of units 4.32k−2

and total number of non-unit elements 4.32k−2. Each of the last u rows has
total number of units

∑k−u
n=1 4.8.3

(2u−2)+(2n−2) and total number of non-unit
elements

∑k−u
n=1 4.8.3

(2u−2)+(2n−2).

Lemma 3.2 Let t ∈ Mα
k,u, t 6= 0. If at least one component of t ele-

ments is a unit then there are four type of codewords;
I. w1(t) = w2(t) = wv(t) = w2v(t) = wa(t) = wb(t) = wc(t) = wd(t) =
32k−2, w0(t) = 32k−2 − 32u

II. w1(t) = w2(t) = wv(t) = w2v(t) = wb(t) = wc(t) = 32k−2 , wa(t) =
wd(t) = w0(t) = 32k−2 − 32u−1

III.w1(t) = w2(t) = wv(t) = w2v(t) = wa(t) = wd(t) = 32k−2 , wc(t) =
wb(t) = w0(t) = 32k−2 − 32u−1

VI. w0(t) = w1(t) = w2(t) = wv(t) = w2v(t) = wa(t) = wb(t) = wc(t) =



wd(t) = 32k−2 − 32u−2

otherwise
I. wa(t) = wd(t) = 32k−1, w0(t) = 32k−1 − 32u

II.wc(t) = wb(t) = 32k−1, w0(t) = 32k−1 − 32u

III. wa(t) = wd(t) = w0(t) = 32k−1 − 32u−1

VI. wc(t) = wb(t) = w0(t) = 32k−1 − 32u−1

Proof By induction on k.

Theorem 3.3 The Hamming and Lee weight distributions of Mα
k,u are

AH(0) = 1

AH(8.32k−2) = 4

AH(6.32k−2 + 2(32k−2 − 32k−1)) = 4(32k−2 − 3)

AH(8(32k−2 − 32u−2)) = 3(32k−2 + 3)

AH(2.32k−1) = 4

AH(2(32k−1 − 32u−1)) = 2(32k−2 − 3)

AL(0) = 1

AL(4.3
2k−2 + 4.2.32k−2) = 32(k−u) − 1

AL(4(3
2k−2 − 32u−2) + 4.2(32k−2 − 32u−2)) = 32k−2u(32u − 1)

Proof By Lemma 3.2, each non-zero codeword of Mα
k,u has Hamming

weight either 8.32k−2, 6.32k−2+2(32k−2−32k−1), 8(32k−2−32u−2), (2.32k−1)
or 2(32k−1−32u−1) and Lee weight either (4.32k−2+4.2.32k−2) or 4(32k−2−
32u−2)+4.2(32k−2−32u−2). The method for counting the weight are similar
to one used for Sα

k in [3]
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