IUG Journal of Natural Studies Peer-reviewed Journal of Islamic University-Gaza

ISSN 2409-4587

IUGNES Vol. 25, No 2, 2017, pp 214-220

Accepted on (14-03-2017)

Soft βc-Generalized Closed Sets

Eleyan A. Fayad¹ Hisham B. Mahdi^{1,*}

¹Department of Mathematics, Faculty of Science, Islamic University of Gaza, Gaza Strip, Palestine

Keywords:

Soft topology, Soft β – open

sets, Soft βc – open sets,

Soft βc – generalized closed

sets, Soft $\beta c - T_{\underline{1}}$ space.

* Corresponding author e-mail address: <u>hmahdi@iugaza.edu.ps</u>

Abstract

Previously, we introduced and studied the concept of soft βc – open sets in soft topological spaces. This paper is a continuation study of this concept. We introduce and investigate the notion of soft βc – generalized closed sets. We discuss some soft properties of this type of soft sets. Also, we introduce the concepts of soft $\beta c - T_{\frac{1}{2}}$ space and soft $\beta c - T_{\circ}$ space. In addition, we introduce the notion of soft βc – Kernel of a soft set and use it to get a characterization of soft sets to be soft βc – generalized closed sets.

1. Introduction:

Molodtsove (Molodtsov, 1999) initiated a novel concept of soft set theory, which is a completely new approach for modeling vagueness and uncertainly. He successfully applied the soft set theory into several directions such as smoothness of functions, game theory, Riemann Integration, theory of measurement, and so on. Soft set theory and its applications have shown great development in recent years. This is because of the general nature of parametrization expressed by a soft set. Shabir and Naz (Shabir and Maz, 2011) introduced the notion of soft topological spaces which are defined over an initial universe with a fixed set of parameters. The authors in (Aygnolu and Aygn, 2012) continued the study of properties of soft topological space. Weaker forms of soft open sets were first studied by Chen in (Chen, 2013). He investigate soft semi-open sets in soft topological spaces and studied some properties of them. Arockiarani and Arokialancy are defined soft β – open sets and continued to study other weaker forms of soft open sets in soft topological space. Later, Akdag and Ozkan (Akdag and Ozkan, 2014b) defined soft α – open sets (Akdag and Ozkan, 2014a).

2. Preliminary Notes About Soft Sets:

Definition 2.1 (Molodtsov, 1999) Let X be an initial universe set and E a set of parameters. Let P(X) be the power set of X and A a nonempty subset of E. A pair (F, A), denoted by F_A , is called a *soft set* over X if F is a mapping given by $F: A \rightarrow P(X)$. Shortly, a soft set over X is a parameterized family of subsets of the universe X. The family of all these soft sets over X is denoted by $SS(X)_A$. For a particular $e \in A$, the collection $\{F(e): F \text{ is a soft set}\}$ is considered to be the set of e-approximate elements of the soft sets. If $e \notin A$, then $F(e) = \emptyset$.

Let *I* be an arbitrary indexed set and $L = \{(F_i, A) : i \in I\}$ be a subfamily of $SS(X)_A$.

The union of *L* is the soft set (H, A) (Maji et al., 2003), where $H(e) = \bigcup_{i \in I} F_i(e)$ for each $e \in A$. We write

 $\bigcup_{i\in I}^{\sim}(F_i, A) = (H, A)$. The intersection of L is the soft

set (M,

A) (Maji et al., 2003), where
$$M(e) = \bigcap_{i \in I} F_i(e)$$

for each $e \in A$. We write $\bigcap_{i \in I} (F_i, A) = (M, A)$. If (G, A), (F, A) are two soft sets over X, we say (F, A)is a soft subset of (G, B) (or (G, B) is said to be a soft superset of (F, A) (Maji et al., 2003), denoted by $(F,A) \cong (G,B)$, if $A \subseteq B$ and $F(e) \subseteq G(e)$, $\forall e \in A$. Also (F, A) and (G, B) are called *soft equal*, if A = Band F(e) = G(e), $\forall e \in A$ (Maji et al., 2003). For a soft set (F, A) over X, we define $(F, A)^{c} = (F^{c}, A)$ to be the soft complement of (F, A)such that $F^{c}(e) = X - F(e)$ (Ali et al., 2009). $(F, A) \cong (G, A)$ iff $(G,A)^{c} \cong (F,A)^{c}$. A soft set (F,A) over X is called a null soft set (Maji et al., 2003) (resp. absolute soft set (Maji et al., 2003)), denoted by Φ_A (resp. denoted by X_A), if for all $e \in A$, $F(e) = \emptyset$ (resp. if for all $e \in A$, F(e) = X). Clearly, $X_A^c = \Phi_A$. A soft point (Das and Shmanta, 2013), denoted by x_e , is a soft set where $x \in X$ and $e \in A$ defined by $x_e(e) = \{x\}$ and $x_e(e') = \emptyset \quad \forall \quad e' \neq e \text{ in } A \cdot x_e \in (G,A) \text{ if for the}$ element $e \in A$, $\{x\} \subseteq G(e)$. Note that any soft point $x_e \in X_A$. The difference of two soft sets (Pei and Miao, 2005) (F, A) and (G, A) over a common universe X, denoted by (F,A)-(G,A) is the soft set (H,A)where for all $e \in A$, H(e) = F(e) - G(e).

Theorem 2.2 (Ali et al., 2009) If (F, A) and (G, A) are two soft sets in $SS(X)_A$, then

1.
$$((F,A)\widetilde{\cup}(G,A))^c = (F,A)^c \widetilde{\cap}(G,A)^c$$
.

2. $((F,A) \widetilde{\cap} (G,A))^c = (F,A)^c \widetilde{\cup} (G,A)^c$.

Theorem 2.3 (Ali et al., 2009) Let (F, A) and (G, A) be soft sets in $SS(X)_A$. Then the following are true:

- 1. $(F, A) \cap \phi_A = \phi_A$.
- 2. $(F,A) \cap X_A = (F,A)$.
- 3. $(F,A) \widetilde{\cup} \phi_A = (F,A)$.
- 4. $(F, A) \widetilde{\cup} X_A = X_A$.

Theorem 2.4 Let (F, A), (G, A), (H, A) and $(S, A) \in SS(X)_A$. Then the following are true:

- 1. If $(F, A) \cap (G, A) = \phi_A$, then $(F, A) \subseteq (G, A)^c$ (Zorlutuna etal., 2012).
- 2. $(F, A) \widetilde{\cup} (F, A)^c = X_A$ (Ali et al., 2011).
- 3. If $(F,A) \cong (G,A)$ and $(G,A) \cong (H,A)$, then $(F,A) \cong (H,A)$ (Zorlutuna etal., 2012).
- 4. $(F,A) \cong (G,A)$ iff $(G,A)^c \cong (F,A)^c$.

Theorem 2.5 (Zorlutuna etal., 2012) Let (F, A) and (G, A) be soft sets in $SS(X)_A$. Then the following are true:

- 1. $(F,A) \cong (G,A)$ iff $(F,A) \cap (G,A) = (F,A)$.
- 2. $(F,A) \cong (G,A)$ iff $(F,A) \widetilde{\cup} (G,A) = (G,A)$.

Theorem 2.6 Let $x_e \in X_A$ and $(G, A) \subseteq X_A$. Then the following are true:

- 1. If $x_e \in (G, A)$, then $x_e \notin (G, A)^c$ (Zorlutuna etal., 2012).
- 2. If $x_e \notin (G, A)^c$, then $x_e \in (G, A)$.

3. Soft Topology:

Definition 3.1 (Shabir and Maz, 2011) Let τ be a collection of soft sets over a universe X with a fixed set of parameters A. Then τ is said to be a *soft topology* on X, if

- 1. Φ_A , X_A belong to τ .
- 2. The union of any number of soft sets in τ belongs to τ .
- 3. The intersection of any two soft sets in τ belongs to τ .

The triple (X, τ, A) (briefly, X) is called *a soft* topological space over X. The members of τ are called *soft open sets*. A soft complement of a soft open set

(F, A) is called *a soft closed set* in *X*. If (F, A) belongs to τ , we write $(F, A) \in \tau$. A soft set (F, A) which is

both soft open and soft closed is called soft clopen set.

Definition 3.2 *(Shabir and Maz, 2011)* Let X be a soft topological space over X and (F, A) a soft set over X. Then the *soft closure* of (F, A), denoted by $\overline{(F, A)}$, is the intersection of all soft closed supersets of (F, A). Clearly $\overline{(F, A)}$ is the smallest soft closed set in (X, τ, A) which contains (F, A).

Definition 3.3 (Shabir and Maz, 2011) Let \tilde{X} be a soft topological space over X and (F, A) a soft set over X. Then *soft interior* of a soft set (F, A) is denoted by $(F, A)^{\circ}$ and is defined as the union of all soft open sets contained in (F, A). Clearly $(F, A)^{\circ}$ is the largest soft open set contained in (F, A).

Definition 3.4 (Yumak and Kaymakc, 2013) A soft set (F, A) in a soft topological space (X, τ, A) is called

soft
$$\beta$$
 – open set if $(F, A) \cong \left(\overline{(F, A)}\right)^{\circ}$

Definition 3.5 (Fayad and Mahdi, 2017) Let \tilde{X} be a soft topological space and $(F, A) \in SS(X)_A$. Then (F, A) is called a soft βc -open if (F, A) is a soft β -open set and for each $x_e \in (F, A)$ there is a soft closed set (H, A) in $SS(X)_A$ such that $x_e \in (H, A) \subseteq (F, A)$. The complement of a soft βc -open set is called a soft βc -closed set.

Theorem 3.6 (Fayad and Mahdi, 2017) An arbitrary union of soft βc – open sets is a soft βc – open set.

Definition 3.7 (*Fayad and Mahdi, 2017*) Let \tilde{X} be a soft topological space over X and (B, A) a soft set over X. The *soft* βc – *closure* of (B, A), denoted by $Cl_{\beta c}(B, A)$, is the intersection of all soft βc – closed supersets of (B, A). Clearly $Cl_{\beta c}(B, A)$ is the smallest soft βc –

closed set in X which contains (B, A).

Theorem 3.8 (Fayad and Mahdi, 2017) Let \tilde{X} be a soft topological space, (F, A) a soft set over X and $x_e \in X_A$. Then, the following two statement are equivalent:

- 1. $x_e \in Cl_{\beta c}(F, A)$.
- 2. For any soft βc open set (G, A) over X

containing x_e we have, $(F, A) \widetilde{\frown} (G, A) \neq \phi_A$.

Theorem 3.9 (Fayad and Mahdi, 2017) Let x be a soft topological space and let (F, A) and (G, A) be soft sets over X. Then

- 1. (F, A) is a soft βc closed set if and only if $(F, A) = Cl_{\beta c}(F, A)$.
- 2. $Cl_{\beta c}(\phi_A) = \phi_A$ and $Cl_{\beta c}(X_A) = X_A$.
- 3. $Cl_{\beta c}(Cl_{\beta c}(F,A)) = Cl_{\beta c}(F,A)$.
- 4. $(F,A) \cong (G,A)$ implies $Cl_{\beta c}(F,A) \cong Cl_{\beta c}(G,A)$.
- 5. If $Cl_{\beta c}(F,A) \cap Cl_{\beta c}(G,A) = \phi_A$, then $(F,A) \cap (G,A) = \phi_A$.
- 6. $Cl_{\beta}(F,A) \widetilde{\cup} Cl_{\beta}(G,A) \cong Cl_{\beta}((F,A) \widetilde{\cup} (G,A)).$
- 7. $Cl_{\beta_c}((F,A) \widetilde{\cap} (G,A)) \cong Cl_{\beta_c}(F,A) \widetilde{\cap} Cl_{\beta_c}(G,A)$.

4. Soft βc – Generalized Closed Sets:

Definition 4.1 Let \tilde{x} be a soft topological space and $(F,A) \in SS(X)_A$. Then (F,A) is called a *soft* βc -*generalized closed* (briefly, a *soft* βc -*g.closed*) set if $Cl_{\beta c}(F,A) \subseteq (G,A)$ whenever $(F,A) \subseteq (G,A)$ and (G,A) is a soft βc --open set over X. The complement of a soft βc -g.closed set is called *soft* βc -generalized open set.

Theorem 4.2 In a soft topological space \tilde{x} , every soft βc – closed set is soft βc – g.closed set.

Proof. Let (F, A) be a soft βc – closed set and (G, A) a soft βc – open set such that $(F, A) \cong (G, A)$. Then, $Cl_{\beta c}(F, A) = (F, A) \cong (G, A)$. Therefore, (F, A) is a soft βc – g.closed set.

Remark 4.3 *The converse of the above theorem need not be true in general as shown in the following example:*

Example 4.4 Let $X = \{a, b, c\}$ and $A = \{e\}$ with a soft topology

 $\tau = \{\phi_A, X_A, (e, \{a\}), (e, \{b\}), (e, \{a, b\}), (e, \{a, c\})\}.$

Then, the soft βc -open sets over X are ϕ_A , X_A , $(e,\{b\})$ and $(e,\{a,c\})$. If $(F,A) = (e,\{a\})$, then $(e,\{a,c\})$ and X_A are the soft βc -open sets contain (F,A). Moreover $Cl_{\beta c}(F,A) = (e,\{a,c\})$. So, $Cl_{\beta c}(F,A) \cong (e,\{a,c\})$ and $Cl_{\beta c}(F,A) \cong X_A$. Therefore, (F, A) is a soft $\beta c - g$.closed set, which is not soft $\beta c - c$ losed set.

Theorem 4.5 Let \tilde{X} be a soft topological space and (F, A) a soft set over X. If (F, A) is a soft βc -open and soft βc -g.closed set, then (F, A) is a soft βc -closed set.

Proof. Since $(F, A) \cong (F, A)$ and $Cl_{\beta c}(F, A) \cong (F, A)$, $Cl_{\beta c}(F, A) = (F, A)$. Therefore, (F, A) is a soft βc – closed set.

Theorem 4.6 Let \tilde{X} be a soft topological space and let (F, A) and (G, A) be soft sets over X. If (F, A) is a soft βc -g.closed set and (G, A) is a soft βc -closed set, then $(F, A) \widetilde{\cap} (G, A)$ is a soft βc -g.closed set.

Proof. If (M, A) is a soft βc -open set over X such that $(F, A) \widetilde{\frown} (G, A) \cong (M, A)$, then $(F, A) \cong (M, A) \widetilde{\cup} (G, A)^c$ where $(M, A) \widetilde{\cup} (G, A)^c$ is a soft βc -open set. Since (F, A) is a soft βc -g.closed set, $Cl_{\beta c}(F, A) \cong (M, A) \widetilde{\cup} (G, A)^c$. So, $Cl_{\beta c}((F, A) \widetilde{\frown} (G, A))$

 $\widetilde{\subseteq} Cl_{\beta c}(F,A) \widetilde{\cap} Cl_{\beta c}(G,A) = Cl_{\beta c}(F,A) \widetilde{\cap} (G,A) \widetilde{\subseteq} ((M,A) \widetilde{\cup} (G,A)^c)$ $\widetilde{\cap} (G,A) = ((M,A) \widetilde{\cap} (G,A)) \widetilde{\cup} ((G,A)^c \widetilde{\cap} (G,A)) \widetilde{\subseteq} ((M,A).$ Therefore, $(F,A) \widetilde{\cap} (G,A)$ is a soft βc – g.closed set.

Theorem 4.7 Let \tilde{X} be a soft topological space and let (F, A) and (G, A) be soft sets over X. If (F, A) is a soft $\beta c - g.closed$ set such that $(F, A) \cong (G, A) \cong Cl_{\beta c}(F, A)$, then (G, A) is a soft $\beta c - g.closed$ set.

Proof. If (M, A) is a soft βc -open set over X such that $(G, A) \cong (M, A)$, then $(F, A) \cong (M, A)$. Also, $Cl_{\beta c}(F, A) \cong Cl_{\beta c}(G, A) \cong Cl_{\beta c}(F, A) \cong (M, A)$.

Therefore, (G, A) is a soft βc – g.closed set.

Theorem 4.8 Let \tilde{x} be a soft topological space. For each $x_e \in X_A$, either $\{x_e\}$ is a soft βc – closed set or $\{x_e\}^c$ is a soft βc – g.closed set.

Proof. If $\{x_e\}$ is not soft βc – closed set, then $\{x_e\}^c$ is not soft βc – open set and so the only soft βc – open

set containing $\{x_e\}^c$ is X_A . So, $Cl_{\beta c}(\{x_e\}^c) \cong X_A$. Therefore, $\{x_e\}^c$ is a soft βc – g.closed set.

Theorem 4.9 Let \tilde{x} be a soft topological space and (F,A) a soft set over X. Then, (F,A) is a soft βc g.closed set if and only if for each $x_e \in Cl_{\beta_k}(F,A)$ we have $Cl_{\beta c}(\{x_e\}) \widetilde{\cap} (F, A) \neq \phi_A$. *Proof.* Let (F, A) be a soft βc – g.closed set and $x_e \in Cl_{\beta c}(F, A)$ such that $Cl_{\beta c}(\{x_e\}) \cap (F, A) = \phi_A$. Since $Cl_{\beta c}(\{x_e\})$ is a soft βc – closed set, $(Cl_{\beta c}(\{x_e\}))^c$ is a soft βc – open set and $(F, A) \cong (Cl_{\beta c}(\{x_e\}))^c$. But (F, A) is a soft βc – g.closed set, so that $Cl_{\mathcal{R}}(F,A) \cong (Cl_{\mathcal{R}}(\{x_e\}))^c$. Hence, $x_e \not\in Cl_{\mathcal{R}}(\{x_e\})$ which is a contradiction. Conversely, let (M, A) be a soft βc -open set such that $(F, A) \cong (M, A)$. Since there $Cl_{\beta c}(\{x_e\}) \widetilde{\cap}(F, A) \neq \phi_A$, exists $y_{i} \in (F,A) \subseteq (M,A)$ and $y_{i} \in Cl_{\beta c}(\{x_{e}\})$. Then, by Theorem 3.8, $(M, A) \cap \{x_e\} \neq \phi_A$ and so, $x_e \in (M, A)$ which implies that, $Cl_{\beta c}(F,A) \cong (M,A)$. Therefore, (F, A) is a soft βc – g.closed set.

Theorem 4.10 Let \tilde{X} be a soft topological space and (F, A) a soft set over X. Then, (F, A) is a soft $\beta c - g.closed$ set if and only if $Cl_{\beta c}(F, A) - (F, A)$ does not not containing any non-null soft $\beta c - closed$ set.

Proof. Let (F, A) be a soft βc – g.closed set and there exists a non-null soft βc – closed set (*G*, *A*) such that $(G,A) \cong Cl_{\beta_c}(F,A) - (F,A)$. Then $(G,A) \cong (F,A)^c$ SO, $(F,A) \cong (G,A)^c$. Therefore, and $Cl_{\beta}(F,A) \cong (G,A)^c$ which implies, $(G,A) \cong (Cl_{\beta}(F,A))^c$ Hence, $(G, A) \cong Cl_{\beta c}(F, A) \cap (Cl_{\beta c}(F, A))^{c} = \phi_{A}$ and so $(G, A) = \phi_A$ which is a contradiction. Conversely, if (M, A) is a soft βc – open set such that $(F,A) \cong (M,A)$ and $Cl_{\beta c}(F,A)\tilde{U}(M,A)$. Then $Cl_{\mathcal{B}^{c}}(F,A) \widetilde{\cap} (M,A)^{c} \neq \phi_{A}$ and $Cl_{\scriptscriptstyle Bc}(F,A)\,\widetilde{\cap}\,(M,A)^c$ $\cong Cl_{\beta c}(F,A) \cap (F,A)^c = Cl_{\beta c}(F,A) - (F,A)$. Therefore,

 $Cl_{\beta c}(F,A) \widetilde{\cap} (M,A)^c \cong Cl_{\beta c}(F,A) - (F,A)$ and $Cl_{\beta c}(F,A) \widetilde{\cap} (M,A)^c$ is a non-null soft βc – closed set which is a contradiction.

Theorem 4.11 Let X be a soft topological space and (F, A) a soft set over X. Then, the following are equivalent:

- 1. Every soft set over *X* is a soft βc g.closed set.
- 2. (F, A) is a soft βc open set if and only if (F, A) is a soft βc closed set.

Proof. Direct using Definition 4.1.

5. Soft $\beta c - T_{\frac{1}{2}}$ Space:

Definition 5.1 A soft topological space *X* is called *soft* $\beta c - T_{\frac{1}{2}}$ *space* if every soft βc – g.closed set over *X* is soft βc – closed set over *X*.

Theorem 5.2 A soft topological space X is soft $\beta c - T_{\frac{1}{2}}$ space if and only if for each $x_e \in X_A$, x_e is either soft

Proof. Suppose that x_e is not soft βc – closed set. Then,

 βc – closed set or x_e is soft βc – open set.

by Theorem 4.8, x_e^c is a soft βc -g.closed set. Since Xis a soft $\beta c - T_{\frac{1}{2}}$ space, x_e^c is a soft βc -closed set. Therefore, x_e is a soft βc -open set. Conversely, Let (F,A) be a soft βc -g.closed set over X and let $x_e \in Cl_{\beta c}(F,A)$. If x_e is a soft βc -closed set, then $x_e \notin (F,A)$ which implies that $x_e \in Cl_{\beta c}(F,A) - (F,A)$ which contradicts Theorem 5.2. Therefore, $x_e \notin (F,A)$ and $Cl_{\beta c}(F,A) = (F,A)$. On the second case, if x_e is a soft βc -open where $x_e \notin Cl_{\beta c}(F,A)$, then $x_e \cap (F,A) \neq \phi_A$. Therefore, $x_e \notin (F,A)$ and (F,A) is a soft βc -closed set. **Corollary 5.3** Let X be a soft topological space and (F, A) a soft set over X. Then, the following are equivalent:

- 1. *X* is a soft $\beta c T_{\frac{1}{2}}$ space.
- 2. (F, A) is a soft βc closed (resp. a soft βc open) set if and only is (F, A) is a soft βc g.closed (resp. a soft βc g.open) set.

Definition 5.4 Let X be a soft topological space and

 $x_e, y_{e'} \in X_A$ such that $x_e \neq y_{e'}$. Then X is called a *soft* $\beta c - T_o$ space if there exist soft βc -open sets (F, A)and (G, A) such that either $x_e \in (F, A)$ and $y_{e'} \notin (F, A)$ or $y_{e'} \in (G, A)$ and $x_e \notin (G, A)$.

Theorem 5.5 Every soft $\beta c - T_{\frac{1}{2}}$ space is soft $\beta c - T_{\circ}$ space.

space.

Proof. Let X be a soft $\beta c - T_{\frac{1}{2}}$ space and let $x_e \neq y_{e'}$ over X. Then, by Theorem 5.2, x_e is either soft βc closed or soft βc – open set. If x_e is a soft βc – closed set, then x_e^c is a soft βc – open set contains $y_{e'}$ and not

 x_e . Hence, X is a soft $\beta c - T_\circ$ space. In the second case, if x_e is a soft βc – open set, then $x_e \in x_e$ and

 $y \in \widetilde{\not\in} x_e$. Therefore, X is a soft $\beta c - T_{\circ}$ space.

Remark 5.6 *The converse of the above theorem need not be true in general as illustrated in the following example:*

Example 5.7 Let $X = \{a, b, c\}$ and $A = \{e\}$ with a soft topology $\tau = \{\phi_A, X_A, (e, \{a\}), (e, \{b\}), (e, \{a, b\})\}$. Then, the soft βc -open sets are ϕ_A , X_A , $(e, \{a, c\})$ and

 $(e, \{b, c\})$. Then X is a soft $\beta c - T_{\circ}$ space but not soft $\beta c - T_{\frac{1}{2}}$ space because $(e, \{c\})$ is soft $\beta c - g$.closed set, which is not soft $\beta c - c$ losed set.

Theorem 5.8 A soft topological space X is a soft $\beta c - T_o$ space if and only if for each pair of distinct soft points x_e and y_{\perp} over X, $Cl_{\beta c}(x_e) \neq Cl_{\beta c}(y_{\perp})$.

Proof. There is a soft βc – open set (U, A) over Xcontaining x_e but not $y_{e'}$ which implies, $y_{e'} \in (U, A)^c$ where $(U, A)^c$ is a soft βc – closed set. Hence, $Cl_{\beta c}(y_{e'}) \cong (U, A)^c$ and $x_e \notin Cl_{\beta c}(y_{e'})$. Therefore, $Cl_{\beta c}(x_e) \neq Cl_{\beta c}(y_{e'})$. Conversely, if $Cl_{\beta c}(x_e) \tilde{U}Cl_{\beta c}(y_{e'})$, then $(Cl_{\beta c}(y_{e'}))^c$ is a soft βc – open set such that $y_{e'} \notin (Cl_{\beta c}(y_{e'}))^c$ and $x_e \in (Cl_{\beta c}(y_{e'}))^c$ (if $x_e \notin (Cl_{\beta c}(y_{e'}))^c$, then $x_e \in Cl_{\beta c}(y_{e'})$). So, $Cl_{\beta c}(x_e) \cong Cl_{\beta c}(y_{e'})$ which

contradicts our assumption. Therefore, \tilde{X} is a soft $\beta c - T_{\circ}$ space.

Definition 5.9 Let *X* be a soft topological space and (F, A) a soft set over *X*. Then, the intersection of all soft βc – open sets containing (F, A) is called the *soft* βc – *Kernal* of (F, A) and its denoted by $Ker_{\beta c}(F, A)$.

Theorem 5.10 A soft set (F, A) is a soft βc -g.closed set if and only if $Cl_{\beta c}(F, A) \cong Ker_{\beta c}(F, A)$.

Proof. Let $x_e \in Cl_{\beta c}(F, A)$ such that $x_e \notin Ker_{\beta c}(F, A)$. Then, there exists a soft βc – open set (V, A) such that $(F, A) \subseteq (V, A)$ and $x_e \notin (V, A)$. But (F, A) is a soft βc – g.closed set which implies, $Cl_{\beta c}(F, A) \subseteq (V, A)$ and so, $x_e \notin Cl_{\beta c}(F, A)$ which is a contradiction. Conversely, let (M, A) be a soft βc – open set over Xsuch that $(F, A) \subseteq (M, A)$. Then, $Cl_{\beta c}(F, A) \subseteq Ker_{\beta c}(F, A) \subseteq (M, A)$. Therefore, (F, A)is a soft βc – g.closed set.

References:

- Akdag, M., and Ozkan, A. (2014a). Soft b-open sets and soft b-continuous functions. *Mathematical Sciences*, 8(2), 1-9.
- Akdag, M., and Ozkan, A. (2014b). Soft open sets and soft continuous functions. *In Abstract and Applied Analysis.doi:*

http://dx.doi.org/10.1155/2014/891341

- Ali, M. I., Feng, F., Liu, X., Min, W. K., and Shabir, M. (2009). On some new operations in soft set theory. *Computers and Mathematics with Applications*, 57(9), 1547-1553.
- Ali, M. I., Shabir, M., and Naz, M. (2011). Algebraic structures of soft sets associated with new operations. *Computers and Mathematics with Applications*, 61(9), 2647-2654.
- Aygnolu, A., and Aygn, H. (2012). Some notes on soft topological spaces. *Neural computing and Applications*, *21*(1), 113-119.
- Chen, B. (2013). Soft semi-open sets and related properties in soft topological spaces. *Appl. Math. Inf. Sci, 7*(1), 287-294.
- Das, S., and Samanta, S. K. (2013). Soft metric. *Annals* of Fuzzy Mathematics and Informatics, 6(1), 77-94.
- Fayad, E. and Mahdi, H. (2017). Soft βc open sets and soft βc – continuity. *International Mathematical Forum*, 12(1), 9 – 26.
- Maji, P. K., Biswas, R., and Roy, A. (2003). Soft set theory. *Computers and Mathematics with Applications*, 45(4), 555-562.
- Molodtsov, D. (1999). Soft Set Theory-First Results. *Computers and Mathematics with Applications*, 37(4), 19-31.
- Pei, D., and Miao, D. (2005). From soft sets to information systems. In *GrC*, 617-621.
- Shabir, M., and Naz, M. (2011). On soft topological spaces. *Computers and Mathematics with Applications*, 61(7), 1786-1799.
- Yumak, Y., and Kaymakc, A. K. (2013). Soft β open sets and their applications. *arXiv preprint arXiv:1312*, 6964.
- Zorlutuna, I., Akdag, M., Min, W. K., and Atmaca, S. (2012). Remarks on soft topological spaces. *Annals of Fuzzy Math and Informatics, 3*(2), 171-185.

eta c المجموعات المغلقة المعممة اللينة من النوع

سابقاً، قمنا بتقديم ودراسة مفهوم المجموعات المفتوحة اللينة من النوع eta c في فضاءات التبولوجيا اللينة. هذا البحث هو تكملة لدراسة هذا المفهوم. قمنا فيه بتقديم ودراسة مفهوم المجموعات المغلقة المعممة من نوع eta c. ناقشنا خلاله بعض الخصائص اللينة لهذا النوع من المجموعات اللينة. أيضاً قمنا بتعريف ودراسة مفاهيم الانفصال اللين $T_1 \ eta c - 3$ واستخدامه للحصول على

وصف للمجموعات اللينة لتكون مجموعات لينة مغلقة معممة من نوع βc.

كلمات مفتاحية: التبولوجيا اللينة، المجموعات المفتوحة اللينة من النوع $m{lpha}$ ، المجموعات المفتوحة اللينة من النوع $m{lpha}$ ، المجموعات المغلقة المعممة اللينة من نوع $m{
hat{m{
hat{m{
hat{
m{c}}}}}}_{2}}$. الفضاء اللين $m{
hat{m{
hat{
m{c}}}}_{2}$.