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ABSTRACT

Graphene material is inherent from carbon, its two-dimensional hexagonal
lattice structure (also called honeycomb), which is the thinnest known at all
material so far, equivalent to a thickness of one carbon atom only. Although it
is considered one of the strongest (stronger) materials known. Developed by
Russian Andrei Geim and Konstantin Novoselov in 2004, and both won Nobel
Prize in Physics in 2010.

The properties of graphene have attracted the attention of many disciplines.
Also the results of several studies in the field of thermodynamics for graphene
led to the growing interest for the study of graphene in the areas of optics and
photonics to be used in a variety of applications. On the other hand,
macroscopic systems that can be analyzed using Maxwell's equations, the
study of waves guided by the existing structures on the graphene allow them
to better understanding to the incorporated into electromagnetic devices.

In this study, the dispersion relations for two sheets of parallel graphene in
over Gigahertz and Terahertz ranges for two ships of polarization of the
electromagnetic field are the magnetic field (TM-Modes), and field
electrophoresis (TE -Modes) has been investigated.

The behavior of electromagnetic waves in the presence of a layer of the left-
handed material between two sheets of parallel graphene has been studied. The
total power flow through the structure has been obtained.

In addition, this article discusses the use of guides waves as sensor by the
existence of two layers parallel of graphene with the installation of variables
for remote sensing applications.

The sensitivity of the sensing of the variables of electric permittivity and
the magnetic permeability of the Left-Handed material has been presented.
Moreover, the comparison between the layers that contain the Left-handed
materials with layers containing insulating material.

It can be concluded that the presence of a layer of left-handed materials
between two layers of graphene gives better results for increased the
sensitivity, which may be useful in optoelectronics and electromagnetic
applications, such as the design of some of optoelectronic devices based on the
scope of a private graphene sensors.

v
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CHAPTER ONE

GRAPHENE AND METMATERIALS CONCEPTS

This chapter is intended to present introduction about graphene, When
discovered, the distinctive characteristics, Optical conductivity of Graphene,
and the application of graphene. Its also discussed the Metmaterials and

optical sensing: there concepts, brief history, and applications.

1.1 Introduction:

Graphene is a rapidly rising star on the horizon of materials science and
condensed matter physics. This strictly two-dimensional material exhibits
exceptionally high crystal and electronic quality and despite its short history,
has already revealed abundance of new physics and potential applications [1-
2].Graphene, a single-atom thick layer of covalently bonded carbon atoms, has
recently emerged as an alternative for conducting materials in optical systems.
Graphene derives its unusual current transport properties from the Dirac cones
in its band structure at the six corners of the first Brillouin zone, which can be
directly related to the arrangement of the carbon atoms in a two-dimensional
honeycomb structure. Having a linear dispersion relation at energies close to
the cone's apex, the charge carriers are relativistic quasi-partials (also called
Dirac fermions), resulting in superior low-frequency electronic and

mechanical properties for a sheet only a single atom thick.

Owing to its unusual electronic spectrum, graphene has led to the
emergence of a new paradigm of “relativistic”’ condensed matter physics,
where quantum relativistic phenomena, some of which are unobservable in

high energy physics, can now be mimicked and tested in table-top



experiments. More generally, graphene represents a conceptually new class of
materials that are only one atom thick and, on this basis, offers new inroads
into low-dimensional physics that has never ceased to surprise and continues

to provide a fertile ground for applications[1].

Graphene has also been advertised as a versatile material for opto-
electronics and terahertz technology, e.g. in solar cells, light-emitting devices,

display technology, and ultrafast Photodetectors.

Recently, we got interested in the use of graphene with Metmaterials.
Metamaterials are artificially structured materials in which small,
subwavelength electric circuits replace atoms as the basic unit of interaction
with electromagnetic radiation. The design of appropriate constituents, such as
split-ring resonators (SRR), cut wires, and fishnets, allows for effectively
homogeneous media with exotic material response, e.g., magnetism at
terahertz and optical frequencies, simultaneous negative permittivity and
negative permeability (the so-called left-handed materials) [3], giant chirality
[4], and slow-light media. They may enable lenses with subwavelength
resolution [5], optical systems going beyond the diffraction limit, and

reflectionless photonic devices[6].

1.2 Graphene

Graphene is the name given to a flat monolayer of carbon atoms tightly
packed into a two-dimensional (2D) honeycomb lattice, and is a basic building

block for graphitic materials of all other dimensionalities (Figurel.1)[7].

The discovery of the 2-D graphene sheet has been a surprise to the scientific
community because a 2-D crystal was predicted to be thermodynamically
unstable. A 2-D crystal is in general hard to grow because as the lateral size of

the crystal grows, the thermal vibration also rapidly grows and diverges on a



macroscopic scale, which forces the 2-D crystallites to morph into a stable 3-D

structure[ 8].

Theoretically, graphene (or “2D graphite”) has been studied for sixty
years[9-11] and widely used for describing properties of various carbon-based
materials. On the other hand, although known as integral part of 3D materials,
graphene was presumed not to exist in the free state, being described as an
“academic” material and believed to be unstable with respect to the formation
of curved structures such as soot, fullerenes and nanotubes. All of a sudden,
the vintage model turned into reality, when free-standing graphene was
unexpectedly found three years ago and, especially, when the follow-up
experiments confirmed that its charge carriers were indeed massless Dirac

fermions. So, the graphene “gold rush” has begun [1-2].

2D graphene

1D CNTs,

0D fullerenes

3D graphite

=
g
AL 0
Fiigg:
v
i
i

Figure 1.1 Mother of all graphitic forms. Graphene is a 2D building material for
carbon materials of all other dimensionalities. It can be wrapped up into 0D Bucky
balls, rolled into 1D nanotubes or stacked into 3D graphite[1].



1.2.1 Brief history of graphene

Carbon demonstrates unusually complicated behavior, forming a number of
very different structures. As well as diamond and graphite, which have been
known since ancient times, recently discovered fullerenes[12-13] and
nanotubes are currently a focus of attention for many physicists and chemists.
Thus, only 3-dimensional (diamond, graphite), 1- dimensional (nanotubes),
and 0- dimensional (fullerenes) allotropes of carbon were known. The two-
dimensional form was conspicuously missing, resisting any attempt at

experimental observation — until recently[14].

The term graphene first appeared in 1987 to describe single sheets of
graphite as one of the constituents of graphite intercalation compounds (GICs)
[12-13]. Larger graphene molecules or sheets (so that they can be considered
as true isolated 2D crystals) cannot be grown even in principle. In the 1930s,
Landau and Peierls (and Mermin, later) showed thermodynamics prevented 2d

crystals in free state [15-17].

In 2004: Andre Geim and Kostya Novoselov at Manchester University
managed to extract single-atom-thick crystallites (graphene) from bulk
graphite[14]: Pulled out graphene layers from graphite and transferred them
into thin silicon dioxide on a silicon wafer in a process sometimes called
micromechanical cleavage or, simply, the Scotch tape technique. Since 2004,
an explosion in the investigation of graphene in term of synthesis,
characterization, properties as well as specifically potential application were

reported [15].

1.2.2 Properties of Graphene

Graphene is, basically, a single atomic layer of graphite; an abundant

mineral which is an allotrope of carbon that is made up of very tightly bonded



carbon atoms organised into a hexagonal lattice. What makes graphene so
special is its sp” hybridisation and very thin atomic thickness (of 0.345
nm)[18]. These properties are what enable graphene to break so many records
in terms of strength, electricity and heat conduction (as well as many others).
Graphene has many outstanding properties. Its electrical properties include its
high carrier mobility, which is measured in various devices as 8000-10000
em®V™! s and could reach 200000 cm®V™" s in suspended graphene[19-20].
The one-atom-thick graphene is also found to be impermeable to gases, which

could be of interest in bio-molecular and ion transport research[20].

Table 1.1 Summarizes the main properties of graphene.

Parameter Value and Units
Thermal Conductivity 5000 W/mK
Young's Modulus 1.0 TPa
Mobility (maximum) 200000 cm*V' 5™
Saturation Veleocity 4-5 x 10" cm/Sec

Table 1.1: Graphene's main properties[19, 21].

1.2.3 Optical Properties

Graphene’s ability to absorb a rather large 2.3% of white light is also a
unique and interesting property, especially considering that it is only 1 atom
thick. This is due to its aforementioned electronic properties; the electrons
acting like massless charge carriers with very high mobility. A few years ago,
it was proved that the amount of white light absorbed is based on the Fine
Structure Constant, rather than being dictated by material specifics. Adding
another layer of graphene increases the amount of white light absorbed by

approximately the same value (2.3%). Graphene’s opacity of ma = 2.3%



equates to a universal dynamic conductivity value of G=e*/4n (+2-3%) over
the visible frequency range[ 18].
1.2.4 Optical conductivity of Graphene:

The dynamic optical conductivity of graphene ¢ can be determined from the

Kubo formalism[22-23], and an explicit expression for it's conductance:

e (@—ir ') o0& o0&

s D)L CE s
v (w-it") =4/ ny

0

ieX(w—it™) { | Txé(afd (&, T) afd(—éauc,T)]

(1.1)

Where o is radian frequency, ¢ is energy, u. is chemical potential, 7 is a
phenomenological electron relaxation time (v is the scattering rate) that is

assumed to be independent of energy, e is the charge of an electron, # is the

_ —1
(e(.f ) ksT 1)

reduced Planck's constant, and Ja(Gpe,T)= is the Fermi-Dirac

distribution, where kg is Boltzmann's constant and 7 is temperature.

The first term in Eq.(1.1) is due to intraband contributions, and the second

term is due to interband contributions. The intraband term can be evaluated as:

2
oc=0_ = e kyT He +2In(e /%" +1)

. —i X . 1.2
at(@—it™") | k,T } 1.2

With o =0'+io”", it can be seen that o, >0 and o], <0, the imaginary

ntra
part of conductivity plays an important role in the propagation of surface

waves guided by the graphene sheet.



For the Fermi-Dirac statistics [24], w /k,T > 1, the intraband conductivity

takes the form[24]:

2
S L S— (1.3)
Th(w—it™)

intra

The interband conductivity can be approximated for x /k,T >1 as[25]:

2 2 _ a1 h
O-inter = _l © Xln |/u‘| (a) ZT—I) H (14)
4rh 2u |+ (w—it™)h

Such that for 7' =0 and 2|y |>%he , o ioc!. with ¢! >0.

inter inter inter

For 7' =0 and 2| |<hw, o, is complex-valued, with[26]:
72'62
ol =22 =5 =6.085x10"" (1.5)
2h

1.2.5 Application of Graphene:
1.2.5.1 Graphene Energy Stores Application

Energy production and storage are both critical research domains where
increasing demands for the improved performance of energy devices and the

requirement for greener energy resources constitute immense research interest.

Graphene has incurred intense interest since its freestanding form was
isolated in 2004, and with the vast array of unique and highly desirable
electrochemical properties it offers, comes the most promising prospects when

implementation within areas of energy research is sought[27].



1. Supercapacitors

Supercapacitors attracted considerable attention as energy storage devices;
they offer high power density, fast charge-discharge processes and excellent
cyclic stability[28]. Generally Supercapacitors were classified into two main
types, namely electrical double-layer capacitors and pseudocapacitors. Carbon
based materials are widely used as electrode materials in double-layer
capacitors owing to their excellent physic-chemical properties[29]. Likewise,
graphene based composite materials were had extensive applications in

supercapacitors research filed.

Graphene based nancomposites with conduction polymers and metal oxides

have been utilized for the applications in pseudocapacitors[30].

2. Batteries

Batteries are extensively used in automobiles (cars and bikes), aircrafts,
boats, ships and electronic equipments[31-32]. In this connection, energy
demands were considerably increasing every year and hence electrical storage
devices having long life, good stability and safety are wanted to fulfill the
energy demands[4]. Lithium-ion batteries are one of the promising energy
storage devices which can be used in portable electronic applications.
Recently, graphene and its composite materials were employed as novel
electrode materials for the lithium-ion battery applications. The excellent
properties of graphene and ease of fabrication towards preparation of graphene
based composites with metal, metal oxides and polymers make them

extraordinary materials in the field of batteries[30].

3. Fuel Cell

During the last two decades, carbon nanotubes were evolved as one of the

most important nonmaterial towards fuel cell applications[33-34]. Fuel cell are



a kind of energy storage device, which converts chemical energy from a fuel
into electrical energy by using oxygen and methanol. After the discovery of
graphene, it finds widespread applications in fuel cells, where it can be used as
an excellent electrode material ascribed to its excellent physicochemical

properties.

4. Solar Cells

Solar Cells (polymer, bulk heterojunction and dye-sensitized) are most
important promising devices for the conversion of sun light into electrical
energy, offer the advantages of low cost and large scale production. Platinum
is widely used as cathode electrode dye-sensitized solar cells (DSSC)
applications. Though Platinum has the advantage of having excellent
electrocatalytic properties, it is highly expensive. Therefore, researchers have
focused on alternative electrode materials example, inexpensive materials to
facilitate the similar properties of platinum. Electrode materials based on
carbon based materials such as, carbon nanotubes, activated carbon and
graphene sheets have high electrocatalytic properties and they could replace
the expensive Pt electrode in DSSC applications[30, 35].

1.2.5.2 Graphene Sensors Application

Sensors are widely used in our daily life and its applications becoming
increasing in electrochemical, biological and environmental detectives.
Sensors studies have been widely used in many fields, such as industry
(pollutant), research institute (radiation measurements) and clinical

diagnosis[30].

1. Electrochemical Sensors

Electrochemical sensors offer selectivity and sensitivity with very low

detection limits ranging from nanomolar to picomolar. A number of



electrochemical techniques including cyclic voltammetry, differential pulse
voltammetry and chronoamperometry were employed to study the
electrochemical sensors. Graphene based materials have considerable attention
for the fabrication of non-enzymatic sensors due to their low cost, high

catalytic ability and good stability[5, 30, 37].

2. Biosensors

Biosensors are one of the most important section of sensors, which use
biological components to detect the analytes[38]. Electrochemical biosensors
developed based on graphene and carbon nanotubes were extensively
studied[39-40]. On the other hand, rapid analysis of enzyme based biosensors
were widely used biological species in vivo and in vitro. Graphene based
biosensors were extensively studied owing to the large specific area, good

electrical, thermal and bio-compatibility properties of graphene[3, 30].

3. Pesticide Sensors

Pesticide sensors were broadly used in the field of agriculture production
and control of pests and insecticide. Organphosphorous pesticides pollute the
environment[41], ground water and affect directly or indirectly through the
food process and drinking water. It can cause short and long time health
problems leading to death and therefore development of sensitive and selective

pesticide sensors are very important[42].

In the past years, different electrodes were demonstrated such as, multi-
walled carbon nanotubes, metal oxide composites and polymer nancomposites

for the determination of pesticides.

Recently, graphene based composite materials find widespread fame among

other carbon materials for the detection of pesticides[30, 43].
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1.3 Metmaterials

In the last few years, there has been an increased interest in the scientific
community in the study of metamaterials. Metamaterials are a class of
composite materials artificially constructed to exhibit exceptional properties
not readily found in nature. In particular, there has been high level interset in
studying materials which can be characterized by simultaneously negative

permittivity and permeability over a certain frequency band[44].

In electromagnetism (EM), electric permittivity (¢), and magnetic
permeability (1) are the two fundamental parameters characterizing the EM
property of a medium. Physically, permittivity (permeability) describes how
an electric (magnetic) field affects, and is affected by a medium, which is
determined by the ability of a material to polarize in response to the electric
(magnetic) field. We use the ‘‘material parameter space’” as shown in Fig. 1.2

to represent all materials, as far as EM properties are concerned[45].

(I) ()

e<Ou>0 E>Q >0
n= . fueln<0 n=+,fieRn>0
plasmas (@ < wp,) isotropic dielectrics
metals at optical frequencies right-handed (RH)/
evanescent wave forward-wave propagation

N | s

(1I1) (1v)
e<O,u<O: e>0,pu<
n=-.epeRn<0 n=.fieln<0
Veselago's materials ferrites (w < wpy,)

left-handed (LH)/ (ferrimagnetic materials)
backward-wave propagation evanescent wave

Figure 1.2 Material parametr space characterized by electric permitivity(¢) and
magnetic permeablity (x)[46].
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In 1968, V. G. Veselago [47] theoretically investigated the electrodynamics
of so-called left-handed, or doubly-negative substances. These materials are
defined by simultaneous negative values for the electric permittivity ¢ and the
magnetic permeability u. He predicted that the wave vector k£ of a wave
propagating through a left-handed substance is antiparallel to its Poynting-
vector S, as pictured in Fig.1.3 This remarkable property has far-reaching

consequences[47].

Fig.1.3: Schemmatiac of negative refreaction at the interface between a
postitive-index material and a negaive-index material. Note in the negative-
index material, the wave vector k Poynting vector S are antiparallel; while in
the positive-index material, they are parallel[45].

The prefix "meta" (ueta Greek) means "beyond", and in this sense the name
"metamaterials" signifies sytems that are beyond conventional materials. The
word "metamaterial" first apeared in literature in 2000 when Smith et al.
published their seminal paper on a strucutred material with simultaneously

negative permeability and permittivity at microwave frequencies[48].

12



1.3.1 Negative Refractive index:

Due to its peculiarity in its double negative materilas (DNG) values, where

the permittivity £ and a magnetic permeability u are bouth negative, many

other properites of this material are altered altogehter. The most obvious

alteration is the refractive index where it takes on a negative value as given by

the formula [49-50].

nzi\/;

Plasma and fine
wire structures

Conventional
materials

n=-/(ue)

Allr--Ypmmmccccccm=-- Air-- = e
E<0,p>0 e>0,u>0
No transmission n=+{(ep)
g
Microstructured
Metamaterials magnets and
. split rings
Alr- - SRR . | Al - - Y
e>0,u<0
e<0,pn<0 No transmission

Figure 1.4: Refracted Ray in &-p Diagram.

(1.6)

Here, the positive sign is used for the usual case, whereas the negative sign

1s used when £<0 and u<0 . At n=-./su the LHMs are referred to as

negative index materials (NIMs).
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The metamaterials with negative refraction index have interesting phenomena
that do not appear in natural media can be observed. Among them there are

some of unusual properties of waves in LHMs with negative n [50, 53]:

= Snell's law (n,sin 8 =n, sin@,) still applies, but as n, is negative, the rays
will be refracted on the same side of the normal on entering the material.

*= The Doppler shift is reversed: that is, a light source moving toward an
observer appears to reduce its frequency.

» Cherenkov radiation points the other way.

For plane waves propagating in such metamaterials, the electric filed,

magnetic filed and Poynting vector (or group velocity) follow a left- hand rule.

1.3.2 A brief Historical Review:

Since Victor Vesalago (1968) [47], a Russian physicist made a theoretical
speculation on the existence of substances with simultaneously negative x and

¢, which serves as the origin of all research on LHM.

However, there was not much progress until year 1999 when Prof J. B
Pendry [54] proposed his design of Thin-Wire (TW) structure that exhibits the
negative value of permittivity and the Split Ring Resonator (SRR) with a

negative permeability p value.

Following this interesting discovery, Dr. Smith (2000) [55] from Duke
University combined the two structures and became the first to fabricate the

LHM in his lab.

Kong (2002) [56] investigated the electromagnetic wave interaction with

stratified media and then specialize to slabs of negative isotropic media. He

14



investigated field solution of guided waves, the transmission and reflection

beams, and linear and dipole antennas in stratified structure of LHMs.

In 2003, Engheta [57] provided the salient electromagnetic features of
LHMs, potential future applications, physical remarks, and intuitive

justification.

Chew in 2005 [58] studied the energy conservation property and loss
condition of a LHM and solve the realistic Sommerfeld problem of a point

source over a LHM half space and a LHM slab.

In 2007 Sabah et al. [59] presented the electromagnetic wave propagation
through frequency-dispersive and lossy double-negative slab embedded

between two different semi-infinite media.

Subsequently, with the paths paved by the pioneers, more and more
researchers emerged to study this peculiar material in many fields, for instance

.. In filters, absorbers, lens, microwave components, and antenna.

After the experiment demonstration of such materials, the properties and
possible applications of various metamaterials with negative index of

refraction gained a rapidly increasing interest.

1.3.3 Applications of Metamaterials

There are many applications for found Metamaterials, due to the exciting
and unusual properties.
1- Lenses:

The most exciting possible application is the perfect lens. Compared to a

conventional convex lens, the LHM lens looks quite exotic in that it does not

15



have any axis or curvature, nor does it focus parallel rays or magnify small
objects. A perfect lens can be used in medical imaging, optical imaging and

nondestructive detections [47].

2- FElectromagnetic cloaking devices

LHMs also played a pivotal role in the practical realization of an invisibility
cloak. The cloak is designed for operation over a narrow band of microwave
frequencies and substantially decreases forward and backward scattering from

the object[60].

3- Super lenses

A superlens uses metamaterials to achieve resolution beyond the diffraction
limit. The diffraction limit is inherent in conventional optical devices or
lenses. The first superlens in the microwave regime was realized in 2004[61],

which demonstrated resolution three times better than the diffraction limit.

» The LHMs can be used in other application areas such as filters, absorber,

leak wave antenna, coupler.

1.4 Optical Sensing

Optical Sensors utilize the modification of measured to optical properties
such as intensity, phase, and polarization of an input optical signal. Optical
sensors have attracted considerable attention, and have excellent advantages
such as good compactness and robustness, immunity to electromagnetic
interface, high sensitivity, shorter response time, low cost, and high
compatibility with optical waveguide sensors [62]. Optical sensors are used
for optical communication and made of transparent dielectrics whose function
is to guide visible and infrared light over long distance. Sensors based on the

design and fabrication of a physical transducer that can transform the chemical
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or biological reaction into a measurable signal. Sensing is performed by the
evanescent penetration of the field in the cover medium, and is proportional to
the fraction of evanescent power flow in the cover. Due to their impotence in
bio-sensing application, various optical sensors based on evanescent wave

concept have been developed[63].

Optical Sensing is mainly used in monitoring, measuring traces of
chemicals and studying all physical and chemical properties that change in
accordance with changes in refractive index which depends on film thickness

and refractive indices of both film and surroundings.

1.4.1 Sensors process of the Planer Waveguide:

The sensing process of the planar waveguide sensors is performed by the
evanescent tail of the modal field in the cover medium[64]. The
electromagnetic field guided of the waveguide mode extends as an evanescent
field into the substrate and cladding media and senses an effective refractive
index of the guided mode[65]. The effective refractive index of a waveguide
structure depends on the guided layer thickness, dielectric permittivity and
magnetic permeability of the media constituting the waveguide[64]. So, any
change in the refractive index of the covering medium leads to a change in the
effective refractive index of the guiding mode. The sensing principle of the
planar waveguide sensor is to determine the change in the effective refractive

index of the covering medium[66].

Many theoretical and experimental studies have been conducted to improve
the sensitivity of planar waveguide sensors. Parriaux and Velduis [64]
presented and extensive theoretical analysis for the design of evanescent linear

waveguide sensors and derived the conditions for the maximum achievable

17



sensitivity for both TE and TM polarizations. Shabat et al. [67-71] proposed
optical waveguide sensors in which one or both of the surrounding media have
an intensity dependent refractive index. It is found that utilizing nonlinear
media can enhance the sensitivity of slab waveguide sensors. Taya at al.
proposed optical waveguide sensors by using Left-handed materials[72].
Another class of optical waveguide sensor has been proposed with the so-

called reverse symmetry design[73].

1.4.2 Surface Sensing

The normalized analysis depends on the distribution of the cover medium,
if the cover contains a thin layer, known as an adlayer (or in some literature
affinity layer), at the surface of the sensor, then the sensing operation is called
the surface sensing. Fig. 1.5, here sensitivity is defined as the change of the
effective refractive index with respect to change in adlayer width d, or the

refractive index of the adlayer n,, such as[64] :

_ov. s o

. == 1.7
“ o ad, " on, a7

evanescent field
|
cover Ne
| — e I v
ﬁlm Na Jds
A
di — Waveguide 5 .
X
* substrate Ng
e

Fig. 1.5. Schematic representation of planar waveguide surface sensor[64].
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1.4.3 Homogeneous Sensing

If the cover medium is homogeneously distributed, the process is called
homogeneous sensing. Fig. 1.6, the cover sensitivity is defined as the change
of the effective refractive index with respect to the change of the cover

index[64]:

S, =— (1.8)

evanescent field

r’j
/ cover Ne

: -—-—-)) Waveguide 5 - |

substrate Ng

Fig.1.6. Schematic representation of planar waveguide homogeneous sensor[ 64 ]

The sensitivity to changes in the cover can be found by [74]:

=P \/l_“wzp e S L A} (1.9)
on, B |V1-x o, Vi-x

where ( p, / P, )is the fraction of modal power located in the cover layer.

S

p =0 for TE and p =1 for TM mode.

And  a = —(”] : X :1—(lj . (1.10)
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and p number of mode order.

It can observe from equation (1.9):

-If (eza,=a, , X —>a),thenS—>;;c—>0.5,
T

-Ifa.>a , X —>ac,thenS—>&—>1,

T

- And finally, for ¢, >, , X — ¢, it turns out that § — 0 since in that

case &—>O.

T

1.4.4 Uses and applications

In recent years several planer optical waveguide sensors have been
suggested for biological applications. The detection of pathogenic bacteria
have received renewed interest, especially within the fields of food safety,
medical diagnostics, and biological warfare. Typically, optical waveguide
sensors are used for measuring the refractive index of liquids or various
aqueous solutions of biological substances, such as mammalian cells, bacterial

cells, and proteins[65, 73].

There are another application for optical waveguide sensors that can be
used for detecting and measuring the thickness of layers such as metals, metal

compounds, organic, bio-organic, enzymes, antibodies and microbes[75].

They are also used in radiation dosimeters and protective masks or clothing
when they can readily identify and five scanning data about any change in

exposure or lack in protection.
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CHAPTER TWO

FOUNDATIONS OF WAVEGUIDES

This chapter presents the fundamental concepts of electromagnetic theory,
and boundary conditions. Wave phenomena are of essential importance for our
work. Plane waves are the simplest form of electromagnetic waves and so
serve to illustrate a number of basic properties associated with wave
propagation. We start this chapter with Maxell's equations, which can be
simplified to the geometrical optics regime, and optical systems can be
designed with the theory of geometrical optics. Such techniques are sometimes
applicable to millimeter wave systems, where they are referred to as quasi-

optical.

2.1Maxwell's equations:

Classical macroscopic electromagnetic phenomena are governed by a set of

vector equations known collectively as Maxell's equations [76].

We will start having a look at the Maxwell equations in the SI system of

units for matter with 6 # 0. The Maxwell's equations read:

V-D=p, (2.1)

vxE =B (2.2)
ot

VB =0, (2.3)

VxH =J +aa—l:, (2.4)

Where D, E, B, H, J, and p the electric displacement, the electric field

intensity, the magnetic flux density, the magnetic field intensity, the current
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density (current per unit area), and the free charge density (charge per unit

volume), respectively.

Consider isotropic, linear and non-dispersive media, the constitutive

relations can be written as

D =¢E, (2.5)
B=uH. (2.6)

Where ¢ is the relative dielectric permittivity, and x is the magnetic

permeability, which can be defined as

=6y (2.7)

ro

M= fopd, (2.8)

g, and 4, are the vacuum dielectric and magnetic permeability, ¢, and u,. are

the relative permittivity and permeability of the medium.

Denoting the velocity of light in a vacuum as ¢, , we obtain:

1

2

COILIO
ty =4 %107 H/m. (2.10)

g = ~8.854188x10" F/m, (2.9)

The current density J (in amperes per square meter) in a conductive material

is given by
J =cE. (2.11)

In an isotopic medium, the wave propagation without free charges and

conduction current are most relevant i.e. p = 0, and J = 0.

So, the Egs. (2.1), (2.2), (2.3) and (2.4) can be written as:
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V-D =0, (2.12)
OB

VXE =— | (2.13)
ot

V-B=0, (2.14)

vxn =P (2.15)
ot

By using egs. (2.5) and (2.6) , the above equations also can be written

V-E =0, (2.16)
OoH
VXE =—py—o 2.17
1 (2.17)
V-H =0, (2.18)
VxH =ga£, (2.19)
ot

2.2 Wave Equations:

Assume that an electromagnetic filed oscillates at a single angular
frequencyw (in radians per meter). Vector 4, which designates an

electromagnetic filed, is expressed as[77]
A =Re{A(r)exp(i )}, (2.20)

So, can be write the following phasor expressions (same as the above) for
the electric filed E , the magnetic filed H , the electric flux density D, and

the magnetic flux Density B are as:

E(r.,) =Re{E(r)exp(iat)}, (2.21)
H(r,1) =Re{H (r)exp(iat)}, (2.22)
D(r.) =Re{D(r)exp(iat)}, (2.23)
B(r,) =Re{B(r)exp(im)}. (2.24)
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For simplicity, the E,H,D and B in the phasor representation can be

denote as E, H, D and B. Using these expressions, which can be written Egs.

(2.1) to (2.4) as:

V.(¢,.E)=0,

VxE =-10B = -0y H,
V.H=0,

VxH =1wD =iweE,

Where it is assumed that g =1 and p=0.

(2.25)
(2.26)
(2.27)
(2.28)

Egs. (2.25) to (2.28) represent Maxwell's equations for time harmonic fields

in free charge lossless media.

2.2.1 Wave Equation for Electric Field E:
Applying a vectorial rotation operator V x to Eq. (2.26), we get

V x(VxE)=-iwu,V xH.
Using the Vectorial formula

Vx(VxA)=V(V-A)-V?A,
Then, the Left-hand side of Eq. (2.29) can be written as:

V(V-E)- V’E.

The symbol V? is a Laplacian, given in Cartesian coordinates by:
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(2.30)

(2.31)

(2.32)



Since Eq.(2.25) can be rewritten as:

V-(¢E)=Ve -E +¢&V-E =0, (2.33)

Then can be rewrite as:

V.E=-1°r.E. (2.34)

Thus, the left-hand side of Eq. (2. 29) becomes

&

r

—V(Vgr -Ej—sz. (2.35)

On the other hand, using Eq. (2.28), we get the right-had side of Eq. (2.29)
kle E, (2.36)
Where &, is the wave number in a vacuum and is expressed as

ky = o\e, :?. (2.37)

Thus, for a medium with the relative permittivity &, the vectorial wave

equation for the electric filed E is

VE+V| Y B |4 k2e E 0. (2.38)
0“r

5

r

And using the wave number k in that medium, given by

k =k = ko\/g = a)\/gogr,uo = a)\/gyo, (2.39)
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Eq. (2.38) can be rewritten as:

Ve,
£

”

V’E +V[ -E]+k2E =0. (2.40)

When the relative permittivity &, is constant in the medium, this vectorial

wave equation can be reduced to the Helmholtz equation as:

V’E +k’E =0. (2.41)

2.2.2 Wave Equation for Magnetic Field M:

Similarly the same steps of Wave Equation for Electric Field E, applying a

vectorial rotation operator V x to Eq. (2.28), we get :

V x(VxH)=1iwe,V x(&,E). (2.42)

Thus,

V(V-H)-V’H=liwe,(Ve, xE +¢ V<E)
=iwe,(Ve, xE) +iwe, &, (-iou,H )
=iwe,(Ve, xE) +kl ¢ H. (2.43)

Using eq. (2.28), which can be write as:

E=.LV><H = E=.1
iwe iwg, e,

V xH. (2.44)

Where ¢ =¢,e, as mention before.

Now by substitute from Eq. (2.44) to Eq. (2.40), we can obtain the vectorial

wave equation for the magnetic filed H:
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Ve,
&

r

V’H +

(>xH)+k’H =0. (2.45)
When the relative permittivity &, is constant in the medium, this vectorial
wave equation can be reduced to the Helmholtz equation as:

V’H +k’H =0. (2.46)

2.3 Power Consideration (Poynting Vectors):

In this section, the time-dependent electric and magnetic fields are
expressed as E(r,¢) and H(r,?), and the time-independent electric and magnetic

fields are expressed [77-78] as E (r,t)and H (r,t).
Applying a divergence operator V-to E xH ,we get:
V(ExH)=H -VXE+E -VxH. (2.47)

Substituting Maxwell's equations (2.2) and (2.4) into Eq. (2.47), we get:

oH oE

V(E XH):—IUH '3—8E 'E"FO'EZ
a 1 2 1 2 2
=——/|—¢E"+—uH" |-cE". 2.48
6t(2 2t j (248)

When Eq.(2.48) is integrated over a volume ¥, and using Gauss's Law, we

get:

[V(ExH)dV = [(ExH), dS

Vv

__0 (15E2+1,UH2jdV [oE*ar. (2.49)
oty \2 2 v
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Where n designates a component normal to the surface S of volume V.

The first two terms of the last equation correspond to the rate of the
reduction of the stored energy in Volume V per unit time, while the third term
corresponds to the rate of reduction of the energy due to Joule heating in

volume V' per unit time.

Thus, the term I(E xH) dS is considered to be the rate of energy loss

S
through the surface. Thus,

S=ExH. (2.50)

Which this equation is expressed the energy that passes through a unit area

per unit time. Eq. (2.50) is called a Poynting vector.

(8)=(ExH)

E(r)e}xR{H (r)e"})

(Ex

(]

<E_’(r)e(’“’”+E (r)e™" H(r)e(’“”)—i-H (r)e"” ”‘”)>
2

(E xH +E xH +E xHe®™ +E_*><ﬁ*e(_2im)>

1
4
%m{(ﬁ 7). (2.51)

Thus, for an electromagnetic wave oscillating at a single angular frequency,

the quantity:

S=—ExH". (2.52)

1
2
§ defined as a complex Poynting vector and the energy actually propagating

is considered to be the real part of it.
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To find the total electromagnetic power, we integrate the Poynting vector as

surface integral over the entire area bounding the volume.

Thus, for TE modes , we get:

<s>:ﬁ\ﬁ\2 k. (2.53)

Similar manner for TM modes:

<S)=L‘H‘2 k. (2.54)

For a multilayer waveguide, the power flowing through the structure can be

evaluated using:

For TE mode:
p e )
Py =7 [ ——dx; (2.55)
205, u(x)
and for TM mode:
w 2
total ﬁ j ‘Hy (x )‘ dx 5 (256)
2w e(x)
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2.4 Boundary Conditions for Electromagnetic Fields:

The boundary conditions required for the electromagnetic fields are

summarized as follows[78]:

7/’\], — — — —
Elt Dl'n, Hlt Bln
€1 — —>
« z . 7 !
2 — — — —
Eoy Da,  Hoy B,

Figure 2.1: Tangential and perpendicular fields at an interface.[79].

(a) Tangential components of the electric fields are continues such that:

AxE, =i xE,. (2.57)

(b) When no current flows on the surface, tangential components of the

magnetic fields are continues such that

nxH, =nxH,,. (2.58)

When a current flows on the surface, the magnetic fields are discontinuous

and are related to the current density J; as follows:

Ax(H,-H,)=J (2.59)

Where the magnetic field and the current are perpendicular to each other.

(c) When there is no charge on the surface, the normal components of the

electric flux densities are continuous such that
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D,—i-D, =0,

n-
D, =D, (2.60)

n*

When there are charges on the surface, the electric flux densities are

discontinuous and are related to the charge density pg are follow:

(Dl _Dz) B>

s

nx
D, -D, =p (2.61)

(d) Normal components of the magnetic flux densities are continuous such

that

(2.62)

Note:

I- 7n the unit vector normal to the plane surface and indices 1(2) refer to
the first (second) medium.
2- The subscripts n and ¢ in these equations are respectively unit normal

and tangential components at the boundary.

2.5 Maxwell's Equations for a plane wave:

By using a Maxwell's equations, we can specify the features of a plane

wave propagating in a homogenous nonconductive medium[78].

Consider an electromagnetic wave provided to the optical slab waveguide

and propagates in the z-direction, (shown in Fig. 2.2) .
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Figure 2.2: Propagation of an electromagnetic field[78].

The electric and magnetic fields are supposed to have the sinusoidal form:

E =E(x,y)e' ™", (2.63)

H =H(x,y)e' ", (2.64)

Where o is the frequency of the field and S represents the longitudinal
component of the wave vector, and £, and H, define the amplitude and the

direction of the vectors E and H, respectively, .

So, by substitute form eq. (2.63) and eq. (2.64) into eq. (2.26) and eq. (2.28)

we get :
OF
F, -———=—iou,H_, (2.65)
oy 0z
OE. OF
X z_ — _'a) H , 266
az ax 1 /’lO y ( )
oF
y _6Ex =—iouH_, (2.67)
ox oy
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ay > r—x?
oH, oM, =iwee E
Oz ox
oH
» O, =iwe,e E .,
ox oy

(2.68)
(2.69)

(2.70)

Since the electric and magnetic fields of the plane wave don’t depend on the

x and y-coordinates but on the z-coordinate, that means the derivatives with

respect to the coordinates for directions other than the propagation direction

are zero. That is, 90x =0 and 0/0y =0 .

The Egs. (2. 65) — (2.70) becomes

oE
~= l a)ﬂOHx 2
4
E
%, =—iou,H,,
Z
oH
~=—jwee E
0z
oH
—=iwe e E
oz

Equations (2.71) — (2.74) are categorized into two sets:

Set 1:
oF
L =—jouH ,
62 IUO ¥
and
6Hy )
po —iwee E
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(2.72)

(2.73)

(2.74)

(2.75a)

(2.75b)



Set 2:

OFE

~=iouH _, (2.76a)
Z
and
oH, =iwee k|, (2.76b)
0z

The equations of set 1 can be reduced to:

2 2
z z

0’ ol
+k*|E_ =0, and +k*|H, =0. (2.77)
0 * 0 Y

and the equations of set 2 can be reduced to:

o’ 0’
—+ =0, an + =0. .
. k*|E, =0, and . k*|H, =0 (2.78)
4 4

Where k’=w’cue, =kic

At this section we discuss a plane wave propagating in the z-direction.
The features of the plane wave are summarized as follows [78]:

1- The electric and magnetic fields are uniform in directions perpendicular
to the propagation direction, that is , 0/0x =0 and 0/ 0y =0;

2- The fields have no component in the propagation direction, that is, H, =
E,=0;

3- The electric field and the magnetic field components are perpendicular
to each other;

4- The propagation direction is the direction in which a screw being turned
to the right, as if the eclectic field component is being turned toward the

magnetic field component, advances.
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2.6 Optical Waveguide Modes:

The optical waveguide is the fundamental element that interconnects the
various devices of optical integrated circuits, just as a metallic strip does in an
electrical integrated circuit. However, unlike electrical current that flows
through a metal strip according to Ohm's law, optical waves travel in the
waveguide in distinct optical modes. A mode, in this sense, is a spatial
distribution of optical energy in one or more dimensions that remains constant

in time[80-81].

2.6.1 Modes in Waveguide:

The propagating modes along the waveguide may be classified according to
which field components are present or not present in the wave. The field
components in the direction of wave propagation are defined as longitudinal
components while those perpendicular to the direction of propagation are

defined as transverse components.

Assuming the waveguide is oriented with its axis along z-axis (direction

of wave propagation), the modes may be classified as[82]:

i- Transverse Electromagnetic (TEM) modes: The electric and
magnetic fields are transverse to the direction of wave propagation with

no longitudinal components [E, = H, = 0].

-  TEM modes cannot exist on single conductor guiding structures. Plane
waves can also be classified as TEM modes (as we see before).
- Quasi-TEM Modes — modes which approximate true TEM modes

when the frequency is sufficiently small.

limE_=limH_ =0

f—0 f—0
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1i- Transverse Electric (TE) modes: The electric field is transverse to the
direction of propagation (no longitudinal electric field component)
while the magnetic field has both transverse and longitudinal
components [E, =0, H, # 0].

iii- Transverse Magnetic (TM) modes: The magnetic field is transverse
to the direction of propagation (no longitudinal magnetic field
component) while the electric field has both transverse and longitudinal
components [H, =0, E, # 0].

iv- Hybrid Modes (EH or HE modes): Both the electric and magnetic
fields have longitudinal components [E, # H, # 0]. The longitudinal
electric filed is dominant in the EH mode while the longitudinal

magnetic field is dominant in the HE mode.

2.7 Parallel Plate Waveguide Structure (PPWG):

Waveguides have many different forms that depend on the purpose of the
guide, and on the frequency of the waves to be transmitted. The parallel plate
waveguide is the simplest type of guide that can support TM and TE modes.
This type of the waveguide it can also support a TEM mode since it is formed
from two flat conducting plates, or strips, as shown in Figure 2.4. Although it
is an idealization, understating the parallel plate guide can be useful because
its operation is similar to that of many other waveguides. The parallel plate
guide can also be useful for modeling the propagation of higher order modes

in stripline[83].

The following assumptions are made in the determination of the

various modes on the parallel plate waveguide:

1- The waveguide is infinite in length (no reflection).
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2- The waveguide conductors are Perfect electric conductor (PEC's) and

the dielectric is lossless.
3- The plate width is much larger than the plate separation (w >> d) so that

the variation of the fields with respect to z may be neglected.

A material with permittivity ¢ and permeability u is assumed to fill the

region between the two plates[83].

Yi

E L d

z

Figure 2.3 : Geometry of a parallel plate waveguide[84].

2.7.1 General waveguides solutions for modes in PPWG:

Now, we discuss an optical waveguide whose structure is a linear, isotropic
and homogeneous region, with an e '/ z dependence, the six Maxwell's

equations (2.65) — (2.70) can be written as[84]:

OF, +i,BEy =—iouH _, (2.79)
oy
—i PE —aEZ =—iwuH , (2.80)
ox 7
OF
4 —aE“* =—iouH _, (2.81)
ox oy
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oH

“+ifBH =iwek , (2.82)
Ay
ifH +8HZ =—iwek , (2.83)
ox
oH
r _OH, =iweE _, (2.84)
ox oy

Where f is the propagation constant and is the z-directed component of the
wave number k. The ratio of the propagation constant in the medium, £, to the

wave number in a vacuum, k, 1s called the effective index:

N =B (2.85)

We can summarize the Helmholtz equation for the electric field E in eq

(2.41) as:

VZE +(k,*- f*)E =0, (2.86)
or

V’E +y’E =0, (2.87)

Similarity the Helmholtz equation for the Magnetic field H in eq. (2.45) is

as:

V’H +(k;*- p?)H =0, (2.88)

or
V’H +y’H =0, (2.89)

Where
v =k]-p. (2.90)

38



;/_f: is defined as the cutoff wave number, where &k, = /¢, 4 k,, j =1, 2,3 is the

wavenumber in region j, and k,=w\ye, =w/c 1s the free-space
wavenumber, and ¢ =¢.¢,, u=pu;, & and u, are the relative permittivity and

permeability of the region ;.

2.7.2 Parallel Plate Waveguide Structure (PPWG) for Transversal
Electric mode (TE Mode):

In the TE mode, the electric field is not in the longitudinal direction
(E, = 0) but in the transverse direction (E, # 0). Only three components
exist for TE mode E,;, H,, and H,. The two magnetic field components H, and

H, can be expressed in terms of the electric field component E,, by:

H (x)=- wﬂ E, (x), (2.91)
H. (x):—a; %Ey (x). (2.92)

Substituting from Eqgs. (2.91) and (2.929) into Eq. (2.83) gives the wave

equation, Helmholtz equation

2

E,(x)+(k,>=fE, (x)=0. (2.93)

2
X

The TE wave impedance can be found as:

E
z, =L :——y:%:\/zzn. (2.94)
H H p £

TE waves can be supported inside closed conductors as well as between two or

more conductors.
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2.7.3 Parallel Plate Waveguide Structure (PPWG) for Transversal
Magnetic mode(TM Mode)

In the TM mode, the magnetic field component is not in the longitudinal
direction (H, = @) but in the transverse direction (H, = 0). Only three
components exist for TM mode H,, E,, and E,. The two electric field

components E, and E, can be expressed as[86]:

E (x)= p H, (x), (2.95)
W,

E.(x)=——" iHy(x). (2.96)
we, €, dx

Substituting from Egs.(2.95) and (2.96) into Eq. (2.80) gives the wave

equation, Helmholtz equation:

dZ
dx*

H, (x)+(k,*=pHH, (x)=0. (2.97)

The fields and propagation constant of the TM mode can be gained by

solving for H, (x) in above equation.
The TM wave impedance can be found as:

E E, B _|u
Z = X :——y:—: _—= . 2.98
™ =g H o on Ve n (2.98)

y X

As for TE waves, TM waves can be supported inside closed conductors as

well as between two or more conductors
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CHAPTER THREE

Electromagnetic Waves At Graphene Parallel-Plate Waveguide
(TM-Mode)

This section is based on the paper "Quasi-transverse electromagnetic modes
supported by a graphene parallel-plate waveguides" by Pro. George W.
Hanson [87] .

Hanson has developed a modal of parallel-plate waveguide containing
graphene. He has represented the graphene as an infinitesimally thin layers.
The local two-sided surface characterized by a surface conductivity obtained
from the Kubo formula. He used Maxell's equations to solved the model fields
guided by graphene layers. He shown that despite the extreme thinness of its
walls, a graphene parallel-plate waveguide can guide quasi-transverse

electromagnetic modes.

He depicts two laterally infinite graphene sheets spaced a distance d apart
and immersed in a layered medium, where all material parameters may have

complex values.

Hanson concluded that the graphene is given by the conductivity ¢ , which

can be written as[87]:

S
o= _J° (w—j7 )x{ Hc +2ln(e*ﬂc/k5T +1)} (3.)
7h B

Where @ is radian frequency, x4 is chemical potential, 7 is a
phenomenological electron relaxation time (z' is the scattering rate) that is
assumed to be independent of energy, e is the charge of an electron, 7 is the

reduced Planck's, k3 is Boltzmann's constant and 7' is temperature.
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3.1 Structure Analysis

We consider a structure consisting infinite graphene sheets spaced a distance
d, apart and immersed a layered medium, occupying the planes x = -d/2 and x
= d/2 and infinite in y and z directions. We assume that the electromagnetic
wave propagates in the z-direction. So the electric and magnetic field of the

propagating waveguide mode will be:

E(r,t)=E, (x)e' "™, (3. 2a)
H(r,t):Hy(x)ei(“”_ﬁZ), (3.2b)
X
€
1 ] )
d €2 - >
Z
€ T
3

Figure 3.1: Graphene PPWG (Side view) formed by two graphene sheets, each
characterized by surface conductance o,.

In this geometry, two types of waveguide modes can propagate: The TM (p-
polarized) modes, and the TE (s-polarized) modes. In the following section

the TM mode and is analyzed and discussed.
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3.2 The Dispersion Relation:

We consider the TM wave with the magnetic filed perpendicular to the

plane of incidence (xz), possesses the electromagnetic field components E =
{E\, 0, E.}, H= {0, H,, 0}.

Maxwell's equations require that in the H(x) introduced in egs. (3.1)

satisfies:

2

d—zHy (x)+(k,*=B)H, (x)=0. (3.3)
dx

Where ki=k, =\/g k,,j =123 is the wavenumber in region, j, ¢ is the

relative permittivity of region j, and k, =w./u,¢e, =w/c is the free-space

wavenumber (c is the speed of light in vacuum).

The boundary conditions to be enforced at material interfaces are:

xx(H,-H)=J =0kE, (3.4)
xx(E,-E )=0, (3.5)
lim E,H=0, (3.6)

X —>Foo

Where J°(A/m) is an electric surface current on the boundary, E, and H, are
the fields on the upper side of the interface, E. and H. are the corresponding
fields on the lower side of the interface, and ¢ is the interface conductivity

(units of SI), X is the normal unit vector to the interface surfaces.

The waveguiding axis is chosen as the z-axis, and from source- free

Maxell's equations for the TM” fields in each region are:
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oH

Gzy =-iwegE
oH | ,
p = iweg &E
X
OE, OE, .
oz ox OHHy

Modal fields are:

Ae x>d/2
H (x)=1Bsiny,x +C cos y,x —-d/2<x<d/2
De'"* x<—-d/2
_An e ' x>d/2
WE, &,

E.(x)={~i —22—[B cos(y,x)~C sin(y,x)] —d/2<x <d /2
0E,E,

Dy,

WEE,

e’ x<—-d/2

Where 4, B, C and D are constants with respect to position.

By applied Boundary Conditions (3.5 -3.6):
(1) Atx=d/2,

H"-H?=0c,E"

a"z ?

Ae‘”‘d/z—[B sin(y,d /2)+C cos(y,d /2)]= o, [——A 4 je‘”“i/z,
e,

B sin(y,d /2)+C cos(y,d /2)=A4 [1+ﬂje—im/2’
WE,E,
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(3.7b)

(3.7¢)

(3.8)

(3.9)

(3.10)



EV-E® =0,

(—LjAem“ - (—i L] [B cos(y,d /2)—C sin(y,d 1 2)],
WE, &, WE,E,

B cos(y,d /2)~C sin(y,d /2) =—i (@j Ae ", 3.11)
V26

From eq.(3.10) and eq.(3.11) we have get:

5 —c Sin(rd /2)—19 c9s(72d /2) ’ (3.12)
cos(y,d /2)+ic, sin(y,d /2)

Where

-1
c, =(€271j(1+ Oul! j : (3.13)
&7, WE&,

) Atx=-d/2,

(2) () (3
H®-H® =06,ED,

[-B sin(y,d /2)+C cos(y,d /2)] — De™™""? = o, (_D% ]emm,
WE, &,

B sin(y,d /2)+C cos(y,d /2) = D (1+ﬂ}—%‘“2, (3.14)
O, &,

EP-E® =0,

(—i e j[B cos(y,d /2)+C sin(y,d /2)] :(—7/3 jDe[73d/2,
83

WEE, E,

B cos(y,d /2)+ C sin(y,d /2) =i [@] Ae 11, (3.15)
V283
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From eq.(3.14) and eq.(3.15) we have get:

B-C —sin(y,d /2)+ic, cos(y,d /2)

- ) (3.16)
cos(y,d /2)+ic, sin(y,d /2)

Where

-1
¢, :(‘9273j(1+ b7 j : (3.17)
&7 W&,

By solving eq. (3.12) with eq.(3.16) and using Applications of

Trigonometric, we have the dispersion equation for the guided modes:
(¢, +c, )cos y,d +(c,c, +1)isiny,d =0, (3.18)
where y?=k’-p*
Eq, (3.18) can be written as:

c,tc,

tany,d =i (3.19)

cc, +1

3.3 Approximation Solution

Hanson assumed that the graphene PPWG is a perturbation of a perfectly

conducting PPWG, and approximation solution had been found as[87]:

Idh Ol 5y (3.20)
WEE, WEE,

tany,d = y,d,
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Appling the mentioned approximation in the dispersion relation, we obtain :

ﬁ/k():\/gz{n ! {gz—i(aawb)”"}}, (3.21)
17,0,9, kod

For the simple case of ¢, =1 and o, =0, =0, the eq. (3.20) lead to
Bk = 1—i—2 (3.22)
’ onk,d '

3.4 Power Flowing Within The PPWG Graphene (TM Mode)

The power flow in the structure is defined as mentioned in chapter 2:

2
T H, (x)
total =£ j ‘ R ‘ dX; (323)
207 &(x)
Prytioa =P+ P, + Py (3.24)

Substituting for H,(x) form Eq. (3.6) into Eq. (3.14), we get:

2
P =—i Le_iy‘d , (3.25a)
4we, ey,
p-—F_ (BZ+C2)d—(BZ—C2)-M}, (3.25b)
4we,¢, 7,

2
p=—i PP i,

(3.25¢)
4we,e,y,
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Then

PTMtotal -
4we,

2 -ind 2 —iyd B*+(C? .
p i(Ae +De ]_( )d+(Bz—C2)'Sm(7zd) '
an &3 & &

(3.26)

The coefficients 4, B, C and D are related to each other through the

equations:
B =4 {( o, j sin(y,d /2)—i ( j cos(y,d /2)}-e_i7‘d/2, (3.27)
C=4 {( J cos(y,d /2)+z( j sin(y,d /2)} e N2, (3.28)
W& &,
{( J cos(y,d /2)+i ( J sin(y,d /2)} “ind /2
D=4 (3.29)

{(1+7j cos(yzd/2)+l( 2/ j sm(}/zd/Z)} e
&Y

3‘90 372

For sensing applications, the most important parameter for optical

waveguide sensor is the fraction of total power flowing in the upper [88]:

P
S, =— 3.30
™ Ptatal ( )
- A’ (3.31)
2 —zy]d 2 —iyd 2 2 . : *
517/1{1 (A D j_(B +C )d+(Bz_C2)‘szn(72d)}
an &3)3 & &0
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3.5 Numerical Results

The following results are for the TM mode of a graphene PPWG. For
simplicity, suspended graphene sheets will be assumed (¢, = &, = &3 = 1) to
avoid any influence of a dielectric substrate (remote phonon scattering ,
opening of a band gap, etc.), the chemical potential is .= 0.5¢V, which leads
to a large charge density n=2x10" cm™. Since u./ksT >>1 thought at least 500

K, for all temperatures of interest the conductivity is

2
o =—i ﬁ (3.32)

Therefore, the following results are only dependent on temperature via the

relaxation time 7. The relaxation time depends on a variety of other factors,

including the presence of impurities, and for simplicity here we use a constant

value of 7 =5 x 107 s (Note: the values of x and 7 are in the range of values

considered in Ref. 65).

Furthermore, assuming that u/kgT >> 1, at higher frequencies (o >> 7)

the only control over the conductivity is via the chemical potential.

- -1
For lower frequencies(w <<t),

2
o=t (3.33)
zh

and the conductivity is controlled by the product x,z.
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Fig (3.2) shows the complex effective index p/k, from eq. (3.18) of the
graphene PPWG with plate separation d¢=100 nm, for frequencies in the
GHz/far-infrared range. The upper and lower dash curves are for dispersion
relation eq. (3.18), the dash dot curves are the approximation one, showing

excellent agreement with the numerical solution of Eq. (3.21).

The conductivity curves are marked by solid and dot lines. It can be seen
that throughout most of the considered frequency range, the TM mode is
relatively nondispersive, even though the conductivity itself is moderately

dispersive.

— Real (gl Jerees Imag|( ﬁ.-"'I‘T”.”I:I

0
" 100 200 300, _400 . -506- - €00~ 700 <200
;-x“'".:r--"";
A e
;‘I/
-40 f!

|. Frequency (GHz)

Fig. 3.2. The dash line is effective index f/k, from Eq. (3.18) for a graphene PPWG with
d=100nm. The approximation Eq. (3.21) is shown as blue dash dot lines. The
conductivity is normalized by 6,,;, = we’/2h [87].
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Fig (3.3) shows effective index p/k, of the graphene PPWG versus the
frequencies of the dielectric layer for different values of the thickness. As the
thickness of dielectric layer increases, the real part of the normalized phase
constant f/k, is decreasing. Additionally, with increasing the frequency, the
real part of the effective index f/k, decreases; this because the real part of
graphene conductivity decreases with the frequency, as shown in the figure
(3.2). While the imaginary part of effective index f/k, increases with
increasing the operating frequency; because the imaginary part of conductivity

increases with the frequency as shown in the same figure (3.2).

100 200 300 400 500 400 TFO0 200
Frequency (GHz)
= 100 DM *eee d=150 nm =+=d=240 nm
= d =400 nm

Fig. 3.3. The effective index f/k, versus the frequencies of the dielectric layer for
different values of the thickness.
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Fig (3.4) shows the effective index f/k, of the graphene PPWG with versus
the thickness of the dielectric layer for different values of the frequency. As
the frequency of dielectric layer increases, the real part of the effective index
P’k is decreasing. Additionally, with increasing the thickness, the real part of
the normalized phase constant f/k, decreases; this because the real part of
graphene conductivity decreases with the frequency, as shown in the figure
(3.2). While the imaginary part of effective index f/k, increase with increasing
thickness; because the imaginary part of conductivity increases with the

frequency as shown in the same figure (3.2).

\I
0| M.
‘Hr
*“'.
20 T~
0~ e ST
Al O -
10~ L
a0 | T
"
.-.'H-
_3[' --./
/
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|= = f=50GHz----- =200 GHz — — = 600 GHz

Fig. 3.4. The effective index f/k, versus the thickness of the dielectric layer for different
values of the frequencies.
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Figure 3.5 and 3.6 show the variation of the real and imaginary parts of the
sensitivity of the proposed sensor with the thickness dielectric guiding layer
for different values of frequencies. It can be seen from the figure 3.5, the
sensitivity is positive, but in figure 3.6, the sensitivity is negative. The
absolute values of the real and imaginary parts of the sensitivity increases as f

increases.

Fi
0.50009 /
i
0.5000%
/
0.50007 ;
/
050006 /
0.50005 / \
Re (& Y- / g
0.50004 ! /,
i
.
0.50003 / f,.
S
0.50002 e ~ ~
3¢ -
-
0.50001 .
~ -
S, 5§ g bl AR
100 200 300 400 500 600
Thicktie sz (tumn)
----- =200 GHz — — =500 GHz
- =— =700 GHz

Fig.3.5.The real part of the sensitivity of the proposed sensor versus the thickness of the
dielectric layer for different values of the frequencies.
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Fig.3.6. The imaginary part of the sensitivity of the proposed sensor versus the
thickness of the dielectric layer for different values of the frequencies.

Figure 3.7 and 3.8 show the variation of the real and imaginary parts of the
sensitivity of the proposed sensor with the frequency dielectric guiding layer

for different values of thickness. It can be seen from the figures the sensitivity

1S positive.
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Fig. 3.7. The real part of the sensitivity of the proposed sensor versus the frequency
operating of the dielectric layer for different values of the Thickness.
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Fig. 3.8. The imaginary part of the sensitivity of the proposed sensor versus the
frequency operating of the dielectric layer for different values of the Thickness.
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CHAPTER FOUR

Electromagnetic Waves at Graphene Parallel-Plate waveguide

(TE-Mode)

In this chapter, we examine the electromagnetic waves at graphene parallel-
plate of TE polarized wave, found the dispersion relation, applied G. Hansson
approximation, calculate the total power flow through Graphene-PPWG, and

the sensitivity of the proposed sensor will be presented.

4.1 Structure Analysis

In Fig. 3.1 a schematic of the graphene Parallel-plate is presented. In this

section we will discuss the TE (s-polarized) mode.

4.2 The Dispersion Relation

We consider the TE wave with the magnetic filed perpendicular to the plane of
incidence (xz), possesses the electromagnetic field components E = {0, E,, 0},

H={H,0, H.}.

Maxwell's equations require that in the E,(x) introduced in eq. (3.1)

satisfies:

2

E,(x)+(k,’ = B)E, (x)=0. (4.1)

2
X

Where kj:kj = \/;k

J o

J =1,2,3 is the wavenumber in region, j, ¢ is the
relative permittivity of region j, and k, =w./u e, =w/c is the free-space

wavenumber (c is the speed of light in vacuum).
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The waveguiding axis is chosen as the z-axis, and from source- free

Maxell's equations the TE” fields in each region are:

OE

~=iou uH,, (4.2a)
0z
OF, )
=—iou uH ., (4.2b)
ox '
OH_. OH
L — = =—jaouk 4.2¢c
82 ax /LIO y ( )
Modal fields are
Ae x>d/2
E (x)=14Bsin(y,x)+C cos(y,x ) —d/2<x <d /2, (4.3)
De'” x<-d/2
An e ' x>d/2
Wy H,
H_(x)= iL[B cos(y,x)—Csin(y,x)] -d/2<x<d/2 (4.4)
Wfy 1,
_Dr e x<-d/2
Wy Hy

Where 4, B,C and D are constants with respect to position.
By applied Boundary Conditions (3.5 -3.6):

(1) Atx=d/2,

AN i —2_[B cos(y,d 12)~C sin(y,d /2)]=—c,de ">,
Wy WLy

[B cos(7,d /2)~C sin(y,d / 2)]=—id ( e j[l 1 LHethO je”lm, (4.5)
V2 My 7
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EV-E® =0,
Ae """ =B sin(y,d /2)+C cos(y,d /2), (4)

From eq.(4.5) and eq.(4.6) we have get:

[cos(y,d /2)+ic, sin(y,d /2)]

B =-C— , 4.7)
[sin(y,d /2)—ic, cos(y,d /2)]
Where
-1
ca — (/Jl?/z j(l + a)lulluoo-a j , (48)
y2ovd e

Q) Atx = -d/2,

(2) 3) _ (3)
H®-H® =-g,E®,

72 [B cos(y,d /2)+C sin(yyd /2)] — [— %]Dew”2 = —o,De ",

a)/’lOIu3 a)€083
B cos(y,d /2)+C sin(y,d /2) = i (7 o) J(H o590, jDe‘i73d/2, (4.9)
V2l 73

E (2) _E 3) — 0
[B sin(—y,d /2)+C cos(~y,d /2)]=De ",
~Bsin(y,d /2)+ C cos(y,d /2) = De™' """, (4.10)

From eq.(4.9) and eq.(4.10) we have get:

[cos(y,d /2)+ic, sin(y,d /2)]

B =-C—— ,
[—sin(y,d /2)+ic, cos(y,d /2)]

(4.11)
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Where

-1
cb :(:uﬂ/zj(l_i_a)ﬂ}:uoo-bj , (412)
75 73

By solving eq. (4.7) with eq.(4.11) and wusing Applications of

Trigonometric, we have the dispersion equation for the guided modes:
(¢, +c,)cosy,d +i(1+c,c, )siny,d =0, (4.13)
and yl=k;-p
Eq. (4.13) can be write as:

(c,+c,)
o) (4.14)

tan y,d =
4.3 Approximation Solution

Hanson assumed the approximation at TM mode case, similarly we apply

the Hanson approximation to found out the approximation solution[87].

The approximation is:

tany,d ~yd, 2ePHe Ol o (4.15)
noon

Where y, =u, =y, =1.

When we applied this approximation at eq. (4.6), we obtain

Bk = e +1qi0,0, 1 ota) | (4.16)
nokodo-ao-b
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For the simple case of ¢, =1 and o, =0, =0, the eq. (4.8) lead to [ 89-91]:

Blk, = /1—1‘%. (4.17)

4.4 Power Flowing Within The PPWG Graphene (TM Mode)

The power flow in the structure is defined as in Chapter 2 :

2
2 E (x
P,mﬁﬁj—‘ &) dx ; (4.18)
207 pu(x)
Prooa =P+ P, +P;. (4.19)

Substituting for E,(x) form Eq. (4.12) into Eq. (3.13), we get:

2
P =—i ﬂie_”‘d , (4.20a)
4o,y
p - {(B2+C2)d—(BZ—C2)-M , (4.20b)
4o, 7>
2
P, =—i PD” ira, (4.20c)
4o, y,
then,

2 _—ipd 2 —iyd .

Proioa == A i(Ae PECAL j—(BZ+C2)d+(B2—C2)-—Sm(7/2d) .
4ap, 71 73 7

(4.21)
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The coefficients 4, B, C and D are related to each other through the

equations:
B =4 sin(yzd/z)—i[ﬁ (1+ 2590y cos(y,d /1 2) bre 72, (4.22)
7 i
C =4 cos(yzd/z)ﬂ(ﬁ (1+ 2% ) gin(y.d 1 2) be 72, (4.23)
72 7
{sin(nd /2)—i (lj(lJram)-cos(}/zd /2)}-(1%‘7”2
D=4 = 4 , (4.24)
Sin(j/zd /2)—l (3j(1+0)’u00b)'008(}/2d /2) .e—ihd/z
V2 V3
The sensitivity is:
P
S, =—L (4.25)
. Ptutal
2 —iy.d
B A2 —iyd l)2 —iyyd 4 . d : (426)
Z [ ¢ L€ j_(B2+C2)d +(B2_C2).%
e V3 Vs
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4.5 Numerical Results

Fig (4.1) shows the effective index constant p/k, from eq. (4.13) of the
graphene PPWG with plate separation =100 pum, for the operating frequency
in the GHz/far-infrared range. The upper and lower dash curves are for
dispersion relation eq. (4.13), the dash dot curves are the approximation one,

showing excellent agreement with the numerical solution of Eq. (4.16). The

conductivity curves are marked by solid and dot red lines.

Fig. 4.1. The dash line is effective index f/k, from Eq. (4.13) for a graphene PPWG with
d=100pm. The approximation Eq. (4.16) is shown as blue dash dot lines. The

Img( ﬁ.-"(ru_. ]

Real [ﬁ.-"ﬂm.m]

111

.ﬂ-hdﬂ—.ﬂ-._-.-._‘___h____“_‘___-__-_-__- "
&00 200 1000 1100 1200 1300 1400
Frequency (GHz)

conductivity is normalized by 6,,;,= ne’/2h.
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Fig (4.2) shows the effective index pf/k, of the graphene PPWG versus the
frequencies for different values of the thickness. As the thickness of dielectric
layer increases, the real part of the effective index p/k, decreases.
Additionally, with increasing frequency, the real part of the effective index
[S/ky decreases; this because the real part of graphene conductivity decreases
with the frequency, as shown in the figure (4.1). While the imaginary part of

the effective index f/k,increases with increasing frequency.

s TG L
I s - I Y
03 e e
B 0
0.3 e
S A TR
e [ e A S
TE0 T80 200 220 &40 240 EE0 P00 920 240
Fregquency (GHz)
== d=100 pm *---* d=120 pm — — d =150 pm

Fig. 4.2. The effective index f/k, versus the frequencies of the dielectric layer for

different values of the thickness.

63



Fig (4.3) shows the effective index f/k, of the graphene PPWG versus the
thickness for different values of the frequency. As the frequency of dielectric
layer increases, the effective index pf/k, decreases. Additionally, with
increasing thickness, the real part of the effective index f/k, decreases. While
the imaginary part of the effective index p/k, increases with increasing

thickness.

o
1 b e T
0.5 S
B 0
0.5- -
1 B ET I -
e L el
LS e
100 110 120 130 140 150
Thi cletie s ()
|— = =7TT0GHz ==~~~ R50GHz — — ~900GHz

Fig. 4.3. The effective index f/k, versus the thickness of the dielectric layer for different

values of the frequencies.
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Figure 4.4 and 4.5 show the variation of the real and imaginary parts of the
sensitivity of the proposed sensor with the thickness dielectric guiding layer
for different values of frequencies. It can be seen from the figure 4.4, the
sensitivity is positive, but in figure 4.5, the sensitivity is negative. The first
peak appear when the thickness d=158um at frequency f=770GHz.
Additionally the absolute values of the real and imaginary parts of the

sensitivity decrease as the frequency increases.
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Fig. 4.4. The real part of the sensitivity of the proposed sensor versus the thickness of
the dielectric layer for different values of the frequencies.

032 a
s
Im(H e | 4

0.5 |
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Thickness(pm)
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Fig. 4.5. The imaginary part of the sensitivity of the proposed sensor versus the
thickness of the dielectric layer for different values of the frequencies.
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Figure 4.6 and 4.7 show the variation of the real and imaginary parts of the
sensitivity of the proposed sensor with the frequency dielectric guiding layer

for different values of thickness.

Figure 4.6, shows many behaviour of sensitivity with a difference value of
thickness. At the first value of thickness (d = 100um) the sensitivity is start
from the origin, then decreasing with increase values of frequency f. When
d=150um the sensitivity increases and becomes positive, it has peak at a
specific value of frequency(f = 818 GHz) and is decreasing again. when d
=200 um the sensitivity is very weak and stable. Figure 4.7 shows the

sensitivity is negative at all values of d.
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Fig. 4.6. The real part of the sensitivity of the proposed sensor versus the frequencies of

the dielectric layer for different values of the Thickness.
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Fig. 4.7. The imaginary part of the sensitivity of the proposed sensor versus the

frequencies of the dielectric layer for different values of the Thickness.
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CHAPTER FIVE

Sensitivity at Graphene Left-hand-Martial Waveguide
Structure: (TM Case)

In this chapter, a three-layer planar waveguide consisting of parallel plate
of graphene, a thin left handed material medium layer is under consideration.
We examine the electromagnetic waves at (graphene — LHM) of TM mode,
and find out the dispersion relation, sensitivity of Graphene-LHM-Graphene
Structure. Moreover, the total power flowing for each layers will be presented

and will be compared to Right handed material waveguide sensor.
5.1 Structure Analysis

In this section, we consider a LHM thin film of thickness d occupying the
region x = -d/2 and x = d/2 and infinite in y and z directions, which is
characterized by an electric permittivity ¢, and magnetic permeability u,. This
film is sandwiched between two semi-infinite graphene layers occupying the
regions x < -d/2 and x > d/2 and having parameters (&, , ;) and (&3 , u3),

respectively.

€1, M Graphene o, X
A

€, o LHM d -
A 4

&3, 3 Graphene o,

Figure 5.1: Left-Handed Material Layer sandwiched between two Graphene Sheets.

69



5.2The Dispersion Relation of Graphene -LHM (TM-Mode):

The magnetic profiles in the structure region are:

Ae™ ™, x>d/2
H, (x)=1Bsiny,x +C cosy,x -d/2<x<d/2. (5.1)
De”” x<—-d/2

The dispersion equation is obtained in similar way as mentioned in the Ch. (3):

(c, +¢, )cosy,d —(1—c,c, )siny,d =0. (5.2)
where
1
. (_yj(l &j 53)
! &7 W& &,
1
¢, =(€273j{1—i e j , (5.4)
&Y WEE

and y;=k;-p".

Taking into account some differences in the new notations &;

(k;, =\J&;uk,y, i =1,2,3), where y; have a value (not equal 1).

Eq, (5.2) can be rewritten as:

c,tc,

tan y,d = (5.5)

l-c,c,
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5.3 Power flowing within the PPWG graphene (TM mode):

The power flow in the structure is:

2

T, (x)
P,(,mﬁﬁj—‘ . ‘ dx; (5.6)

207 &(x)
Prstiow =P+ P, + ;. (5.7)

Substituting for H,(x) form Eq. (5.1) into Eq. (5.6), we get:

2
P =——ﬂA e (5.8a)
4we, ey,
PZZL{(Bucz)d_(Bz—cz)-M (5.8b)
4we, €, Vs
2
P3=——ﬂD e (5.8)
4we,e,y,
Then
p_|(a% DW) (BX+C7) L sin(rd)
Pratow =7 + - d+(B*-C*)=—2==0 (5.9)
we, an 2 &, &>

The coefficients 4, B, C and D are related to each other through the

equations:

B=A1-i 22 |sin(yd 12)~| 21 |.cos(r,d 12) e 72, (5.10)
W& &, &7,

C =4 1+i 2 | cos(rd 12)+| 2L | sin(yd 12) e 772, (5.11)
e &, 2
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{(lﬂ' Gt J-cos(yzd /2)+(%J-sin(7/2d /2)}-e‘7“”2

we &, &y,

D=4 : (5.12)
(1+z’ Sls j-cos(yzd /2)+(5273j-sin(yzd /2) b6
we,E, £,
The sensitivity is:
P
Sty =5 5.13
R 19
2 _nd
) A% D% (BAszz)d sin(y,d) | G119
&7, ( + j— +(B*+Cd 2B
an &7, & &7

5.4Numerical results

In our analysis, we have considered two laterally infinite graphene sheets
spaced a distance d apart with &, = &5 =1 and x; = 3 =1. The LHM layer is
sandwiched between a graphene sheets occupies the region x > d/2 with &, = y,

=1, and the region x < -d/2 with &; = u3 =1.

Also, in this section, we graph the Right Handed Materials (RHM), which is

a material &, and u, have a positive values.

Fig 5.2 and 5.3 show the real and the imaginary parts of the effective index
(ney = Prky) from eq. (5.5) of LHM layer with plate separation =100 nm, for

frequencies in the THz frequency. Its clear the product of &, and u, = 4.0.

We noted when ¢, = -4, u,= -1, the effective index has a highest value (n.y
=4.4), when ¢, = -1, u,= -4, the effective index has a lowest value (n.5= 2.6),

when &, = 11,= -2, we have the a value (n,;= 3.3).
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At the same curve, we plot the RHM at THz region. In Figs. 5.2, we
assumed a RHM film e, =1, up= 1.

As we see, the effective index n.; of RHM layer is less than that of a LHM
layer. This behavior of the effective refractive index can be attributed to
following argument. The effective refractive index of a propagating mode is
determined by the thickness of the guiding layer and constitutive parameters
of the materials constituting the waveguide. For a constant guiding layer
thickness, it depends solely on the graphene permittivity and magnetic
permeability of the media constituting the waveguide, but these values are

equals for LHM and RHM materials.

On other hand, the effective index n.y decreases as the frequency increases
as shown in Fig. 5.2, and 5.3 for LHM, but for RHM the real part has the same
behavior, but the imaginary part of the 7. increases as the frequency as shown

in Fig. 5.3.
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Fig. 5.2. The real part of the effective index n, from Eq. from Eq. (5.2) versus the

frequency of the guiding layer for different values of the core permittivity and

permeability for LHM and RHM with d=100nm. The conductivity is normalized by 6,,,
2

=me’/2h.
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Fig. 5.3 The imaginary part of n. from Eq. (5.2) versus the frequency of the guiding
layer for different values of the core permittivity and permeability for LHM and RHM
with d=100nm . The conductivity is normalized by &, = ne’/2h.
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Figure 5.4 and 5.5 show the real and the imaginary parts of n.4 versus the
thickness of the guiding layer for different values of the film permittivity and

permeability, it is clear the product &, 1, = 4.0.

We noted when ¢, = -4, 1,= -1, the effective index n.; has a highest value
(neee = 3.7), when €, = -1, u,= -4, the effective index have a lowest value (n.¢ =

2.35), when ¢, = 1,= -2, we have the value (n.; = 2.87).

At the same curve, we plot the RHM at THz region. In Figs. (5.4-5.5), we
assumed a RHM film ¢, = 1, o= 1.

We noticed that the effective refractive index sy of RHM film is less than
that of a LHM film. This behavior of the n.s can be attributed to following
argument. The n.y of a propagating mode is determined by the thickness of the
guiding layer and constitutive parameters of the materials constituting the
waveguide. For a constant guiding layer thickness it depends solely on the

graphene conductivity of the waveguide.
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Fig. 5.4 The real part of the effective refractive index (rn.¢) of the propagating mode
versus the thickness of the guiding layer for different values of the core permittivity
and permeability for LHM and RHM with d=100nm. The conductivity is normalized
by 6= e’u.t /h, for u.= 0.5 eV, and 7=5x 10",
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Fig. 5.5 The imaginary part of the effective refractive index (7.¢) of the propagating
mode versus the thickness of the guiding layer for different values of the core
permittivity and permeability for LHM and RHM with 4=100nm . The conductivity is
normalized by 6= ezﬂcr /mh, for u. = 0.5 eV, and 7 = 5x 105,
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Fig 5.6 and 5.7 show the real and imaginary parts of the sensitivity of the
waveguide sensor as a function of the guiding layer thickness d with four
different values of &, and ,. The two figures show a positive sensitivity which
means that the dependence of the effective refractive index on the upper layer
has a positive gradient. The real part of the effective refractive index is much

more sensitive to variations of the upper layer than the imaginary part.

It can be seen from Fig. 5.6 that when &, = -4, W, = -1, are optimized for
the highest sensitivity. On other hand, for different values of &, and p, at LHM

are increasing as the thickness increases.

Moreover, Figs 5.6 and 5.7 show a comparison between the sensitivity of
the proposed sensor with the left-handed medium and the sensitivity of right-
handed medium. RHM as can be seen in Fig. 5.6, the sensitivity is positive
and has a peak at a specific value of the guiding layer thickness d (d =40nm),
then be decaying rapidly when increases of thickness, but at LHM case shows

different peaks with the of thickness d, and becomes more stability.

In Fig. 5.6 the sensitivity has more stability at different values of ¢, and wy,
this due to the presence of the LHM which can significantly increases the

sensitivity of sensor.

At imaginary part case which is shown in Fig. 5.7, the values of ¢, and u,
have different peak values. We can see, that when (g, = -2 (-1) and u, = -2 (-
4)) the sensitivity started from negative values, then increasing until reaches to
positive value, but when ¢, = -4 and u, = -1 the sensitivity started from
positive values then decreasing until reach to negative values. But for right
hand case the curve starts from negative then increasing until reaches to

positive value.
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Fig. 5.6 The real part of the sensitivity as a function of the thickness of the LHM layer
and RHM layer for different values of &, and u,. conductivity is normalized by o= ¢’u.t
/h, for =500 THz, u.=0.5eV,and r=5x 10",
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Fig. 5.7 The imaginary part of the sensitivity as a function of the thickness of the LHM
layer and RHM layer for different values of &, and u,. conductivity is normalized by ¢ =
éu. /mh, for =500 THz, u.=0.5eV,and 7=5x10".
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Fig 5.8 and 5.9 show The real and imaginary parts of the sensitivity of the
waveguide sensor as a function of the frequency f/ with four different values of
&, and p,. It can be seen from Fig. 5.8 that when ¢, = -4, u, = -1, are optimized
for the highest sensitivity. On other hand, for different values of ¢, and u, at

LHM are increasing with frequency increases.

Moreover, Figs 5.8 and 5.9 show a comparison between the sensitivity of
the proposed sensor with the left-handed medium and the sensitivity of right-
handed medium. As can be seen in Fig. 5.8, the sensitivity in RHM is positive
and has a peak at a specific value of frequency (f=200THz), then be decaying
rapidly when increases of frequency f, but at LHM case the sensitivity

increases with increasing frequency f, and becomes more stability.

In Fig. 5.8 the sensitivity has more stability at different values of ¢, and o,
this due to the presence of the LHM which can significantly increase the

sensitivity of sensor.

Fig 5.9, shows the comparison between the sensitivity of the proposed
sensor with the left-handed medium and the sensitivity of right-handed
medium at imaginary part. It can be seen that, the sensitivity in RHM is
positive and has a peak at a specific value of frequency (f =400THz), then be
decaying rapidly when increases of frequency f, also at LHM case the

sensitivity decaying rapidly with increasing frequency f.
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Fig. 5.8 The real part of the sensitivity as a function of the frequency of the LHM layer

and RHM layer for different values of &, and u,. conductivity is normalized by 6= ¢’u.t
/mth, for d =100 nm, u.= 0.5 eV, and 7 = 5% 1073,
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Fig. 5.9 The imaginary part of the sensitivity as a function of the frequency of the LHM
layer and RHM layer for different values of &, and u,. conductivity is normalized by ¢
= é’u.t /mh, for d =100 nm, u.=0.5eV,and r=5x 107",
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Chapter Six

Sensitivity at Graphene Left-Hand-Martial Waveguide
Structure: (TE Case)

In this chapter, we assume a three-layer planar waveguide consisting of
thin left handed material as a guiding layer is investigated for sensing
applications. The dispersion relation of TE mode for the proposed waveguide
will be derived, the power flowing within each layer will be presented and will

be compared to Right-handed material waveguide sensor.

6.1Structure Analysis

In Fig.5.1 a schematic of the graphene Parallel-plate with LHM is

presented. In this section we will discuss the TE (s-polarized) mode.

6.2 The Dispersion Relation of Graphene -LHM (TM-Mode):

The magnetic profiles in the structure region are

Ae™ ™, x>d/2
E, (x)=1Bsiny,x +C cosy,x —d/2<x<d/2. (6.1)
De”" x<-d/2

The dispersion equation is obtained in similar way as mentioned in the Ch. (5):

(¢, +c, )cos y,d +(1—c,c, )siny,d =0. (6.2)
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where

-1
. :(MJ(H ; Mj | 63)

HY 7
-1
. :(ﬂz_%](H ; MJ , 64)
Y 73

and y>=k;-p.

Taking into account some differences in the new notations k;

(k; =\/¢;u;k,, i =1,2,3), where y; have a value (not equal 1).
Eq, (6.2) can be write as:

(eate,) (6.5)

d=— .
tan y, (1 e, )

6.3 Power flowing within the PPWG graphene (TE mode)

The power flow in the structure is:

ET—‘H}’ 2 (6.6)

total = 20) J g(x)
PTEtota] :P1+P2+P3- (6.7)

Substituting for H,(x) form Eq. (6.1) into Eq. (6.6), we get:
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P=_ ﬂAz nd

e (6.8a)
4o, 1y,
p=—P (Bz+c2)d—(Bz—cz)-—sm(m)} (6.8b)
dapy i, 72
2
p=— PP e (6.8¢)
4ap 1,7

Then

201 2 yd Br+(C? .
PTMtotal == ﬂ (A D ]_( )d +(B2_C2)M . (69)
4o, e 75 Hy 7,

The coefficients 4, B, C and D are related to each other through the equations:

B:A{sin(yzdu) (sz(  Za W‘°j cos(yzd/2)}-ey‘d/z, (6.10)
V24

C A{cos(yzd/2)+(y"u2](  Ca ﬂ"uojsin(yzd/z)}-e“d/z, (6.11)
V2

A{sin(yzd/2) [W‘zj( % W‘Oj cos(yzd/2)}-e"”d/2

D= , (6.12)
—sin(y,d /2)+(Mj(l+i W’j-cos(yzd J2)b.e
V2 M V3
The Sensitivity is given by:
s=h (6.13)
])total
2 nd
- A2 nd DZ 73d (BA C )d ( d) (6.14)
e’ e’ + sin
e ( - j— +(B?-C?d -T2 }
7 )3 H 7
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6.4 Numerical results

We have considered two laterally infinite graphene sheets spaced a distance
d apart with ¢; = &5 =1 and u; = 3 =1. The LHM layer is sandwiched between

a graphene sheet .

Fig 6.1 and 6.2 show the real and the imaginary parts of the of 7.y from eq.
(6.5) of LHM layer with plate separation d=100 um, for frequencies in the

THz frequency for different values of ¢, and w; .

We noted that when &, = -4 , o= -1, the effective index has a highest value
(neer = 0.9), when &, = -1 , up,= -4, the effective index has a lowest value (r.q =

0.4), when &, = u,= -2, we have the value (.= 0.4).

Additionally, when frequency is increasing, the three curves converge at

specific value (n.4=1.4).

Moreover, the effective index n.y increases as the frequency increases as

shown in Fig. 6.1, for LHM, but for RHM the real part is decreasing.

Fig 6.2 shows the imaginary part of the n.; decreases with increasing

frequency, but for RHM is increasing.
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Fig. 6.1. The real part of the effective index n,; from Eq. (6.5) versus the frequency of
the guiding layer for different values of the core permittivity and permeability for
LHM and RHM with ¢=100pm. The conductivity is normalized by ¢ = e’u.t /rh, for .

=0.5eV, and
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Fig. 6.2. The imaginary part of n, from Eq. (6.5) versus the frequency of the guiding
layer for different values of the core permittivity and permeability for LHM and RHM
with ¢=100pm . The conductivity is normalized by o= ¢’u.t /zh, for u. = 0.5 eV, and

T=5x10".
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Fig 6.3 and 6.4 show that, the real and the imaginary parts of the effective
index nqr from eq. (6.5) of LHM layer with plate separation f=8.5 THz.

In Fig 6.3 we noted when ¢, = -4 , 1,= -1, the effective index have a highest
value (n.r = 1.57), when &, = -1 , o= -4, the effective index have a lowest

value (n. = 0.968), when &, = u,= -2, we have the a value (n.= 0.941).

Additionally, when thickness increasing the three curves converge at
specific value (n.; =1.4). At the same curve, we graph the RHM at THz

region, where assumed a RHM layer e, = 1, up,= 1.

Fig 6.4 shows the imaginary part of the effective index n.y decreases with

increasing frequency, but for RHM is increasing.
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Fig. 6.3. The real part of the effective index n.; from Eq. (6.5) versus the thickness of the
guiding layer for different values of the core permittivity and permeability for LHM and
RHM with f=8.5 THz . The conductivity is normalized by ¢ = ¢’u.t /rh, for u. = 0.5 eV,
and 7=5x 10",
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Fig. 6.4. The imaginary part of the effective index n, from Eq. (6.5) versus the
thickness of the guiding layer for different values of the core permittivity and
permeability for LHM and RHM with £=8.5 THz . The conductivity is normalized by
c= ez,ucr/n'h, for u. = 0.5 eV, and 7 = 5x 105,
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Fig 6.5 and 6.6 show the real and imaginary parts of the sensitivity of the
waveguide sensor as a function of the guiding layer thickness d with four
different values of &, and yu,. The two figures show a positive sensitivity. The
real part of the effective refractive index is much more sensitive to variations

of the upper layer than the imaginary part.

It can be seen from Fig. 6.5 that when ¢, = -1, u, = -4, are optimized for
the highest sensitivity. On other hand, for different values of ¢, and u, at LHM
are increasing with the film thickness increasing. Moreover, Figs 6.5 and 6.6
show a comparison between the sensitivity of the proposed sensor with the

left-handed medium and the sensitivity of right-handed medium.

As can be seen in Fig. 6.5, the sensitivity in RHM is positive and has a
peak at a specific value of the guiding layer thickness d (d =170um), then be
decaying rapidly when increases of thickness, but at LHM case the sensitivity
increases with increasing the guiding layer thickness d, and becomes more
stable for RHM. We found the sensitivity has more stability at different values
of & and w,, this due to the presence of the LHM, can significantly increases

the sensitivity of sensor.

At imaginary part case which is shown in Fig. 6.6, the values of ¢, and u,
have a differed behaviour. We can see that, when (¢, = -2 (-4) and u, = -2 (-1))
the sensitivity deceasing, but when ¢, = -1 and u, = -4 the sensitivity is
increasing. Moreover, we are comparing between the sensitivity of the
proposed sensor with the left-handed medium and the sensitivity of right-
handed medium. It can be seen, the sensitivity in RHM is negative and has a
peak at a specific value of the guiding layer thickness d (d=170um), then
decaying rapidly when the thickness are increased, also at LHM case the

sensitivity is decreasing with increasing thickness d.
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Fig. 6.5 The real part of the sensitivity as a function of the thickness of the LHM layer
and RHM layer for different values of &, and u,. Conductivity is normalized by
o= ée'u. /mh, for f=8.5 THz, u.=0.5eV, and r=5x 10",
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Fig. 6.6 The imaginary part of the sensitivity as a function of the thickness of the LHM
layer and RHM layer for different values of &, and u,. conductivity is normalized by
o= é'ux/nh, for f=8.5THz, u.=0.5eV,and r=5x10".
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Fig 6.7 and 6.8 show The real and imaginary parts of the sensitivity of the
waveguide sensor as a function of the frequency f with four different values of
& and .

It can be seen from fig. 6.7 that when ¢, = -1, u, = -4, are optimized for
the highest sensitivity. On other hand, for different values of ¢, and x, of LHM
the sensitivity is increasing with the frequency increases.

Moreover, figs 6.7 and 6.8 show a comparison between the sensitivity of
the proposed sensor with the left-handed medium and the sensitivity of right-
handed medium. As shown in Fig. 6.7, the sensitivity in RHM is positive and
has a peak at a specific value of frequency (f=10THz), then decaying rapidly
when increases of frequency f, but at LHM case the sensitivity increases with
increasing the frequency f, and becomes more stable. The sensitivity has more
stability at different values of &, and u,, this due to the presence of the LHM,
which can significantly increases the sensitivity of sensor.

In fig 6.8, show the comparison between the sensitivity of the proposed
sensor with the left-handed medium and the sensitivity of right-handed
medium at imaginary part. It can be seen, the sensitivity in RHM is negative
and has a peak at a specific value of frequency (f =10THz), then be decaying
rapidly when increases of frequency f, also at LHM case the sensitivity

decreasing as increasing of the frequency f.
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Fig. 6.7 The real part of the sensitivity as a function of the frequency of the LHM layer
and RHM layer for different values of €2 and p2. conductivity is normalized by
6 = e2p.t /mh, for d =150 pm, p.=0.5eV, and T=5x 107",
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Fig. 6.8 The imaginary part of the sensitivity as a function of the frequency of the LHM
layer and RHM layer for different values of €2 and p2. conductivity is normalized by
6 = e2p.t /mh, for d =150 pm, u.=0.5eV, and T=5x 107",
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Results :

1- Dispersion relation:

= We have demonstrated that TE and TM modes existing in the

Gega/Terahertz frequency ranges.

» The characteristics of guided modes in waveguide structure with two
graphene layers have been compared to those of modes in dielectric Left-

handed materials nanostructures/microstructures.

=  We note that the TE mode has almost linear dispersion and small losses.
This is a consequence of the small degree of localization of this mode and
indicates that it is nearly equivalent to a plane wave propagating in free

space.

* In contrast, TM polarized modes are strongly localized as a consequence,
which are characterized by small propagation lengths and strong
dispersion. This differs markedly from that of a plane electromagnetic

wave in free space.

2- Sensitivity
At PPWG- dielectric (TM- Case):

* The real part of the sensitivity of the proposed sensor versus the thickness
of the dielectric layer for different values of the frequencies is positive and

increasing with increasing the thickness and the value of frequency.

* The imaginary part of the sensitivity of the proposed sensor versus the
thickness of the dielectric layer for different values of the frequencies is

negative.
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The Re(S) and Im(S) of the proposed sensor versus the frequencies of the
dielectric layer for different values of the Thickness are positive and

increases with increasing frequency and values of thickness.
At PPWG- dielectric (TE- Case):

The real part of the sensitivity of the proposed sensor versus the thickness
for different values of the frequencies is positive and decreases with
increasing thickness. Also the sensitivity decreases with increasing the

value of frequency.

The imaginary part of the sensitivity of the proposed sensor versus the
thickness of the dielectric layer for different values of the frequencies is

negative.

The real part of the sensitivity of the proposed sensor versus the
frequencies of the dielectric layer for different values of the thickness

exhibit different behaviors with d.

The Re(S) at (d = 150 um ) is positive and has a peak at specific value of

the frequency then decreasing with increasing frequency.

The imaginary part of the sensitivity of the proposed sensor versus the
frequencies of the dielectric layer for different values of the thickness

exhibit different behaviors with d.

The Im(S) at (d = 150 um ) is positive and has a peak at specific value of

the frequency then decreasing with decreasing the operating frequency.
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At PPWG- LHM (TM- Case):

The real part of the sensitivity versus the thickness of the LHM layer and

RHM layer for different values of ¢, and u, are positive.

The imaginary part of the sensitivity versus the thickness of the LHM layer

for different values of ¢, and u, exhibit different behaviors with d.

The real part of the sensitivity versus the frequency of the LHM layer and

RHM layer for different values of ¢, and u, are positive.

The imaginary part of the sensitivity versus the frequency of the LHM
layer and RHM layer for different values of ¢, and u, exhibit different
behaviors with £

At PPWG- LHM (TE- Case):

The real part of the sensitivity versus the thickness of the LHM layer for

different values of ¢, and u, are positive.

The imaginary part of the sensitivity versus the thickness of the LHM layer
and RHM layer for different values of &, and u, exhibit different behaviors
with d.

The real part of the sensitivity versus the frequency of the LHM layer for

different values of ¢, and w, are positive.

The imaginary part of the sensitivity versus the frequency of the LHM
layer and RHM layer for different values of ¢, and u, exhibit different
behaviors with /. The LHM is positive but RHM is negative
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Conclusion

Our study of guided waves in graphene-based structures will allow the
better understanding of how to incorporate them in electromagnetic

devices.

The comparing between the structure with dielectric layer and structure
contain Left-hand-material will be presented. Also, the sensitivity of
the sensor to changes of the permittivity and magnetic permeability for

LHM will be presented.

Our results are important for a better understanding of Graphene
Parallel Plate Waveguide with Left-handed Material which are useful to

design the various graphene-bases optoelectronic devices.

95



References:

1. Geim, A.K. and Novoselov, K.S. The Rise of Graphene. Nature materials,
2007. 6(3): p. 183-191.

2. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C. Science of Fullerenes
and Carbon Nanotubes: Their Properties And Applications. 1996:
Academic press.

3. Chen, H., et al. Mechanically Strong, FElectrically Conductive, And
Biocompatible Graphene Paper. Advanced Materials, 2008. 20(18): p.
3557-3561.

4. Armand, M., and Tarascon, J.-M. Building Better Batteries. Nature, 2008.
451(7179): p. 652-657.

5. Gasnier, A., Pedano, Mlaura R., Maria D., and Gustavo, A. Graphene Paste
Electrode: Electrochemical Behavior And Analytical Applications For
The Quantification of NADH. Sensors and Actuators B: Chemical, 2013.
176: p. 921-926.

6. Zou, Y., Tassin P., Koschny T., and Soukoulis M. Interaction Between
Graphene And Metamaterials: split rings vs. wire pairs. Optics express,
2012.20(11): p. 12198-12204.

7. Fal'Ko, V., and Geim, A. Graphene: Emerging Matter In Two Dimensions.
The European Physical Journal-Special Topics, 2007. 148(1): p. 1-4.

8. Geim, A.K. Graphene: status and prospects. Science, 2009. 324(5934): p.
1530-1534.

9. Nagayoshi, H., Nakao, K., and Uemura, Y. Band Theory of Graphite. L
Formalism of a New method of Calculation and the Fermi Surface of
Graphite. Journal of the Physical Society of Japan, 1976. 41(5): p. 1480-
1487.

10. Wallace, P.R. The Band Theory Of Graphite. Physical Review, 1947.
71(9): p. 622.

11. McClure, J. Theory Of Diamagnetism Of Graphite. Physical Review,
1960. 119(2): p. 606.

12. Curl, R.F. Dawn Of The Fullerenes: Experiment And Conjecture. Reviews
Of Modern Physics, 1997. 69(3): p. 691-702.

13. Harris, P.J., and Harris, P.J.F. Carbon Nanotubes And Related Structures:
New Materials For The Twenty-First Century. 2001: Cambridge
university press.

14. Novoselov, K., Morozov, S., Mohinddin, T., Ponomarenko, L., Elias, D.,
Yang, R., Barbolina, 1. Blake, P., Booth, T., Jiang, D. Electronic
Properties Of Graphene. Physica Status Solidi (b), 2007. 244(11): p.
4106-4111.

15. Katsnelson, M.L., Graphene: Carbon In Two Dimensions. Materials
Today, 2007. 10(1): p. 20-27.

96



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Oshima, C. and Nagashima, A. Ultra-Thin Epitaxial Films Of Graphite
And Hexagonal Boron Nitride On Solid Surfaces. Journal of Physics:
Condensed Matter, 1997. 9(1): p. 1.

Meyer, J.C., Geim, A. K., Katsnelson, M., Novoselov, K., Booth, T., Roth,
S. The Structure Of Suspended Graphene Sheets. Nature, 2007.
446(7131): p. 60-63.

Neto, A.C., Guinea, F., Peres, N., Novoselov, K. S., Geim, A. K. The
Electronic Properties Of Graphene. Reviews Of Modern Physics, 2009.
81(1): p. 109.

Dragoman, M., Neculoiu, D., Dragoman, D., Deligeorgis, G.,
Konstantinidis, G., Cismaru, A., Coccetti, F., Plana, R. Graphene For
Microwaves. Microwave Magazine, IEEE, 2010. 11(7): p. 81-86.

Yu, X. FDTD Modeling of Graphene-Based RF Devices: Fundamental
Aspects and Applications. 2013, University of Toronto.

Moon, J.-S., and Gaskill, D.K. Graphene: Its fundamentals to future
applications. Microwave Theory and Techniques, IEEE Transactions on,
2011.59(10): p. 2702-2708.

Gusynin, V., Sharapov, S., and Carbotte, J. Magneto-optical conductivity
in graphene. Journal of Physics: Condensed Matter, 2007. 19(2): p.
026222.

Hanson, G.W. Dyadic Green’s Functions And Guided Surface Waves For
A Surface Conductivity Model Of Graphene. Journal of Applied Physics,
2008. 103(6): p. 064302.

Falkovsky, L. Optical Properties Of Graphene. In Journal Of Physics:
Conference Series. 2008: IOP Publishing.

Gusynin, V., Sharapov, S., and Carbotte, J. Unusual Microwave Response
Of Dirac Quasiparticles In Graphene. Physical review letters, 2006.
96(25): p. 256802.

Ziegler, K. Minimal Conductivity Of Graphene: Nonuniversal Values
From The Kubo Formula. Physical Review B, 2007. 75(23): p. 233407.
Brownson, D.A., Kampouris, D.K., and Banks, C.E. An Overview Of
Graphene In Energy Production And Storage Applications. Journal of
Power Sources, 2011. 196(11): p. 4873-4885.

Kotz, R., and Carlen, M. Principles And Applications Of Electrochemical
Capacitors. Electrochimica Acta, 2000. 45(15): p. 2483-2498.

Snook, G.A., Kao, P., and Best, A.S. Conducting-Polymer-Based
Supercapacitor Devices And Electrodes. Journal of Power Sources, 2011.
196(1): p. 1-12.

Ramachandran, R., Mani, Veerappan C., Shen-Ming, S., Ramiah, L., and
Bih-Show. Recent Trends in Graphene based Electrode Materials for
Energy Storage Devices and Sensors Applications. International Journal
of Electrochemical Science, 2013. 8(10).

97



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Zhou, G., Wang, D., Li, F., Zhang, L., Li, N., Wu, Z., Wen, L., Lu, G., and
Cheng, H. Graphene-wrapped Fe304 anode material with improved
reversible capacity and cyclic stability for lithium ion batteries.
Chemistry of Materials, 2010. 22(18): p. 5306-5313.

Chen, S., Gordin, M. L., Yi, R., Howlett, G., Sohn, H., and Wang, D.
Silicon Core—Hollow Carbon Shell Nanocomposites With Tunable Buffer
Voids For High Capacity Anodes Of Lithium-lon Batteries. Physical
Chemistry Chemical Physics, 2012. 14(37): p. 12741-12745.

Wang, C., Waje, M., Wang, X., Tang, J. M., Haddon, R. C., and Yan, Y.
Proton exchange membrane fuel cells with carbon nanotube based
electrodes. Nano letters, 2004. 4(2): p. 345-348.

Kim, D., Lee, J., Lee, G., Overzet, L., Kozlov, M., Aliev, A., Park, Y., and
Yang, D. Carbon nanotubes based methanol sensor for fuel cells
application. Journal of nanoscience and nanotechnology, 2006. 6(11): p.
3608-3613.

Kim, H., Choi, H., Hwang, S., Kim, Y., and Jeon, M. Fabrication and
characterization of carbon-based counter electrodes prepared by
electrophoretic deposition for dye-sensitized solar cells. Nanoscale
research letters, 2012. 7(1): p. 1-4.

Chen, X., Zhu, J., Xi, Q., and Yang, W. 4 High Performance
Electrochemical Sensor For Acetaminophen Based On Single-Walled
Carbon Nanotube—Graphene Nanosheet Hybrid Films. Sensors and
Actuators B: Chemical, 2012. 161(1): p. 648-654.

Nasri, Z., and Shams, E. 4 Glucose Biosensor Based On Direct Electron
Transfer Of Glucose Oxidase Immobilized Onto Glassy Carbon
Electrode Modified With Nitrophenyl Diazonium Salt. Electrochimica
Acta, 2013. 112: p. 640-647.

Wang, Y., Joshi, P.P., Hobbs, K.L., Johnson, M.B., and Schmidtke, D.W.
Nanostructured Biosensors Built By Layer-By-Layer Electrostatic
Assembly Of Enzyme-Coated Single-Walled Carbon Nanotubes And
Redox Polymers. Langmuir, 2006. 22(23): p. 9776-9783.

Lu, G., L.E. Ocola, and Chen, J. Gas Detection Using Low-Temperature
Reduced Graphene Oxide Sheets. Applied Physics Letters, 2009. 94(8):
p. 083111.

Gong, J., Guan, Z., and Song, D. Biosensor Based On Acetylcholinesterase
Immobilized  Onto  Layered Double Hydroxides For  Flow
Injection/Amperometric Detection Of Organophosphate Pesticides.
Biosensors and Bioelectronics, 2013. 39(1): p. 320-323.

Cesarino, I., Moraes, F.C., Lanza, M.R., and Machado, S.A.

Electrochemical Detection Of Carbamate Pesticides In Fruit And
Vegetables With A Biosensor Based On Acetylcholinesterase Immobilised
On A Composite Of Polyaniline—Carbon Nanotubes. Food Chemistry,
2012. 135(3): p. 873-879.

98



42

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53

54

55.

56

57

58

. Wu, S, Lan, X., Cui, L., Zhang, L., Tao, S., Wang, H., Han, M., Liu, Z.,

and Meng, C. Application Of Graphene For Preconcentration And
Highly Sensitive Stripping Voltammetric Analysis Of Organophosphate
Pesticide. Analytica chimica acta, 2011. 699(2): p. 170-176.

Pacheco, J. Theory And Application Of Left-Handed Metamaterials.
2004, Massachusetts Institute Of Technology.

Liu, Y., and Zhang, X. Metamaterials: A New Frontier Of Science And
Technology. Chemical Society Reviews, 2011. 40(5): p. 2494-2507.
Caloz, C., and Itoh, T. Electromagnetic Metamaterials: Transmission
Line Theory And Microwave Applications. 2005: John Wiley & Sons.
Veselago, V.G. The Electrodynamics Of Substances With Simultaneously
Negative index values of ¢ and u. Physics-Uspekhi, 1968. 10(4): P. 509-
514.

Cai, W., and Shalaev, V.M. Optical Metamaterials. Vol. 10. 2010:
Springer.

Rahim, A., and Kamal, M. Process For Constructing The Metamaterials
And Studying Its Advancement In Microwave Circuits. 2008.
Ramakrishna, S.A., and Grzegorczyk, T.M. Negative Refractive Index
Materials. 2009, SPIE Press, Washington.

Fu, C., Tanner, D., and Zhang, Z. Energy Transmission By Photon
Tunneling In Multilayer Structures Including Negative Index Materials.
Journal of heat transfer, 2005. 127(9): p. 1046-1052.

Reza, A. The Optical Properties Of Metamaterial Waveguide Structures.
Master thesis, Queens Univesity, Canda, 2008.

El-Amassi, D.M., and Shabat, M.M. Lefi—-Handed Photonic Crystal
Sensor, Analytical Approach. Master Thesis, Isimaic Univesity, 2013.

. Pendry, J.B., Holden, A.J., Robbins, D., and Stewart, W. Magnetism From

Conductors And Enhanced Nonlinear Phenomena. Microwave Theory
and Techniques, IEEE Transactions on, 1999. 47(11): p. 2075-2084.

. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., and Schultz, S.

Composite Medium With Simultaneously Negative Permeability And
Permittivity. Physical Review Letters, 2000. 84(18): p. 4184.

Kong, J. Electromagnetic Wave Interaction With Stratified Negative
Isotropic Media. Progress In Electromagnetics Research, 2002. 35: p. 1-52.

. Engheta, N. Metamaterials With Negative Permittivity And Permeability:

Background, Salient Features, And New Trends. Departmental Papers
(ESE), 2003: p. 9.

. Chew, W.C. Some Reflections On Double Negative Materials. Progress In

Electromagnetics Research, 2005. 51: p. 1-26.

. Sabah, C., and Uckun, S. Electromagnetic Wave Propagation Through

Frequency-Dispersive  And Lossy Double-Negative Slab. Opto-
Electronics Review, 2007. 15(3): p. 133-143.

99



59.

60

61

62.

63.

64

65.

66.

67

68.

69.

70.

71.

Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr,
AF., and Smith, D.R. Metamaterial Electromagnetic Cloak At
Microwave Frequencies. Science, 2006. 314(5801): p. 977-980.

. Grbic, A., and Eleftheriades, G.V. Overcoming The Diffraction Limit With

A Planar Left-Handed Transmission-Line Lens. Physical Review Letters,
2004. 92(11): p. 117403.

. Niu, W., Huang, M., Xiao, Z., and Yang, J. Sensitivity Enhancement In

Optical Waveguide Sensors Based On TM Wave And Metamaterials. In
Antennas Propagation and EM Theory (ISAPE), 2010 9th International
Symposium on. 2010: IEEE.

El-Khozondar, H., Shabat, M.M., El-Khozondar, R.J., and Koch, A.W.
Stress effect on optical nonlinear waveguide sensor. Journal of Optical
Communications, 2007. 28(3): p. 175-179.

Parriaux, O., and Veldhuis, G. Normalized Analysis For The Sensitivity
Optimization Of Integrated Optical Evanescent-Wave Sensors. Journal of
lightwave technology, 1998. 16(4): p. 573.

. Verma, A., Prajapati, Y., Ayub, S., Saini, J.P., and Singh, V. Analytical

Analysis Of Sensitivity Of Optical Waveguide Sensor. International
Journal of Engineering, Science and Technology, 2011. 3(3).

Harris, R., and Wilkinson, J.S. Waveguide surface plasmon resonance
sensors. Sensors and Actuators B: Chemical, 1995. 29(1): p. 261-267.
Taya, S.A., Shabat M.M., and Khalil H.M. Nonlinear Planar
Asymmetrical Optical Waveguides For Sensing Applications. Optik-
International Journal for Light and Electron Optics, 2010. 121(9): p. 860-
865.

. Shabat M.M., Taya, S.A., Khalil, HM., and vJager, D.S. Theoretical

Analysis Of TM Nonlinear Asymmetrical Waveguide Optical Sensors.
Sensors and Actuators A: Physical, 2008. 147(1): p. 137-141.

Shabat, M.M., Taya, S.A., Khalil, H.M., and Abadla, M.M. Analysis of
the sensitivity of self-focused nonlinear optical evanescent waveguide
sensors. International Journal of Optomechatronics, 2007. 1(3): p. 284-
296.

Taya, S.A., Shabat, M.M., El-Agez, T.M., Kullab, H.M., and Abadla,
M.M. Theoretical study of slab waveguide optical sensor with left-
handed material as a core layer. Optica applicata, 2012. 42(1): p. 193-
205.

Khalil, H.M., Shabat, M.M., Taya, S.A., and Abadla, M.M. Nonlinear
optical waveguide structure for sensor application: TM case.
International Journal of Modern Physics B, 2007. 21(30): p. 5075-5089.
Taya, S.A., Shabat, M.M., and Khalil, H. Enhancement Of Sensitivity In
Optical Waveguide Sensors Using Left-Handed Materials. Optik-
International Journal for Light and Electron Optics, 2009. 120(10): p.
504-508.

100



72.

73.

74

75.

76.

77.

78

79.

80.

81.
82.

83.
84.

85.

86

87.

88.

89.

Horvath, R., Pedersen, H.C., and Larsen, N.B. Demonstration Of Reverse
Symmetry Waveguide Sensing In Aqueous Solutions. Applied physics
letters, 2002. 81(12): p. 2166-2168.

Veldhuis, G.J. Bent-Waveguide Devices and Mechano-Optical Switches.
1998: Universiteit Twente.

. Horvath, R., Pedersen, H.C., Skivesen, N., Selmeczi, D., and Larsen, N.B.

Optical Waveguide Sensor For On-Line Monitoring Of Bacteria. Optics
letters, 2003. 28(14): p. 1233-1235.

Monk, P. Finite Element Methods For Maxwell's Equations. 2003:
Oxford University Press.

Kawano, K., and Kitoh, T. Frontmatter and Index. 2001: Wiley Online
Library.

Kawano, K., and Kitoh, T. Introduction to Optical Waveguide Analysis:
Solving Maxwell's Equation and the Schrodinger Equation. 2004: John
Wiley & Sons.

. Bludov, Y.V., Ferreira, A., Peres, N., and Vasilevskiy, M. 4 primer on

surface plasmon-polaritons in graphene. International Journal of Modern
Physics B, 2013. 27(10).

Hunsperger, R.G. Integrated Optics: Theory And Technology. 2002:
Springer.

Snyder, A.W. and Lowe, J. Optical Waveguide Theory. Vol. 190. 1983:
Springer.

Blake, L.V. Transmission Lines And Waveguides. 1969.

Pozar, D.M. Microwave Engineering. 2009: John Wiley & Sons, New
York, U.S.A.

Hertel, P. Continuum Physics. 2012: Springer. Germany

Chen, C.-L. Foundations For Guided-Wave Optics. 2006: John Wiley &
Sons.

Hanson, G.W. Quasi-Transverse Electromagnetic Modes Supported By A
Graphene Parallel-Plate Waveguide. Journal of Applied Physics, 2008.
104(8): p. 084314.

. Niu, W., Huang, M., Xiao, Z., Zheng, L., and Yang, J. Sensitivity

Enhancement In TE Mode Nonlinear Planar Optical Waveguide Sensor
With Metamaterial Layer. Optik-International Journal for Light and
Electron Optics, 2012. 123(6): p. 547-552.

Stauber, T., N. Peres, and A. Geim. Optical Conductivity Of Graphene In
The Visible Region Of The Spectrum. Physical Review B, 2008. 78(8): p.
085432.

Falkovsky, L. and A. Varlamov. Space-Time Dispersion Of Graphene
Conductivity. The European Physical Journal B, 2007. 56(4): p. 281-284.
Mikhailov, S. and K. Ziegler. Nonlinear Electromagnetic Response Of
Graphene: Frequency Multiplication And The Self-Consistent-Field
Effects. Journal of Physics: Condensed Matter, 2008. 20(38): p. 384204.

101



102





