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Abstract

A code of length n and size M consist of a set of M vectors of n components. The

components being taken from some alphabet set S. So a code C is a set of n-tuples

subset of Sn. If S has a ring structure then C is called a linear code over S if it is an

S-module. To every linear code C there corresponds its dual C⊥ , if C ⊂ C⊥, then C is

called self-orthogonal . If C = C⊥ then C is called self-dual. In this thesis we will study

linear and self-dual codes over the rings of four alphabets and in more details over the

ring F2 × F2, this ring is isomorphic to the ring F2 + vF2 where v2 = v and F2 = {0, 1}.
We would also study linear and self-dual codes for other rings in the form Fp + vFp for

different primes p.Also we will construct simplex code over the ring F2 + vF2 ' F2 × F2.
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Introduction

Coding theory originated with the 1948 publicated of Landmark paper “A mathematical

theory of communication” by Claud Shannon. For the past half century, coding theory

has grown into a discipline interesting mathematics and engineering with applications to

almost every area of communication such as satellite and cellular telephone transmission,

compact disc recording ,and data storage. Coding theory is the study of methods for ef-

ficient and accurate transfer of information from one place to another. The fundamental

problem in coding theory is to determine what message are sent on the basis of what

received. Coding theory deals with the problem of detecting and correcting transmission

errors caused by noise in the channel. The following diagram shows the system commu-

nication system for transmitting information from a source to a destination through a

channel.

Message source → Encoder → Channel → Decoder → Receiver

↑
noise

The most important part of the diagram, as far as we are concerned is the noise, for

without it there would be no need for the theory. The communication can be either in

the space domain (i.e from one location to the other)or in the time domain (i.e by storing

data at one point in time and retrieving it some time later).

Let q be a positive integer and let Fq be a set of q-alphabets.

A code C of length n and size M is a subset of F n
q having M elements. The elements of

C are called codewords. In order to be able to correct errors we associate some algebraic

structure with Fq. If q is a prime power one usually takes Fq = GF (q), otherwise Fq = Zq.

Let Fq = GF (q)(Zq). A linear code of length n over GF (q)(Zq) is a subspace (submodule)

of F n
q .

A linear code C can be specified by a generator matrix G over a set Fq such that C is the

row space of G.
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To every linear code C there corresponds its dual code C⊥, if C ⊆ C⊥ then C is called

self-orthogonal, If C = C⊥ then C is called -self-dual.

Linear and self dual codes over the rings Z4, F2 +uF2, and over R = F2 +vF2 with v2 = v

and their classification are studied by different authors for more details see [10], [13], [23]

and [24].

In [6]Rain and Sloane gave examples of self-dual codes and their weight enumerators.

They studied some families of self-dual codes in [9] it was shown that extremal (Her-

mitian) self-dual codes over F2 × F2 exist only for lengths 1, 2, 3, 4, 5, 8 and 10. In

particular it was shown that there is a unique extremal self-dual code up to equivalence

for lengths 8 and 10 in [10] Koichi Betsumiya studied optimal self-dual codes and Type

IV self-dual codes over the ring F2 × F2 of order 4, he gave improved upper bounds on

minimum Hamming and Lee weights for such codes, he also constructed optimal self-dual

codes and Type IV self-dual codes.

Also there are various binary linear codes studied so far by several researchers. Some

important class of binary codes are Hamming code and its dual which is called simplex

code.Any nonzero codeword of the simplex code has many of the properties that we would

expect from a sequence obtained by tossing a fair coin 2m − 1 times.

This randomness makes these codewords very useful in a number of applications such as

range-finding, synchronizing, modulation and scrambling etc.

In [11] Gupta constructed simplex code of type α and β over Z4 and Z2s some fundamen-

tal properties like 2-dimension, Hamming, Lee and Generalized Lee weight distribution ,

weight hierarchy etc. are determined for these codes . In [13] Al-Ashker obtained simplex

code over the ring F2 + uF2 by generalization of simplex codes over the ring Z4.

Also in [14] Al-Ashker constructed the generalized Gray map between the ring F2 +uF2 +

u2F2 and F n
2 and introduced simplex linear codes over

∑s
n=0 unF2 of types α and β where

us+1 = 0 and determined their properties

In this thesis, we will study linear and self-dual codes over the ring F2 × F2 where this

ring is isomorphic to the ring F2 + vF2 such that v2 = v and F2 = {0, 1}.
We would also study linear and self-dual codes for other rings in the form Fp + vFp for

different primes p and we will construct simplex codes over the ring F2 + vF2.

Finally we study Bachoc, Hamming and Lee weight of simplex codes. This thesis is orga-

nized into four chapters.

In chapter one, we give basic definitions and elementary results that we need through-

out this thesis. In chapter two, we give the basic definitions of self orthogonal and self

dual codes over some rings, this chapter covers the main last studies about self-dual code
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and their types. Chapter three, is devoted for the study of self-dual codes over the ring

F2+vF2, Also we will generalize some results over the rings Fp+vFp isomorphic to Fp×Fp

where p is prime integer. In chapter four, first we define simplex codes over binary fields

and over some commutative rings, also we construct simplex codes of types α and β (de-

noted by Sα
k and Sβ

k resp.) over the commutative ring F2 +vF2, and we extend our results

by studying the Hamming weight (wtH), the Lee weight (wtL) and Bachoc weight (wtB)

for these codes.
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Chapter 1

Preliminaries

This chapter is divided into four sections. In section one, we set some fundamental

terminology and definitions which will be applied throughout the thesis. In section two,

we study generating and parity check matrices.In section three , we look more closely at

the most important types of codes, and study some properties which they posses with

some examples. Section four covers terminology of encoding and decoding methods .

Most definitions, facts and results in this chapter can be found in [1], [4], [6], [11], [21]

and [29].

1.1 General definitions on codes

In this section, we define alphabet, codes, codewords, or strings, codes over fields, Ham-

ming weights and Hamming distances.

Definition 1.1.1. (Strings and codes ) Let A = {a1, a2......aq} be a finite set called

alphabet. A string or a word over the alphabet A is any sequence of elements of A, we

will usually (but not always )write words in the form a = ai1ai2 ......aik

using juxtaposition of symbols. The empty word 0 is the unique word with no sym-

bols. The length of a word a denoted by len(a) is the number of the alphabet symbols

appearing in the word. The set of all words (strings) over A will denoted by A∗.

Definition 1.1.2. Let A = {a1, a2......aq} be a finite set which we call a code alphabet.

An q-ary is a nonempty subset C of the set A∗ of all words over A. The size q of the code

alphabet is called the radix of the code and the element of the code are called codewords.

The field F2 = {0, 1} has had a very special place in history of coding theory, and

codes over F2 are called binary codes. Similarly, codes over F3 = {0, 1, 2} are termed
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ternary codes , while codes over F4 = {0, 1, w, w} are called quaternary codes.The term

“quaternary” has also been used to refer to codes over the ring Z4 = {0, 1, 2, 3} of integers

modulo 4.

Definition 1.1.3. Fixed and variable length codes If all codewords in a code C have

the same length we say that C is a fixed length code, or block code. If C contains

codes of different lengths, we say that C is a variable length code. We will consider

only block codes. We shall denote the number of codewords in a code C by |C|.
Let An be the set of all strings of length n. Any nonempty subset C of An is called a

q-ary block code , each string in C is called codeword. If C ⊂ An contains M codewords,

it is customary to say that C has length n and size M , we denote this by (n,M)-code.

Example 1.1.1. The binary code C = {000, 100, 010, 001, 110, 101, 011, 111} contains

M = |C| = 23 = 8 words.

Fact:For any binary code C of length n, 1 ≤ |C| ≤ 2n.

For the purpose of this thesis, codes will have alphabet as a field or a ring under addition

and multiplication. In fact, almost our codes’ alphabet will be defined on GF(q), a Galois

field of q-element and on commutative finite rings.

Definition 1.1.4. Hamming weight Let x be a q-ary word of length n. The Hamming

weight is the number of nonzero components in x. We denote the Hamming weight of x

by wtH(x). The minimum Hamming weight of a code C is the minimum Hamming weight

of all nonzero codewords in C and is denoted by wtH(C).

Example 1.1.2. If x = 110203 then wtH(x) = 4 and wtH(0000) = 0.

Definition 1.1.5. Hamming distance

Let x = (x1, x2, ......, xn) and

y = (y1, y2, ......, yn) ∈ C. The Hamming distance between x and y is the dH(x, y) = the

number of i
′s such that xi 6= yi.

A code C is said to have ( minimum) distance d if d =minimum {dH(x, y)|x, y ∈ C, x 6= y}
and it is denoted by d(C).

Notation:An (n, M, d) code is a code of length n size M and minimum distance d.

Example 1.1.3. If x = 20221 and y = 10220 then dH(x, y) = 2 and if x = 1011 and

y = 1011 then dH(x, y) = 0.

Note that for binary codes the Hamming distance between x and y is the same as the

Hamming weight of z such that z = x + y.

d(x, y) = wtH(x + y).

6



Example 1.1.4. If x = 10110 and y = 01101 we have

d(x, y) = d(10110, 01101) = 4,

wtH(x + y) = wtH(10110 + 01101) = wtH(11011) = 4.

Proposition 1.1.1. We now list a number of facts concerning weight and distance, Let

x, y and z be words of the same length n and a be a scalar then,

1) 0 ≤ wtH(x) ≤ n.

2) wtH(x) = 0 iff x = 0.

3) 0 ≤ dH(x, y) ≤ n.

4) dH(x, x) = 0.

5) If dH(x, y) = 0 then x = y.

6) dH(x, y) = dH(y, x).

7) wtH(x + y) ≤ wtH(x) + wtH(y).

8) dH(x, z) ≤ dH(x, y) + dH(y, z).

9) wtH(ax) = a.wtH(x), where a 6= 0 and a ∈ Fq.

10) dH(ax, az) = a.dH(x, z), where a 6= 0 and a ∈ Fq.

Definition 1.1.6. [21] Equivalent codes Two q-ary (n,M)-codes C1 and C2 are

equivalent if there exist a permutation σ of the n coordinate positions and permu-

tations π1, π2, ......, πn, of the code alphabet for which c1, c2......, cn ∈ C1 if and only if

π1(cσ(1))π2(cσ(2))......πn(cσ(n)) ∈ C2 In words, two codes are equivalent if one can be turned

into the other by permutation the coordinate position of each codeword (via σ) and by

permutating the code symbols in each codeword (via π1, ......πn). Of course σ or any πi

may be the identity permutation.

Example 1.1.5. If n = 5 and we choose rearrange the digits in the order 2, 1, 4, 5, 3

then the code

C1 = {33333, 12013, 23110} is equivalent to the code

C2 = {33333, 21130, 32101}

Theorem 1.1.2. [21] If C1 and C2 are equivalent codes then d(C1) = d(C2).

The following definition of equivalence is useful for special types of codes.
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Definition 1.1.7. [21] Monomial transformation Let σ be a permutation of size n,

for i = 1, ......, n, let πi : Fq −→ Fq be a multiplication by a nonzero scalar αi in Fq that

is,

πis = αis

Then the map µ : F n
q −→ F n

q defined by

µ(c1, c2, ......, cn) = π1(cσ(1))π2(cσ(2))......πncσ(n))

is called a monomial transformation of degree n.

In words a monomial transformation acting on n coordinates is a permutation of those

coordinates, followed by multiplication of each coordinate by a nonzero scalar. Among all

types of codes, linear codes are mostly studied because of their algebraic structure. They

are easier to describe, encode, and decode than nonlinear codes. The code alphabet for

linear codes is a finite field, although sometimes other algebraic structure (such as the

integers modulo 4 and other commutative rings ) can be used to define codes that are also

called linear . One of the great advantages of using a finite field Fq as code alphabet is

that we can perform vector space operations on the codewords. However, unless the code

is a subspace of the vector space F n
q , we cannot be certain that the sum of two codewords

(or scalar multiple of a codeword) is another codeword

Definition 1.1.8. (Linear codes) A code C is a linear code if it is a subspace of the

vector space F n
q of dimension n over the field GF (q). If C has dimension k over GF (q),

we say that C is an [n, k]-code, and if C has the minimum distance d we say C is an

[n, k, d]-code

Note that all linear codes contain the zero codewords, denoted by 0 = 00......0. Note

also that the dimension of a q-ary [n, k] code is defined by k = log|F | M where the size

M = qk and the rate of C is R = k/n.

Example 1.1.6. The binary code is the code {000, 011, 101, 110} over F2 = {0, 1} is a

linear code where M = 4. The dimension of the code is log2 4 = 2 and its rate is 2/3

Theorem 1.1.3. [29] If x, y ∈ F n
q then d(x, y) = wt(x − y). If C is a linear code , the

minimum distance d is the same as the minimum weight of the nonzero codewords of C

i.e d(C) = wt(C). For proof see [21]

Example 1.1.7. For the binary code C = {0000, 1010, 1101, 0111}clearly C is linear code.

d(1010, 1101) = 3

8



wt(1010− 1101) = wt(0111) = 3

d(C) = wt(C) = 2

Example 1.1.8. The code C = {0000, 1101, 0111, 1110} is not linear code since 1101 +

0111 = 1010 /∈ C.

d(1101, 0111) = 2.

wt(1101− 0111) = wt(1010) = 2.

Definition 1.1.9. The information rate or just rate Of an q-ary is a number that

is designed to measure the proportion of each codeword that is carrying the message, the

information rate of a code C of length n is defined to be (1/n) logq |C|. Notice that the

information rate of an [n, k, d] binary code is (1/n) log2(2
k) = k/n.

Example 1.1.9. For the binary code C = {000, 001, 101, 110}, the information rate of C

is 2/3 since |C|=4 and n = 3 so (1/3) log2 4 = 2/3.

1.2 Generator and Parity Check Matrices

If C is a k−dimensional subspace of F n
q then C will be called an [n, k] linear code over

Fq. The linear code C has qk codewords. The two most common ways to present a linear

code is a generator matrix. Since a linear code is a vector subspace we can describe it by

giving a basis. It is customary to arrange the basis vectors rows of a matrix.

Definition 1.2.1. A generator matrix A generator matrix for an [n, k] code C is any

k × n matrix G whose rows form a basis for C. Note that a generator matrix for C must

have k rows and n columns and it must have rank k. If C is an [n, k]-code, with generator

matrix G, then the codewords in C are precisely the linear combinations of the rows of G

and we can write

C = {xG|x ∈ F n
q }.

This provides a very simple method for encoding source data.

Theorem 1.2.1. [4] A matrix G is a generator matrix for some linear code C if and only

if the rows of G are linearly independent; that is, if and only if the rank of G is equal to

the number of rows of G.

In general there are many generator matrices for a code because row equivalent matrices

have the same rank and we have the following theorem.
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Theorem 1.2.2. [4] If G is a generator matrix for a linear code C, then any matrix row

equivalent to G is also a generator matrix for C. In particular, any linear code has a

generator matrix in RREF(Reduced Row Echelon Form).

Example 1.2.1. To find the generator matrix G for the code C = {0000, 1110, 0111, 1001}
By elementary row operations we write



0 0 0 0

1 1 1 0

0 1 1 1

1 0 0 1



→




1 1 1 0

0 1 1 1

1 0 0 1

0 0 0 0



→




1 1 1 0

0 1 1 1

0 1 1 1

0 0 0 0



→




1 1 1 0

0 1 1 1

0 0 0 0

0 0 0 0



→




1 0 0 1

0 1 1 1

0 0 0 0

0 0 0 0




.

so G1 =


 1 1 1 0

0 1 1 1


 is a generator matrix for C, also G2 =


 1 0 0 1

0 1 1 1


 ,

is a generator matrix for C.

Note that G2 is in RREF

Definition 1.2.2. [29] Information set and redundancy set For any set of k inde-

pendent columns of a generator matrix G , the corresponding set of coordinates form an

information set for C. The remaining r = n− k coordinates are termed a redundancy set

and r is called redundancy of C.

Definition 1.2.3. [29] Standard form If the first k coordinates form an information

set, the code has a unique generator matrix of the form [Ik|A] where Ik is the k×k identity

matrix. Such a generator matrix is in standard form. Because a linear code is a subspace

of a vector space , it is the kernel of some linear transformation. In particular we have

the following.

Definition 1.2.4. [29] Parity check matrix A parity check matrix for the [n, k] code

C, is an (n− k)× n matrix H such that

C = {x ∈ F n
q |HxT = 0}.

Note that the rows of H will also be independent. In general, there are also several

possible parity check matrices for C. The next theorem gives one of them when C has a

generator matrix in standard form. In this theorem, AT is the transpose of A.

Theorem 1.2.3. [29] If G = [Ik|A] is a generator matrix for the [n, k]code C in standard

form, then H = [−AT |In−k] is a parity check matrix for C.

10



Proof. we clearly have

HGT = [−AT |In−k]


 Ik

AT


 = −AT + AT = 0.

Thus, C is contained in the kernel of the linear transformation x → HxT . As H has rank

n − k, this linear transformation has kernel of dimension k, which is also the dimension

of C. The result follows.

Notation: Since GHT = [Ik|A]


 −A

In−k


 = -A+A = 0. Hence the rows of H are

orthogonal to the rows of G and since rank(H) = n− k = dim(C⊥). We deduce that H

is a generator matrix for the dual code C⊥

1.3 Important types of codes

Definition 1.3.1. [21] If x = x1x2, ......, xn and y = y1y2, ......, yn are binary words, we

define the intersection of x and y by

x ∩ y = (x1y1, x2y2, ......xnyn),

thus x∩y has a 1 in the ith position if and only of both x and y have 1 in the ith position.

We define the dot product x and y by :

x.y = x1y1 + x2y2 + ...... + xnyn.

Theorem 1.3.1. [29] The following hold

1) If x, y ∈ F n
2 , then

wt(x + y) = wt(x) + wt(y)− 2wt(x ∩ y).

2) If x, y ∈ F n
2 , then wt(x ∩ y) ≡ x.y(mod2).

3) If x ∈ F n
2 , then wt(x) ≡ x.x(mod2).

4) If x ∈ F n
3 , then wt(x) ≡ x.x(mod3).

5) If x ∈ F n
4 , then wt(x) ≡ 〈x.x〉(mod2), where F4 is the Galois field of 4 elements.

We can now define the most important subclass of linear codes.
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Definition 1.3.2. Dual code Let C be a linear [n, k]-code. The set

C⊥ = {x ∈ F n
q |x.c = 0,∀c ∈ C}.

is called the dual code for C, where x.c is the usual scalar product x1c1+x2c2+ ......+xncn

of the vectors x and c. Note that C⊥ is an [n, n− k] code.

Theorem 1.3.2. [20] Let C be a linear code of length n over Fq. Then,

1) |C| = qdim(C), i.e., dim(C) = logq |C|;

2) C⊥ is a linear code and dim(C) + dim(C⊥) = n;

3) (C⊥)⊥ = C.

Definition 1.3.3. Repetition codes The q-ary any Repetition code Rep(n) of length

n is

C={00......00, 11......11,......, (q-1)(q-1)......(q-1)}.
These very simple codes are q-ary linear [n, 1, n]-codes, with R = 1/n.

Example 1.3.1. For C = {0000000, 1111111}, R = 1/7.

Definition 1.3.4. Extended code Ĉ The process of adding one or more additional

coordinate positions to the code is referred to as extending code. The most common way

to extend a code is by adding an overall parity check, which is done as follows. If C is a

q-ary [n, k, d]-code , we define the extended code Ĉ by

Ĉ = {c1c2, ......, cn|c1c2......, cn+1 ∈ C and
n+1∑
i=1

Ci = 0}.

If Ĉ be an [n̂, k̂, d̂] binary-code, then n̂ = n + 1, k̂ = k, d̂ = d or d + 1 for [n, k, d] code.

Directly from definition, it is easy to prove that an extended linear code is also linear.

Note that an overall parity check is the sum of all entries mod q.

Example 1.3.2. Let C = {00, 01, 10, 11} is an [2, 2, 1]-code,

then Ĉ = {000, 011, 101, 110} is an [3, 2, 2]-code.

Definition 1.3.5. Puncturing a code The opposite process to extending a code is punc-

turing a code in which one or more coordinate positions are removed from the codewords

( and omitting a zero or duplicate row that may occur). If C is a q-ary [n,M, d]-code,

and if d ≥ 2 then the code C∗ obtained by puncturing C once has parameters

n∗ = n− 1,M∗ = M,d∗ = d or d− 1.

12



For [n, k, d] code C over Fq, C
∗ or (CT ) is [n− 1, k, d∗] linear code.

Note that when d = 1, C∗ is an [n− 1, k, 1] code if C has no codeword of weight 1 whose

nonzero entry is in coordinate i.

Example 1.3.3.

a) Let C = {000, 011, 101, 110} is [3, 2, 2]-code,

then C∗
3 = {00, 01, 10, 11} is [2, 2, 1]-code,

C∗
1 = {00, 11, 01, 10} is [2, 2, 1]-code.

b) Let C = {00, 01, 10, 11} is [2, 2, 1]-code,

C∗
1 = C∗

2 = {0, 1, 0, 1} = {0, 1} is [1, 1, 1]-code.

Definition 1.3.6. Shortening codes Let C be an [n, k, d] code over Fq and let T be

any set of t coordinates. Consider the set C(T ) of codewords which are 0 on T ; this set

is a sub-code of C. Puncturing C(T ) on T gives a code over Fq of length n− t called the

code shortened on T and denoted by CT .

Example 1.3.4. [29] Let C be [6, 3, 2] binary code with generator matrix

G =




1 0 0 1 1 1

0 1 0 1 1 1

0 0 1 1 1 1


 , G⊥ =




1 1 1 1 0 0

1 1 1 0 1 0

1 1 1 0 0 1


 .

If the coordinates are labeled 1, 2,......, 6, let T = [5, 6]. Then

GT =


 1 0 1 0

0 1 1 0


 and GT =




1 0 0 1

0 1 0 1

0 0 1 1


 .

(GT )⊥ =


 1 1 1 0

0 0 0 1


 and (GT )⊥ =

[
1 1 1 1

]
.

Shortening and puncturing the dual code gives

(G⊥)T =
[

1 1 1 1
]

and (G⊥)T =


 1 1 1 1

1 1 1 0


 .

Notice that (C⊥)T = (CT )⊥ and (C⊥)T = (CT )⊥.

Definition 1.3.7. (Cyclic code) a linear code C ⊂ F n
q is cyclic if c0c1......cn−1 ∈ C

implies cn−1c0c1......cn−2 ∈ C.
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For example, the code C = {000, 110, 101, 011} is a linear cyclic code, but the code

C = {000, 011, 111} is not cyclic, since 101 /∈ C

Definition 1.3.8. The sphere of radius Let x be a word in F 2 where |F | = q, and

Let r be any nonzero positive real number. The sphere of radius r about x is the set

Sq(n, r) = {y ∈ F n|d(x, y) ≤ r}.

Definition 1.3.9. Perfect code Let C ⊂ F n be a code. The packing radius of C

is the largest integer r for which the sphere Sq(c, r) about each codeword c are disjoint.

The covering radius of C is the smallest integer s for which the sphere Sq(c, s) about

each codeword c over F n, that is for which the union of the sphere Sq(c, s) is F n.Acode

C is said to be perfect if the packing radius of C equals the covering radius of C.

1.4 Encoding and decoding

Encoding: We have to determine a code to use for sending our messages. We must

make some choices. First, we select a positive integer k, the length of each binary word

corresponding to a message. Since each message must be assigned a different binary word

of length k, k must be a chosen so that |M | ≤ |qk = 2k|. Next, we decide how many digits

we need to add each word of length k to ensure that as many errors can be corrected

or detected as we require; this is the choice of the codewords and the length of the code

n. To transmit a particular message, the transmitter finds the word of length k assigned

to that message then transmits the codeword of length n corresponding to that word of

length k.

Decoding:The process of decoding,that is determining which codeword (massage x) was

sent when a vector y is received . In general, encoding is easy, and decoding is hard if

the code has a reasonably large size .

Theorem 1.4.1. [4] A code C of distance d will at least detect all non-zero error patterns

of weight less than or equal to d−1. Moreover, there is at least one error pattern of weight

d which C will not detect.

Example 1.4.1. The code C = {000, 111}, d = 3 detects all error patterns of weight 1

or 2 and C does not detect the only error patterns of weight 3.

Theorem 1.4.2. [4] A code C of distance d will correct all error patterns of weight

less than or equal to [(d − 1)/2]. Moreover, there is at least one error pattern of weight

1 + [(d− 1)/2] which C will not correct.
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Example 1.4.2. The code C = {000, 111}, d = 3 correct all error patterns of weight 0

or 1, since (d− 1)/2 = (3− 1)/2 = 1.

Example 1.4.3. Consider the binary code with generator matrix

G =




1 1 0 0

0 1 1 1

1 0 1 0


 .

This code encode source symbols from F 3
2 . In particular, for each x = (x1, x2, x3) ∈ F 3

2 ,

we associate the codeword

[
x1 x2 x3

]



1 1 0 0

0 1 1 1

1 0 1 0


 =

[
x1 + x3, x1 + x2, x2 + x3, x2

]
.

Let x = (101) ⇒ xG = [0, 1, 1, 0].

Example 1.4.4. [29] The matrix G =
[

I4|A
]
, where

G =




1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1




is a generator matrix in standard form for a [7, 4] binary code that we denote by H3, by

theorem (1.2.3)

H =
[
−AT |I3

]
=




0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1


 .

In binary system AT and −AT are the same.

This code is called the [7, 4]Hamming code.

Notation: The Hamming code H3 can encode source words from F 4
2 as follows

xG = [x1x2x3x4]




1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1




= [x1, x2, x3, x4, x2 + x3 + x4, x1 + x3 + x4, x1 + x2 + x4].
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Since G is in standard form, the original source message appears as the first k symbols of

it’s codeword.

An efficient decoding process for linear codes can be obtained through the use of parity

check matrices which will be of great value in designing decoding schemes.

Definition 1.4.1. Syndrome[21] and [29] The syndrome of a vector x in F n
q with

respect to the parity check matrix H is the vector in F n−k
q defined by

Syn(x) = HxT (others defined syndrome as, Syn(x) = xHT )

Thus x ∈ C if and only if the syndrome of x is 0.

Example 1.4.5. Let C be the Hamming code

H =




1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1


 .

To decode the received vector x = (0, 1, 1, 0, 1, 0, 0), we fined syndrome of x,

Syn(x) = HxT = (1, 1, 0),

which is the 4th column of H,, then the error vector is

e = (0, 0, 0, 1, 0, 0, 0),

and

y = x + e = (0, 1, 1, 1, 1, 0, 0).

Definition 1.4.2. Coset of C. If C ⊂ F n
q is a linear code (i.e subspace ) the quotient

space of F n
q , modulo C is defined by

F n
q /C = {x + C|x ∈ F n

q }.

The set x + C = {x + c|c ∈ C} is called a coset of C.

Note that |x + C| = |C|.
Because our code C is an elementary abelian subgroup of the additive group of F n

q , its

distinct cosets x + C partition F n
q into qn−k cosets of size qk. Two vectors x and y belong

to the same coset if and only if y − x ∈ C. The weight of a coset is the smallest weight

of vector in the coset, and any vector of this smallest weight in the coset is called a coset

leader. The zero vector is the unique coset leader of the code C. More generally, every

coset weight at most t = [(d− 1)/2] has unique coset leader.
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Proposition 1.4.3. [21] and [29] Two vectors belong to the same coset if and only if

they have the same syndrome.

Proof. Let x1, x2 ∈ F n
q are in the same coset of C, then x1 − x2 = c ∈ C. Therefore

syn(x1) = H(x2 +c)T = HxT
2 +HcT = HxT

2 = syn(x2). Convensely if syn(x1) = syn(x2),

then H(x2 − x1)
T = 0 and so x2 − x1 ∈ C.

Example 1.4.6. [21] Let C be the binary [4, 2]-code with generator matrix

G =


 1 1 0 1

0 1 0 0


 ,

The coset of C are:

0000 + C = {0000, 0100, 1101, 1001}
1000 + C = {1000, 1100, 0101, 0001}
0010 + C = {0010, 0110, 1111, 1011}
1010 + C = {1010, 1110, 0111, 0011}.

Since the coset leaders were chosen with minimum weight, the table of coset leaders is

0000 0100 1101 1001

1000 1100 0101 0001

0010 0110 1111 1011

1010 1110 0111 0011

We write G in standard form as

G =


 1 0 0 1

0 1 0 0


 and so , H =


 0 0 1 0

1 0 0 1


 .

Coset leader Syndrome

0000 00

1000 01

0010 10

1010 11

To decode the received word x = 1110, for instance, we compute its syndrome

1110.HT = 11.

Hence, according to the syndrome table, the coset leader is 1010 and we decode x as

1110 + 1010 = 0100.
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Chapter 2

Self-dual codes over rings and fields

In this chapter, we will introduce self dual codes and some types of them. These codes are

important because many of the best codes known of this type and they have rich mathe-

matical theory. Topics covered in this chapter include codes over F2, F3, F4, Z4, Zm, F2 +

uF2 and F2 + vF2 , which is isomorphic to F2× F2. We review the literature for self-dual

codes such as weight enumerators , MacWilliams formulas, Gray maps, bounds on codes,

types of self dual codes, Extremal and optimal codes. More information can be found in

[2], [6], [9], [10], [11], [21], [23], [24] and [29].

2.1 Inner product

Let F be a finite set called the alphabet. A code C over F of length n is any subset of F n.

If F has the structure of an additive group then C is additive if it is an additive subgroup

of F n. If F has ring structure then C is linear over F if it is additive and also closed

under multiplication by elements of F (we will always assume that, multiplication in F

is commutative ). In order to define dual codes, we must equip F with an inner product.

The vector space F n
q has a natural or Euclidean inner (dot or scaler ) product on it.

Definition 2.1.1. Euclidean Inner product The Euclidean inner product of x =

(x1, x2, x3, ......, xn) and y = (y1, y2, y3, ......, yn) on F n
q defined by:

(x, y) = x.y = x1y1 + x2y2 + ......xnyn =
∑n

i=1 xiyi

we may use the notation (x, y) for x.y and require that it satisfies the following conditions

for all x, y, z ∈ F n
q and α ∈ Fq

1) (x + y, z) = (x, z) + (y, z).

2) (x, y + z) = (x, y) + (x, z).

18



3) If(x, y) = 0 for all x then y = 0.

4) If (x, y)=0 for all y then x = 0 .

5) (αx, y) = (x, αy) = α(x, y).

This means that the inner product over F n
q is a symmetric bilinear-form.

Note: we say that x and y are orthogonal (x⊥y) if (x.y) = 0.

When studying quaternary codes over the field F4, it is often useful to consider another

product given by the following definition.

Definition 2.1.2. Hermitian inner product The Hermitian inner product for two

codeswords x and y is given by

〈x, y〉 = x.ȳ =
n∑

i=1

xiȳi,

where ¯called conjugation, and C̄ = {c̄|c ∈ C} where c̄ = c̄1c̄2......c̄n and c = c1c2......cn.

Example 2.1.1. For F4 = {0, 1, w, w̄} , conjugation is given by 0̄ = 0, 1̄ = 1 and w̄ = w

i.e ∀x ∈ F4, x̄ = x2

The Hermitian inner product is satisfying the following:

1) ¯̄x = x.

2) x + y = x̄ + ȳ.

3) xy = x̄ȳ.

4) 〈x, y〉 = 〈y, x〉.

5) 〈αx, y〉 = 〈x, ᾱy〉.

6) 〈x, αy〉 = ᾱ〈x, y〉.

Analogous to C⊥ we can define C⊥H .

Definition 2.1.3. [29] Hermitian dual of quaternary code C is

C⊥H = {x ∈ F n
q |〈x, y〉 = 0 , for all c ∈ C}.

Following [20], For a linear code C over F n
q2 , its Hermitian dual is defined as:

C⊥H = {x ∈ F n
q2|〈x, y〉 = 0 , for all c ∈ C}.
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Remark 2.1.1. If C is a code over F4, then C⊥H = C̄⊥.

Proof.

C⊥H = {x ∈ F n
4 |〈x, c〉 = x.c̄ = 0, ∀c ∈ C}

C̄⊥ = {x ∈ F n
4 |x.c̄ = 0, ∀ c̄ ∈ C̄}

= {x ∈ F n
4 = 〈x.c〉 = 0, ∀ c ∈ C}.

And so the result achieved.

Definition 2.1.4. Self orthogonal and self-dual codes A code C is self-orthogonal

provided that C ⊆ C⊥ and self-dual provided C = C⊥. We also have Hermitian self

orthogonality if C ⊆ C⊥H , and Hermitian self-dual if C = C⊥H .

Note: The self-dual binary code has even length n and dimension n/2.

In [6] Rains and Sloane considered the following :-

(2) Binary Linear codes : F = F2 = {0, 1}, with inner product (x, y) = xy, C = subspace

of F n
2 .

(3) Ternary linear codes:F : F3 = {0, 1, 2}, (x, y) = xy, C = subspace of F n
3 .

(4H) Quaternary linear codes:F = F4 = {0, 1, w, w2}where w2+w+1 = 0, w3 = 1, x̄ = x2

for x ∈ F4 with the Hermitian inner product 〈x, y〉 = xȳ, C = subspace of F n
4 .

Note that for x, y ∈ F4, (x + y)2 = x2 + y2.

(4E) Quaternary linear codes :F = F4,but with the Euclidean inner product (x, y) = xy.

(4Z) Z4 Linear codes :F = Z4 = {0, 1, 2, 3} with (x, y) = xy(mod4), C = linear subspace

of Zn
4 or strictly speaking, a Z4−submodule.

(mZ) F = Zm = Z/mZ ,where m is an integer ≥ 2 with (x, y) = xy(mod m), C is a

Zm−submodule.

Example 2.1.2. The hexa code has generator matrix G6 in standard form is Hermitian

F4- self-dual

G6 =




1 0 0 1 w w

0 1 0 w 1 w

0 0 1 w w 1


 .

Theorem 2.1.1. [21] Let G be a generator matrix for a q-ary linear code C, then C is

self orthogonal if and only if distinct rows of G orthogonal and have weight divisible by q.
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Theorem 2.1.2. [29] If every codeword of a binary code C has weight divisible by 4

then C is self-orthogonal.

Proof. let x and y be rows of the generator matrix

wt(x + y) = wt(x) + wt(y)− 2wt(x ∧ y)

= 0 + 0− 2wt(x ∧ y)

but x, y ∈ F n
2 then wt(x ∧ y) = x · y(mod2) which implies that 2(x · y) ≡ 2wt(x ∧ y) ≡

2wt(x ∧ y)− wt(x)− wt(y) ≡ −wt(x + y) ≡ 0(mod4). Thus x · y ≡ 0(mod2) and so C is

self orthogonal.

Example 2.1.3. [29] According to previous theorem the binary [7, 3] code C with gen-

erator matrix,

G =




1 1 1 1 0 0 0

0 0 1 1 0 1 1

0 1 0 1 1 0 1




is self orthogonal and all codeword weights are divisible by 4. The dual code C⊥ of the

code has generator matrix,

G⊥ =




1 1 1 1 0 0 0

0 0 1 1 0 0 1

0 1 0 1 1 0 1

1 1 1 1 1 1 1




,

by adding an overall parity check to this code , we obtain Ĉ with generator matrix

Ĝ =




1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 0

1 1 1 1 1 1 1 1



.

This code is self orthogonal [8, 4]-code , and so it is self-dual.

Notice that, if a code C is self-dual then any generating matrix G is also a parity check

matrix H.

Theorem 2.1.3. [21] A q-ary self-dual [n, n/2]-code exists if and only if one of the

following holds :

1) q and n are both even.

2) q ≡ 1(mod4) and n is even.
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3) q ≡ 3(mod4)and n is divisible by 4.

In particular, we note that a binary self-dual [n, n/2] -code exist for all positive even

integers n , and a ternary self-dual [n, n/2]-code exist if and only if n is divisible by 4.

Definition 2.1.5. [29] doubly or singly-even code A binary self-dual code C has the

property that all codeword weights are even. If, in addition, all codeword weights in C

are divisible by 4, then C is said to be an even (or doubly-even ) code. One which is not

doubly-even is called singly-even.

Theorem 2.1.4. [21] An even [n, n/2]-code exists if and only if n is divisible by 8.

Ĝ in Example (2.1.3) is example of even code.

Definition 2.1.6. [29] Even like or odd like code a vector x = x1, x2, x3, ......, xn in

F n
q is even-like provided that

∑n
i=1 xi = 0 and is odd-like otherwise. We say that a code

is even-like if it has only even-like codewords; a code is odd-like if it is not even-like. The

even-like vectors in a code form a subcode over Fq.

The vector (1, 1, 1) in F 3
3 and (1, w, w) in F 3

4 are examples.

2.2 Weight enumerators

There are several weight enumerators associated with a code C , they are given in the fol-

lowing definitions, for more details see [6], [11] and[29]. We defined the Hamming weight

of a vector x = (x1, x2, ......, xn) ∈ F n by the number of nonzero component xi. Two

other types of “weight” are useful for studying non binary codes. For the codes in families

(4Z), (mZ) and hence , for (2), (3), and if q is a prime for (qE) . We define the Lee weight

and Euclidean norm of x ∈ F by

Lee(x) = min{|x|, |F | − |x|}.

Eculidean(x) = (Lee(x))2.

for a vector x = (x1, x2, ......xn) ∈ F n, we set

Lee(x) =
n∑

i=1

Lee(xi).

Eculidean(x) =
n∑

i=1

Eculidean(xi).

of course , if x is a binary vector, wtH(x) = wtL(x) = wtE(x).
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Definition 2.2.1. Weight distribution For each 1 ≤ i ≤ n, let AH(i), AL(i), ......,

andAE(i) be the number of codewords of Hamming, Lee,......, and Euclidean i in the code

C.

Definition 2.2.2. The Hamming weight enumerator The Hamming weight enu-

merator (Hwe) of C is a polynomial defined by

Wc(x, y)orHam(x, y) =
∑
c∈C

(x)n−wH(c)ywH(c)

=
n∑

i=0

Ai(C)xn−iyi.

(The adjective Hamming is often omitted ). There is analogous definition for nonlinear

or nonadditive code.

Much more information about a code C is supplied by the following weight enumerators.

Definition 2.2.3. [6] Complete weight enumerator Let the elements of the alphabet

F be ξ1, ξ2, ......, ξa and introduce corresponding indeterminates x0, x1, ......, xa. Then

cwe(x0, x1, ......, xa) =
∑
u∈c

x
n0(u)
0 x

n1(u)
1 ......xna(u)

a ,

where ni(u) is the number of components of u that takes the value ξi. If there is a natural

way to pair up some of the symbol in F , we can often reduce the number of variables

in the cwe without losing any essential information, by identifying indeterminates corre-

sponding to paired symbols. The result is a symmetrized weight enumerator (abbreviated

swe).

Note that permutation equivalent codes have, the same cwe ,but in general two equivalent

class of codes may have different swe′s.

The swe contains only about half as many variables as the complete weight enumerators.

Some examples make this clear. For linear codes over F4

sweC(x, y, z) =
∑
4∈c

xn0(u)yn1(u)zNw(u) = cwe(x, y, z, z),

where Nw(u) is the number of components in u that are equal to either w or w. For
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linear code over Z4

sweC(x, y, z) =
∑
u∈C

xn0(u)yn±(u)zn2(x) = cweC(x, y, z, y),

where n±(u) is the number of components of u that are equal to either +1 or −1.

2.3 Examples of self-dual codes and their weight enu-

merators

[6] we write [n, k, d]q to indicate a linear code of length n, dimension k and minimum

distance d over the field Fq omitting q when it is equal to 2.

1) Ĉ in Example 2.1.3, the [8, 4, 4] Hamming code e8 is self dual with weight enumerator

We8(x, y) = x8 + 14x4y4 + y8.

2) The [4, 2, 3]3 tetra code t4 generated by {1110, 0121} has

wt4(x, y) = x4 + 8xy3.

3) (4H) The [2, 1, 2]4 repetition code i2 = {00, 11, ww, ww} has

Wi2(x, y) = x2 + 3y2.

swe = x2 + y2 + 2x2.

cwe = x2 + y2 + z2 + t2.

4) (4H) The [6, 3, 4] Hexacode in the form with generator matrix




1 0 0 1 w w

0 1 0 w 1 w

0 0 1 w w 1


 .

Wh6(x, y) = x6 + 45x2y4 + 18y6.

swe = x6 + y6 + 2z6 + 15(2x2y2z2 + x2z4 + y2x4).

cwe = x6 + y6 + z6 + t6 + 15(x2y2z2 + x2y2t2 + x2z2t2 + y2z2t2).
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5) (4E) The [4, 2, 3]4 read soloman code

G =


 1 1 1 1

0 1 w w


 ,

where C = {0000, 1111, 01ww, 10ww, wwww, ww01, w w w w, ww10,

0ww1, 1ww0, w01w, w10w, 0w1w, 1w0w, w1w0, w0w1} has

w(x, y) = x4 + 12xy3 + 3y4.

swe = x4 + y4 + 2z4 + 12xyz2.

cwe = x4 + y4 + z4 + t4 + 12xyzt.

6) (4Z) the octacode O8 with generator matrix




1 0 0 0 2 1 1 1

0 1 0 0 3 2 1 3

0 0 1 0 3 3 2 1

0 0 0 1 3 1 3 2




,

having minimal Lee weight 6 and minimal Euclidian weight 8

swe = x8 + 16y8 + z8 + 14x4z4 + 112xy4z(x2 + z2).

2.4 MacWilliams Theorems

A linear code C is uniquely determined by its dual C⊥. In particular, the weight distrib-

ution of C is uniquely determined by the weight distribution of C⊥ and vice versa. For

more details, see [29]. The simplest formulation is always in term of the weight enumerator

polynomials.

Theorem 2.4.1. [6], MacWilliams and others

(2) Three equivalent formulation of the result for binary self dual codes are :

WC⊥(x, y) =
1

|C|WC(x + y, x− y). (2.4.1)

∑

u∈C⊥

xn−wt(u)ywt(u) =
1

|C|
∑
4∈C

(x + y)n−wt(u)(x− y)wt(u). (2.4.2)
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and, if {A⊥
0 , A⊥

1 , ......} is the weight distribution of C⊥ ,

A⊥
k =

1

|C|
n∑

i=0

AiPk(i). (2.4.3)

where

PK(x) =
k∑

j=0

(−1)j


 x

j





 n− x

k − j


 , k = 0, ......n

is a Krowtchouk polynomial.

For the remaining cases we give just the formulation terms of weight enumerator.

(3) WC⊥(x, y) = 1
|C|WC(x + 2y, x− y).,

swe(x, y, z) = 1
|C|cweC(x + y + z, x + wy + wz, x + wy + wz).

(4H) and (4H+), WC⊥(x, y) = 1
|C|WC(x + 3y, x− y),

sweC⊥(x, y, z) = 1
|C|sweC(x + y + 2z, x + y − 2z, x− y),

cweC⊥(x, y, z, t) = 1
|C|cweC(x + y + z + t, x + y − z − t, x− y + z − t, x− y − z + t).

(4E) WC⊥ = 1
|C|WC(x + 3y, x− y),

sweC⊥(x, y, z) = 1
|C|sweC(x + y + 2z, x + y − 2z, x− y),

cweC⊥(x, y, z, t) = 1
|C|cweC(x + y + z + t, x + y − z − t, x− y − z + t, x− y + z − t).

(qH)

WC⊥ =
1

|C|WC(x + (q − 1)y, x− y). (2.4.4)

(4Z) WC⊥(x, y) = 1
|C|WC(x + 3y, x− y),

sweC⊥(x, y, z) = 1
|C|sweC(x + 2y + z, x− y, x− 2y + z),

cweC⊥(x, y, z, t) = 1
|C|cweC(x+ y + z + t, x+ iy− z− it, x− y + z− t, x− iy− z + it).

(mZ) WC⊥(x, y) = 1
|C|WC(x + (m− 1)y, x− y).

Proof. see [6].

Example 2.4.1. The repetition code C over a field Fq has Hamming weight enumerator

WC(x, y) = xn + (q − 1)yn,
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by (2.4.4) we deduce that the dual code C⊥, the zero-sum code, has weight enumerator

WC⊥(x, y) =
1

q
{(x + (q − 1)y)n + (q − 1)(x− y)n}.

Note that when n = 2,WC⊥ = WC.

2.5 Isodual and formally self-dual

All of the definitions and facts in this section can be found in [6], [24] and [29].

Definition 2.5.1. Formally self-dual A (possibly nonlinear )code with the property

that the code and its dual have identical Hamming weight enumerator.

Definition 2.5.2. Isodual self-dual A linear code which is equivalent to its dual

is called isodual.An isodual code is automatically formally self-dual. The code C =

{111100, 110011, 101010} is [6, 3, 3] isodual code.

Definition 2.5.3. Divisible self -dual Formally self-dual code is divisible if there exists

a positive integer δ > 1 such that δ divides all nonzero weights in the code, δ is called a

divisor of C.

Theorem 2.5.1. Gleason-pierce [6] and [24] If C is a self dual code belonging to

any of the families of (2) through (mZ) which has all its Hamming weight divisible by

an integer δ > 1 then one or more of the following holds:

1) TypeI : |F | = 2 , δ = 2 (so family2)

2) TypeII : |F | = 2 , δ = 4 (so family2)

3) TypeIII : |F | = 3 , δ = 3 (so family3)

4) TypeIV : |F | = 4 , δ = 2 (so families 44, 4E, 4Z)

5) TypeV : |F | = q , q arbitrary δ = 2

, and the Hamming weight enumerator of C is

(x2 + (q − 1)y2)n/2.

Remark 2.5.1.

1) The same conclusion holds if ”C” is self-dual ” is replaced by ”C is formally self-dual”.

2) For proof and generalization of the above theorem see [29] [Theorem 9.1.1(Gleason-

pierce-word) ].
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3) The binary self-dual codes that are not doubly even (or Type II) are called (singly

even) or (Type I).

4) The above theorem can be applied to codes over finite commutative rings for which

the MacWilliams relations hold, for example to codes over all finite rings of order 4.

5) Any self-dual divisible code over a ring of order 4 which is not Type V is necessarily

Type IV.

6) There are many examples of codes with weight enumerator (x2 + (q − 1)y2)n/2 that

are not self dual.

7) There are binary divisible codes that is not formally.

For the last two remarks we have the following Examples:

Example 2.5.1. [29] The linear binary code [6, 3, 2] with generator matrix

G =




1 0 0 1 1 1

0 1 0 1 1 1

0 0 1 1 1 1


 .

C = [000000, 100111, 010111, 001111, 110000, 101000, 011000, 111111] with

Wc(x, y) = x6 + 3x4y2 + 3x2y4 + x6 = (x2 + y2)3.

C is a formally self-dual code divisible by δ = 2, that is not self-dual.

Example 2.5.2. Exercise 492 page 339 [29] Let C be the binary code with generator

matrix




1 1 0 0 0 0

1 0 1 0 0 0

0 0 0 1 1 0


 ,

show that C is divisible by δ = 2 and is not formally self-dual.

Solution:

G =




1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 1 0 0


 , G⊥ =




0 0 1 1 0 0

0 0 0 0 1 0

1 1 0 0 0 1


 ,
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C = [000000, 110000, 101000, 000110, 011000, 110110, 101000, 011110],

Wc(x, y) = x6 + 5x4y2 + 2x2y4.

C⊥ = [000000, 001100, 000010, 110001, 001110, 111101, 11011, 111111]

Wc⊥(x, y) = x6 + x5y + x4y2 + 2x3y3 + x2y4 + xy5 + y6.

Clearly Wc⊥(x, y) 6= Wc(x, y) which implies that C is not formally self-dual.

2.6 Self dual code over rings of four alphabets

In this section, we turn to a general discussion of self dual codes over rings, especially of

order 4. We begin with some definitions. All definitions in this section from [6], [9], [10],

[24]and [29].

LetR be either the ring Z4 of integers modulo 4, F2 + uF2 = {0, 1, u, 1 + u} with u2 = 0

or F2 + vF2 = {0, 1, v, 1 + v} with v2 = v. Throughout this section, if the statement does

not depend on which ring we are using , we shall denote the ring by R. A code C over a

ring R of length n is a subset of Rn, if it is an additive subgroup of Rn then it is called a

linear code. An R-code of length n is an R-submodule of Rn. All codes are assumed to

be linear unless otherwise specified.

Definition 2.6.1. Weights and distances We consider several different weights and

distances used for codes over rings. For example, the Hamming weight wtH , the Euclidean

weight wtE, the Lee weight wtL and the Bachoc weight wtB. The corresponding distance

are denoted by dH , dE, dL and dB. The Hamming weight of a codeword is the number

of nonzero components. The Euclidean weights for the elements of Z4 are 0, 1, 4 and 1

respectively, and for the element of F2 + uF2 = {0, 1, u, 1 + u}, the Euclidean weights are

0, 1, 4 and 1. The Lee weights of the elements of Z4 are 0, 1, 2 and 1 respectively 0, 1, 2,

and 1 for F2 + uF2, and 0, 2, 1 and 1 for F2 + vF2 = {0, 1, v, 1 + v}.

Note that:

wtE(x) =
n∑

i=1

(wtL(xi))
2.

The Euclidean distance between vectors x, y ∈ Rn , [Rn = Zn
4 or Rn = (F2 + uF2)

n] is

defined as

dE(x, y) =
∑n

i=1(wtL(xi − yi))
2,
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it follows that

dE(x, y) = wtE(x− y).

For the ring F2 + vF2 another weight (we call it Bachoc weight) is defined in [2] and

[23]. The Hamming, Euclidean , Lee and Bachoc weights of a codeword is the rational

sum of the Hamming, Euclidean, Lee and Bachoc weights of a codewords is the rational

sum of the Hamming, Euclidean, Lee and Bachoc weights of its components respectively.

Let C be a code over R, the minimum distance of C is the smallest distance d(x, y)

where x, y ∈ C and x 6= y. The minimum Hamming, Euclidean, Lee and Bachoc weights

dH , dE, dL and dB of C are the smallest Hamming, Euclidean, Lee and Bachoc weights

among all nonzero codewords of C respectively.

Definition 2.6.2. [24] Gray maps Let consider the following rings and maps :

F2 + uF2 −→ F 2
2 ←− Z4

ψ φ
ϕ ↑

F2 + vF2

ψ φ ϕ

ψ(0) = 00 φ(0) = 00 ϕ(0) = 00

ψ(1) = 01 φ(1) = 01 ϕ(v) = 01

ψ(1 + u) = 10 φ(2) = 11 ϕ(1 + v) = 10

ψ(u) = 11 φ(3) = 10 ϕ(1) = 11

The maps ψ, φ and ϕ are isometries from (R, Lee distance ) to (F 2
2 , Hamming distance),

and are called Gray maps. These are extended to Rn naturally. The maps ψ and ϕ are

linear but φ is not, since (φ(1 + 1) 6= φ(1) + φ(1)).

Remark 2.6.1. Note that self-dual codes exist for all n > 0 for both codes over Z4 and

F2 + uF2 since 2 and u generate self dual codes of length 1. Self dual codes exist only for

even lengths over F2 + vF2 for the Euclidean inner product but they exist for all lengths

with the Hermition inner product since v generates a self-dual code of length 1. In this

thesis, codes with respect to Euclidean (resp. Hermition) inner product are said to be

Euclidian (resp. Hermition) codes.

Definition 2.6.3. Equivalent codes we say that two codes are equivalent if one can be

obtained from the other by permuting the coordinates, and (if necessary) interchanging

the two elements 1 and 3 (of certain coordinates for R = Z4 [possibly followed by multi-

plying some coordinates by 3(sign changes) ] and the two elements 1 and 1 + u of certain

coordinates for R = F2 + uF2. Codes differing by only a permutation of coordinates are
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called permutation equivalent. For R = F2 + vF2, we say that C and C̀ are permutation-

equivalent or C is permutation-equivalent to the code obtained from C̀ by changing v and

1 + v in all coordinates. For R = Z4 and F2 + uF2, the automorphism group Aut(C) of C

consist of all permutation and changes of the above two elements of the coordinates that

preserve C.

Remark 2.6.2. If C1 and C2 are equivalent codes then d(C1) = d(C2).

More details about the ring F2 + vF2 will be discussed in the next chapter. The following

two subsections are a survey of self-dual codes over the rings Z4 and F2 + uF2.

2.6.1 Codes over Z4 (Family 4Z)

Following [11]and [29] a Z4-linear code C of length n is an additive subgroup of Zn
4 . Such

a subgroup is a Z4-module, which may or may not be free. We will still term elements of

Zn
4 ”vectors” even though Zn

4 is not a vector space.

Definition 2.6.4. Generator matrix Any code over Z4 (Family 4Z) is equivalent to

one with the generator matrix of the standard form

G =


 Ik1 A B1 + 2B2

0 2Ik2 2C


 , (2.6.1)

where A,B1, B2 and C are binary matrices, 0 is the k1 × k2 zero matrix, and Ik is the

identity matrix of order k. Then C is an elementary abelian group of Type 4k12k2 con-

taining 22k1+k2 words (i.e |C| = 4k12k2), containing 22k1+k2 words (i.e |C| = 4k12k2).And

C⊥ has generator matrix

H = G⊥ =


 −(B1 + 2B2)

T − CT AT CT In−k1−k2

2AT 2Ik2 0


 , (2.6.2)

and |C⊥| = 4n−k1−k22k2 .

It is easy to show that HGT is the zero matrix; hence, the rows of H are orthogonal to

the rows of G which implies that

|C||C⊥| = 4n and C ⊂ C⊥⊥.

Example 2.6.1. 1) for G =




1 1 1 3

0 2 0 2

0 0 2 2


 , G⊥ =




3 1 1 1

2 2 0 0

2 0 2 0


 .

Then |C| = 4122 = 16 and |C⊥| = 4122 = 16 which implies |C||C⊥| = 16×16 = 44.
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2) for G =


 1 1

0 2


 , G⊥ =

[
2 2

]
.

Then |C| = 4121 = 8 and |C⊥| = 4021 = 2 which implies |C||C⊥| = 8× 2 = 16 =

42.

Again much of the study of self dual codes over Z4 parallels that of self-dual codes over

Fq. One important difference, namely there are self-dual codes of odd length over Z4.

One can associated two binary codes with C as follows.

Definition 2.6.5. [11] Residue and Torsion codes The residue code C(1) of C is given

by :

C(1) = {(c1, c2, ......, cn) : (c1, c2, ......, cn) ∈ C},
where ci denotes the reduction of ci modulo 2 . Another binary linear code C(2) , called

the torsion code of C is given by:

C(2) = { c

2
: c = (c1, c2, ......, cn) ∈ C and ci ≡ 0(mod2) for1 ≤ i ≤ n}.

If k2 = 0 then C(1) = C(2). The generator matrices of these codes are given by G(1) and

G(2), respectively. Where

Gres = G(1) =
[

Ik1 A B1

]
. (2.6.3)

Gtor = G(2) =


 Ik1 A B1

0 Ik2 C


 . (2.6.4)

If C is self orthogonal then C(1) is doubly even and C(1) ⊆ C(2) ⊆ C(1)⊥ and if C is self

dual then C(2) = C(1)⊥ as in [11] and [29].

Corollary 2.6.1. [28] A Z4−code C is self-dual if and only if it has a generator matrix

of the form

G =


 D E Ik + 2B

0 2In−2k 2C


 ,

where B, C, D and E are binary matrices,

G′
1 =

[
D E Ik

]
,
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is the generator matrix for a doubly-even binary code C1,

G′
2 =


 D E Ik

0 In−2k C


 ,

is generator matrix for C2 = C⊥
1 and B is chosen in such a way that the first k rows of

G are orthogonal in Z4.

Definition 2.6.6. Type I and Type II codes [29] a self-dual Z4-linear code is Type

II if the Euclidean weight of every codeword is a multiple of 8. A self-dual Z4-linear code

is Type I if the Euclidean weight of some code word is not a multiple of 8.

Remark 2.6.3. In [29] and [28] it is shown that Type II codes exist only for length n ≡
0(mod8).

These codes also contain a codeword with all coordinates ±1 . In [8] any self-dual code

of length 15 is shortened code of Type II length 16 code. There is also an upper bound

on the Euclidean weight of a type I on Type II code for Z4.

Definition 2.6.7. Type IV-codes [24] Self-dual codes over R with even Hamming

weights will be called Type IV. If a code is Type IV then we shall denote it as a Type

IV-I (resp. Type IV-II) if it is also a Type I (resp. Type II ) code.

Example 2.6.2. Let Os be the Z4-linear code, , called the octacode, with generator matrix

G =




1 0 0 0 3 1 2 1

0 1 0 0 1 2 3 1

0 0 1 0 3 3 3 2

0 0 0 1 2 3 3 1




,

this code is self-orthogonal has type 44, so it is self-dual , each codeword of O8 has Euclid-

ean weight a multiple of 8, and so it is of type II. O8 is not a Type IV since dH = 5.

dL = 6 therefore the Gray image φ(O8) is a [16.256, 6] self-dual binary non linear code

which is called Nordstrom -robinson code.

Lemma 2.6.2. [24] If C is a Type IV code over Z4 then the residue code C(1) contains

the all-ones vector 1.

Proposition 2.6.3. [24] A type IV code C over Z4 is Type IV-II if and only if all the

Hamming weights of C(1) are multiples of 8.
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Proposition 2.6.4. [24] If C is a Type IV Z4-code of length n then all the Lee weights

of C are divisible by four and its Gray image φ(C) is a self-dual Type II binary code.

Corollary 2.6.5. [24] A Type IV code over Z4 of length n exist if and only if n ≡
0(mod4).

Corollary 2.6.6. [24] There is no Type IV-II code of Type 4n/2 where n is the length

of the code. Also there is no Type IV-I code of type 4n/2 for length n ≤ 12.

Also last two results agree with the Octacode (O8) which has Type 44.

Here Let us undertake a review of main results of Bounds for Z4-codes. For more infor-

mation and proofs see [5], [6], [24], [28], and [29].

1) The minimum Euclidean weight dE of a Type II Z4-code of length n is at most

dE ≤ 8
⌊

n
24

⌋
+ 8.

2) The minimum Euclidean weight dE of a Type I Z4-code of length n is at most

dE ≤




8
⌊

n
24

⌋
+ 8, n 6= 23;

8
⌊

n
24

⌋
+ 12, n = 23.

If equality holds in this later bounds, then C is obtained by shorting a Type II code

of length n + 1.

Codes meeting these bounds are called Euclidean extermal.

3) The minimum Lee weight dL of a self-dual Z4-code of length n is at most

dL ≤ 2
⌊

n
4

⌋
+ 2.

4) The minimum Lee weight dL of a Type IV Z4-code of length n is at most

dL ≤ 4
⌊

n
12

⌋
+ 4.

In [5] Bannai, Dougherty, Harada and Oura genealized the previous results and presented

methods to construct self-dual codes over Z2k .

2.6.2 Self-dual code over R = F2 + uF2

Recently, there has been interested in the ring F2+uF2 = {0, 1, u, u+1} with u2 = 0 (Here

F2 = {0, 1} is the binary field ) R is introduced in [1],[12],[17], [19], [24], [26]. Addition
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and multiplication operation in R are given as in the following tables:

+ 0 1 u 1+u

0 0 1 u 1+u

1 1 0 1+u u

u u 1+u 0 1

1+u 1+u u 1 0

· 0 1 u 1+u

0 0 0 0 0

1 0 1 u 1+u

u 0 u 0 u

1+u 0 1+u u 1

The ring F2 + uF2 shares some properties of both Z4 and F4 when 1 + u and u are

replaced by 3 and 2 respectively. The addition table is similar to that of the Galois field

F4 = {0, 1, α, α2 = α + 1} when u and 1 + u are replaced by α and α2. From definition of

the ring F2 + uF2 the characteristic is equal to 2 over F2. If C is R submodule of Rn we

say that C is called a linear code over R.

Moreover the sets {0, 1}, {0, u} and {0, 1 + u} form three subspaces in F2 + uF2 and the

subspace {0, 1} = F2 is a subring. For convenience, we set v = 1 + u. Following [1] ,

[17] and [25]. A nonzero linear code C over R = F2 + uF2 has a generator matrix can be

written in the form

G =


 Ik1 A B1 + uB2

0 uIk2 uD


 , (2.6.5)

where A1, B1, B2 and D are matrices over F2, we associate to such a code, two binary

codes : the residue code C(1), and the torsion code C(2) as follows

C(1) = {x ∈ F n
2 |∃y ∈ F n

2 |x + uy ∈ C},

and

C(2) = {x ∈ F n
2 |ux ∈ C}.

A generator matrix of C(1) is

G(1) =
[

Ik1 A B1

]
,
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and generator matrix of C(2) is

G(2) =


 Ik1 A B1

0 Ik2 D


 .

If C is self-dual then C(1) is self orthogonal and C(2) = C(1)⊥

We also have

|C| = |C(1)| · |C(2)| = 2k12k1+k2 = 22k1+k2 = 4k12k2 .

The dual code of C has generator matrix in the form

H =


 −(B1 + uB2)

T −DT AT DT In−k2

uAT uIk2 0


 . (2.6.6)

Proposition 2.6.7. [25] The set of self-dual code over R is the set of codes over R which

are permutation-equivalent to a code C with a generator matrix of the form


 Ik1 + uB A

0 uD


 ,

where A,B and D are matrices over F2 satisfying:

1) B is symmetric.

2) A and D are such that C(1) = C(2) and C(1) is even.

Proposition 2.6.8. [25] If C is a self-dual code over R and x and y are two code words

of C such that wL(x) ≡ wL(y) ≡ 0(mod4) then wL(x + y) ≡ 0(mod4).

Proposition 2.6.9. [25] If C is a self-dual code then C contains the all-u vectors.

The above proposition corresponds to the result that Ψ(C) contains the all-one vector.

Recall definition 2.6.2 of Gray maps over rings of four elements.

ψ : R → F 2
2

ψ(x + uy) = (y, x + y) where x, y ∈ F2 and (x + uy) ∈ R.
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We extend this in an obvious way to vectors over R,

ψ(x + uy) = (y, x + y) where x, y ∈ F n
2 and (x + uy) ∈ Rn.

From the definition of Gray map and the Lee weight, we have the following lemma.

Lemma 2.6.10. [1] If a code C is linear or self-dual so is ψ(C). The minimum Lee

weight of C is equal to the minimum Hamming weight of ψ(C).

Thus a code C = [n, 4k12k2 , dL] over R of length n, 4k12k2 codewords with minimum Lee

distance of dL gives rise to binary code ψ(C) = [2n1, 2k1 + k2, dH = dL].

Lemma 2.6.11. Let C and C
′
be equivalent self-dual codes over R then ψ(C) and ψ(C

′
)

are equivalent.

In [6] Rains proved the following lemma for Z4 and in [13] AL-Ashker generalized it for

R = F2 + uF2.

Lemma 2.6.12. [13] Let C be a linear code over R then

dH ≥
⌊

dL

2

⌋
.

A linear code C over R is said to be of type α(β) if dH =
⌊

dL

2

⌋(
dH >

⌊
dL

2

⌋ )
.

Definition 2.6.8. A self-dual code over R is said to be Type II if the Lee weight of every

codeword is a multiple of 4 and Type I otherwise. It is of Type IV if it has an even

Hamming weight.

Proposition 2.6.13. [25] If C is self orthogonal so is ψ(C), ψ(C) is a Type II code if

and only if the code C is Type II.

Corollary 2.6.14. [25] There exists a Type II code of length n if and only if n ≡ 0(mod4).

Lemma 2.6.15. [24] If C is a Type IV code over F2 + uF2 then the residue code C(1)

contains the all-ones vector 1.

Proposition 2.6.16. [24] A Type IV code C over F2 + uF2 is Type IV. II if and only if

C(1) is doubly-even.

Remark 2.6.4. Recall to proposition 2.7.4. Although the Gray image φ(C) of a Type IV

Z4 code of length n is a self-dual Type II binary code. The binary Gray map image of a

Type IV F2 + uF2 code is a self-dual code but not necessarily a Type II binary code, this

clear in the following example.
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Example 2.6.3. The code C = {(0, 0), (1, 1), (u, u), (1 + u, 1 + u)} is Type IV self-dual

and has Hamming weight enumerator x2 + 3y2.

Its binary image is {(0, 0, 0, 0), (0, 1, 0, 1), (1, 1, 1, 1), (1, 0, 1, 0)}, which is not doubly-even.

Proposition 2.6.17. Let C,D be a dual pair of binary codes with even weight and C ⊆ D,

then C + uD is a Type IV code over F2 + uF2.

Corollary 2.6.18. [24] The minimum Hamming weight weight of Type IV code over R

of length n is bounded by

dH = 2
[

1 +
⌊

n
6

⌋ ]
.

Corollary 2.6.19. [25] Let dL(II, n) and dL(I, n) be the highest minimum Lee weight of

a Type II code and a Type I code respectively, of length n, then

dL(II, n) ≤ 4
⌊

n
12

⌋
+ 4.

dL(I, n) ≤





4
⌊

n
12

⌋
+ 4, if n 6≡ 22(mod 24);

4
⌊

n
24

⌋
+ 6, otherwise.

Proposition 2.6.20. [26] The highest minimum Hamming weights of length 18 and 24

are determined. The highest minimum Euclidean weights of length 14, 18 and 24 are

determined.

Remarks 2.6.1.

1) The result stated in the above proposition were announced in [24] (except for the

highest minimum Euclidean weight of length 24 ).

2) In [24] Harada and Sole showed that there is no Type IV code with minimum Hamming

weight 10 over Z4 and F2 + uF2.
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Chapter 3

Self-dual codes over F2 + vF2

The main tool in this chapter is the following theorems.

3.1 Chinese Remainder theorem

Theorem 3.1.1. [27] Let I1, I2, ......, In be ideals in a ring R such that

1) I1 + I2, ...... + In = R and,

2) for each k(1 ≤ k ≤ n), Ik ∩ (I1 + ...... + Ik−1 + Ik+1...... + In) = 0. Then there is a ring

isomorphic R ∼= I1 × I2 × ......× In.

Theorem 3.1.2. Chinese Remainder theorem[27] Let I1, I2, ......, In be ideals in a

ring R such that R2 + Ii = R for all i and Ii + Ij = R for all i 6= j. If b1, ......, bn ∈ R then

there exist b ∈ R such that

b ≡ bi(mod Ii) (i = 1, 2, ......, n).

Furthermore b is uniquely up to congruence modulo the ideal

I1 ∩ I2 ∩ ...... ∩ In.

Remark 3.1.1. [27] If R has an identity, then R2 = R, whence R2 + I = R (for every ideal

I of R).

The ring R = F2 + vF2 = {0, 1, v, 1 + v} where v2 = v and F2 = {0, 1} is a commutative

ring with four elements introduced in [2], [9], [10], [23] and [24]. In [25] it was shown that

this ring is isomorphic to the ring F2×F2 by the Chinese Remainder Theorem (CRT)[22].

Addition and multiplication operations over R are given in the following tables:
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+ 0 1 v 1+v

0 0 1 v 1+v

1 1 0 1+v v

v v 1+v 0 1

1+v 1+v v 1 0

. 0 1 v 1+v

0 0 0 0 0

1 0 1 v 1+v

v 0 v v 0

1+v 0 1+v 0 1+v

For conveniens, we set 1 + v = w and R = F2 + vF2. The above table shows that v

and w are orthogonal idempotents (vw = 0), and their sum equals 1. Following [23] This

ring is a semi-local ring it has two maximal ideals 〈v〉 and 〈1 + v〉. Observe that R/〈v〉
and R/〈1 + v〉 are isomorphic to F2. In other word :

R/〈v〉 = {0 + 〈v〉, 1 + 〈v〉} ' F2.

R/〈1 + v〉 = {0 + 〈1 + v〉, 1 + 〈1 + v〉} ' F2.

R/〈v〉 ∩ 〈1 + v〉 ' R/〈v〉 ⊕R \ 〈v + 1〉 ' F2 ⊕ F2.

The CRT tells us that

R = 〈v〉 ⊕ 〈1 + v〉.

By linear algebra over F2 we show that

a + vb = (a + b)v + a(v + 1) , for all a, b ∈ F n
2 .

A linear code C of length n over R is an R-submodule of Rn = (F2 + vF2)
n. An element

of C is called a codeword of C. For R = F2 + vF2 we say C and C ′ are equivalent if either

C and C ′ are permutation equivalent or C is permutation equivalent to the code obtained

from C ′ by changing v and 1 + v in all coordinates.

Example 3.1.1. Consider the code C with generator matrix,

G =




1 0 0 w 1 v 0 0

w 1 0 0 0 1 v 0

0 w 1 0 0 0 1 v

0 0 w 1 v 0 0 1




,

then the generator matrix of the code C ′ is
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G′ =




1 0 0 v 1 w 0 0

v 1 0 0 0 1 w 0

0 v 1 0 0 0 1 w

0 0 v 1 w 0 0 1




.

3.1.1 B-ordering over the ring R = F2 + vF2

Elatrash in [16] defined B-ordering over the ring Z4. And Al-Ashkar in [12] define B-

ordering over the ring F2 + uF2. We define a B-ordering over F2 + vF2 as follows:

Definition 3.1.1. Let B = {b1, b2, ......., bn} be a basis for the module (R)n over R .

We define the B-ordering as follows: The first 4 vectors are 0, b1, vb1, wb1. The B-ordering

is then generated recursively , where if 4k vectors of the ordering have been generated

using basis elements, b1, b2, ....., bk, then the next 3(4k) vectors are generated by adding

ibk+1 to those vectors already produced, in order i = 1, v, w.

Example 3.1.2. Let B = {b1, b2} be a basis of a free module (R)2 over R, then the

B-ordering is :

0, b1, vb1, wb1,

b2, b2 + b1, b2 + vb1, b2 + wb1,

vb2, vb2 + b1, vb2 + vb1, vb2 + wb1,

wb2, wb2 + b1, wb2 + vb1, wb2 + wb1.

There are three different weights for codes over R are known, namely the Hamming, Lee

and Bachoc weights.

Definition 3.1.2. The Hamming weight of a codeword is the number of nonzero compo-

nents.

Definition 3.1.3. The Lee weights of the elements 0, 1, v and 1+v are 0, 2, 1 and 1 respec-

tively. The Bachoc weight is defined in [2] and the weights of the elements 0, 1, v and 1+v

are 0, 1, 2 and 2 respectively. The Lee and Bachoc weights of a codeword are the ratio-

nal sums of the Bachoc weights of its components, respectively. The Lee weight for a

codeword x = (x1, x2, ........, xn) ∈ Rn is defined by, wtL(x) =
∑n

i=1 wtL(xi) , where

wtL(xi) =





0 if xi = 0,

1 if xi = v or 1 + v,

2 if xi = 1.
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Definition 3.1.4. The Bachoc weight is given by the relation wtB(x) =
∑n

i=1 wtB(xi),

where

wtB(xi) =





0 if xi = 0,

1 if xi = 1,

2 if xi = v or 1 + v.

Note that ∀xi 6= 0 wtL(xi) + wtB(xi) = 3.

Remark 3.1.2. Let n0(x) be the number of components i for which xi = 0, n1(x) be the

number of components i of which xi = 1 and n2(x) = n − n0(x) − n1(x), i.e., n2 be the

number of v′s and (1 + v)′s in x. Then the Lee weight wtL(x) (resp. the Bachoc weight

wtB(x)) of x = (x1, x2, ......xn) ∈ Rn can also be obtained as:

wtL(x) = n2(x) + 2n1(x),

and

wtB(x) = n1(x) + 2n2(x).

For

x = (x1, x2, ..........., xn), y = (y1, y2, ..........., yn) ∈ Rn,

the Hamming distance between x and y is denoted by

dH(x, y) = |{i : xi 6= yi}|.

The Lee distance between x and y ∈ Rn is denoted by,

dL(x, y) = wtL(x− y) =
n∑

i=1

wtL(xi − yi).

The Bachoc distance between x and y ∈ Rn is denoted by,

dB(x, y) = wtL(x− y) =
n∑

i=1

wtB(xi − yi).

Definition 3.1.5. The minimum Hamming, Lee and Bachoc weights, dH , dL and dB of C

are the smallest Hamming, Lee and Bachoc weights among all non-zero codewords of C,

respectively.
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Example 3.1.3. Let B = {0v1v, wv01, ww1v, v0vw} be a basis of R4 over F2 then by

the additive B-ordering.

C = {0000, 0v1v, wv01, w01w, ww1v, w100, 011w, 0w01, v0vw, vvw1, 1vvv, 10w0,

1ww1, 11vw, v1w0, vwvv}.
Let

x = ww1v , y = v0vw , z = 10w0.

wtH(x) = 4 , wtH(y) = 3 , wtH(z) = 2.

wtL(x) = 5 , wtL(y) = 3 , wtL(z) = 3.

wtB(x) = 7 , wtB(y) = 6 , wtB(z) = 3.

dH = 2, dL = 3, dB = 3.

3.1.2 The Macwilliams Relations

In [23] the Hamming weight enumerator for a code over R is defined by:

WC(x, y) =
∑
u∈C

xn−wt(u)ywt(u) =
n∑

i=0

Aix
n−iyi.

The complete weight enumerator for a code over R is defined by:

cweC(x0, x1, xv, x1+v) =
∑
c∈C

cwt(c)

where cwt(c) =
∏

an0(c)bn1(c)cnv(c)dn1+v(c) and nα is the number of times α appears in c.

Now define the Lee composition of x say Li(x) = 0, 1, 2 as the number of entries in x of

Lee weight i. The symmetrized weight enumerator (swe) is defined by:

sweC(a, b, c) =
∑
x∈C

aL0(x)bL1(x)cL2(x)

and is given by

sweC(a, b, c) = cwe(a, c, b, b).

The Hamming weight enumerator for a code C is given by

WC(x, y) = cweC(x, y, y, y).

Example 3.1.4. consider the code C with generator matrix

G =




v 1 1

1 0 v

1 w 0


 .
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To find complete and symmetrized weight enumerator of C over R, We write,

C = {000, v11, 10v, 1w0, w1w, wv1, 0wv, vvw, vvv, wv0, w1v, 0ww, 1w1, 10w, v10, 001,

v0v, 01w, wwv, 1vw, w00, 111, vw0, 0v1, v00, 011, w0v, 11w, ww0, 1v1, vwv, 0vw,

0v0, 110, w10, www, v0w, 1ww, 1ww, 0vv, 1v0, wvv, w0w, v01, 101, 00v, v1w, 0w1,

0w0, vv1, v1v} then,

cwe(a, b, c, d) = a3 + b3 + c3 + d3 + 6(abc + abd + acd + bcd) + 3(ac2 + ab2 + ad2

+ a2c + a2b + a2d + bc2 + b2c + c2d + d2c + db2 + bd2).

swe(a, b, c, c) = a3 + b3 + 8c3 + 12(abc + bc2 + ac2) + 6(a2c + cb2) + 3(a2b + ab2).

Example 3.1.5. The weight enumerator of the code C with generator matrix,

G =




1 0 0 w 1 v 0 0

w 1 0 0 0 1 v 0

0 w 1 0 0 0 1 v

0 0 w 1 v 0 0 1




.

WC(a, b, c) = a8 + 8a3b4c + 4c2(2a4b2 + 5a2b4) + 8c3(a5 + 4a3b2 + 2ab4)

+ 2c4(5a4 + 28a2b2 + 2b4) + 8c5(a3 + 6ab2) + 4c6(3a2 + 4b2)

+ 8ac7 + c8.

Definition 3.1.6. Euclidean and Hermitian inner product

We define two inner products (x, y) and 〈x, y〉 of x and y ∈ Rn. The Euclidean inner

product is defined as:

(x, y) = x1y2 + x2y2 + .... + xnyn,

and the Hermitian inner product is defined as:

〈x, y〉 = x1y2 + x2y2 + .... + xnyn,

where, 0 = 0, 1 = 1, v = v + 1 and v + 1 = v.
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Definition 3.1.7. The dual code C⊥ with respect to the Euclidean inner product of C

is defined as:

C⊥ = {x ∈ Rn|(x, y) = 0 for all y ∈ C},

and the dual code C⊥H with respect to the Hermitian inner product of C is defined as:

C⊥H = {x ∈ Rn|〈x, y〉 = 0 for all y ∈ C}.

Definition 3.1.8. C is called self orthogonal if C ⊆ C⊥ and C is called Hermitian self-

orthogonal if C ⊆ C⊥H . C is Euclidean self-dual if C = C⊥ and C is Hermitian self dual

if C = C⊥H .

Definition 3.1.9. [23] An Euclidean self-dual code is doubly even if the Lee weight of

all its words is divisible by 4 and singly even otherwise.

Definition 3.1.10. [23] An Euclidean self-dual code is said to be Type II if the weights

of all its words are a multiple of 4, and Type I otherwise.

Definition 3.1.11. [23] A Hermitian self-dual code is said to be of Type S if all its Lee

weight are multiple of 4.

Following [24] and [23] Note that an Euclidean self-dual codes exist in length n if and

only if n is even, since self-dual codes over F2 exist only for even lengths, and Type II

Euclidean codes can only exist in length multiple of 8 like doubly even binary codes.

Hermitian self-dual exist for any length.

Theorem 3.1.3. [2] and [9] If C ∈ Rn is a Hermitian (or Euclidean) self-dual code then

dB ≤ 2(1 + bn
3
c).

Codes meeting that bound with equality are called extremal.

Definition 3.1.12. We say that a self-dual code with the highest minimum Bachoc weight

among all self-dual codes of that length is optimal.

Example 3.1.6.
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1) The code C with the generator matrix

G =




1 0 0 w 1 v 0 0

w 1 0 0 0 1 v 0

0 w 1 0 0 0 1 v

0 0 w 1 v 0 0 1




is extremal self-dual code of Type II

2) The code C with the generator matrix




1 0 0 v v 1 w w 0 0

v 1 0 0 v 0 1 w w 0

v v 1 0 0 0 0 1 w w

0 v v 1 0 w 0 0 1 w

0 0 v v 1 w w 0 0 1




is extremal self-dual code of Type S.

Definition 3.1.13. [2], [10], [24] Consider the following map,

ϕ : F2 + vF2 −→ F2 × F2,

defined as ϕ(x + vy) = (x, x + y) for all x, y ∈ F n
2 . ϕ is a ring isomorphism called Gray

map. This map can be extended naturally from (F2 + vF2)
n to F 2n

2 . The Lee weight of

x + vy is the Hamming weight of its Gray image.

From definition (2.6.2) we recall that ϕ(0) = (0, 0), ϕ(1) = (1, 1), ϕ(v) = (0, 1) and ϕ(1 +

v) = (1, 0) Note that :ϕ is linear(preserves addition). Since,

ϕ((x + yv) + (x′ + y′v)) = ϕ(x + x′ + (y + y′)v)

= (x + x′, x + x′ + y + y′)

= (x + x′, x + y + x′ + y′)

= ϕ(x + yv) + ϕ(x′ + y′v).

Also, ϕ preserves multiplication, since

ϕ((x + yv)(x′ + y′v)) = ϕ(xx′ + xy′v + yx′v + yy′v2)

= ϕ(xx′ + (xy′ + yx′ + yy′)v)
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= (xx′, xx′ + xy′ + yx′ + yy′)

= (xx′, (x + y)x′ + (x + y)y′)

= (xx′, (x + y)(x′ + y′))

= (x, (x + y))(x′, (x′ + y′))

= ϕ(x + yv)ϕ(x′ + y′v).

3.1.3 The Chinese remainder theorem and self-dual codes

Following [22], Let R be a commutative ring (not necessarily finite )with a multiplicative

identity denoted by 1. Let I1, I2, I3, ......, Ik be ideals of R such that :

1) Si = R/Ii is finite ,

2) Ij + ∩k 6=jIk = R for 1 ≤ j ≤ k.

That is, the ideals are relative prime, since R is commutative.

Set I = ∩Ii and S = R/I. Define the map

ϕ : S → (R/I1)× (R/I2)× ......× (R/Ik)

by

ϕ(α) = (α(modI1), α(modI2), ......, α(modIk)).

The map ϕ−1 is a ring isomorphism by the generalized Chinese Remainder Theorem.

Let C1, C2, ......, Ck be codes where Ci is a code over Si, and define the code

CRT (C1, C2, ......, Ck) = {ϕ−1(c1, c2, ......, ck)|ci ∈ Ci}.

We say that the code CRT (C1, C2, ......, Ck) is the Chinese product of codes

C1, C2, ......, Ck. It is clear that |CRT (C1, C2, ......, Ck)| = Πk
i=1|Ci| and that if Ci is self-

orthogonal for all i then CRT (C1, C2, ......, Ck) is self-orthogonal. This gives the following

:

Theorem 3.1.4. [24] and [25] CRT (C1, C2, ......, Ck) is a self-dual code over S if and only

if it is the Chinese product of self-dual codes C1, ......, Ck over S1, ......, Sk, respectively.
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In [10] it was shown that if C is a code over R = F2 + vF2, then there are binary codes

C1 and C2 such that C = ϕ−1(C1, C2), and we denoted C by CRT (C1, C2). Note that

C1 and C2 are uniquely determined for each CRT (C1, C2).

Let c, be a codeword of C then c can be uniquely written as c = ϕ−1(c1, c2), where c1 and

c2 are codewords of C1 and C2 respectively.

Let wtH(c), wtL(c) and wtB(c) be the Hamming, Lee and Bachoc weights of c respectively.

Then

wtH(c) = wtH(c1) + wtH(c2)− wtH(c1 ∗ c2). (3.1.1)

wtL(c) = wtH(c1) + wtH(c2).

wtB(c) = 2wtH(c1) + 2wtH(c2)− 3wtH(c1 ∗ c2).

Where c1 ∗ c2 denotes the Hadamard product(componentwise multiplication) of c1 and c2.

(i.e., for c1 = (x1, x2, ......, xn) and c2 = (y1, y2, ......, yn) then c1∗c2 = (x1y1, x2y2, ......, xnyn)).

Example 3.1.7. Let c is a codeword of the code C over R such that c = 01vw, then

c1 = 0101, c2 = 0110

wtH(c) = 2 + 2− 1 = 3.

wtL(c) = 2 + 2 = 4.

wtB(c) = 2× 2 + 2× 2− 3× 1 = 8− 3 = 5.

Proposition 3.1.5. [10] Let dH and dL be the minimum Hamming and Lee weights of

C = ϕ−1(C1, C2),

respectively. Then dH = dL = min{d(C1), d(C2)}, where d(Ci) denotes the minimum

weight of a binary code Ci.

Proof. We shall show that dH = min{d(C1), d(C2)}. Let c be a codeword of CRT (C1, C2)

then c = ϕ−1(c1, c2) where c1 and c2 are codewords of C1 and C2 respectively.

Then it follows from (3.1.1) that wtH(c) ≥ max {wtH(c1), wtH(c2)}. Thus dH ≥ min

{d(C1), d(C2)}. Assume that d(C1) ≥ d(C2). Let c′2 be a codeword with weight d(C2)

in C2 then ϕ−1(0, c′2) is a codeword of Hamming weight d(C2). The result follows. In

similar way, we can prove that

dL = min{d(C1), d(C2)}.
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Example 3.1.8. Let C be a code over R with generator matrix,

G =




v 1 1

1 0 v

1 w 0


 then,

C1 =




1 1 1

1 0 1

1 0 0


 and C2 =




0 1 1

1 0 0

1 1 0


 .

dL = dH = 1 = min(d(C1), d(C2)).

Lemma 3.1.6. [10] and [24] Let CRT (C1, C2) and CRT (C ′
1, C

′
2) be codes over F2 + vF2.

CRT (C1, C2) and CRT (C ′
1, C

′
2) are equivalent if and only if there exist a permutation

which sends (C1, C2) to (C ′
1, C

′
2) or to (C ′

2, C
′
1).

3.1.4 Generator matrix and binary Structure of codes overR

Following [23], by the properties of CRT any code over R = F2 + vF2 is permutation

equivalent to a code generated by the following matrix:




Ik1 vB1 (1 + v)A1 (1 + v)A2 + vB2 (1 + v)A3 + vB3

0 (1 + v)Ik2 0 (1 + v)A4 0

0 0 vIk3 0 vB4


 ,

where Ai and Bj are binary matrices, such a code is said to have rank {2k1 , 2k2 , 2k3}.
If H is a code over R, Let H+(resp. H−) be the binary code such that (1+v)H+(resp. vH−)

is read H mod v (resp. H mod (1 + v)).

We have

H = (1 + v)H+ ⊕ vH−.

With

H+ = {s|∃t ∈ F n
2 |(1 + v)s + vt ∈ H};

H− = {t|∃s ∈ F n
2 |(1 + v)s + vt ∈ H}.

The code H+ is permutation equivalent to a code with generator matrix of the form


 Ik1 0 A1 A2 A3

0 Ik2 0 A4 0


 ,
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where Ai are binary matrices.

And the binary code H− is permutation equivalent to a code with generator matrix of

the form: 
 Ik1 B1 0 B2 B3

0 0 Ik3 0 B4


 ,

where Bi are binary matrices. The preceding statements show that any code H over R is

completely characterized by its associated codes H+ and H− and conversely.

Theorem 3.1.7. Let H be a code of length n over R, with associated binary codes H+

and H− then for the Hermitian scalar product :

H⊥ = (1 + v)(H−)⊥ ⊕ v(H+)⊥

and the self-dual codes over R are the codes over H with associated binary codes H+ and

H− verifying H+ = (H−)⊥.

Proof. Observe that if c, c′, d, d′ are binary vectors of length n. Then

(cv + d(1 + v))(c′v + d′(1 + v)) = av + b(1 + v)

with a = cd′ and b = dc′. This shows that a = b = 0 if and only if dc′ = cd′ = 0

Here is the analogue of the preceding theorem for Euclidean codes.

Theorem 3.1.8. Let H be a code of length n over R, with associated binary codes H+

and H− then for the Euclidean scalar product :

H⊥ = (1 + v)(H+)⊥ ⊕ v(H−)⊥

and the self-dual codes over R are the codes over H with associated binary codes H+ and

H− such that H+ and H− are self-dual binary codes.

Proof. Observe that if c, c′, d, d′ are binary vectors of length n. Then

(cv + d(1 + v))(c′v + d′(1 + v)) = av + b(1 + v)
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with a = cc′ and b = dd′.

This shows that a = b = 0 if and only if cc′ = dd′ = 0.

Theorem 3.1.9. Let H = (1 + v)H+ ⊕ vH− be a R code of length n then H is self-dual

for the Euclidean scalar product if and only if the two codes H+ and H− are self-dual

binary codes.

Proof. Straightforward from Theorem 3.1.4.

Corollary 3.1.10. Let H = (1 + v)H+⊕ vH− be a self-dual Euclidean R code then H is

a type II if and only if the codes H+ and H− are binary of Type II codes.

Proof. It follows by noticing that (wL(cv + d(1 + v))) = wH(c) + wH(d).

Theorem 3.1.11. Let H = (1 + v)H+⊕ vH− be a R code of length n then H is self-dual

for the Hermitian scalar product if and only if the two codes H+ and H− are dual of one

another.

Theorem 3.1.12. Let H = (1 + v)H+⊕ vH− be a R code of length n then H is self-dual

for the Hermitian scalar product and of type S if and only if the two codes H+ and H−

are dual of one another and are both even.

Theorem 3.1.13. Let H(H−, H+) be a self-dual Euclidean code of length n then ϕ(H−(v)+

H+(1 + v)) is a self-dual binary code of length 2n, It is doubly even if H is a Type II.

Proof. The Gray map ϕ is linear, moreover (a + vb)(a′ + vb′) = 0 yields by looking at the

v-components bb′ + ba′ + b′a = 0 i.e. ϕ(a + vb)ϕ(a′ + vb′) = 0. The first assertion follows,

the second assertion follows from the weight property of Type II codes.

The analogous statement for Hermitian codes is the following.

Theorem 3.1.14. Let H(H−, H+) be a self-dual Hermitian code of length n then ϕ(H−(v)+

H+(1+ v)) is a formally self-dual binary code of length 2n. It is even if H is Type S, and

self-dual if H+ ⊆ H−.

Proof. The first statement is a general property of Gray maps. The second statement

is immediate. The third follows after a straightforward calculation. Indeed if (c, d) and

(c′, d′) are in H(H−, H+) then their dot product is cd′+dc′ while the dot product of their

Gray images is cd′ + c′d + dd′.
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3.1.5 Self-dual code of Type IV

Corollary 3.1.15. [24] Let CRT (C1, C2) be an Euclidean self-dual code CRT (C1, C2) is

Type IV if and only if C1 = C2.

Proof. By proposition 3.1.12 C1and C2 are binary self-dual. Thus, all codewords of C1 and

C2 have even weights. If CRT (C1, C2) is Type IV then wH(c) is even for any codeword c

of CRT (C1, C2). by (3.1.1) wH(c1 ∗ c2) is even. It turns out that C1 = C⊥
2 then C1 = C2.

Conversely , if C1 = C2 then the Hamming weight of any codeword of CRT (C1, C2) is

even by (3.1.1).

Proposition 3.1.16. Bachoc [2] Let C1 and C2 be a binary codes CRT (C1, C2) is a self-

dual code over F2 × F2 if and only if C2 = C⊥
1 where C⊥

1 denotes the dual code of the

binary code C1.

Thus, the Bachoc weights of all codewords of self-dual code are even .

Proposition 3.1.17. [24] CRT (C1, C2) is a Hermitian self-dual code if and only if C1 =

C⊥
2 .

Corollary 3.1.18. [24] Let CRT (C1, C2) be a Hermitian self-dual code. CRT (C1, C2) is

a type IV if and only if C1 and C2 are even.

Proof. suppose that CRT (C1, C2) is a Type IV. By proposition (3.1.16), C1 = C⊥
2 . It

follows form (3.1.15) that wH(c1) + wH(c2) is even for all codewords c1 and c2 in C1 and

C2,. Thus, take the zero vector as c1 then wH(c2) is even. even. Similarly, take the

zero-vector as c2 then wH(c1) is even. Therefore, C1 and C2 must be even codes.

Conversely, if C1 = C⊥
2 , C1 and C2 are even then CRT (C1, C2) is Type IV by (3.1.1).

Corollary 3.1.19. [24] If C is an Euclidean Type IV code, then C is Hermitian Type

IV.

Proof. Let C = CRT (C1, C2) then C1 = C2 by corollary (3.1.15). Recall proposi-

tion(3.1.14) C1 and C2 are Binary self-dual codes and so C1 = C⊥
2 which implies that

CRT (C1, C2) is a Hermitian self-dual code.

Therefore Euclidean Type IV codes are a special class of Hermitian Type IV codes.

We now give divisibly conditions of Lee and Bachoc weight for self-dual codes and Type

IV codes over F2 + vF2.

Corollary 3.1.20. [24] Let C be an Euclidean self-dual code. Then the Lee weight of a

codeword of C is even. Moreover, if C is Type IV then all the Bachoc weights are even.
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Proof. Since CRT (C1, C2) is an Euclidean self-dual, so C1 and C2 are binary self-dual

codes. Thus wtL(c) = wtH(c1) + wtH(c2) is even. If C is an Euclidean self-dual code of

Type IV, then C1 = C2, therefore :

wtB(c) = 2wtH(c1) + 2wtH(c2)− 3wtH(c1 ∗ c2)

= 4wtH(c1)− 3wtH(c1 ∗ c2)

= 4wtH(c1) = 4wtH(c2).

Corollary 3.1.21. Let C be a Hermitian self-dual code. Then the Bachoc weight of a

codeword of C is even. Moreover if C is Type IV then all the Lee weights are even.

Proof. By proposition , since CRT (C1, C2) is Hermitian self-dual code, so

C1 = C⊥
2 = C2

wtB(c) = 2wtH(c1) + 2wtH(c2)− 3wtH(c1 ∗ c2)

= 4wtH(c1) = 4wtH(c2)

which implies that the Bachoc weight of a codeword of C is even. Moreover if C is Type

IV Hermitian self-dual code, C1 and C2 will be even by corollary (3.1.18) It follows from

(3.1.1) that

wtL(c) = wtH(c1) + wtH(c2)

is even for all codewords c1 and c2 in C1 and C2 respectively.

Corollary 3.1.22. A Hermitian Type IV F2 + vF2 code of length n exists if and only if

n is even.

Proof. The previous theorems give that if a Hermitian Type IV code of length n exists

then n is even.

Example 3.1.9.

The code C = {(0, 0), (1, 1), (v, v), (1 + v, 1 + v)}

is Type IV code of length 2.
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3.1.6 Construction of extremal self-dual codes

Theorem 3.1.23. [2] and [9] If C ∈ Rn is a Hermitian (or Euclidean) self-dual code

then

dB ≤ 2(1 + bn
3
c).

Codes meeting that bound with equality are called extremal.

Definition 3.1.14. We say that a self-dual code with the highest minimum Bachoc weight

among all self-dual codes of that length is optimal, of course an extremal self-dual code

is optimal.

Lemma 3.1.24. [2] Let C = C1 × C⊥
1 be a self-dual code over R. Then

wt(C) ≥ 6 ⇐⇒





wt(C1) ≥ 3

wt(C⊥
1 ) ≥ 3

wt(C1 ∩ C⊥
1 ) ≥ 6.

Theorem 3.1.25. Bachoc [2] There is no external code of length 6 and 7 over R. There is

at least one of length 8 which is C = C1×C⊥
1 where C1 is the binary code generating matrix




1 0 0 0 1 1 0 0

0 1 0 0 0 1 1 0

0 0 1 0 0 0 1 1

0 0 0 1 1 0 0 1




.

Theorem 3.1.26. There is no external code of length 9 over R. There is at least one of

length 10 which is C = C1 × C⊥
1 where C1 is the binary double circulant code generating

matrix




1 0 0 0 0 1 1 1 0 0

0 1 0 0 0 1 1 1 1 0

0 0 1 0 0 0 0 1 1 1

0 0 0 1 0 1 0 0 1 1

0 0 0 0 1 1 1 0 0 1




.

Lemma 3.1.27. [9] Let dmax(n, k) be the highest minimum weight among all binary linear

[n, k] codes. Let dB(n) be the highest minimum Bachoc weight among all self-dual codes

over R of length n then

dB(n) ≤ 2dmax(n, b(n + 1)/2c).
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Lemma 3.1.28. [9] For n = 9 and n ≥ 12,

dB(n) ≤ 2dmax(n, b(n + 1)/2c) ≤ bn/3c.

Lemma 3.1.29. [9] All binary [11, 6, 4] codes with dual distance 4 are equivalent to the

code C11 with generator matrix




1 0 0 0 0 0 0 0 1 1 1

0 1 0 0 0 0 0 1 0 1 1

0 0 1 0 0 0 0 1 1 0 1

0 0 0 1 0 0 1 0 0 1 1

0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 1 1 1 0 0 1




.

Theorem 3.1.30. Extremal self-dual codes over R exist only for lengths 1, 2, 3, 4, 5, 8

and 10.

More details about classification of all extremal self-dual codes are found in [2] and [10].

3.2 Self-dual codes over the ring Fp + vFp

Following [2] and [18], the alphabet Fp + vFp is a semi-local ring. It is as noticed in [2]

abstractly isomorphic to Fp × Fp where p is a prime number.

If R = Fp × Fp there are two ideals namely Fp × {0} and {0} × Fp, which are conjugate.

We can assume that I = Re, I ′ = Rē with e2 = e. Then e + ē = 1 and eē = 0.

We set C1 = I. Then C1 is self-dual code of length one over R Let I ′ be a second nontrivial

ideal distinct form I , the two ideals define conjugate codes.

For n ≥ 2

Cn = {(x1, x2, ......, xn) ∈ Rn| ∀i 6= j, xi ≡ xj mod I and
n∑

i=1

xi ≡ 0 mod I ′}.

Then Cn is self-dual over R.

Lemma 3.2.1. [2] The group R∗ of invertible elements of R;

R = Fp × Fp : R∗ = {(a, b) | a 6= 0, b 6= 0}.
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Definition 3.2.1. Let R be the ring defined in the previous lemma. The Bachoc weight

wt on R is defined by :





wt(0) = 0

wt(x) = 1 if x ∈ R∗

wt(x) = p if x ∈ R \ (R∗ ∪ {0}).
To show the efficient of these results, we shall introduce the ring R = F3 + vF3 as another

examples of these rings.

3.2.1 Codes over the ring F3 + vF3

The alphabet R = F3+vF3 = {0, 1, 2, v, 2v, 1+v, 2+v, 1+2v, 2+2v} where v2 = 1 and F3 =

{0, 1, 2} is a commutative ring with nine elements introduced in [18]. For x, y ∈ F3 we

have x + vy = x−vy. In [2], it was shown that this ring is isomorphic to the ring F3×F3

by the Chinese Remainder Theorem (CRT). Following [2] This ring is a semi-local ring it

has two maximal ideals 〈v − 1〉 and 〈1 + v〉. Observe that R/〈v − 1〉 and R/〈1 + v〉 are

isomorphic to F3. The CRT tells us that:

R = 〈v − 1〉 ⊕ 〈1 + v〉.

Where

〈v − 1〉 = {0, v + 2, 1 + 2v}.

〈1 + v〉 = {0, 1 + v, 2v + 2}.

By linear algebra over F3, we show that

a + vb = (a− b)〈v − 1〉 − (a + b)〈v + 1〉 , for all a, b ∈ F n
3 .

A code over R is a R-submodule of Rn .

The Euclidean scaler product is
∑n

i=1 xiyi.

The Gray map θ from Rn
3 −→ F 2n

3 is defined as

θ(x + vy) = (x, y) for all x, y ∈ F n
3 .

The Lee weight of x + vy is the Hamming weight of its Gray image.

Note that θ is linear, since

θ(x + vy + x′ + vy′) = θ((x + x′) + (y + y′)v)
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= (x + x′, y + y′)

= θ(x + vy) + θ(x′ + vy′)

The swap map on F 2n
3 is defined as:

S((x, y)) = (y, x) for all x, y ∈ F n
3 .

Notice that the Gray image of multiplication by v is the swap of the Gray image.

θ(v(x + vy)) = (y, x) = S(θ(x + vy)). (3.2.1)

Example 3.2.1. Let x ∈ C over R such that x = (v, 1 + v, 2 + v, 2).

Then θ(x), S(x), θ(v(x)) and S(θ(x)) as following :

θ(v, 1 + v, 2 + v, 2) = ((0, 1), (1, 1), (2, 1), (2, 0)),

S(v, 1 + v, 2 + v, 2) = ((1, 0), (1, 1), (1, 2), (0, 2)),...............................................(1)

θ(v(x)) = θ(1, v + 1, 2v + 1, 2v) = ((1, 0), (1, 1), (1, 2), (0, 2))..............................(2)

Form (1) and (2) we noticed that (3.2.1) achieved.

Definition 3.2.2. The Hamming weight of a codeword is the number of nonzero compo-

nents.

Definition 3.2.3. The Lee weight for a codeword x = (x1, x2, ........, xn) ∈ Rn is defined

by, wtL(x) =
∑n

i=1 wtL(xi), where

wtL(xi) =





0 if xi = 0

1 if xi = 1, 2, v, or 2v

2 if xi = 1 + v, 2 + v, 1 + 2v or2 + 2v.

Definition 3.2.4. The Bachoc weight is given by the relation wtB(x) =
∑n

i=1 wtB(xi),

where

wtB(xi) =





0 if xi = 0

1 if xi = 1 + v, 2 + v, 1 + 2v or2 + 2v

3 if xi = 1, 2, v, or 2v.

Example 3.2.2. Find the Lee and Bachoc weight of the codeword x = (v, 2+2v, 2+v, 1+

v, 0, 1 + v, 2v, 2).

Solution :
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wtL(x) = 1 + 2 + 2 + 2 + 0 + 2 + 1 + 1 = 11.

wtB(x) = 3 + 1 + 1 + 1 + 0 + 1 + 3 + 3 = 13.

3.2.2 Structure and duality of codes over R = F3 + vF3

By the properties of CRT any code over R3 is permutation-equivalent to a code generated

by the following matrix:




Ik1 (1− v)B1 (1 + v)A1 (1 + v)A2 + (1− v)B2 (1 + v)A3 + (1− v)B3

0 (1 + v)Ik2 0 (1 + v)A4 0

0 0 (1− v)Ik3 0 (1− v)B4


 .

Where Ai and Bj are ternary matrices. Such a code is said to have rank {9k1 , 3k2 , 3k3}.
If H is a code over R3, Let H+(resp. H−) be the ternary code such that (1+v)H+(resp. (1−
v)H−) is read H mod (1− v) (resp. H mod (1 + v)).

We have

H = (1 + v)H+ ⊕ (1− v)H−.

With

H+ = {s|∃t ∈ F n
3 |(1 + v)s + (1− v)t ∈ H}.

H− = {t|∃s ∈ F n
3 |(1 + v)s + (1− v)t ∈ H}.

The code H+ is permutation equivalent to a code with generator matrix of the form :


 Ik1 0 2A1 2A2 2A3

0 Ik2 0 A4 0


 ,

where Ai are ternary matrices. And the ternary code H− is permutation-equivalent to a

code with generator matrix of the form:


 Ik1 2B1 0 2B2 2B3

0 0 Ik3 0 B4


 ,

where Bi are ternary matrices.

Theorem 3.2.2. [18] Let H be a code of length n over R3, with associated ternary codes

H+ and H− then for the Hermitian scaler product :

H⊥ = (1 + v)(H−)⊥ ⊕ (1− v)(H+)⊥ ,
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and the self-dual codes over R3 are the codes over H with associated ternary codes H+

and H− verifying H+ = (H−)⊥.

Proof. Observe that if c, c′, d, d′ are ternary vectors of length n then

(c(1− v) + d(1 + v))(c′(1− v) + d′(1 + v)) = a(1− v) + b(1 + v)

with −a = cd′ and −b = dc′. This shows that a = b = 0 iff dc′ = cd′ = 0.

Theorem 3.2.3. [18] Let H be a code of length n over R3, with associated ternary codes

H+ and H− then for the Euclidean scalar product :

H⊥ = (1 + v)(H+)⊥ ⊕ (1− v)(H−)⊥

and the self-dual codes over R3 are the codes over H with associated ternary codes H+

and H− such that H+ and H− are self-dual ternary codes.

Proof. Observe that if c, c′, d, d′ are ternary vectors of length n then

(c(1− v) + d(1 + v))(c′(1− v) + d′(1 + v)) = a(1− v) + b(1 + v)

with −a = cc′ and −b = dd′. This shows that a = b = 0 iff cc′ = dd′ = 0.

Proposition 3.2.4. An R−code H is self-dual for both the Hermitian and Euclidean

scalar product if and only if it is self-conjugate. In particular, it is the R−span of a

ternary matrix the F3−span of which is self-dual.

Some codes over R for the lengths n = 4, 6, 8, 9, 10, 11, 12, 13, 14 and 15, Hermitian

self-dual and have a minimum length weight of 9 are found in [18].
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Chapter 4

Simplex code over the ring

R = F2 + vF2

There are various binary linear codes such as the Hamming codes, the first order Reed

Muller codes and the simplex codes. Any nonzero codeword of the simplex code has

many of the properties that we would expect from a sequence obtained by tossing a fair

coin 2m − 1 times. This randomness makes these codewords very useful in number of

applications such as range-finding, synchronizing, modulation scrambling etc. Hamming

code is the dual of the simplex code. All these codes have been generalized to codes over

the Galois fields GF (q). Recently, there has been much interest in codes over finite rings,

especially the rings Z2s , where Z2s denotes the ring of integers modulo 2s. In particular,

codes over Z4 and F2 + uF2 have been widely studied [6], [11], [22], [24] and [29].

More recently Z4-simplex codes and their Gray images have been investigated by M.

Bhandari, A. Lal and M. Gupta in [11]. Good binary linear and non-linear codes can

be obtained from codes over Z4 via the Gray map. In [15] Gupta, Clyun and Gulliver

studied senary simplex codes over Z6 of type α and two versions of types (β and γ),

self-orthogonality, torsion codes weight distribution and weight hierarchy properties are

investigated. They gave a new construction of senary codes via their binary and ternary

counter part and show that types α and β simplex codes can be constructed by this

method. In [13] and [14] respectively, simplex codes of types α and β over the rings F2+uF2

where u2 = 0 and the ring
∑n=s

n=0 unF2 were given by generalizations and extensions of

simplex codes over Z4 and over Z2s . In this chapter, we describe linear simplex codes and

their properties over the ring R = F2 + vF2 where v2 = v and F2 = {0, 1}.
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4.1 Simplex code over fields

All information in this section are found in [7] and [29].

The Hamming code is probably the most famous of all error-correcting codes. They are

perfect, linear and very easy to decode. The binary Hamming code is equivalent to a cyclic

code. The Hamming code, CH of length n = (qk−1)/(q− 1), k ≥ 1 over Fq, is a code for

which the k×n parity check matrix H has columns that are pairwise linearly independent.

Since H has rank k, CH is linear of dimension n− k. Moreover, any codeword x ∈ CH is

a linear combination of wt(x) columns of H. As a result, wt(CH) = 3 since their exist at

least three, but not fewer, linearly dependent columns of H.

Definition 4.1.1. [29] Hamming binary codes Let n = 2k − 1 with k ≥ 2. Then the

k × (2k − 1) matrix CH whose columns in order are numbers 1, 2, ......, 2k − 1 written as

binary numerals in the parity check matrix of an [n = 2k − 1, k = n− k].

Theorem 4.1.1. [29] and [7] Any [(qk − 1)/(q − 1), (qk − 1)/(q − 1)− k, 3] code over Fq

is monomially equivalent to Hamming code CH

Example 4.1.1. [7] Let us consider the 4×15 matrix

H =




1 0 0 0 1 1 1 0 0 0 1 0 1 1 1

0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

0 0 1 0 0 1 0 1 0 1 1 1 1 0 1

0 0 0 1 0 0 1 0 1 1 0 1 1 1 1




.

H can be used as a parity check matrix to define the binary Hamming code CH of length

15 with 24 words. The codeword

(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0)

has weight 3.Naturally , H is the generator matrix of the dual code of CH , which has

length 15 and dimension 4 such a code is called a projective code since the columns of the

generator matrix represent distinct points in the three dimensional projective space over

F2 . More generally, the dual of a Hamming code is a simplex (projective as in [7]) code.

Definition 4.1.2. [29] The dual of Hamming codes are called simplex codes. They are

[(qk−1)/(q−1), k], whose codeword weight have a rather, interesting property. The tetra

code, being a self-dual Hamming code, is a simplex code its nonzero codeword all have

weight 3.

In general, we have the following theorem.
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Theorem 4.1.2. [29] The nonzero codewords of the [(qk−1)/(q−1), k] simplex code over

Fq all have weights qk−1.

These codes are produced by a modification of the (u|u+v) construction. For more details

see [29] section 1.5.5 . For example :

Let G2 be the matrix

G2 =


 0 1 1

1 0 1


 .

Let G3 be the matrix

G3 =




0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1


 .

For k ≥ 3 define Gk inductively by




0 · · · 0 1 1 · · · 1
0

Gk−1
... Gk−1

0




.

For example

G4 =




0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1




.

By the previous theorem, all nonzero codewords have weight 8.
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We claim the code Sk, generated by Gk, is the dual of CH , clearly Gk has one more row

than Gk−1 and as G2 has 2 rows Gk has k rows.

Definition 4.1.3. [11] Let Fq = GF (q) = {0, 1, α3, ......, αq} for a given k and q, Let

Gk(q) be a K × (qk − 1)/(q − 1) matrix over Fq in which any two columns are linearly

independent.

The code Sk(q), generated by the matrix Gk(q) is called the simplex code.Note that

Sk(q) a
[

(qk − 1)/(q − 1), k, qk−1

]
.

It is known that any linear code with the above parameters is equivalent to Sk(q).

Gk(q) can be defined inductively by

G2(q) =


 0 1 1 α3 · · · αq−1 αq

1 0 1 1 · · · 1 1


 ,

and

Gk(q) =


 000 · · · 0 1 11 · · · 1 α3α3 · · ·α3 · · · αq · · ·αq

Gk−1(q) 0 Gk−1(q) Gk−1(q) · · · Gk−1(q)


 .

every nonzero codeword of Sk(q) has weight qk−1.

The binary simplex code usually denoted by Sk was first discovery by Ronald A. Fisher in

1942 in connection with statistical designs. In 1945 it was further generalized to arbitrary

prime powers.

4.2 R-Simplex codes of type α over F2 + vF2

Following [11], [13], and [14]. We construct simplex codes over the ring R = F2 + vF2 in

the following way.

For convenience we set w = 1 + v. Let Gk be a k× 22k matrix over R defined inductively

by. 
 00 · · · 0 11 · · · 1 vv · · · v ww · · ·w

Gk−1 Gk−1 Gk−1 Gk−1


 , (4.2.1)

where G1 = (01vw).

The columns of Gk consists of all distinct k− tuples over R. The code, Sα
k generated by

Gk, has length 22k.

The following observation are useful to obtain Hamming, Lee, Bachoc and distribution

weights of Sα
k .
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Remark 4.2.1. If Ak−1 denotes the (4k−1× 4k−1) array consisting of all codewords in Sα
k−1

and

i = (i, i, ..., i) then the (4k × 4k) array of codewords of Sα
k is given by




Ak−1 Ak−1 Ak−1 Ak−1

Ak−1 1 + Ak−1 v + Ak−1 w + Ak−1

Ak−1 v + Ak−1 v + Ak−1 Ak−1

Ak−1 w + Ak−1 Ak−1 w + Ak−1




.

Example 4.2.1. To construct the simplex code S2.

By (4.2.1) we write

G2 =


 0000 1111 vvvv wwww

01vw 01vw 01vw 01vw


 .

Then,

S2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 v v v v w w w w

0 1 v w 0 1 v w 0 1 v w 0 1 v w

0 1 v w 1 0 w v v w 0 1 w v 1 0

0 0 0 0 v v v v v v v v 0 0 0 0

0 0 0 0 w w w w 0 0 0 0 w w w w

0 1 v w v w 0 1 v w 0 1 0 1 v w

0 1 v w w v 1 0 0 1 v w w v 1 0

0 v v 0 0 v v 0 0 v v 0 0 v v 0

0 v v 0 1 w w 1 v 0 0 v w 1 1 w

0 v v 0 v 0 0 v v 0 v 0 0 v v 0

0 v v 0 w 1 1 w 0 v v 0 w 1 1 w

0 w 0 w 0 w 0 w 0 w 0 w 0 w 0 w

0 w 0 w 1 v 1 v v 1 v 1 w 0 w 0

0 w 0 w v 1 v 1 v 1 v 1 0 w 0 w

0 w 0 w w 0 w 0 0 w 0 w w 0 w 0




wtH wtL wtB

0 0 0

12 16 20

12 16 20

12 16 20

8 8 16

8 8 16

12 16 20

12 16 20

8 8 16

12 16 20

8 8 16

12 16 20

8 8 16

12 16 20

12 16 20

8 8 16
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the length of S2 = 22k = 24 = 16.

dH = dL = 8 and dB = 16.

Remark 4.2.2. If R1, R2, ..., Rk denote the rows of the matrix Gα
k then,

• wtH(Ri) = 3 · 22(k−1), wtH(vRi) = wtH(wRi) = 22k−1.

• wtL(Ri) = 22k, wtL(vRi) = wtL(wRi) = 22k−1.

• wtB(Ri) = 5.22(k−1), wtB(vRi) = wtB(wRi) = 22k.

It may be observed that each element of R occurs equally often in every row of Gα
k .

Let c = (c1, c2, ..., cn) ∈ C. For each j ∈ R, Let wj(c) = |{i|ci = j}|, we have the following

lemma.

Lemma 4.2.1. Let c ∈ Sα
k , c 6= 0

1) If for at least one i, ci is a unit then ∀j ∈ R, ωj = 4k−1 in c.

2) If ∀ i, ci ∈ {0, v} then ∀j ∈ {0, v} ωj = 22k−1 in c.

3) If ∀ i, ci ∈ {0, w} then ∀j ∈ {0, w} ωj = 22k−1 in c.

Proof. By Remark (4.2.1), any x ∈ Sα
k−1 gives rise to the following four codewords of Sα

k .

y1 = (x|x|x|x).

y2 = (x| 1 + x| v + x| w + x).

y3 = (x| v + x| v + x|x).

y4 = (x| w + x| w + x|x).

Hence, by induction, the assertion follows.

Now we will give some facts about binary simplex codes.

Let G(Sk) (columns consists of all nonzero binary k-tuples) be the generator matrix for

an [n, k] binary simplex code Sk. Then the extended binary simplex code Ŝk generated

by the matrix.

G(Ŝk) = [0|G(Sk)].

Inductively generated by,

G(Ŝk) =


 00 · · · 0 11 · · · 1

G(Ŝk−1) G(Ŝk−1)


 , with G(Ŝ1) = [0 1]. (4.2.2)
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Lemma 4.2.2. The H+(or H−) binary codes of Sα
k are equivalent to the 2k copies of Ŝk.

Proof. First, we will prove the H+ case by induction on k. Observe that the binary

H+ code of Sα
k is the set of codewords obtained by replacing w by 1 in all w− linear

combination of the rows of the matrix wGk (where Gk is defined in (4.2.1). For k = 2 the

result holds and.

G2 =


 0000 1111 vvvv wwww

01vw 01vw 01vw 01vw


 .

H+ =


 0000 1111 0000 1111

0101 0101 0101 0101


 .

If wGk−1 is permutation equivalent to 2k−1 copies of wG(Ŝk−1) then the matrix wGk takes
the form:
2
4 00 · · · 0 ww · · ·w 00 · · · 0 ww · · ·w

wG(bSk−1)| · · · |wG(bSk−1) wG(bSk−1)| · · · |wG(bSk−1) wG(bSk−1)| · · · |wG(bSk−1) wG(bSk−1)| · · · |wG(bSk−1)

3
5 .

Now regrouping the columns according to (4.2.2) gives the desired result. The proof for

the H− case is similar to the above case.

Definition 4.2.1. For each 1 ≤ i ≤ n, let AH(i)(AL(i) or AB(i))

be the number of codewords of Hamming, Lee or Bachoc weight i in C.

Then {AH(0), AH(1), ......, AH(n)}, ({AL(0), AL(1), ......, AL(n)}) or

({AB(0), AB(1), ......, AB(n)}) is called the Hamming (Lee) or Bachoc weight distribution

of C.

The Hamming, Lee and Bachoc weight distributions of Sα
k are given in the following

theorem.

Theorem 4.2.3. Hamming, Lee and Bachoc weight distributions of Sα
k are:

1.) AH(0) = 1, AH(22k−1) = 2(2k − 1) and AH(3.22(k−1)) = (2k − 1)(2k − 1).

2.) AL(0) = 1, AL(22k−1) = 2(2k − 1) and AL(4k) = (2k − 1)(2k − 1).

3.) AB(0) = 1, AB(4k) = 2(2k − 1), AB(5.22(k−1)) = (2k − 1)(2k − 1).

Proof. Note that AH(0) = AL(0) = AB(0) = 1, AH(22k−1) = AL(22k−1) = AB(4k) =

2(2k − 1) and AH(3 · 22(k−1)) = AL(4k) = AB(5 · 22(k−1)) = (2k − 1)(2k − 1). By remark

(4.2.2), each nonzero codeword of Sα
k has Hamming weight is either 3 · 22(k−1) or 22k−1,

Lee weight is either 4k or 22k−1 and Bachoc weight is either 5 · 22(k−1) or 4k. And by
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Lemma (4.2.2), the dimension of H+ code of Sα
k is k, thus the number of codewords is 4k

and there will be (2k − 1)(2k − 1) codewords of Hamming weight 3 · 22(k−1). Therefore,

the number of codewords having Hamming weight 22k−1 is 4k − [(2k − 1)(2k − 1) + 1] =

4k − [22k − 2 · 2k + 1 + 1] = 4k − 4k + 2 · 2k − 2 = 2 · 2k − 2 = 2(2k − 1). Similar arguments

hold for the other weights.

The symmetrized weight enumerator (swe) of Sα
k is given by the following formula,

swe(x, y, z) = xn + 32(k−1)x4k−1

y4k−1

z22k−1

+ 2 · 3k−1x22k−1

z22k−1

Remark 4.2.3.

1 The Simplex code Sα
k is not equidistant with respect to Hamming, Lee and Bachoc

distances.

2 The minimum weights of Sα
k are:dH = 22k−1, dL = 22k−1 and dB = 22k.

3 dH = dL = dB/2.

4.3 Simplex codes of type β

The length of Sα
k is large and increases fast, so we can omit some columns from Gα

k to

obtain good codes over R of smaller length and we will call the simplex codes of type β.

Let λk be the k × 2k(2k − 1) matrix defined inductively by λ1 = [1v] and

λk =


 00 · · · 0 11 · · · 1 vv · · · v ww · · ·w

λk−1 Gα
k−1 Gα

k−1 λk−1


 , (4.3.1)

for k ≥ 2 and let δk be the k× 2k(2k − 1) matrix defined inductively by δ1 = [1w] and

δk =


 00 · · · 0 11 · · · 1 vv · · · v ww · · ·w

δk−1 Gα
k−1 δk−1 Gα

k−1


 , (4.3.2)

For k ≥ 2 where Gα
k−1 is the generator matrix of Sα

k−1.

Now let Gβ
k be the k × [(2k − 1)(2k − 1)] matrix defined inductively by

Gβ
2 =


 1111 0 vv ww

01vw 1 1w 1v


 ,

67



And for k > 2.

Gβ
k =


 11 · · · 1 00 · · · 0 vv · · · v ww · · ·w

Gα
k−1 Gβ

k−1 δk−1 λk−1


 . (4.3.3)

Note that the generator matrix Gβ
k is obtained by deleting 2k+1 − 1 columns of the

generator matrix Gα
k . By induction, it is easy to verify that no two columns of Gβ

k are

multiple of each other.

Now, let Sβ
k be the code generated by Gβ

k ; to determine the weight distribution of Sβ
k , we

first make the following observations.

Remark 4.3.1. Each row of Gβ
k has Hamming weight 2k−2[3(2k − 1) − 1], Lee weight

2k(2k − 1) and Bachoc weight 2k[2(2k−1 − 1) + 2k−2].

Proposition 4.3.1. Each row of Gβ
k contains 22(k−1) units and

ωv = ωw = 22(k−1) − 2k−1 = 2k−1(2k−1 − 1).

Proof. The result can be easily verified for k = 2. Assume that the result holds for each

row of Gβ
k−1. Then the number of units in each row of Gβ

k−1 is equal 22(k−2). By Lemma

(4.2.1), the number of units in any row of Gα
k−1 is 22k−3. Hence, the total number of units

in any row of Gβ
k will be 22k−3 + 2 · 22(k−2) = 22(k−1) = 4k−1. A similar argument holds for

the number of v′s and w′s.

Example 4.3.1. Construction of Sβ
2 , the length, dH , dL and dB for this code as the fol-

lowing:

By (4.3.3) we can write
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Sβ
2 =




0 0 0 0 0 0 0 0 0

1 1 1 1 0 v v w w

0 1 v w 1 1 w 1 v

1 0 w v 1 w 1 v 1

v v v v 0 v v 0 0

w w w w 0 0 0 w w

v w 0 1 1 w 1 1 v

w v 1 0 1 1 w v 1

0 v v 0 v v 0 v v

0 w 0 w w w w w 0

1 w w 1 v 0 v 1 1

1 v 1 v w 1 1 0 w

v 0 0 v v 0 v v v

v 1 v 1 w 1 1 w 0

w 0 w 0 w w w 0 w

w 1 1 w v v 0 1 1




wtH wtL wtB

0 0 0

8 12 12

8 12 12

8 12 12

6 6 12

6 6 12

8 12 12

8 12 12

6 6 12

6 6 12

8 12 12

8 12 12

6 6 12

8 12 12

6 6 12

8 12 12

The length n = 9.

dH = 6, dL = 6, dB = 12.

Example 4.3.2. To find the length, dH , dL and dB for the code C with the generator

matrix Gβ
3 .

Solution:

By (4.3.1) and (4.3.2) we can write

λ2 =


 00 1111 vvvv ww

1v 01vw 01vw 1v


 .

δ2 =


 00 1111 vv wwww

1w 01vw 1w 01vw


 .

By (4.3.3):

GB
3 =




1111111111111111 000000000 vvvvvvvvvvvv wwwwwwwwwwww

00001111vvvvwwww 11110vvww 001111vvwwww 001111vvvvww

01vw01vw01vw01vw 01vw11w1v 1w01vw1w01vw 1v01vw01vw1v


 .

In similar way as in previous example we can deduce that the length n = 49, dH = dL = 28,

dB = 64
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Theorem 4.3.2. The hamming, Lee and Bachoc weight distributions of Sβ
k are:

1. AH(0) = 1, AH(2k−2(3(2k − 1)− 1)) = (2k − 1)(2k − 1) .

and AH(2k−1(2k − 1)) = 2(2k − 1).

2. AL(0) = 1, AL(2k−1(2k − 1)) = 2(2k − 1)

and AL(2k(2k − 1)) = (2k − 1)(2k − 1).

3. AB(0) = 1, AB(2k[2(2k−1 − 1) + 2k−2]) = (2k − 1)(3 + 2k−1) .

and AB(2k(2k − 1)) = 2 · 3k−3(2k − 1).

Proof. Similar to the proof of theorem(4.2.3).

Remark 4.3.2. 1. The minimum Hamming weight of Sβ
k , is dH = 2k−1(2k − 1).

2. The minimum Lee weight of Sβ
k , is dL = 2k−1(2k − 1).

3. The minimum Bachoc weight of Sβ
k , is dB = 2k(2(2k−1 − 1) + 2k−2).

Now we will give the Macwilliams relations of Sβ
k

Remark 4.3.3.

Wc(x, y) = xn + q(k)xn−h(k)yh(k) + nxn−f(k)yf(k)

where q(k) = 2(2k − 1), h(k) = 2k−1(2k − 1), f(k) = 2k−2(3(2k − 1)− 1).

swe(x, y, z) = xn + nxρ(k)yδ(k)zn−ρ(k)−δ(k) + 2(2k − 1)xn−h(k)zh(k)

where n = L(k) = (2k − 1)(2k − 1), h(k) = 2k−1(2k − 1), ρ(k) = L(k − 1) =

(2k−1 − 1)(2k−1 − 1) and δ(k) = 22(k−1).

Example 4.3.3.

Remark 4.3.4.

1.) Sα
k (Sβ

k ) are Hermitian self-orthogonal codes

2.) Sα
k is self-orthogonal codes with Euclidean inner product, but Sβ

k is not.

3.) The Sα
k (Sβ

k ) codes dose not achieve the inequality

dB ≤ 2(1 + bn
3
c).

and so they are not Hermitian self-dual codes.
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4.) The Sα
K has dH = dL = dB/2.

5.) The Sβ
K has dH = dL ≤ dB/2.
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Appendix A

Fundamental terminology in ring theory

The following facts are found in [3], [7] and [29]

Ring: A non-empty set R together with two binary operations (+) and (.) called ad-

diction and multiplication respectively, is called a ring, if it has the following three

properties .

1) (R, +), is an abelian group,

2) (R, .), is a semi-group and

3) distributive laws hold.

To spell out these conditions, we have the following.

1)Abelian Group a) a, b ∈ R ⇒ a + b ∈ R.

b) a, b, c ∈ R ⇒ (a + b) + c = a + (b + c).

c) ∃ 0R ∈ R such that a + 0R = a = 0R + a,∀a ∈ R.

(Such an 0R is unique and is called the additive identity or the zero element.

This 0R is denoted simply by 0, since no confusion is likely).

d) ∀a ∈ R, ∃ b ∈ R such that a + b = 0 = b + a.(such a b is unique and is

denoted by −a).

e) ∀a, b ∈ R, a + b = b + a.

2)Semi-group

f) a, b ∈ R ⇒ a.b ∈ R

g) a, b, c ∈ R ⇒ (a.b).c = a.(b.c).

3)Distributive laws
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h) ∀a, b, c ∈ R,





a.(b + c) = a.b + a.c ;

(a + b).c = a.c + b.c .

Basic notations :

1) We recall that R is a commutative ring with unity, if a semi-group (R, .) is

commutative and has an identity (1R or 1)

2) An invertible element (unit) a ∈ R is an element for which their exist a b ∈ R

such that ab = 1. The element b is uniquely determined by a and will be

denoted by a−1.

3) A ring R is a field if every nonzero element is a unit.

4) A non-empty subset S of R is called a subring of R, if (S, +) is a subgroup of

(R, +) and (S, .) is a subsemi-group of (R, .).

5) An element a ∈ R is said to be a zero divisor if a is either a left zero divisor or

a right zero divisor, i.e (if ∃ b 6= 0,3 a.b = 0 or ∃ c 6= 0,3 c.a 6= 0).

6) An element a ∈ R is a nilpotent if an = 0 for some positive integer n.

7) Provided that R is not the trivial ring a nilpotent is a zero divisor in R, but the

converse not generally true.

8) An element a ∈ R is said to be an idempotent if a2 = a. Two idempotents

a, b ∈ R are said to be orthogonal (to each other) if ab = 0.

9) For R has unity and ais an idempotent then, 1− a is also an idempotent and a

and 1− a are orthogonal.

10) Given a ring R (commutative or not, with or without unity) by the character-

istic of (R) we mean the least positive integer n such that na = 0, ∀a ∈ R, if

this n dose not exist then char(R) = 0.

11) If R is commutative ring whose characteristic is a prime p then

(a + b)p = ap + bp for all a, b in R.

12) An ideal I in a commutative ring R is a non empty subset of the ring that

is closed under subtraction such that the product of an element of I with an

element of R is always in R. I is a proper ideal if {0} 6= I ⊂ R, and this I dose

not contain units.

13) A (proper) ideal, I, of R is said to be a prime ideal if, for any a, b ∈ R such

that a.b ∈ I and a /∈ I, b ∈ I.
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14) A proper ideal M in R is called maximal ideal, if there is no proper ideal of R,

say J such that M ⊂ J ⊂ R.

15) The ideal M ⊂ R (commutative ring) is maximal if and only if R\M is a field.

16) In a commutative ring with identity, a maximal ideal is a prime ideal.

17) Let R be a ring with 1, and M 6= 〈0〉 an ideal such that x ∈ R\M is a unit

then R is a local ring, and M is its unique maximal ideal.

18) A commutative ring with 1 is called a semi-local ring if it has only finitely

many maximal ideals.

Module: 1) Let R be any ring (with or without 1 and commutative or not). By a

left R−Module M, we mean, an abelian group (M, +) together with a map

R×M −→ M, (a, x) −→ ax, such that

1) a(x + y) = ax + ay, ∀a ∈ R and x, y ∈ M,

2) (a + b)x = ax + bx, ∀a, b ∈ R and x, y ∈ M and

3) (ab)x = a(bx),∀a, b ∈ R and x, y ∈ M.

Elements of R are called scalers.

Submodule: Let M be an R−module. A non-empty subset N of M is called R−submodule

of M if

1) N is an additive subgroup of M , i.e a, b ∈ N ⇒ a− b ∈ N and

2) N is closed for scaler multiplication i.e x ∈ N, a ∈ R ⇒ ax ∈ N.

Free module: An R−module M is called a free module if M has a basis B, i.e., a linearly

independent subset B of M such that M is spanned by B over R.

Rn = R× ......R, n times is a free R-module if R has 1
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Appendix B

Linear Algebra

In this appendix we review several important concepts from linear algebra, for more de-

tails see [20] and [4].

A vector space:Let Fq be the finite field of order q. A nonempty set V, together with

some (vector) addition (+) and scalar multiplication by elements of Fq, is a vector space

(or linear space) over Fq if it satisfies all the following conditions. For all u, v, w ∈ V and

for all λ, µ ∈ Fq :

1) u + v ∈ V ;

2) (u + v) + w = u + (v + w);

3) there is an element 0 ∈ V with the property 0 + v = v = v + 0 for all v ∈ V ;

4) for each u ∈ V there is an element of V, called −u,such that u+(−u) = 0 = (−u)+u;

5) u + v = v + u;

6) λv ∈ V ;

7) λ(u + v) = λu + λv, (λ + µ)u = λu + µu;

8) (λµ)u = λ(µu);

9) if 1 is the multiplicative identity of Fq, then 1u = u.

Subspace: A nonempty subset C of a vector space V over Fq if and only if the following

condition is satisfied:

if x, y ∈ C and λ, µ ∈ Fq , then λx + µy ∈ C.
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Linearly independent: A set of vectors {v1, v2, ......, vk} in V is linearly independent if

λ1v1 + λ2v2 + ...... + λkvk = 0 ⇒ λ1 = λ2 = ...... = λk = 0.

The set is linearly dependent if it is not linearly independent; i.e., if there are λ1, λ2, ......, λk ∈
Fq, not all zero (but maybe some are!), such that λ1v1 + λ2v2 + ...... + λkvk = 0.

Note that: The number of linearly independent rows in a matrix is equal to the number

of linearly independent columns.

Examples:

1) Any set S which contains 0 is linearly dependent.

2) For any Fq, {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0)} is linearly independent.

3) For any Fq, {(0, 0, 0, 1), (1, 0, 0, 0), (1, 0, 0, 1)} is linearly dependent.

Basis: a nonempty subset B of vectors from a vector space V is a basis for V if both:

1) B spans V (thatis, 〈B〉 = V ), and

2) B is a linearly independent set.

In general a vector space usually has many bases for a vector space contain the same

number of elements. The number of elements in any basis for a vector space is called the

dimension of the space.

Rank:The rank of a matrix over Fq is the number of nonzero rows in any REF(reduced

echelon form) of the matrix.

If A is an m×n matrix then the subspace of Rn spanned by he row vectors of A is called

the row space of A and the subspace of Rm spanned by the column vectors is called the

column space of A. Rank(A) is the common dimension of the row space and the column

space of a matrix A.

Linear operator: Let X,Y be linear spaces. Then the function,

L : X −→ Y is called a linear operation if and only if for all x1, x2 ∈ X and all scalars

a, b

L(ax1 + bx2) = aL(x1) + bL(x2).

Linear functional: L is a linear functional on X if L : X −→ R is a linear operator.

kernal: If T : V −→ W is a linear transformation,then the set of vectors in V that maps

into 0 is called the kernal of T .

Remarks: If w1, w2 are two subspaces of a finite dimensional vector space V, then:
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1) dim(w1 + w2) = dim w1 + dim w2 − dim(w1 ∩ w2).

2) If w1 ∩ w2 = {0}, we say that the sum w1 + w2 is a direct sum of w1 and w2 and

denoted by w1 ⊕ w2.

3) For α ∈ w1 ⊕ w2, there exist α1 ∈ w1 and α2 ∈ w2 such that α = α1 + α2.

If the sum is direct however α1 and α2 are uniquely determined by α.

77



Conclusion

In this thesis we introduced a survey on Types of self-dual codes over rings of order 4

specially the ring R = F2 + vF2. We also have studied simplex codes of types α and β

over the ring F2 + vF2. This study can be extended to study simplex codes over more

rings such as Fp + vFp where p is prime integer. For future study one can use near rings

of four elements to construct simplex codes.

There are some open research problems related to simplex codes:

1) We hope we can study other types of simplex codes.

2) We hope we can find the number of errors which simplex codes of type α and β will

detect and correct.

3) We need further investigation about encoding and decoding process.
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