Loy il
I S (JC B PO [X

N 3 LS
. . 2 NN G (I waig W4 L8
Faculty of Engineering ‘487 izt A o=

Electrical Engineering Department

The Islamic University of Gaza

C

Deanery of Graduate Studies

Design of GA-Fuzzy
Controller For Magnetic
L evitation Using FPGA

A Thesis Submitted To The Faculty Of Engineering.
In Partial Fulfillment of the Requirements For The
Degree of Master of Science in Electrical Engineering

Prepared By:

Advisor
Hosam Abu Elreesh

Dr. Basil Hamed

June 2011

(AlBliall Lad g8 (e pSall A Sl e aSall dagiidadia

DEDICATION

| dedicate this thesis to my father and my mother in recognition of their endless
help and support,| also dedicate this work to my wife and to my children,
Mohamed, Abd Alrahman and Laian who are my most precious thing in this

life.

ACKNOWLEDGEMENT

At the beginning, | thank ALLAH for giving me the strength and health to
let this work see the light. | thank my supervisor Dr. Basil Hamed for his time,
consider ation, suggestions, ideas and advice during this thesis.

Soecial thanks go Dr. Hatem A. Elaydi and Dr. Assad Abu-Jasser -thesis
examiners- for their patience, guidance, and generous supports during this
research.

Many thanks go to my best friends for their help, specially Eng Said Abu
Alros.

| also thank my wife for her infinite support and patience. Words will not be
enough to thank my family for their patience and encouragement during my
thesis. Finally, thanks for everyone who has raised his hands and prayed ALLAH

for my success.

ABSTRACT

by
Hosam Abu Alreesh
The Islamic University of Gaza, 2011
Gaza, Palestine

Dr. Basil Hamed,

The design of controllers for non- linear systems in industry is a complex and difficult
task. The development of non-linear control techniques has been approached in many
different ways with varied results. One approach, which has shown promise for solving
nonlinear control problems, is the use of fuzzy logic control. This Thesis will discuss the
Magnetic Levitation (Maglev) models as an example of non linear systems. It will aso show
the design of fuzzy logic controllers for this model to prove that the fuzzy controller can work
properly with nonlinear system. Genetic Algorithm (GA) is used in this thesis as optimization
method that optimize the membership, output gain and inputs gain of the fuzzy controllers.
The result of fuzzy controller with GA optimization will be compared with H, controller
which is one of optimal control techniques, and will try to prove that fuzzy controller with
GA optimization can gives better performance over H, controller. Finally fuzzy controller
will be implemented using FPGA chip. The design will use a high-level programming
language HDL for implementing the fuzzy logic controller using the Xfuzzy CAD tools to

implement the fuzzy logic controller into HDL code.

gadla

Cyshitanae Gyhalliag deaayiiinedoge oo dcliall A4kl je Laaidl 2Sad Cilas § aganal

g A gyl 028 auall aSaill o ac] gl G5kl oda sl Al el Akl aSall e Jaloil] Caeadii
e aaind 3,88 ikt @llia of J5Y) Ganed Alad 3l Aadaid JUiaS salinall Golail) ol 23 gad LS
R S g3 sl 13g) (i St el A8 (o s il s e allai adl (A5 ezl salll 13 4 ks
el sl A28 (o gas Liagf A5 5k oda Aphad el Aalai¥) pe Alle 483y sy) ki lanall aSaiall)
il 5 JSa Ay lacal) aSaiall o il g Jadaall oSl COllaa g eliac VI (S5 8 2Saill (GA) Al
O i o Jglad gy 55 (a3 s 5 AUl ilaSatiall (e ST g 55 e aSaiall 13 45 jlEa iy i gas 5 Ll Al
ASaiall 1aa 28 Ay o g el & o8 () Sl (e Gl el sy Al A1 sall s lucall aSaiall
(Xfuzzy) gt alasinls (HDL)cs sivall dasd) daa s i aladiuly Sleal) daa s o Cosma s (FPGA) plasiuly

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ..ttt ettt et s et e et e s teeeate e steeeateesabeessseesnbeassseesabeessseesareenseeeses 1
L OVERVIEW .t iteie e ettt e ettt e e ettt e e e ette e e e atee e e sabeeeeanbeeeeenseeeaasseeeaanbeeesansseeeasseseeanteeesanseeeesbeeasasteeesanseeassnrananan 1
1.2 LINEAR AND NONLINEAR SYSTEMS....ciciittieiittieeeitteeeeiureeesitseeesateeesasssesesasseessassesesasssssssnsssesasssesesassssesssseeesnn 2

O R T s TS Y o SO 2
1.2.2 NONTINEAN SYSLEIM....cviiiiiitiieeie ettt ettt ettt b et b e et b e s e bt b e s e e bt bt e bt eb e e e bt s bt e b b 3
1.3 FUZZY LOGIC IMPLEMENTATIONcttiieiitieeeiteeeeetteeeeetteeesetseeeeasteeesassseeesassesaaastesesansssessabaeasaassesesasssnesssenannn 3
LA PREVIOUS STUDIES......uciiiiitieeeiittieeestteeeeeteeessteeaaasseseaasseeasassesaaastesasaassesesassesasastesesasssssssasssasaassesesansesessnsenannn 4
1.5 THESIS CONTRIBUTIONuutiiiiiteieeeitteeeeateeessteeeeatseeeaassesesasseeesassssesaassssssasseessassesesasssssssasssasssssesesansssessnsenannn 6
L.6 OUTLINES OF THE THESIS....eiiiittieeeitieteeiteeessteeesateeessasseeesasseeesasteeesaasseeesasseessastesesasssssssasesesasssesesassesessnsenannn 6

CHAPTER 2 FUZZY CONTROL ..ottt sttt s e e e s te e sate e sate e sate e sateasaneesabeesnseesaseenaneesns 7
2L FUZZY LOGIC vttt ettt et ettt e e ettt e e et e e et e e e e atee e e eabe e e e e beeeeesseseaasseeaeaabaeaeansbeeessseeesanbanenanseeeesnnnnas 7
2.2 FUZZY SET S .ttt ietie ettt ee ettt ettt e e ettt e e e e tee e e e aeeeeeatteeeaaateeeeaaseeaeanbaeaeaasseeeaasseeaeaabaeaaasbeeeaasseeasanbeeeeansreeeannens 7
2.3 FUZZY SETSHISTORY ...oeiiiiiiiieiitie e ettt e ettt e e ettt e e et e e e e e ate e e e eaaeeeeaabaeeeesseeesasseeaeantaeaeasseeessseeasasbaeesansseeesnnnas 8
2AWHY USE FUZZY LOGIC?.... i cieie et eetee e ettt e e ettt e e e e te e e s ettt e e e ataeeseaateeesesaeeaeantaeasannteeessneeasantanesanseeessnnns 9
2.5 APPLICATIONS OF FUZZY LOGIC ...eeiiiiieeiiieee e cieee ettt e e eetee e e st e e e atte e e e sateeeseaneeassntaeasannteeesnseeessntenesasseessnnns 9
2.6 THE OPERATIONS OF FUZZY SET S .ciiiitiieiiitiieeiiteeesstteeesaiteeessseeeesasseesaastesssassesssnssessssstesssassssessnsesessnssesesanns 10

2.6. 1 AND OPEIBLION.coteeeiiatereettete sttt sttt sttt sttt et et e et ebese e st abese e st ebeseeaeebeseese e b e s e ebeabeneenesb et ebenbe e e 10

2.6.2 OR OPEIALIONeetiteeeeeieeeeie sttt ettt ee e e st e teseesteeeesaeeseeaeaaseeeaeeabesaeabeeseeneeneeasenbesaeebesaeeneeneensanenseens 11

2.6.3 INOT OPEIALION.eeteiueeieeieie sttt sttt e e e re e eeseesbeebesaeeaeeaeaasaaeeaeeabesaeebesaeeseeneeasenbesaeabessesnesneensanseseens 11
2.7 MEMBERSHIP FUNCTIONuuuiiiiiiiiieeeiteeeeeitteeeeteeeessaseeeeasseesassseaesasseeaaassesesanssseesassesaaastesesasssessasseassassesesanns 13
2.8 LINGUISTIC VARIABLESuttiieiitteeeectteeeeette e e eitteeesstteeesaateeesaseeeesasseeeaassaeesaasseeesasseeeaasteeesassaeeessanesanssenesanns 16
BLOTF = THEN RULES........tiie ittt ettt e e ettt e ettt ee e e ettt e e eeteeeeeaeeeesebseeeeasbasesassseeesbseeesasbesesassaeessbeeesasrenennnes 17
2. 10 IMPLICATION FUNCTIONS.....cceittieeeitteeeeeitteeeeetteeeeetteeeeeteeeeeeaseeeaasseeeaassaseeasseessasseesaasbesesassseessassnasaasrenenanes 18
2. 11 MAMDANI IMPLICATIONutiiiiiutieeeiteeeeeitteeeeitreeeeatreeeeaseeesasseeesasseeaaassesesasseeesasseeaaassesesassseessasseesaassesesanns 19
2.12 FUZZY LOGIC CONTROL (FLC) ..ottt sttt sttt s s b et e ae e ne et b b et b ene e e e e e e e e e 20
b R Y TN T 1Y) =R 21

CHAPTER 3 GENETIC ALGORITHM oottt ettt aes s e eetee s saeeesaes s sveesbesssveeenren s 25
B L INTRODUCTION.utieeeeuteteeeiteeeeeetteeeestteeeeaeteeaeeaaseeaaasseeeeaseeeeasseeesasseaeaassaseeassseessasseesaassesesassnsessssnasaasrenesanes 25
3.2 GENETIC ALGORITHM VS. OTHER OPTIMIZATION TECHNIQUESceciuiiiteeereesteesreesreesneessreessneesnseesnneesns 26
3.3 GA OPERATIONS ... itteeittteitteesteeestteeaseessteeaaseeassaeaaseesasaeaseeatesasessssesansessntesssesssesssessnsessseesssessnseessesnsseesns 27
I N T I = Y 1= N =R 28

G It 14 1o Y/ o (0= | 28
A2 POPUILION ...ttt b e et b e et bbb e he bbb e Rt e b e e et b e b b 29
3.5 CHROMOSOME CODING ...cceuuveieitteeeeiuteeeeaitteeeesuseeeaasseseeaasseesassseessassesaaasseseeaasssessasseesaassesesasssessasseessassesesanes 30
3.6 FITNESS FUNCTION. ..cciuttteeeiteeesitteeeestteeeeateeessneeeessteeeeanseeesaaneeeesseeeeaassaeesannseeesnseeeeaansenesansaneesnsenessnsseeennnns 30
T A = = 1T SRR 32
3.7.1 ROUIELEE WINEE! SEIECHION.oceeeeceeiecee ettt ettt et e b e ebe e et sebe s st e s sbeesnbessabessabessnnessnres 32
T A = =101 S = = o1 o o 32
3.7.3 Stochastic Universal SAMPIING ..ot 33
3.8 CROSSOVER.....ceieiuteeeeiuteteeaiuteeesaseeeassteeeaasteaeaasseeeaasseeeaanseeesanseeeesasseeeaasteeeeannseeesseeeeaasteeesassaneessenesanssenesanns 34
3.8.1 SINQGIE-POINT CIrOSSOVESoecviieeeeeeesteetieieestessaesteesseessesesseesaeesseesseanseassesseessensseessesssesseessesssessseansesnes 34
3.8.2 TWO-POINT CrOSSOVEYcccviiviitieetieeteeeteeteeteeteesteesteestessesaeesaeesseenseensessssssesatesabesntesssesssesteesseesssansesnns 35
B.8.3 UNITOINM CIOSSOVETcceveeiutieeieeeciteeeee e ettt eseeestesessesssbassasesssbeseasessbessasesanbesansessabesssessnbessnsessntessnsessnres 35
BLO MUTATION «..ttieeitteee e ettt e eeiteeeeseteeeeessbeeeeasaeeseaseesasseeeeasseeesassseeessseesassesesassseessnbeeesaasbesesassaneesnsenesansresesanes 36
T O T TS SRR 36
311 GENETIC FUZZY SYSTEMS...eiiiiiiieeeitteeeeetteeeeitteeeastteeesateeesasseeesasseesaassasesanssesssassessssssesesassssessnsenessnssenenanns 36
3.11.1 Genetic TuniNg Of ThE Dala BASE.........ccveierieiieriese ettt e et et esreenne e e 37
3.11.2 Genetic Learning of The RUIE BASE........cccvviiii it nnen 38

(O8N o I = = A =€ - N 39
L INTRODUGCTIONttttteeeieiiitrereeeeeeaiasssseeeeseessaasssseeesessaaassseesaassaaatssssssesssesasstessseessesasstssssessssiasssssssesesssnnsssseneees 39
R = = Y0l = I I SRR 40

Vi

A3 TYPESOF FPGA ..ottt ettt et e st s e te s e s e e s ae e teeneeenteeaeess e e teenteentesneesneesseesseeeeenseeneenneensaensenns 40

4 AFPGA AND FUZZY [MPLEMENTATION 1.vvteiiettitsieteeessiseessasseessssssssssssesssssssesssssssssasssesssssesesssssessssssssssssesesas 44
o I 7.7 <o o PSSR 45

4.4.2 Rigel’s Fuzzy Logic Applications Software Helper (TFLASH) ..o 45

4.4.3 Fuzzy Inference Development Environment (FIDE)........ccccuviievienieseese e see s se e sseeneeens 45

E Y = 74 45

F ST D T= v] o 0] IS = o[- 46

T 10 g TH o S = o T OSSPSR 47

E R = g {Tor= Lo IS = L= PSS 47

T RS Y11 gT=S ES RS = o [P 49
CHAPTER5 MAGNETICLEVITATION AND FUZZY CONTROLLERocieeeeiieeeeeeee e, 50
5.1 MAGNETIC LEVITATION .oiuutiieiiteeeeestteeeeeteeeseseeessessesssassesesasssssssasesesaassesssasssesssssssesasssesssassesessssesessssesssnnes 50
5.2 MAGNETIC LEVITATION MODEL CE L152:.....cciiiiiicteeiiie ettt e e ettt e e s s esataseseassessaabasesasssessnsbenesesssesan 50

D .3 IVIODEL ANALY SIS iiuutetiieeiiesiittertreessesaisbertreessssassasereasssssaabasreeassssasbaresesesssaassasasesesssesassbeseseassesssresesasssesns 51
LSRR B 7N 0] 01V.< (. 52

LG IO o V1< N o o 1 52
5.3.3Ball & COIl SUDSYSIEM.....ccueicie et et r et et e e eneesneesneesreenneenneenes 54
5.3.4 POSITION SENSOKveiivtiiceieietie et e sttt e e te e sttt e e e e e s besesbe s e abeseabes e beseabessabesebessabessnbessabessasessabessnsessabessnsessnres 55

D, 3.5 A/D CONVEIEEY veiiieeeee ettt eeee e et e e e et e e e e eaetesseaaeessaseeessaaseeesaaseeessaseeesaassetesanseeessaseeesanssesesasneessarenesan 55

5.3.6 COMPIELE MOTEL ..ottt et e bbb et b et bbb 56

5.4 FUzZY CONTROLLER DESIGN FOR CELS52 IMODEL ..uvvviiiiiiiiiiiiiieee e ieiitireeeie s e sesiataeesesssesssbasssssssesnsbssssesssesns 62
5.5FUzzY CONTROLLER DESIGN WITH GA FOR CEL152 MODEL ...ccciiiiiiiitiiieiieecceiiitieeieeesesiaireeeeesssessssrssssesenenns 68
5.6 COMPARISON BETWEEN FUZZY GA CONTROLLER AND Hy CONTROLLER......cccotttttieeeieiinrrrereeeeesinnreseeesseenns 72
CHAPTER 6 FPGA IMPLEMINTATION FOR FUZZY CONTROLLER ..o.ooieeeeeeeeeee e, 75
6.1 VHDL FUZZY CONTROLLER IMPLEMENTATIONuuttttietiiieirrteeeessississeresessssssssssesesssesssssesssesssesssssssseesssens 75
CHAPTER 7 CONGCLUSION ...ttt ettt e s sttt e s s st e s s et e s s s bae e s s s sbe e s sesbeeessabaeessssbesssassessssnrenas 83
A R O N[0 I U 1T N OO 83
T2 FUTURE WORKS ... oeeieiittiiecettee e seteee e e stte e e eestee e s saaeeesseseeeesaasesesasseeessbeeesaassesesansseessabesesaastesesassanessnsenesansennennnes 84
REFERENGCES..... ..ot eeeeeie ettt ettt et e et e et et e e e et tessaeaeeesaeaeeesaaseeessasaeessasseessaasetesaasseessasaeessantesesaasaeessasenessnsrenssanes 85
APPENDIX A GA MATLAB PROGRAMS.. ...ttt ettt e etessvee st et e st s eaessabessaessabessnneesnrs 89
APPENDIX B VHDL CODES. ... oottt ettt e ettt e e s et e e s et e s e ae e e s s ebaeeseasteessesanaessabenesassenessnenas 97
APPENDIX C H, CONTROLLER MATLAB CODE ...ttt e 101

Vii

LIST OF TABLES

Table2.1 SomeProperties of Fuzzy SetS OperationS..c.ieeeeieereiseenrsseisasessssssonssssnssssassn. 12
Table 2.2 Comparison between GMP and GM T ...iieiiiiiiiiiuiiiiniieiniiesiseceisscnisssesssssssnsesn. 18
Table2.3 Classical Set Truth Table. . .ceieieiieieiiiiiiiiiiiiiiuriiniiiieiererrsiersesesnsasessseisasasnsens 19

Table2.4 SIMPle RUIEBASE M AgNELiC...ueieireiiieiiiieiiiieeniinreeenteecereecnceasescnsasensescnsascnnn 21

Table 5.1 Fuzzy control rule base of Magnetic Levitation.....ceeeeeeienenienieeiecceeseeeene 64
Table 5.2 Gain Values with and without GA optimization.....c.eeeeiiiiieiercnesenenee 70
Table 5.3 System Response with and without GA optimizationceeeccievceieecececeeneee, 72

Table 5.4 Comparison between H, Controller and Fuzzy-GA controller

viii

Figure (2.1):
Figure (2.2):
Figure (2.3):
Figure (2.4):
Figure (2.5):
Figure (2.6):
Figure (2.7):
Figure (2.8):
Figure (2.9):

Figure (2.10):
Figure (2.11):
Figure (2.12):
Figure (2.13):
Figure (2.14):
Figure (2.15):
Figure (2.16):
Figure (2.17):

Figure (3.1):
Figure (3.2):
Figure (3.3):
Figure (3.4):
Figure (3.5):

Figure (3.6):
Figure (3.7):
Figure (3.8):
Figure (3.9):

Figure (3.10):
Figure (3.11):

Figure (4.1):
Figure (4.2):
Figure (4.3):
Figure (4.4):
Figure (4.5):
Figure (4.6):
Figure (4.7):
Figure (4.8):
Figure (4.9):

Figure (4.10):

Figure (5.1):
Figure (5.2):
Figure (5.3):
Figure (5.4):
Figure (5.5):
Figure (5.6):
Figure (5.7):

LIST OF FIGURES

ClBSSICAl SELS.....ceieeieeie et st 7
FUZZY SELS .ottt e e 8
TWO ClESSICAl SELS ..ot 10
NN V1 I 10
A OR Bttt et bbb nn e 11
N 2 I SRS 11
Membership FUNCLIONccoiiiiiee e 13
Triangular Membership FUNCLION..........cocoiiiiiiie e 14
MeMDBErship FUNCHIONc.eiuiiiiieieiee e 15
Gaussian Membership FUNCLION...........ocveiieiiicie e 15
Bell Membership FUNCLION.........c.ooiieee e 16
a) The Input Membership b) The Output Membership.......c.cccccevvecirenenee. 19
Membership Function of Customer After Mamdani Implication Rule........ 20
Mamdani MOGEooeiieeee e 21
Mamdani Model EXampPIe..........oouviiiiiiiciecccee e 22
Example of MOM MEhOU...........c.coiiiiiriniieeeeeeee e 23
Example of COA MEthOdccooeeiiiiiiiice e 23
The basic Genetic AlQOrithmcooeiiiiiie e 26
Representation of Genotype and Phenotypeccccecvveeerenenenesesesenins 28
GeENe REPIESENLALIONcvveiiieciie ettt eene e 29
Population REPIrESENALION.........cveieieireriesie e 29
a) Binary Coding b)Real Coding c) Octal Coding d) Hexadecimal

(6700 |11 o RS 30
Roulette Wheel SElECHION.cccovieiieecece e 33
Stochastic Universal Sampling........coceeceeieiiieiie e 33
SINGIE POINE CrOSSOVEScviiiiiieiieiieieie ettt 34
TWO-POINt CrOSSOVEYccueiiiiiiiiieieiie ettt ss s bbb e s 35
UNITOMM CrOSSOVESciiueitieieeiee e sie e siee e see e eeseessesneesseesbeseesneesaeeneeas 35
Hybridization in Soft COMPULING.........ceoieiiiiesiee e 37
Technology TIMEINEccviie e 39
PLDS TYPES. ...ttt nne e 40
FPGA ATChITECIUN . ..ot 41
Structure of aL0gIC Callooiiiieieeeeee e 42
Programming @FPGAoooe et 42
The Spartan-3E Development System Board PhotOccceecveeieeccieeciee 43
Main Window Of XfUZZY 3.0........ccerereriniireneseseeeeee e 46
Main Window Of “XFedit"..........coereriiiieniseseeseeree e 46
Main Window Of "XESL." ..o 47
a) Main Window of "xfmt" -b) Main Window of "xfsim"- ¢) Main Window
(04 1o o] o) APPSR 438
CE152 Magnetic Levitation MOdEcoooiiiiinineeeeeeeese e 51
Interface to the CE152 Magnetic Levitation Moddl.............ccccveeeeecienee 51
Digital to Analog Converter MOdel.cooeiirireriiieiecrcsese e 52
The Power Amplifier and its Internal Structure.ccecvvveevveceveesiesenne, 53
Power Amplifier and Coil Model............ccooeiiiiiiii e 53
The Forces That Effect onthe Ball Motion...........ccooevivveeveeiv e, 54
POSItioN SENSOr MOEL.ocueiiiieieee s 55

Figure (5.8):
Figure (5.9):

Figure (5.10):
Figure (5.11):
Figure (5.12):
Figure (5.13):
Figure (5.14):
Figure (5.15):
Figure (5.16):
Figure (5.17):
Figure (5.18):
Figure (5.19):
Figure (5.20):
Figure (5.21):
Figure (5.22):
Figure (5.23):
Figure (5.24):

Figure (6.1):
Figure (6.2):
Figure (6.3):
Figure (6.4):
Figure (6.5):
Figure (6.6):
Figure (6.7):
Figure (6.8):
Figure (6.9):

Figure (6.10):
Figure (6.11):
Figure (6.12):
Figure (6.13):
Figure (6.14):
Figure (6.15):
Figure (6.16):

ATD MOUEL......ooeeseeece ettt ne st sneene e 55
The Complete Model of Magnetic Levitation CEL152...........ccccoeeevveneennnnne. 56
Plant of Magnetic Levitation CE152 with ADC, and DAC.........ccccoveveenene 59
a) Error - b) Change of Error- c) Change of Voltage..........cccooeveninerennene 64
Surface of FUZZY CONLIOIENcccueieeeceeeee e 65
a) Fuzzy Controller- b) Pl Subsystem —c) Magnetic Levitation Modd! 66
Step Response of the SyStem ... 67
Sine Wave Output Response of the System.........cccoevevieeiieve e 67
Square Wave Output Response of the System........ccccceveveeieneenencereene 68
FITNESS VEIUBS ..ottt 69
Membership Functions of the Fuzzy Controller with GA...........ccooeene. 70
Step Response of the System With GA........ooi i 71
Sine Wave Output ReSponse With GAooceeiir i 71
Square Wave Output ReSponse With GAcoovveneeiiieeeseese e 71
H, Controller BIOCK Diagram..........cccccceveeieiieeseeie e seese e 72
H, Controller for Magnetic Levitation CE 152 moddccccvevvveviennenne 73
Step Response of the System with H, Controller ..., 74
The Block Diagram of the FPGA and its Interface with the System........... 75
Error Input UsiNg XTUZzy TOOIccooiiiiiieninieeeeeeee e 76
Change of Error Input Using Xfuzzy TOOL.........cccccoveveieeneeie e 76
Change of Voltage Output Using Xfuzzy ToOl........c.cccocenirinninnenieneene 76
Fuzzy RUIES XTUZZY TOO......coiiieieieie et 77
VHDL Code Generation Using Xfuzzy ToOl.........ccccceevveviiicieciecciee s, 77
Block Diagram of Summation SUBSYSIEMcccereeieiieiireresese e 78
Block Diagram of Pl SUBSYSteMcccveiiiieeiececeece e 78
Block Diagram of Fuzzy Controller Subsystemc.cccovvvieeienieneennnne 79
Block Diagram of Fuzzy Controller Using VHDL Code.........c.cceevevueennene 79
Step Response of the System Using VHDL Code........cccoeevievivccieeiiecien, 79
Error and change of error using VHDL COE..........cccceiieiieiiincneninesienieneas 80
Sine Wave Output Response Using VHDL Code.........ccccovvevvieeiecceesieenane 80
Square Wave Output Response Using VHDL Code........ccccooeviveieeiieenenne 81
ISE 10.1 Software Main Windowccccevererenenienenieneeseese e 82
Schematic Diagram of Fuzzy Controller.........coovvvveieiiecvie e 82

ABBREVIATIONS

analog to digital converter

ant colony optimization
application-specific integrated circuits
application-specific standard parts
Center of Area

Center of Maximum

complex programmable |logic devices

computer-aided design

configurable logic blocks
data acquisition card
data base

digital signal processor

digital to analog converter

electrically erasable programmabl e read-only memory
erasable programmable read-only memory
Evolutionary Algorithms

field programmable gat arrays

fuzzy associative memory

fuzzy logic controller

fuzzy logic system

fuzzy rule-based system
generalized modus pones
generalized modus tollens
generic array logic

genetic algorithm

genetic fuzzy rule-based system
genetic Fuzzy Systems
graphic user interface

high-level programming language

Xi

ADC
ACO
ASIC
ASSP
CoA
CoM
CPLD
CAD

CLB
DAQ
DB
DSP

DAC
EEPROM
EPROM
EA

FPGA
FAM
FLC

FLS
FRBS
GMP
GMT
GAL
GA

GFRBS
GFS
GUI
HDL

input/output blocks

I0B

integrated circuits ICs
Knowledge Base KB
lookup-Table LUT
Magnetic Levitation MAGLEV
mean of maximum MoM
multi-input multi-output MIMO
one time programmable OoTP
programmable array logic PAL
programmable logic arrays PLA
programmable logic devices PLD
programmabl e read only memory PROM
proportiona- derivative PD
proportional-integral Pl
proportional-integral-derivative control PID
rule base RB
simple programmable logic devices SPLD
single-input single- output SISO
Static Ram SRAM
Takagi- Sugeno-Kang TSK
traveling sell man TSM
very high speed integrated circuit hardware description language VHDL
Very-large-scale integration VLS

Xii

CHAPTER 1 INTRODUCTION

1.1 Overview

Control systems have been in use for decades, and it is one of important science, which
contribute in development and advancement of modern civilization and technology. Control
systems are found in many types of applications in industry, such as power systems, computer
control, space technology, robotics, weapon systems and many others. Due to development of
civilization and progress in the computer science, the control systems are developed,
multiplied and play a very important role in today's world. Because of the quick development
in control domain, different types of controller appeared. Each type has its advantages and
disadvantages, and during designing of control system, the engineer select one of these
techniques according to many factors such as nature of plant (size, complexity, nonlinearity,
time varying), control objective, specifications and cost considerations. Control systems can
be divided to two mains types, conventional control techniques and intelligent control

techniques. Next Some examples of conventional control techniques will be shown

1- Classical Control

In this type the methods are based on frequency response measurement and the system
Is described by transfer function model. Classical control refers mostly to single-input single-
output (SISO) systems and it is mainly graphical method. Examples of classical control
systems are root-locus, bode plot, nyquist and proportional-integral-derivative control (PID).
The main technique used in this category is PID, which is widely used in industrial process
control application such as petroleum refining and metal forming. PID controller response is

based on three parameters. Proportional gain Kp, integral time Ki, derivative time Kd.

2- Modern Control

Contrary to classical control method, in this type the methods are based on time
response measurement and the system under control in this type is described in stat space
model. Modern control methods cover the multi-input multi-output (MIMO) systems and are
mainly analytical method. Examples of this types are pole-placement, deadbeat and sliding

mode.

3- Optimal Control

Thistypeislike the modern control type, but it has one advantage that is can be used

with linear time varying systems. Examples of this type are LQR, H, and H., which are stable

and robust.

Intelligent control techniques can works with systems which can not be described by

differential/ difference equations and can be applied on systems whose complexity defies

conventional control methods. Intelligent control has some advantages over conventiond

control, but its two main advantage are.

1- The algorithms of intelligent control system is software, that can be changed if the plant is

changed; contrary to the conventional control algorithms.

2- It isfaster than conventional controllers.

There are two basic approaches to intelligent control systems, knowledge-base-expert systems

(adaptive fuzzy logic) and neura networks..

1.2 Linear and Nonlinear Systems

Any system can be divide into linear or nonlinear system. There are different techniques

to control the two types of systems, some of these techniques work well with linear and non

linear systems. Such as fuzzy logic.

1.2.1Linear System

A linear system is a system to which the principle of supper position applies [1].

Supper position means that if yi(t) is the response of input x;(t) and y»(t) is the response of

Xo(t). Then if

Y,(t) = ax,(t)

Y2 t) = sz (t)

X(1) = %, () + %, (1)

then

V(1) = Y, (0) + Y, (1) = &%, (£) + b, 1)

(1.1)
(1.2)
(1.3)

(1.4)

1.2.2 Nonlinear System

A nonlinear system is a system to which the supperposition dose not apply. In fact
most systems are nonlinear. Some of them are nonlinear over al the range of the operation,
and others are linear only over certain ranges and nonlinear for remaining rang of operation.
In this cases an approximation is used to deal with them as linear system via linearization, but
this method is used only in certain ranges. Magnetic levitation is one of the most common
applications in use in the field of control engineering because it is complex, nonlinear, and
unstable system. Magnetic levitation systems have practical importance in many engineering
systems such as high-speed Magnetic Levitation trains, and frictionless bearings. In recent
years, much works have been reported for controlling magnetic levitation systems. Feedback
linearization, (but this control technique does not guarantee robustness in the presence of
modeling error and disturbances), and sliding mode, robust linear controller methods such as
Hoo optimal control, u-synthesis, and Q-parameterization have also been applied to control

magnetic levitation systems.

1.3 Fuzzy Logic | mplementation

Fuzzy controller is simple to be designed using simulation software such as Matlab
software or Labview; however, in the real world the use of such software is not practical. Due
to practical consideration, applications need to be standalone. So, the control designer uses
processors or microcontrollers. To implement the algorithm of fuzzy controller, there are two

kinds processors and microcontroller.

1- General-purpose fuzzy processor

The general-purpose fuzzy processor has been implemented on various platforms,
such as computers; processors (uP, puC, digital signal processor (DSP)). The advantages of
this processor is it can be implemented quickly and be applied flexibly, but it has lower

performance.

2- Dedicated fuzzy hardware

The dedicated fuzzy hardware has been implemented by different technologies since

1986. After that date many industries developed various FLC chips. The disadvantage of

dedicated fuzzy hardware is requiring long development time, but it offers high performance

3- FPGA

Recently FPGA attracted a lot of research because it offers a compromise between

special-purpose hardware and genera-purpose processors. Different from the dedicated

hardware, FPGA is flexible because the end user can change the program easily, and use the

FPGA for another system. Another advantage of FPGA, it offers high performance and speed.

1.4 Previous Studies

McKenna and Wilamowski (2001:189-194) [2] have investigated a method to
implement fuzzy logic controller (FLC) on an field FPGA and obtained very smooth
control surfaces. Their investigation showed that if design changes are needed, the
FPGA chip can be reprogrammed for the new design in a matter of seconds. Their
method of implementation was based on a Lookup-Table (LUT) scheme. This

methode need large size of memory specialy if the number of inputs are increased.

Patyra and Grantner (1998:19-54) [3] presented a paper investigating design issues for
digital fuzzy logic system (FLS) circuits. In their study, comparisons between the
current trends were conducted and they proposed a new methodology whereby a fully
parallel architecture is employed to achieve high performance in hardware
implementation of digital FLSs. They presented ways to trandate an FLS into
hardware, and discussed methods for testing the FLS hardware performance. Both
SISO and MIMO FLC hardware implementations were presented. Their proposed
methodology provides an improved solution for high-speed, real-time applications.

this way take very long time to design fuzzy controller.

Vuong et al (2006:1-8) [4] described a methodology of implementing FLS using very
high speed integrated circuit hardware description language (VHDL). The main
advantages of using HDL are rapid prototyping and allowing usage of powerful
synthesis tools such as Xilinx ISE, Synopsys, Mentor Graphic, or Cadence to be
targeted easily and efficiently. Their work was motivated by the need for inexpensive
hardware implementation of a generic FLS for use in industrial and commercial

applications.

Bonilla, J.E.; Grisales, V.H.; Melgargo, M.A (2001: 1084 — 1087) [5] This paper
presented the development of an FPGA-based proportional-differential (PD) fuzzy
LUT controller. The fuzzy inference used a 256-value LUT. This method was used
due to its reduced computation time cost. The controller architecture focused on the
treatment of errors and changes in errors with tuning gains in order to regulate the
control system dynamics using a traditional method in industrial processes. The
controller was probed with several nonlinear plants, like an inverted pendulum and
magnetic levitation. GA was used as a tuning tool to obtain a particular overshoot in
the transient response of the control system. This way take large size of memory of the
FPGA.

Chia-Feng Juang; Chun-Ming Lu (2009: 597-475) [6] This paper proposed the design
of fuzzy controllers by ant colony optimization (ACO) incorporated with fuzzy-Q
learning, called ACO-FQ, with reinforcements. For a fuzzy inference system, the
antecedent part was partitioned a priori and then all candidate consequent actions of
the rules were listed. In ACO-FQ, the tour of an ant was regarded as a combination of
consequent actions selected from every rule. Searching for the best one among all
combinations was partially based on pheromone trail. Each candidate was assigned in
the consequent part of the rule, a corresponding Q-value. Update of the Q-value was
based on fuzzy-Q learning. The best combination of consequent values of a fuzzy
inference system is searched according to pheromone levels and Q-values. ACO-FQ is
applied to three reinforcement fuzzy control problems. (1) water bath temperature
control; (2) magnetic levitation control; and (3) truck backup control. Comparisons
with other reinforcement fuzzy system design methods verified the performance of
ACO-FQ. The ACO-FQ is difficult and not general as GA.

1.5 Thesis Contribution

This thesis presents the design of fuzzy controller for the magnetic levitation model
CE152, It aso presents a Matlab program for applying the GA to optimize the memberships
of the fuzzy controller. Finally this thesis realize fuzzy controller through FPGA using Xilinx
Spartan 3e FPGA.

1.6 Outlines of the Thesis

This thesis consists of six chapters. Chapter 2 presents a review and introduction to fuzzy
logic and its application, fuzzy sets operations, the main concepts in fuzzy sets such as
membership functions, and linguistic variable. Chapter 3 presents areview and introduction to
genetic algorithm, its using and main concepts in genetic algorithm such as cross over,
mutation, reproduction. Chapter 4 presents a review and introduction of FPGA and VHDL
language, and introduction to Xfuzzy tool. Chapter 5 presents the magnetic levitation model
CE152 anadyze and simulation results of the fuzzy controller without GA, with GA and

VHDL fuzzy controller implementation. The final chapter concludes this thesis.

CHAPTER 2 FUZZY CONTROL

2.1 Fuzzy Logic

What is the fuzzy logic? fuzzy logic is a superset of conventional (Boolean) logic that
has been extended to handle the concept of partial truth. In the (Boolean) logic we see that
the results for any operation can be true or false if we refer to true by (1) and the false by (0)
thentheresult may be (1) or (0).

Classical membership
Old man

Dearee
Age

»

20 40 60 Age (years)

Figure(2.1): Classical Sets

Figure 2.1a shows an example for classical set, that has two values true or false. We see that
the classical set have crisp boundary. And this example shows an age example: the man is old
if he between 50 years and 60 years in that interval al age has the same degree (1). And
outside of this interval, it has (0) degree. But there is problem, what about 49 years and 11
months, is the man young! No he old but has degree less than the 50 years, but in the
Classical sets there are not degrees there are two values 1 or 0. So what is the solution, fuzzy
sets give the solution.

2.2 Fuzzy Sets

Fuzzy sets are the sets, which do not have crisp [7]. There are not two values (true or
false) but there are two limit is (1) completely true and the lower limit is (0) completely false
and the result can have different degree between these limits.

Fuzzy membership
Old man

Degree

»

20 40 60 Age (years)

Figure(2.2): Fuzzy Sets

As shown in Figure 2.2a. the ages between the interval (50, 60) have the same degree. But
out this interval, the man is old but has different degree this set solve the problem of 49 years
and 11 month. In Figure 2.2b we see two circles the small circle is (old man) set. Every
element inside it has the same degree (1), and between the small circle and the big circle there
are different degree of (old man), and every element out side the big cycle has the same

degree (0). The next definition is the mathematically representation of fuzzy sets.

Definition 2.1 (Membership function and fuzzy set) Let F be a set from the domain X. A
membership function pF(x) of set F is afunction that assigns value, or membership degree, to
everyx €F u X — [0, 1]. Then set Fiscalled afuzzy set [§].

2.3 Fuzzy SetsHistory

Fuzzy logic idea was born in July 1964.Lotfi A. Zadeh [7] Found that the traditional
system analysis techniques were very precise for complex systems but these traditiond
techniques took long time to solve the system and very difficult to make it by hardware
component. So he proposed different kind of mathematics to solve any system without
making complex calculations. In July 1964 the idea of fuzzy logic was beginning and in 1965
was the birth of fuzzy logic techniques. From 1965 to 1979 fuzzy logic was rules on the
papers, but there were not any applications of it. The first use of fuzzy logic was in control
systems, in 1979 was the first application of the fuzzy logic in industrial world by Blue Circle

Cement and SIRA in Denmark (or Mamdani) [7]. The system was cement kiln controller.

This system began to operate in 1982. After that system, Japanese attended to fuzzy logic and
started to use it in control systems, and they designed the first automatic subway train
controller in 1987. This controller was not the first Japanese applications on fuzzy logic [7].
But in 1985 Japanese starts to make the first general-purpose fuzzy logic controller which
converted the logic from mathematics form into practica model. After the subway train,

Japanese devel oped the water-treatment system by using fuzzy logic.

2.4Why Use Fuzzy L ogic?
There are many reasons.

1- fuzzy logic is used to control the complex, and nonlinear systems without make anaysis
for these systems.

2- Fuzzy control enables engineers to implement the control technique by human operators to
make ease of describing the systems [7], because of the man want to invent controller
which like him (controller dose the same things which man can do it). So the best way is
transfer the operators which can the man do to the controller, and that transfer is easy in
fuzzy control.

3- Fuzzy logic is flexible with any given systems [9]. If any changes are happening in the
system we do not need to start from the first step, but we can add some functions on top
of it.

4- Fuzzy logic can be blended with conventiona technique [9] to simplify their

implementation.

2.5 Applications of Fuzzy L ogic

The Japanese used fuzzy logic in many of applications, such as (subway train and
water-treatment control), but in these years there are many more applications of fuzzy logic.
For example in the control field:

1- Fuzzy logic is used to control the Camcorder to make stabilization in image if there are
any rock [7].

2- In washing machine there is a soft and bad manner clothes, and there are different
quantities of laundry. Control of washing cycleis based on these date..

3- Robotics controls, Refrigerators for temperature control.

4- Engine Control in the modern cars.
Other usages of fuzzy logic, in image processing, such as image identification, representation,

and description. Now aday's fuzzy logic isused in Internet researching.

2.6 The Operations of Fuzzy Sets

In the classical sets there are basic operations that are found, such as intersection and
union between sets, complement of set. If we have two sets (A and B) and these sets are
subsets of universe (U), aswe seein Figure 2.3 then

Figure(2.3): Two Classical Sets

2.6.1 AND Operation

The intersection between A and B = A N B can turn out to be mathematicaly
equivaent Boolean operation (AND). For exampleif there are element (x) and there
aretwo variables C and D.
If x isfound in (A), wewill say cistrue.
If x isfound in (B), we will say distrue.
(CAND D) istrueif and only if cistrue and d is true (Boolean logic) that is means

(CAND D) istrueif andonly if xe AnB ,asseeinFigure2.4

Figure(24): A ANDB

10

2.6.2 OR Operation

The union between A and B= A U B can be turn on to be equivaent Boolean operation
(OR).

(CORD)istrueif and only if any of (c or d) istrue that is means

(CORD)istrueif andonly ifxe AUB asweseein Figure 2.5 (a), (b)

—

&
S

B

\ :/ \/B)\:
/ "/

Figure(25): AORB

2.6.3 NOT Operation

Complement of any set (A) = A® is the elements which are in universe (U), and are
not in set (A). The complement can turn out to be Boolean operation equivalent (NOT).
(NOT (A)) istrueif and only if cisfalse
Cisfadseitisnotinset (A) x¢ Aasweseein Figure 2.6

Figure(2.6): NOTA

The previous operations are some basic operations of Boolean logic. But the result was
TRUE or FALSE. In fuzzy logic there are the same operations such as AND, OR, and
COMPLEMENT, but the output of these operations are not only true but also result may be
between these limits (true and false). For example, if there are two fuzzy sets A and B, and

11

there is element (x). In the fuzzy sets the element (x) can be in set A and has membership
degree (0.5), and it can be in set B and has membership degree (0.7). We will make some
operations such as AND, OR, and COMPLEMENT. The output of these operations will have

different degree such as the input. The degree of (X) inevery setis i sgnam€ (X)

/uAmB(X) = min{,uA(x),yB(x) } (2.1)
That is means the out put has degree equal to (min (0.5,0.7) = 0.5)
Has(X) = max{/uA(X)HuB(X) } (2.2)

That is means the out but has degree (max(0.5,0.7) = 0.7)

Mo (X) =1= p1,(X) (2.3)

That is means the out but has degree (1-0.5 = 0.5).
Some properties of fuzzy set operations are given in Table 2.1[10][11].

Table 2.1 Some Propertiesof Fuzzy Sets Operations

Law of contradiction ANA =D
L aw of excluded middle AU A" =
DeMorgan’slaws
(AnB)=A"UB’
(AuB) =A-nB’

Involution (Double negation) | A™=A

Commutative AnB=Bn A
AuB=BUA
Associative An (Bn C)= (An B)nC

Au (BuC)=(AuB) uC

Distributive An (BU C)= (An B) U (ANC)
Au (Bn C)=(AuB) n (AuC)

12

2.7 M ember ship Function

Fuzzy set can be represented by a membership function, that gives the degree of
membership [12], as shown in Figure 2.7. In that Figure ua(X) inY —axis, is the symbol that
refers to the degree of the membership function and u (x) can be define as possibility
function not probability function [12], and it takes value between (0,1). Any body can ask
what is the different between probability function and possibility function? To answer this
guestion let us see this example. If you and your friend went to visit another friend. And in the
car your friend asks you, "Do you sure he is a the home?' and you answer "yes, | am sure
but 1 do not know if heisin the bed room or on the roof ".Y ou can give him another answer.
Y ou can answer him "l think 90% he isthere". Look to the answer. in the first answer you are
sure he is in the house but you do not know where he is in the house exactly. But in the
second answer you are not sure he may be there and may be not there. That is the different
between possibility and the probability in the possibility function the element is in the set by

certain

M4 (X) IA A

Hy(x)

x X
Figure(2.7): Membership Function

possibility and the probability in the possibility function the element is in the set by certain
degree of, the probability function means that the element may be in the set or not . So if the
probability of (x) = 0.7 that means (x) may be in the set by 70%. But in possibility if the
possibility of (x) is 0.7 that means (x) is in the set and has degree 0.7. In the classical sets
there is one type of membership function but in fuzzy sets there are different types of

membership function, we now will show some of these types.

1- Triangular membership function: - This type of membership function is specified by
three parameters (X, y, z) aswe seein Figure 2.8.

13

hembership Grades

(2) Triangular MF

=]
oo

=]
=

=
I

=
b

i) 40

0 a0 100

Figure (2.8):

Triangular Member ship Function

In this Figure a, ¢ have same degree (the smallest degree of the membership), and b is the

largest degree of the membership. the degree of any element (x) inside of this membership

can be found by the following equation [7].

u Triangular Membership (x)=

| O

x
o8}

X

o
ol

(on

(2.4)

X>C

2- Trapezoidal member ship function:- This type has four specified parameters (a,b, ¢ and

d) as shown in Figure 2.9. The degree of any element (x) inside this membership can be

found the following equation [7].

0

x
Q

|
Q

2 Trapezoidal Membership (X) =

o T
| =
X

o

o |
(@]

X<a
a<x<b
b<x<c
c<x<d

x>d

14

(25)

(b1 Trapezoidal MF

Membership Grades
= =
=3 =)

=
'S

0.z

Figure (2.9): Membership Function

3- Gaussian membership function:- Figure 2.10 shows example of this type, there are two
specified parameters (c, w), where c is the center of the membership function, and w is the

width of it, that means any change in w, the width of membership will change.

Gaus=zian MF

1
D5 C
0.5
0.4
i

D

O z0 40 &0 80 100

Figure (2.10): Gaussian Membership Function

The degree of any element (x) inside this membership can be determined by the following
equation [7].

[Gaussian Membership Function

(2.6)

4- Bell membership function:- Figure.2.11 shows example of this type. There are three

specified parameters (p, ¢, w), p is usualy positive number [7], c is the center of the
membership function, and w is the width of it.

15

Generalized Bell MF

03
0F
0.
0

0 20 40 &0 80 100

Figure (2.11): Bell Membership Function

The degree of any element (x) inside this membership can be determined by the following
equation [7].

1
X—-C

w

[Bell Membership Function (X) =

2p
(2.7)
1+

The previous membership function are the most commonly used in practice, and can
use any type of these memberships for solving the system that we want. But, there are other

different types that we will not talk about in this thesis.

2.8 Linguistic Variables

Linguistic variable is an important concept in fuzzy logic [7].When fuzzy sets are used
to solve the problem without analyzing the system; but the expression of the concepts and
the knowledge of it in human communication are needed [7]. Human usualy do not use
mathematical expression but use the linguistic expression. For example, if you see heavy box
and you want to move it, you will say, "I want strong motor to move this box" we see that, we
use strong expression to describe the force that we need to move the box. In fuzzy sets we do
the same thing we use linguistic variables to describe the fuzzy sets. These variable are words
or sentence in natural or synthetic language [13]. For example if we take the universe U refer
to the human age, we can take the interval between (50,60) years and give it name "old man"

16

this name is caled linguistic variable. We can use this name to refer to the set that contains
the interval (50,60) years.

39IF-THEN Rules

The previous section showed that fuzzy sets can be represented by linguistic
variables, and it is an important concept in the fuzzy logic. But another important concept,
this concept is fuzzy rules:

IF (inputlisMFa) AND (input2is MFb) AND...AND (input nisMFn) THEN (output is
MFc)

Where MFa, MFb, MFn, and MFc are the linguistic variables of the fuzzy membership
functions that are in input 1,input 2...input n, and output. For example, in a system where the
inputs of the system are Serves and Food and the output is the Tip. Food may be (good, ok,
bad), and serves can be (good, ok, bad), the output tip can be (generous, average, cheap),
where good, ok, bad, generous, average, and cheap are the linguistic variables of fuzzy
membership function of the inputs (food, and serves) and the output (tip). We can write the

rules such as.

IF (Food isbad) and (Servesisbad) THEN (Tip ischeap)
antecedent consequent

The maximum number of rules of any system can be found by the next equation(if all inputs

have same number of memberships).

max num of rules= M",

Where (M) is number of the membership function in the input and (N) is the number of the
input. The previous example shows the way to write the rules of fuzzy systems. There are two

main types of fuzzy inference rules in fuzzy logic reasoning namely, generalized modus pones
(GMP) and generalized modus tollens (GMT).

17

Table 2.2 Comparison between GMP and GMT

GMP Direct reasoning GMT Indirect reasoning
Premise 1. If X iSA ThenyisB Premise 1. If X iSA ThenyisB
Premise 2: X iISA Premise2: yisB

Consequence: y isB Conseguence: X isA

Forward goal-driven inference Backward goal-driven inference
Eg: Fuzzy logic control Eg: Expert System (Al)

But how can the designer write the rules of fuzzy systems; there are four ways to derivation
the fuzzy system rules.

1- Expert Experience and control engineering knowledge.

2- Based on fuzzy modeling of human operators central action.
3- Based on learning

4- Based on fuzzy model of a process.

2.10 Implication Functions

The IF-THEN rules can be interpreted in classical logic by the implication operators.
Suppose there is a statement such as "IF a THEN b", then the classical set represents this by
a =h. The truth table for this rule can be given as. For the first case aisfalse so by therule b
will be false too; second case ais false and b is true this is true case because a=b not b= a
so it can happens b is activated when ais false; the third case ais true and by using the rule b
must be true, but b is false so it is false statement; finally the fourth case is true because ais

trueso it implicate b istrue.

Table 2.3 Classical Set Truth Table

a b a=—b
F F [T
F T T
T F |F
T T T

18

The implication operator can aso be written as
gvb o Iia/\b:]v;

Each rule in the fuzzy knowledge base corresponds to a fuzzy relation. Various approaches
can be taken in determining the relation corresponding to a particular fuzzy rule. The common
implication functions are Mini rule (Mamdani), Product rule (Larsen), Max-min rule (Zadeh),
Arithmetic rule (Zadeh) and Boolean and others [10].

Common implication operators are:

i— Mamdani uR(x,y) = min[pA(X),uB(y)]. (2.8)
2- Zadeh pR(x,y) = max{ min[uA(X),uB(y)], 1 - tA(X)}. (2.9
3- Larsen pR(X,y) = pA(X) * uB(y). (2.10
4- Lukasiewicz uR(x,y) = min{ 1,[1 - pA(X) + uB(y)]} (2.11)

The two most important fuzzy implications are Mamdani and Larson. This thesis will use the

Mamdani implication

2.11 Mamdani I mplication

Mamdani proposed a fuzzy implication rule for fuzzy control in 1977. It isasimplified
version of Zadeh implication operator. The Mamdani fuzzy logic operator is given in equation
(2.8). Next example shows how can to calculate the output of each rule, the system is SISO.
The input is temperature and the output is the number of customers. Figure 2.12 aand b
shows the membership of the input and output respectively. Suppose the next ruleis given.

IF the temperature is hot OR temperature is moderately hot, THEN the ice cream

parlor iscrowded.

Unfilled Crowded

z
o
%
&
i3
£
i
o
2
I
£
-k

-

'\O
a

’\'0

(=)
o

Sl
=

oo oo
o R @ @
Membership Function ()
o o
Fa o

Membership function ()

o

o

S0 100

o

20 40 &0 &80 100

Temperature (°F) Mumber of Customers

Figure (2.12): a) Thelnput Membership b) The Output Membership

19

Suppose the temperature is (75 F), so it isfound in two sets Moderately hot and hot; with two
degrees pumno=0.8 and upe=0.2 respectively. Any rule contains OR operation can be converted

to more than one rule. So the previous rule can be separate to two rules.

1- IF thetemperatureishot THEN theice cream parlor iscrowded.

2- | F thetemperatureismoderately hot THEN theice cream parlor iscrowded.

The output will be crowded in the two cases but by different degrees.
HR1=MiN(Lihot)

HR2=MIN(Km hot)-

the poutpur=max(pr1, pr2)=max(0.8,0.2)=0.8

Result of Mamdami Implicat on

Memberstip Function (u)
f=] = f=] f=]
o i8] + o o - i8]

ul 20 40 =1) s0 100
Mumber of Cudomers

Figure (2.13): Membership Function of Customer After Mamdani I mplication
Rule.

2.12 Fuzzy Logic Control (FLC)

Fuzzy Control applies fuzzy logic to the control of processes by utilizing
different categories, usually ‘error’ and ‘change of error’, for the process state and
applying rules to decide a level of output, i.e. a suitable control action. The linguistic
variables used for both input and output variables are often of the form ‘negative
large’, ‘positive small’, ‘zero’ etc. A rule base of the FLC can be written as matrix to or as
list of rules as shown before atypical rules matrix for a two-input, single-output system with
three membership functions per variable is shown in Table 2.4

20

Table 2.4 Simple Rule Base

E N Z|P
de

N

Z

There are many models of FLC, but the most famous are the Mamdani model, Takagi-
Sugeno-Kang (TSK) model and Kosko's additive model (SAM) [7]. But this Thesis will use
Mamdani model only.

2.13 Mamdani Modd:

Fuzzy controller

knowledgze

fuzzi ficati on
interface

Controlled system

[process)

Figure (2.14): Mamdani M odel

Figure 2.14 shows the block diagram of Mamdani fuzzy system model, the rule base of this
model isin the next form.

IF(XisA)and (Y isB) ... THEN (ZisC)

Where C is membership of the output as shown in Figure 2.15. Mamdani model block consist

of three stage.

21

MAX

X
Input 1 Input 2

Figure (2.15): Mamdani Model Example

e Fuzzification: - Fuzzification means converting a crisp value of process variable into a
fuzzy set. In order to make it compatible with the fuzzy set representation of the process
state variable.

e Fuzzy Associative Memory (FAM): - FAM is a set of fuzzy associations between the
input and the output [14]. This stage consists of two parts:

1. Knowledge base: - Knowledge base contains a data base and rule base. Data base provides
necessary definitions for linguistic rules, and the rules base consist of the IF-THEN rules,

which can be derived by using four ways as shown in (section 3.10)

2. Decision-Making: - Decision-Making means choosing the most appropriate action from
severa possible actions.

o Defuzzification: - Defuzzification strategy is aimed at producing a non-fuzzy control
action, or we can say defuzzification means the conversion of the fuzzy output values into
crisp values. For example, if we say "the output force must be large” and large variable
takes the values between (70, 90) N, then what is the force will be needed 75 or 80 or ...N,
we can know what is the force we want by using defuzzification method. There are
different types of defuzzification methods.

1- Mean of Maximum method (MoM): In the Mean of Maximum (MoM) defuzzification

method, the fuzzy logic controller first identifies the scaled membership function with the

22

greatest degree of membership. The fuzzy logic controller then determines the typical
numerical value for that membership function. The typical numerical value is the mean of the

numerical values corresponding to the degree of membership at which the membership
function was scaled.

Mean al Typical Valuas for
Maximum Mambership Funclion

Figure (2.16): Example of MOM M ethod

2- Center of Area (CoA): - The center-of-area (COA) method is the most popular
defuzzification method [15]. We can calculate the real value of the output by the next
eguation.

Xmax

oz OO (2.12)

Xmax

J 1 ()

Xxmin

An example of CoA method is shown in Figure 2.16. But the main disadvantage of this
method isits high computational cost [7].

min mGoh Emax

Figure (2.17): Example of COA Method

23

3- Center of Maximum (CoM): In the Center of Maximum (CoM) defuzzification method,
the fuzzy logic controller first determines the typical numerica value for each scaled
membership function. The typical numerical value is the mean of the numerical values
corresponding to the degree of membership at which the membership function was scaled.
The fuzzy logic controller then uses the following equation to calculate a weighted average of

the typical values.

out= g+ ey (2.13)

In this thesis the Mamdani model will be used and will have two inputs error and change of
errors and the output will be change of voltage. All of inputs and output will have seven
membership functions. And the CoA defuzzification method will be used. The rule base will
be as the next form:

IF error is zero AND change of error is zero THEN change of voltageis zero.

These rules will be written by the experience.

24

CHAPTER 3 GENETIC ALGORITHM

3.1 Introduction

Genetic Algorithms are reliable and robust methods for searching solution spaces [10].
GA is genera purpose search algorithm which uses principles inspired by neutral genetic to
find solutions to problems [16][17]by using Survival of the fittest principle. The basic idea is
to maintain a population of chromosomes, which represent candidate to the concrete problems
that will be solve, through a process of computation and controlled variation. Each structure
of chromosome in the population represent one of the possible solution of the problem and the
fitness test of these chromosomes can determine which chromosomes are used to form a new
chromosomes that will be use in computational process. As in natural the new chromosomes
are created by some operations such as crossover and mutations. There is another operation
which called reproduction. This operation is added to achieve the survival of the fittest
principle. In recent years, GA is used in many applications specialy in optimization and
search problems and had a great measure of success; the main reason of this success that it
can start from any solutions, and generate other solutions that converge to the optimal
solution in less time versus other classical search tools (enumerative, heuristic). "GA are
theoretically and empirically proven to provide a robust search in complex spaces, thereby
offering a valid approach to problems requiring efficient and effective searches’ [18]. The
human designer which want to solve optimization problem using GA must address five
issues[18].

1- A genetic representation of candidate solutions,

2- A way to create an initial population of solutions,

3- An evauation function which describes the quality of each individual,

4- Genetic operators that generate new variants during reproduction, and

5- Vaues for the parameters of the GA, such as population size, number of generations and
probabilities of applying genetic operators.

Figure 3.1 shows a basic model of a genetic algorithm, the agorithm are as followg[19].

1- [Start] Generate random population of n chromosome, the individuals of this population

represent the Possible solutions.

2- [Fitness] Evaluate the fitness f(x) of each chromosome x in the population.

25

3- [New population] Create a new population by repeating the following steps until the

New population is complete.
e [Selection] Select two parent chromosomes from a population according to their

fitness (the better fitness, the bigger chance to get selected).

e [Crossover] With a crossover probability, cross over the parents to form new
offspring (children). If no crossover was performed, offspring is the exact copy of
parents.

e [Mutation] With a mutation probability, mutate new offspring at each locus (position
in chromosome)

e [Accepting] Place new offspring in the new population.

4. [Replace] Use new generated population for afurther sum of the agorithm.

5. [Test] If the end condition is satisfied, stop, and return the best solution in current
population.

6. [Loop] Go to step2 for fitness evaluation.

generation=0 o~ . - population
of chromosomes

v

Determine
—> the fitness of
each individual

'vlr >100 generations
next
generation v
Select next
ti
generation Display
wlf Results

Perform reproduction
using crossover

v

Perform
mutation

Figure (3.1): Thebasic Genetic Algorithm

3.2 Genetic Algorithm vs. Other Optimization Techniques

Working with GA is very simple, because its principle depends on emulating
genetics and natural selection by software tools. GA does not deals with the real parameters of

the problem, but it deals with the code of these parameters. The parameters of the problem are

26

coded mostly as a binary code. The population of the problem is always chosen randomly,
typical population size is from few dozens to thousands [19]. To solve the any problems
(searching , optimizations) the cost function or fitness function is needed; this function is
responsible for the selection of the best individuals in the population and delete vulnerable
individuals. Fitness function in GA can be any functions depending on the applications or the

problems and can be nearly anything that can be evaluated by a computer or even something
that cannot. For example f (X) = x* can be evaluated by computer but the case of eyewitness,

the human being selects among the aternatives generated by GA [19]. There are three criteria
used to classify the optimization agorithm:

1- Discreet or continues.
2- Constrained or unconstrained.
3- Sequentia or parallel.

Some optimization algorithms can work with discreet and continues problems, and there are

algorithms work with one kind of the problems, and so with the constrained and

unconstrained. There are many applications need to work with high speed such control

systems, so it needs paralel agorithm; paralel algorithms are used to speed up the

processing. GA differs from conventiona optimization techniquesin following ways [20]:

1- GA does not deal with data directly but works with encoded data.

2- GA uses least information such as fitness function to solve problems an does not need
derivation.

3- GA uses probability laws rather than certain laws.

4- GA generate populations of answer not just one answer.

5- Almost al conventional optimization techniques search from a single point but GA aways

operates on awhole population of points (parallelism).

3.3 GA Operations

The process of genetic agorithm is used to solve the structure of chromosome to
represent the possible combinations of answers, according to population size; the population
size can be fixed or random according to the optimization problem. The chromosome

structure represents al the variables that the designer want to find the optimal values of it.

27

Every variable represents gene, and the main structure of the genesis 0 and 1 combinations.
Real numbers can aso be used to indicate the number of floating. The chromosomes of each
string represents a separate individual, and each individual represent one solution of the
problem, so each population contain series of individual and the decision of each individual
will have a so-called fithess value. This value is calculated by fitness function; the individual
which have higher fitness value has higher probability to appear in the next generation more
than the lower fitness value. The new population is generated after some processes, such
selection, replication (reproduction), mating (crossover), Mutation and other evolutionary
mechanisms. The process of evolution over generations eventually converges to the optimal

solution.

3.4 GA Elements

As shown before there are some terminology associated with GA. This section will

gives brief definitions of these terminol ogy.

3.4.1 Individuals

Anindividual represents one solution of the problem, in two forms.
1- The chromosome or genotype: which consist of genes that GA deals.

2- The phenotype: which expresses the chromosome in the real model.

Solution set Phenotype

Factor 1 ‘ Factor 2 | Factor 3 | | Factor N

Y A h 4 v
Gene | | Gene 2 | Gene 3 |

Chromosome Genotype

Figure(3.2): Representation of Genotype and Phenotype

Figure 3.2 shows the two forms of the individuals (chromosome). The chromosome consists
of a set of genes. Every gene represents a single factor of the problem. A geneis A geneisa
bit string of arbitrary lengths. The bit string is a binary representation of number of intervals

from alower bound [19]. Figure 3.3 shows the chromosome architecture

28

1010 1110 1111 0101
™ T N g\
Gene 1 Gene 2 Gene 3 Gene 4

Figure (3.3): Gene Representation

3.4.2 Population

Figure 3.4 shows that the population consists of a group of individuals. Each
individual is represented by phenotype parameter. There are two important aspects in the
population used in GA.

1- Initia population.
2- Population size.

Chromosome 1 11100010

Population Chromosome 2 g1 i 11011
Chromosome 3 10101010
Chromosome 4 11001100

Figure (3.4): Population Representation

Initial population often consists of random individuals but in some cases the designer can
suggest some solutions to be in the population. The size of it depend on the complexly of the
problem. In the ideal case the first population must have large number of individuals to cover
all the rang of solution space. All possible alleles of each should be present in the population.
Sometimes some of the solutions expected can be used to seed the initia population. Thus,
the fitness of these individuals will be high which helps the GA to find the solution faster. The
population size can cause some problems. The large population is useful to find the best
solution but it was established that the time required by a GA to converge is (N x log N)

where N is population size [19].

29

3.5 Chromosome coding

First step of the optimization problem is converting the variables in this problem to
code in which the GA can work with it, as shown in Figure 3.2, this code must have relation
with the real value of the variable to calculate its fitness value. For example if the variable is
integer between 0 and 100 the O can be coded to binary such as "0000000" and 100 can be
coded to "1100100" and every value between these values can be found by a simple

conversion. There are many kinds of coding [19][20]. Figure 3.5 shows the kinds of coding.

1- Binary encoding:

The most common way of encoding [19]. This code consists of binary O or 1 indicates
chromosome gene, often used in numerical problem asin Figure 3.2 (a).
2- Real-encoding:

This encode is used to represents the numbers or symbols, often used in the problems of
arrangement type asin Figure 3.2 (b).
3- Octa encoding:

This encoding uses string made up of octal numbers (0-7) asin Figure 3.2 (c).
4- Hexadecimal Encoding

This encoding uses string made up of hexadecimal numbers (0-9, A—F) Figure 3.2 (d).

Chromesome & (10110010110010101 Chromeoseme &4 (1 2 3 2 6 47 9 8

Chromosome B (11111110000011000 | - Chromesome B (8 56 723149
(a) =)

Chromosome & (0345627 Chromosome & ABCI1235F

Chromosome B (65343266 Chromeoszome B | BECDEES

(c) (d)

Figure(3.5): a)Binary Coding - b) Real Coding - ¢) Octal Coding
d) Hexadecimal Coding

3.6 Fitness Function.

The fitness of an individual in a genetic algorithm is the value of an objective function
for its phenotype. and it is used to evaluate how good the different individuals in the

population are. The fitness function depends on the problem that will be solved, For example

30

in Traveling Sales Man (TSM) problem may be the time that the sales man will take it aong
traveling. So the fitness value can be defined as function of the objective function g(x).

fitnessvalue = f (g(x)) (3.2)

For calculating fitness, the chromosome has to be first decoded and the objective function has
to be evaluated. The fitness not only indicates how good the solution is, but also corresponds
to how close the chromosome is to the optimal one [19]. When the optimization problem is
single criterion, it is simple because there are one goa to achieve, When the problem is multi
criterion the optimization problem will be more complex because if the solution is optimal for
one criterion it may be worst for another one. The most difficult fitness functions are the ones
needed to evaluate non-numerical data [21], as the developer must find other metrics or ways
to find a numerical evaluation of non-numerica data. An example of this is provided by
Mitchell [22], who describes the problem of finding the optimal sequence of amino acids that
can be folded to a desired protein structure. The acids are represented by the alphabet {A, ...,
Z}, and thus no numerical value can be straightforwardly calculated. The used fitness function
calcul ates the energy needed to bend the given sequence of amino acids to the desired protein.
In control applications there are different fitness function that may be used [23].

I- fitness.value = Tez (t)dt sum of squared error 32
0

Where (e) isthe error signal, this function can track error quickly, but easily givesriseto

oscillation..

2- fitness.value = T‘e (t)‘dt sum of absolute error (3.3
0

This function can obtain good response, but its selection performance is not good.

3- fitness.value = Tte2 (t)dt sum of time weighted squared error (3.4)
0

This function can gives fast tracking and good response.

31

3.7 Selection

Selection or reproduction is the first process after finding the fitness values of the
solutions. In this process the developer will choose the pairs of parents that will be crossed.
This step is to decide how to perform selection. On other words, who are the individuas of
that population will be used to create the next offspring that will be used for next generation.
The purpose of this step is to stress the individuals of the population that will be selected with
the higher fitness. The problem is how to select the chromosomes that will cross, there are
many methods that can be used [19].

3.7.1 Roulette Wheel Selection.

Figure 3.6 shows the Roulette selection method which is one of the traditional GA
selection techniques. That is called because this method works in a way that is similar to a
roulette wheel. Each individual in apopulationis allocated a share of a wheel; the size of
the share depends on the individual’s fitness. The individuals that have higher fitness have
big share. The individuals that have lower fitness have small share. That means the lower
fitness of the individuals may have no chance to be in the roulette. A pointer is spun (a
random number generated) and the individua to which it points is selected. This continues
until the requisite number of individuals has been selected. The Roulette wheel will have a
problem when the fitness values differ very much. If the best chromosome fitness is 90%, its
circumference occupies 90% of Roulette wheel, and then other chromosomes have too few
chances to be selected.

3.7.2 Rank Selection

Rank Selection ranks the population and every chromosome receives fitness from the
ranking [19]. It results in slow convergence It also keeps up selection pressure when the

fitness variance islow [19]. Here, rank selection is programmed as follow.

1. select first pair at random.
2. generate random number R between 0 and 1.
3. if R<r usethefirst individual as aparent. If the R>=r then use the second individual as the

parent

32

4. repeat to select the second parent.

Qmee rotate,

selection
point

Weakest individual

theirouletie whee! F = has smallest share of
the roulette wheel

Figure (3.6): Roulette Whed Selection.

3.7.3 Stochastic Univer sal Sampling

Figure 3.7 shows Stochastic Universal Sampling method in this method the

individuals represent a line that is divided into number of Adjacent segments, such that each

individual’s segment is equal in size to its fitness exactly as in roulette-wheel selection. Then,

create equally space pointers that are placed over the line. The numbers of these pointers
(NPointer) depends on the number of the individuals that will be selected,; the distance

between the pointers is given as 1/NP, and the position of the first pointer is given by a

randomly generated number in the range [0, I/NPointer].

pointler 1 pointer 2 pointer 3 pointer 4 poin},er 5
individual | 11* I 2* I 3 ¥ I 4 *I o I *6 7B
f l T T T l T T
0.0 0.1g 054 0.49 0a2 073 0.82

ralom munber

Figure (3.7): Stochastic Universal Sampling

33

3.8 Crossover

Crossover is the process that takes two parents of solutions and generates a new
offspring. The reproduction step filters the individuals but stays without any change so to
find better solutions. The crossover process is heeded to generate new childes that take the
best adjectives from the parents. The crossover needs three steps to compl ete the process.

1- Choosing the parents randomly (choosing two random individuals).

2- Choosing the parts of chromosomes that will be changed.

3- Finally, swapping the position values between the two chromosomes following the cross
site.

Various crossover techniques are discussed as follows:

3.8.1 Single-Point Crossover

Traditional genetic algorithm use this technique. Where the two parents are cut once at
corresponding points and the parts that cut exchanged as shown in Figure 3.8. The cross point
is selected random, that means the crossover point at two parents may be changed at other two

parents in the same population.

RAERNNRRARE }Twogmd
0|0 0|O|0|0|0|0' solutions

Randomly determined
crossover point

/Ml\ll\l\l\
Iﬂlillil o0jofojojofo

0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ Two offsprin;

|0|0|0|0|]_|]_|1|]_|]_|1 solutions

Figure (3.8): Single Point Crossover

34

3.8.2 Two-Point Crossover

That technique is similar to Single-Point Crossover, but the difference is that there are
two cut points these points are selected randomly and the part that are between these points
are swapped as shown in Figure 3.9. The disadvantage of this techniques is that building
blocks are more likely to be disrupted. But the advantage of it is that the problem space may

be searched more thoroughly.

Parents:

Figure(3.9): Two-Point Crossover

3.8.3 Uniform Crossover

Uniform crossover is another crossover technique. In this technique, the random mask
is used, and this mask has same length as the chromosome. This mask consists of 1sand Os .
If abit in the mask is 1 then the corresponding bit in the first child will come from the first
parent and the second parent will contribute that bit to the second offspring. If the mask bit
is O, the first parent contributes to the second child and the second parent to the first child as

shown in Figure 3.10.

Parent2 11010010

Parent1 10111100 I
L]
IMask 01001101 |

Child1 10011110
Child2 11110000

Figure (3.10): Uniform Crossover

35

3.9 Mutation

Mutation means swap one bit in binary coding or changes one number if the
chromosome consists of numbers. For binary coding, for doing this process there are one
way; first choosing random number at every individua if the number less than specified
number which is chose before by the programmer, then this individual will have mutation
process. But how many bits will be changed there are many ways. First choosing random
number between 1 and the total numbers of chromosome length and swap the bits which meet
that number. Second method is choosing random number between 0 and 1 at every bit of the
chromosome if the number less than specified number then this bit will be swapped i.e., if itis
al changeit to O or vice versa. This mutation probability is generally kept quite low and is
constant throughout the lifetime of the GA. However, a variation on this basic algorithm
changes the mutation probability throughout the lifetime of the algorithm, starting with
a relatively high rate and steadily decreasing it as the GA progresses. This allows the
GA to search more for potential solutions at the outset and to settle down more as it

approaches convergence.

3.10 Elitism

With crossover and mutation taking place, there is probability that the best solution
may be lost as there is no guarantee that these operations will preserve fitness. To
combat this elitist models are often used [16]. In these method, the best individual
from a population is saved before any of the operations take place. After the new
population is formed and evaluated, it is examined to see if this best structure has
been preserved. If not, the saved copy is reinserted back into the population, usualy this
individuals is reinserted instead of the weakest individual. The GA then proceeds to perform

the operations on this population.

3.11 Genetic Fuzzy Systems

As known before heuristic fuzzy control depends on good knowledge of the system,
which is intended to control it. So it must be a control designer with a good experience with

this system. The fuzzy controller of any system can be found by try and error. Try and error

36

method is not simple in fuzzy control and may be take very long time, because there are many
parameters have an effect of the fuzzy controller, such as membership shape, rules (number of
rules or architecture of rules), inputs gains and outputs gains, and the interval of the
membership of the inputs and outputs; so in the recent years Genetic Fuzzy Systems (GFS)
are used to solve these problems, and the Hybridization between GA that is one of methods of
Evolutionary Algorithms (EA) and FLC so called soft computing. Figure 3.11 shows afamily
of computing techniques. There are so many ways of how to use GA in fuzzy control. The
most extended GFS type is the genetic fuzzy rule-based system (GFRBS), where an EA is
employed to learn or tune different components of an FRBS. The objective of a genetic tuning
process is to adapt a given fuzzy rule set such that the resulting FRBS demonstrates better
performance. The following components of the knowledge base (KB) are potential candidates

for optimization [18].

o sol
,“.;_-;’f:'"" /,—’ "‘--\\ “'“H.__:._gom]]uﬁng
/’//r/f’ 'rlllr \\ '\\ \\
s { Meuaro kY ‘\\\
4 [Fuzzy 4 W,
/ Fuzzy | Systems E“ZZYI 1| Y
/ . Neura \
f Logic Networks| Neural \ N,
/ S/ Networks ‘
! (o \.\ ';,l' Voo
-~ Gienetic™ \ 11
!IIll \ / Fuzzy ™ ,_'j) ll 1
Y / Systems . /Genetid) f o
\ / Fuzzy T v MNeural | /‘
AW Evolutionary A ‘\.,_:‘:Iftworks: s :|
\ -_Algorithms - -

| f S — - "—"'l:-'_"'}i'*'-—-:t:"'
lEvolutionary e ~.

\ N { Genetic , |
%\ Computation | Bayesian /Probabilisti¢, /
N Networks . N 1/
\\\\ L Reasnmn% #
- . " T —_— I ';/’

Figure (3.11): Hybridization in Soft Computing

1- Data base (DB) components:. scaling functions and membership function parameters.
2- Rule base (RB) components: "IF-THEN" rule consequents.

3.11.1 Genetic Tuning of The Data Base

The tuning of the scaling gains and fuzzy membership functions is an important task
in FLC design. Scaling gains applied to the inputs and outputs of an FLC. Because the most

37

FLC is normalized, the universes of discourse in which the fuzzy membership functions are
defined (all inputs and outputs are in the rang [-1 1]. The individua is refer to scaling gain
and by using fitness function can calculate the best individual which gives the best scaling
function. In the case membership function, the parameters of the membership is tuned;
Triangular membership functions are usualy encoded by the left, right, and center of the

membership

3.11.2 Genetic Learning of The Rule Base

In this way the membership of the fuzzy inputs and outputs and the scaling gain of
them do not changed, but the sequence of IF THEN rules will be modified to gives the best
result. In this way the individual is represent the one rule or the all rules. The RB is represent
by arelational matrix, adecision table or alist of rules.

In this thesis the fuzzy membership inputs and output membership functions will be
used as a variables that will be optimized using GA. Every triangular membership has three
variable can effect on the shape of it; so the each chromosome will has the number of genes
every genes refer to one parameter that effect on the membership shape. For example every
triangular membership can represents be three genes because it has three parameters that
control of its shape (center edge, left edge and right edge). If the inputs of fuzzy controller
have seven triangular membership, then every chromosome of the population will have
twenty one genes (7x3) (in this thesis there are ten variable for membership and three

variables for gains). And the fitness function will be the integral of the absolute value of error.

38

CHAPTER 4 FPGA

4.1 Introduction

FPGA is digital integrated circuits (ICs) that have electronics blocks which can be
programmed, and these blocks has configurable interconnection between them. These block
can be used by the designed engineer to perform ahuge ranges of tasks. There are two kinds
of FPGA, one kind can be programmed for single time only and it so called one time
programmable (OTP). The second kind can be reprogrammed many times. The difference
between FPGA and the other devices that have internal hardwire by manufacturer is its
flexibility. Since 1960, the ICs are used in the human life, and there are many different types
of ICs that have been used such as memory devices, microprocessors (uP). Programmable
logic devices (PLDs), application-specific integrated circuits (ASICs), application-specific
standard parts (ASSPs), and—of course—FPGASs. Figure 4.1 shows the timeline of the ICs

and other devices.

1245 1950 1955 1960 1985 1970 1975 1980 1985 1990 1995 2010
Transistors ——] | | | | | | | | | | | ¥
IC= (General) — I I I I I I I I x
SRaMs & DRAMs [|
Microprocessors { I I I I I I [}
SPLDs ; ! ! ! ! ! ! '
CPLDs 5
ASICs 1 | [
FPGAs %

1 | | |

Figure(4.1): Technology Timeline

The white parts in the timeline means the time that the devices are found but were not used by
the engineering widely. For example Xilinx has been designed first FPGA in 1984 but started
being in use by the engineersin 1990 [24].

39

4.2 Typesof PLD

There are two types of PLDs, simple programmable logic devices (SPLDs) and
complex progranmable logic devices (CPLDs). There are many SPLDs such as
programmable logic arrays (PLAS), programmable read only memory (PROMS),
programmable array logic (PALSs) and generic array logic (GALS),. as shown in Figure 4.2.

PLDs]

{ []] !

|F‘FlO|'u'|$ | PLAs | pae | | GALe | ete.

Figure (4.2): PLDsTypes

4.3 Types of FPGA

FPGA is silicon chip that has lot of logic gates not connected together, and it is an
integrated circuit that have more than 10,000 logic cell; that cells are interconnected by
matrix of wires and programmable switches. The function of FPGA is defined by the user
program rather than manufacturer. "The program is either 'burned' in permanently or semi-
permanently as part of a board assembly process, or is loaded from an external memory each
time the device is powered up” [25]. Every FPGA has three mgjor component, configurable
logic blocks (CLBs), input/output blocks (I0Bs), and interconnects. CLBs is responsible for
building the logical circuit for the user. I0Bs are responsible for the interface between
package pins and interna signal lines. Interconnects are responsible for routing paths to
connect the inputs and outputs of the CLB and I0B [25]. Manufacturers use different

technologies for the implementation in FPGA. Among these technol ogies, and the technol ogy

40

Logic Block o
1/0 Cell

| nterconnaction

Resources
gleloopoo ¥
of (R 1 [o
o (5] (5] 5] 0
o AR PRI PRI o
o 5] G B B o
o [I R R e
el el el el
o [] PR PR e
= il sl el Rl
e E R]

Figure (4.3): FPGA Architecture

of choice that allows programming the device more than once. Examples of these

technologies are:

1- EPROM technology: This technology uses transistors erasable programmable read-only
memory (EPROM). Its main disadvantage is the operation of reconfiguration that requires

the use of an ultraviolet source.

2- EEPROM technology: This technology uses transistors electricaly erasable
programmable read-only memory (EEPROM). Compared to the EPROM technology, it
has the advantage that it can be reprogrammed electricaly.

3- Technology Static Ram (SRAM): For this technology, connections are made by making
the pass transistors. This technology allows rapid reconfiguration of the FPGA. However,

its main disadvantage is the space required for SRAM.

4- The FLASH technology: Thistechnology is limited in the number of reconfigurations and
has a reconfiguration time compared to longer-SRAM technology. However, the advantage
of this technology is that it retains its configuration even if power is removed. Therefore,
an FPGA-that depends on Flash technology can turn off its power and the program will not
be erased.

41

Figure 4.4 shows the structure of CLB Xilinx technology. This structure includesa LUT of 4
bits that can implement any function of four variables combinational logic. ThisLUT can also
be configured asa RAM (16 x 1) or register shift of size 16 bits. It also includes a multiplexer
and aflip-flop, D flip-flop and all its control inputs (clock, reset, enable).

FAM
7 =
b—t» LUT

o= 4-bits =¥
e
* I
v D
& La ﬂjp—ﬂl:lp —* 4
Ik o

enabile
Reser

Figure(4.4): Structureof aLogic Cell

These days, FPGAs offer the possibility of using dedicated blocks such as memories
RAM, multipliers cabled PCI interfaces and processor cores. The design of control
architectures is done using CAD tools. There are two commonly used language, Very high
speed integrated VHDL and Verilog . These two languages are standarized and compatible
with all FPGA technologies previoudly introduced. Figure 4.5 shows the FPGA programming
steps. Thisthesiswill use the Spartan 3e FPGA from Xilinx company.

Codage avec un langage HDL

Netlist
e e e T e
&
routage

LA D
Synthése

B
“see 58

Bitstream Geéneration
0011000100110000011000 :
o1 10010010010000100010] du bitstream

Configuration

0111000001101000001100
1000111000001110101010

FPGA Matrice FPGA

Figure (4.5): Programming a FPGA

42

* The Spartan-3E Development System

The Spartan-3E, a kind of FPGA board, is used to design the very-large-scale
integration (VLSI) Test Module, which provides an advanced hardware platform that can be
used to create a complex system, (see Figure 4.6). The Spartan-3E family is specifically

designed to meet the needs of high volume, cost-sensitive consumer electronic applications
[26].

Platorn Flagh i *#=5_ ¥

i

$2 XILINX

"-SPARTAN-3E |

A T

Figure(4.6): The Spartan-3E Development System Board Photo

The Spatan-3E contains these important features:

. Vey low cost, high-performance logic solution for high-volume, consumer-oriented
applications.

. Proven advanced 90-nanometer process technol ogy.

. Eight discrete LEDs

. Four dlide switches

. Four push-button switches

« Xilinx XC3S500E Spartan-3E FPGA: up to 232 user-1/0 pins, 320-pin FPGA package,
and over 10,000 logic cells.

. Multi-voltage, multi-standard Select 10 interface pins.
. Uptoeight DCMs.

. Complete Xilinx ISE and Webpack development system support.
« A 2-lineby 16-character LCD .

. VGA display port.

. PS/2 mouse or keyboard port.

« On-board USB-based FPGA/CPLD download/debug interface.

. 50 MHz clock oscillator.

. Hirose FX2 expansion connector.

. Three Digilent 6-pin expansion connectors.

. Four-output, SPI-based DAC.

Including the above functions, Spartan-3E has these specific features:

. Parale NOR flash configuration

. MultiBoot FPGA configuration from parallel NOR flash PROM
. SPI seria flash configuration

. MicroBlaze 32-bit embedded RISC processor

. KCPSM3 8-hit embedded controller

. DDR memory interfaces.

4.4 FPGA and Fuzzy Implementation

As presented in chapter 2 fuzzy systems have became very popular in recent years.
Finding many different hardware implementation of FLSs, general-purpose microprocessors
and microcontrollers are mostly used for implementing FLS in hardware, but with the
complex systems these devices can not perform operations assigned to it as required. There
are many researches of FLC implementation on FPGA [2][3][4]. These researches discussed
the implementation of FLS onto FPGA, but writing VHDL code is not easy. Because fuzzy
systems have many correlated parameters, writing VHDL code needs good knowledge in
VHDL language. Reducing design time of FLS causes focusing on optimizing the FLS to give
high performance. Software CAD tools are used to deal with the complex tasks of FLS. Some
of thesetoolsare [27]:

4.4.1 FuzzyTech

This tool is graphic user interface (GUI). It is used to develop FLSs, and generates
different codes that can be useful in many hardware and software tools, these codes are:

1- portable C code that can be used with other software on different target hardware devices.
2- assembly code for microcontroller and DSP such as (PIC and M otorola microcontrollers).
3- code that integrates conventional control techniques.

4- M code that can be used by Matlab™/Simulink™.

4.4.2 Rigel’s Fuzzy L ogic Applications Software Helper (rFLASH)

It is acode generator that can create a subroutine in assembly code to implement the
FLC. rFLASH creates FLC code from the high level control description files. This tools also

has a simulator that generates the outputs from given inputs.

4.4.3 Fuzzy I nference Development Environment (FIDE)

It isa CAD tool that run under Windows™. This tool can generate ANCI C code, and
assembly code that can work with Motorola micro controllers. As shown these tools can not
generate a VHDL code that work with FPGA devices. But since 1992 XFUZZY CAD tool
has been developed, and has evolved with the passage of time. This thesis uses Xfuzzy to
generate VHDL code for FLC.

4.5 Xfuzzy

Xfuzzy isa CAD tool that was developed using JAVA language. This tool can be used
under two operating system (Windows and UNIX). It offers the safety advantages of Java
programs. This tool is a combination of several tools, that covering the four stages of FLS
design: description, tuning, verification, and synthesis stages. Figure 4.7 shows the Interface
Applied of the Xfuzzy [27][28][29].

45

XIuzzZy 3.0a1

Fila Design Tuning Yarification Synthesis
BN TR e[

Available Sy stams Available Packages
ejermplo

xfl

Sat Up H=alp

File frmnt/cnmive ol ffuzzy! .Oiexamplesicjemplo.xf| loaded as ejemplo.

Ll

Figure (4.7): Main Window of Xfuzzy 3.0.
4.5.1 Description Stage

Xfuzzy has two tools that are used in this stage (xfedit and xfpkg.). The first tool
dedicated to the definition of linguistic variables and the logical relations between them. This
definition can be designed using GUI or by editing the ".XLF" extension file. Figure 4.8
shows the main windows of xfedit. From this window the designer can edit the number of

inputs and outputs, types of the membership of the variables, the rule base, and the operators
between the variables.

M e E'.ru ck0
Input Variabies | System Suuctue | Operatorsats |
F [wheel_opset
angle
Ty |
whe e
- 1 .:\"-gle
Outpart Variables || o0 T*
wheal - Twheed
Funbe b rae i
Bt o]

Figure (4.8): Main Window of " xfedit"

The second tool xfpkg responsible for all mathematical function of the xfedit. For example, the
result of OR operator can be programmed to be the minimum of the two variables or can be
programmed to another relation. Another example the membership of the variables can be
generated by the mathematical function then this function can be modified using xfpkg [30].

46

4.5.2 Tuning Stage

Tuning fuzzy system is complex task, there are many parameters that affect the
performance of fuzzy systems such as the rule base, membership ranges, and the number of
memberships for every variable. In Xfuzzy the tuning process depends on changing the
membership parameters, but this changing can not be happening randomly. So it needs to use
some optimization agorithms. Xfuzzy contains a tool named xfd dedicated to the tuning of
fuzzy systems with supervised learning algorithms. This tool has some famous a gorithms that
can be used in optimization and machine learning, for example Steepest Descent,
Backpropagation, Backpropagation with Momentum, Adaptive Learning Rate, Adaptive Step
Size, Manhattan, QuickProp and RProp [30]. To work with this tool, users must have two
types of data, training data and testing data. This tool works only if the designer will use
fuzzy systems as classifier. So in control field thiswill not work with all the control problems,
because not all control problems have training data. Figure 4.9 shows the main window of the
xfsl tool. In addition, xfsl contains also two algorithms to simplify the designed fuzzy system.
First algorithm prunes the rules and reduces the membership functions. The second agorithm
clusters the output membership functions. This agorithm is used in system identification.

_Saparvised Lesraing tor §8.3

[T —

Figure(4.9): Main Window of " xfd."

4.5.3 Verification Stage

This stage work as simulation stage which be used to study the behavior of the system,
and detect the potential deviations from behavior and the source of this deviations. Xfuzzy
has four verification tools for these purposes. xf2dplot, xf3dplot, xfmt, and xfsim. The first two
tools work as surface plotter in 2 dimensions and 3 dimensions. Xfsm work as simulator to the
FLS, and its behaviors when it connect to the plant in a closed-loop configuration. The tool

47

xfmt alows monitoring the system at all the hierarchical levels, and shows the rules that are
firing at any value of the input variables. Figure 4.10 shows xfmt, xfsim, xf3dpl ot respectively.

P Towr s e o bl e brack
gy vakses] R e e

et et vabie s |

LS e oy

@

Xfsim
Simulation for specification truck
Simu lation model | Evolution
Plant modal truck. TruckMedel Haration 1_n)|
Simulation limit | n< 2000 Tima (_1) |
Inivial valuacs onfigursd Plant stave
Sirm lation output [
Higtn.y.5) 1EEE
plati_n,whasl 0} ¥
olotl_n.newding] olddir
Fuzzy systenm cutput
wheal
mewd ir
Loaud | Save | Run | Roeloud | Cloze |

Saarlacw plot Tor spocilication 14« [

X Axis

I
Tl v

A g
X i .l -
¥ anin ¥ -
& amin .I -
Psmbor of waspbes | 0

Pl] Chunar |

(©)

Figure (4.10): a) Main Window of " xfmt" - b) Main Window of " xfsim" -
c) Main Window of " xf3dplot" .

48

4.5.4 Synthesis Stage

It is the final stage of the FLS design, in this stage the FL S are converted to different
codes depending on the software or hardware target that the designer will use fuzzy system
with. Thistool can convert the FLS to different codes, these codes is C code, Cpp code, java
code, sysgen code that work with Xilinx toolbox in Matlab simulink, and finally VHDL code
that used in FPGA devices. This thesis works with VHDL code and sysgen code to simulate
the FPGA fuzzy in Matlab simulink, and interfaces the magnetic levitation with this blocks.

49

CHAPTERS MAGNETIC LEVITATIONAND FUZZY
CONTROLLER

5.1 Magnetic Levitation

Magnetic ball levitation is a difficult task that requires simultaneous manipulation of
several controlsin order to achieve a desired movement. The question was raised on whether
thereis a possibility to develop an agent that will act as an intermediate between the user and
the magnetic ball levitation. The electro-magnetic levitation system is a mechatronic system
accepted both for the specific mechatronic area and for other engineering fields. The magnetic
levitation system is a recommended subject for the academic curricula in mechatronic study
programs, due to the synergic integration of the sensorial elements, the control subsystem and
the actuating subsystem. magnetic levitation systems have many varied uses such as in
frictionless bearings, high-speed MAGLEV passenger trains, levitation of wind tunnel
models, vibration isolation of sensitive machinery, levitation of molten metal in induction
furnaces and levitation of metal slabs during manufacture. These systems have nonlinear
dynamics that are usually open-loop unstable and, as a result, a high performance feedback
controller is required to control the position of the levitated object. Due to inherent
nonlinearities associated with electromechanical dynamics, the control problem is usually
quite challenging to the control engineers, since alinear controller is valid only about a small
region around a nominal operating point. In this thesis the CE 152 magnetic levitation model
will be used.

5.2 Magnetic Levitation Model CE 152:

The CE 152 magnetic levitation model is one of the ranges of educational scale
models offered by Humusoft Company for teaching system dynamics and control engineering
principles. The model belongs to the range of teaching systems directly controllable by a PC
computer in real time. The CE 152 Magnetic Levitation model is one dimensional strongly
unstable system designed for studying system dynamics and experimenting with number of
different control algorithms based on classical and control theory. Figure 5.1 shows CE 152
model and its components.

50

Figure(5.1): CE152 Magnetic L evitation Model

A system configuration for the CE152 follows from the Figure 5.2 where the system is

connected to PC compatible computer.

UMOTI Kpal u i

=
—°
-
-
=
y
c
. [=
£
A
<
Z

Figure(5.2): Interfacetothe CE152 Magnetic L evitation Model.

5.3 Modd Analysis

The model shown in Figure 5.2 consists of the following blocks [31]:

1. D/A converter.
2. Power amplifier.
3. Bal & coil subsystem.

51

4. Position sensor.

5. A/D converter.

5.3.1 D/A Converter.

The first part of Magnetic Levitation model is digital to analog (D/A) converter this
part is not found in the CE 152 model, but it is refer to the Matlab and data acquisition card
(DAQ) that used as the interface between the CE 152 model and the computer. As shown in
figure 5.3

U=Kg, * Uy, +U, (5.2
Where:
u=Model output voltage [V]
umu= D/A converter input [MU]
kKDA=D/A converter gain [V/MU]

Uo = D/A Converter Offset [V]

@t_DA u_MU + u_DI—p(I)
In1 Out1

Digital to Analoguel Conv.

Figure (5.3): Digital to Analog Converter Model.

5.3.2 Power Amplifier

The power amplifier is designed as a source of constant current with the feedback
current stabilization. This part gives electric power to the control signal that out from the data
acquisition card (DAQ) . The amplifier and coil subsystem can be modeled with the transfer
function of 1% order as shown in equation (5.5), and the power amplifier block is shown in
Figure 5.4.

52

I~ T e
o K; Al ,q - [A]
lu v I/ lum _— Un[V] /I
1 1 N
= r— J Rs
l —_

Figure (5.4): ThePower Amplifier and itsInternal Structure.

umziR+Lﬂ+Rsi (5.2

oo a (5.3)
U, =K, (WK, (iR))

From equation (5.2) and equation (5.3)

.'.iR+L%+RSi:Kaﬂ(u-KS(iRS)) = IR+LIS+R =K U-K_ KR,
:L_ K., 1

R R £S+1+m

R R
if R> R_-K_ K R, such asthis system ot =Ka] 1 (5.4)
R R|L
ES+1

simplify the previous relation
—= (5.5)

U 'Tstl
where K, isGain, T, istime constant

Figure 5.5 shows the matlab simulink block for power amplifier and coil subsystem.

i
cs—» » —» D
In Lo outl
Power ar‘npllfler
and coil

Figure(5.5): Power Amplifier and Coil Moddl.

53

5.3.3Ball & coil subsystem

The motion equation is based on the balance of all forces acting on the ball, i.e.
gravity force Fg, electromagnetic force Fm and the acceleration force as shown in Figure 5.6.

Figure(5.6): TheForcesThat Effect on the Ball Motion.

The net force
F=F.-F (5.6)
Where;
i%k
F.,= c
(X-XO)2 (57)
F=m.g (5.8
F.=m, X (5.9)

Substituting equations (5.7), (5.8) and (5.9) into equation (5.6)
o i
m, X=——=—-m
k (x-xo)z k9 (5.10)

Limits of the bal movements and ball damping is taken into account. So, to model the

damping, the term ks, isintroduced into the equation

54

o ik,
m,X+k, X=———==-m,g (5.11)

(x-xo)
5.3.4 Position Sensor

An inductive position sensor shown in Figure 5.7 is used to measure the ball position.

The sensor can be approximated with a linear function:

In1 Outi

Position Sensor

Figure(5.7): Position Sensor Model.

Y=k, X +Y, (5.12)

Kx = Position sensor gain [V/m].
Y= Model output voltage [V].
x= Ball position [m].

Y o= Position sensor offset [m]

5.3.5A/D Converter

This block includes the influence of the analog to digital (A/D) acquisition card plus
the software used for the data acquisition. If the influence of limits is neglected, this
relationship is described by a linear function. Figure 5.8 shows the matlab ssmulink block for
A/D subsystem.

Q>0 @D

Imi Outd
" Analogue to Digital Conv. v

Figure(5.8): A/D Mod€

55

Yo =Kap Y Yoo (5.13)

Y mu = A/D Converter Output [V]
Kap = A/D Converter Gain [MU/V]
Y muo = Converter Offset [MU]

Y = Modd Output Voltage [V]

5.3.6 Complete M odel

The final block diagram of the magnetic levitation model CE 152 is shown in the
Figure5.9.

u-Input vollage :
—P|K DA°u+u0I—P KjjTas-1 !

DA Converter Powror amplifire

[kerox-x0y2

1/m >1/SI > 1/S

Velocity | Position -x

m:g |/

Gravily force .

Kfy
Ball damping

y - Qutput voltage
——» K x-u+y 0 I—DlK_AD 'y+y_0I—P

Position sensor AD Converter

Figure(5.9): The Complete Model of Magnetic L evitation CE152

The magnetic levitation model CE152 can be modeled by second order differential equation
5.11.

56

let x,= x
X, =X, =X

X5 =i

Where x; is ball position state, x, ball velocity state, and X3 is the current state.

Substituting equations (5.14), (5.15) and (5.16) into equation (5.11)

;2
1°k
= ®,=i = r11],c15§2+1cj,,":;s:2 — . m. g
{XI'XD}
X, =X,
$2
. ik k., X .
X,= ¢ —-g-——2 (nonlinear state space model)
mk(xl'xo) my
L X, =l _

From equation (5.5) = (T,s +1)1 =K,U
Wherei(t) can be defined such as:

K.u(t)—i (t)
T

a

Ti (t)+i (1) = K,u®) =i (t) =

Linearization of this nonlinear model can be obtain by Taylor series

from equation (5.17)

: N ik, o . ,
Using Taylor to linearize the term ¢ linearization points X, and i,

ocive ke g [’
el

N - If (Xoo110)) f X0+l o0)) ;
f(x,|)_f(x00,|00)+(2x,) X(t)+ 2.0) |(t)J

" 2Ky 2Kk |
K —_loo X c'00 T 00 |
{(X_XOJ o T -{(XOO-XO)S:IX(t)+|:(Xoo'X0)2}(t)

Substituting equation (5.22) into equation (5.17)

57

(5.14)
(5.15)
(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

. H %l *; 2 [* * i i
m, X =0 K, 2{ 27K Mg]X(t)+ L'Og i (t)-m, gk, X
(XOO'XO) (Xoo'xo)]

. ox| *i 2 [ow e % i 2
m %, =| 2 Keo |y gy o [2R g | ke o (5.23)
_(Xoo'xo) i Xo0Xo)

When the ball isfixed at position (x,) zero; then, the velocity (x,), acceleration: the
derivative of velocity (x,) and the coil current (i) are all equal zero.

Substituting X,,X,,X,,and i =0 into equation (5.6)

11721720

2%k *j 2 2%k *i i’k
0)= c 00 0) -k 0 c 00 0 0 ‘¢ _
mk() { (Xoo'xo)3 } © " o |:(XOO_XO)2:| o ((Xoo'xo)2 mng

= ((I‘)‘)—k‘”-mkgj =0 (5.24)

Xoo'xo)2

subsituting equation (5.24) into equation (5.23)

. % *i 2 * *
M X, :{M} X, -k, X, + {L'Og} i (t) (5.25)

(Xoo Xo)

from equation(5.25) and equation(5.19)

. 9% *xi 2 * * i
X2:[2 kc IOO 3:| Xl_ kfv XZ + li 2 kc I002] I(t)
m, (Xoo'xo) m, m, (Xoo'xo)
x3:2': K.u(t)—i (t)
Ta
ki DHK *]
, = C 00 =X, fv X2 + C 00 > | (t)
(Tk (XaXo) M M, (XX (5.26)
) | .
X,=—1(t
S (t) |

58

, 0 1 0

% 2%k *i 2 2%k *j X 0

XZ — [00 fv [00 X2 + o U(t) (527)

%, M (X Xo) M My (XgoXo) | | K
0 0 1 | Ta |

L Ta _

Xl

y=[1 0 0]|x, (5.28)
X3

Adding the gain of DAC, ADC, and sensor gain, the new state space model is.

, 0 1 0

% 2%k *i 2 K 2%k *j X 0

XZ — c OO3 fv c OO2 X2 + 0 U(t) (5 29)

%, mk(xoo—xo) m, mk(xoo—xo) X, KK, .

0 0 1 T
L Ta .

Xl

y=[K,Kp 0 O] x, (5.30)
X3

by using the practical values which is given in the data sheet of the magnetic levitation

59

1- M odel weights and dimensions: -

Dk =12.7e¢.3m (bal diameter [m])

my = 0.0084 (ball mass [kq])

Td=0.019m (distance from the ground and the edge of the magnetic coil)
L=0.019-Dk (distanceof limits[m])

g=981 (gravity acceleration constant [m.s*-2])

2- Coil and amplifier parameters:-

U DAm=5 (maximum DA converter output voltage)

Rc=35 (cail resistance [Ohm])

Lc=30e-3 (coail inductance[H])

Rs=0.25 (current sensor resistance [Ohm])

Ks=13.33 (current sensor gain)

K_am =100 (power amplifier gain)

|_ am=1.2 (maximum power amplifier output current)
Ta=L/((Rc+Rs)+Rs*Ks*K_am) = 1.8694e-005 (amplifier time constant [s])
k_i=K_am/((Rc+tRs)+Rs*Ks*K_am) = 0.2967 (amplifier gain [A/V])

3- Empirical parameters:-

KFv =0.02 (viscose friction)

D/A converter :-

k DA =5 (converter gain)
ul0=0 (converter offset)

A/D converter:-

k_ AD=0.2 (converter gain)
y MUO=0 (converter offset)

60

4- Coil and position sensor parameters :-

k x =797.4603 (position sensor constant)
x_0=8.26e-3 (cail bias[m])

k_f =0.606e-6 (aggregated coil constant [N/V])
k_c=k_f/(k_i)"2 = 6.8823e-006 (coil constant)

v00=0 (ball velocity [m/s] at Equilibrium)

x00=L/2=3.2e-3 (ball position at Equilibrium)

uoO=-sgrt(mk* g/ k f)* (x00-x_0)=1.8843 (input volt at Equilibrium)
I00=u00* k_i=0.5592 (coil current at Equilibrium)

thefinal state space matricesis

0 0.0001 0
A=10e+004 | -0.3840 -0.0002 0.0035
0 0 -5.3492

0
B =1.0e+005 0
1.5873

C=[159.4921 0 0]
D=[0]

The first step in any control design know if the system is stable or not, by finding the transfer

function of it.

8.883€8

The plant G(9)=
P S S® +5.349e4 s? + 1.31265 s- 2.054€8 (5.31)

cal culating the open loop poles of the system, we get an unstable pole

-53492 (Stable pole), -63 (Stable pole), 61 (Unstable pole)

61

The system is unstable because it has positive pole (61).

The second step is calculating if the system controllable or not by finding the controllability
matrix and test the its rank.

ControlabilityMatrix:[B | AB | AZB}

0 0 5.5697e6
0 5.5697e6 -2.9795ell
158735 -8.4908¢9 4.519¢14

= Rank=n=3
= Sytem s controllable

5.4 Fuzzy Controller Design for CE152 M odel

To apply the fuzzy logic controller to the magnetic levitation CE 152, certain
properties of the system are exploited so that the design of the controller can be made easier.
As the system is symmetrical, it is assumed that symmetrical membership functions
about the y-axis will provide a vaid controller. A symmetrical rule-base is aso

assumed. Other constraints are also introduced to the design of the FLC:

1- All universes of discourses are normalized to lie between —1 and 1 with scaling
factors external to the FLC used to give appropriate values to the variables.

2- It is assumed that the first and last membership functions have their apexes at —1 and 1
respectively. This can be justified by the fact that changing the externa scaling
would have similar effect to changing these positions.

3- Triangular, Z and S membership functions are to be used.

4- The number of fuzzy sets is constrained to be an odd integer greater than unity. In
combination with the symmetry requirement, this means that the central membership
function for al variables will have its apex at zero.

5- The base vertices of membership functions are coincident with the apex of the
adjacent membership functions. This ensures that the value of any input variable is a

member of at most two fuzzy sets, which is an intuitively sensible situation. It aso ensures

62

that when a variable’s membership of any set is certain, i.e. unity, it is a member of no
other sets.
The fuzzy controller of magnetic levitation uses Mamdani model. The FLC has two inputs
which are error and change of error and the output is the change of voltage. Figure 5.11 ab
and ¢ shows the membership functions of fuzzy controller using Fuzzy Toolbox of Matlab

software. The ranges of the inputs and output is[-1 1]. All have 7 membership function.

M pembership Function Editor: magltest (=1

Fil= Edit “ficw
FIS “~Fariable=s rMembership function plots plot point=: | 151
I M 1 et =n = =p i I
I 1
= o
[= I
ce
o n n n n n n n n n
= 0.8 05 —o.a 0= o 0.z o [ER= 0.8 1
input wariakle tet
Current wCariaikle Current Membership Function tolick on ME o select)
rame e rarme p—
Twpe input A 2 trimT L~
Params B
FRanos 1 17 | [-1 -0.6664 -0.3335]
iSRSt Esnas -1 11 | | Hela Close | |
Selected wariable "e" |

@

M Membership Function Editor: magltest '_ |[‘E] : |
Fil= Edit “Wicwe
El rraraiiee hember=ship function plot= plot poirt=: | 151
In [aall] = = =p [anl=] IE
[XN :
2 (=2}
o.s - —
(=13
o n n n n n n n n n
-1 0= -0 & -0 = -0z (] o= o4 o5 oS 1
imput variakle "oce"
Current Waricsklse Current kMembership Function Cclick omn MF 1o s=lect)
Fame [=1= FlaEme e
Twpae impLt Type trimT i~
Params - P e
Rance == -1 -0.5665 -0.333]
EBlsElisne FErE =X | Help Close | |
Selected wariable “cet |

(b)

63

Al embership Function Editor: magltest

Fil= E dit. Wi
FI= “ariahles rembership function plots plot points: 181
Ir} [aalyl =n = = m I
S X : . 8 i
S
= (=27
ol |
(=13
o n n n n n n n n n
-1 -0 -0 5 -0 .4 -0.2 o o2 0.4 o5 o= 1
output wariakble Mo
Current SSariable Current Member=ship Function (click on MF to s=lect)
Mame f=trd Farme P,
Twpe ottt Twpe trimt i
FParam=
T -1 -0.6664 -0 . 3542
Range= o1 11 B 1
Display Range -1 1] | Helg Close | |
Select=d wariakble "o |

Figure (5.11): a) Error - b) Change of Error- c) Change of Voltage

The next step After designing the membership functions is to write the rules of the fuzzy

controller. These rules are chosen based on knowledge base and experts. Table 5.1 shows the

rules base as a matrix

Table 5.1 Fuzzy Control Rule Base of Magnetic L evitation

e |In mn sn z sp mp Ip
ce

In | In In In In mn sn z
mn | In In In mn sn z p
sn [In In mn sn z sp mp
z |In mn sn z sp mp Ip
Sp | mn sn z sp mp Ip Ip
mp | sn z sp mp Ip Ip Ip
Ip |z P mp Ip Ip Ip Ip

Table 5.1 shows the matrix form of the fuzzy rules these rules can be written in the next form

64

IF eisIn AND ceisInTHEN cvislin

IF eiszAND zisInTHEN cvisz

Figure 5.12 shows the surface of fuzzy controller using the previous rules. Surface shows the
relation between the inputs and output at any point in the intervals [-1 1] using the Centeroid
defuzzification method.

[— =3

A Surface Wiewer: magla
Fil= E dit R Tt O pticrns

HoCimputa:

M ogrics:

| FRet. Input: | | Help Close

| Ready

Figure(5.12): Surface of Fuzzy Controller

After designing fuzzy controller, the controller will be connected to the CE152 magnetic
levitation Matlab simulink model. Figure 5.13 a b, and ¢ shows the fuzzy controller,
proportional integral controller (Pl) subsystems and all system respectively. The integral part
Is used to convert the change of voltage value that come from fuzzy controller to real voltage
which will act on the magnetic levitation CE152. Using tuning method the good proportional
gainis0.1 and theintegra gainis 1.

I [

Scopeq

- o - > .
| _ o
err_g Saturation Outi

aut_g

Saturationz Fuzzy Lagic

+ Controller
_ =>—‘F

Add ce_g |

ScopeZ

1

Yy

=
Faind.97 it pelay

@

65

]

+

Add

1

2

Unit Delay

—F’J.DEH -

Gaini Saturation2

pi_gl

-
e |

vy

Pddz

P_a

(b)

etpoint Offzet

Magnetic Levitation Model
CE152 model

e

sin wave o T
—
Manual Switch
nooo set_p
Lele]

To Wotkspaces
lEquarne wave

I
L
Zero-Order
Held

ToWodspaced

Soopel

- timef

ToWotkspace?

W - output vokage u - Input woltage ill]

Int Outd P i st 1
fuzzy_sub pi_sub
Scopes 0-1 sat
02-2007 HUMUSOFT =.r.o. and The M F Ine.
B s.o.an 2 Ma 2 ne,

mlagnetic Levitation Flant Model

=

Scopal

(©)

Figure (5.13): a) Fuzzy Controller- b) Pl Subsystem —c) Magnetic L evitation

Mod€

As shown in Figure 5.13 c there are many signals connected to work space blocks this block

will be used with the GA Matlab code to optimize the membership of the inputs and output of

the fuzzy controller. Figure 5.14 shows the output of the magnetic levitation after connecting

to the fuzzy controller. The set point is unit step has value 0.5 which is in the center of the

gap, thispoint isone of the equilibrium points of magnetic levitation CE152 model

66

i | i | 1 | | | i
i] 0o0s 01 01s 02 _D.25 03 035 04 045 05
Time

Figure (5.14): Step Response of the System

Figure 5.14 show that there is no overshoot and the settling timeis nearly 0.15 sec, rising time
is 0.106 sec. The main use of magnetic levitation is high-speed MAGLEV passenger trains.
That means there are uncertain parameters will effect on the system, so the controller will be
tested with two additional set points signals sin wave and square wave. Figure 5.15 and 5.16
show the output response with that two signals. These figures show that the fuzzy controller

can keep the stability of the system with various set points.

0.7
06
0sf

Set Point “47

0.3

0.2k

a1l R I S 4

S I S S S SR

Figure(5.15): Sine Wave Output Response of the System

67

07

Tk

sk _

0.4

SetPoint'

T

02k U _

o1 H-- R L i

Time

Figure (5.16): Square Wave Output Response of the System

5.5 Fuzzy Controller Design with GA for CE152 Model

There are many parameters effect on the control process of the CE152 model as shown
in Figure 5.13 a,b in addition to the shape of the memberships of the inputs and output of
fuzzy controller. These parameters is, p_g (proportional gain), pi_g (integral gain), ce g
(change of error gain), err_g (error gain)and out_g (fuzzy output gain).(see Figure 5.13 ab
and c) These gain parameters can be tuned to give near optimal results. GA is used to
optimize these parameters and optimize the shape of memberships of fuzzy controller. There
are many ways to have good response, first is to optimize gain parameters only without any
change in memberships shape. Second is to optimize the memberships shape without any
change in gain parameters. The last way is optimize both gain parameters and memberships
shape. GA Matlab code (Appendix A) is used to optimize the memberships shape and gain
parameters. This program is divided into two codes, main code is responsible for performing
the GA steps such as selection, crossover, mutation and make new population. The second
code is responsible for testing the new population to calculate the fitness function and out the
best fitness value. These codes is very simple GA codes, so that the memberships shape for
inputs and output will change equally. In fuzzy controllers, there are two inputs and one
output. Every input and output have seven membership functions, five of these membership
functions are triangular memberships, one S membership function and one Z membership
function. In triangular membership functions there are three parameters that can be modified

to change its shape, center, left edge, right edge. In Z and S membership functions there are

68

two parameters, top edge and left or right edges (depending on if it is S or Z membership).
But in this thesis some simplification are used in writing GA code.

1- Theinterva of the inputs and output will still at [-1 1] range.
2- The symmetric point will still at zero.

3- Theinputs and output will have he same shape.

After these simplification the number of variable will be 8 for membership functionsand 5 for
the gain parameters. The fitness function that will be used is the integral of the absolute
values of the error, in the control design the fitness value need to be minimized. The number
of individuals per one population will be 50, the number of generation will be 100, the
crossover probability will be 0.7. The firs step in matlab program, generate random
population consist of 50 individual, every individual consist of 13 variable every variable is
coded in 10 bit binary form. Second step, convert the binary code of every variable to real
number. Third step, cal fuzzy control program and ssmulink program and find the fitness
value of the fitness function (the integral of absolute values of error). Fourth step, implement
crossover and mutation, and finally generate the new population. The stop condition can be
after exact times or after the exact value of fitness value. in this thesis the stop condition is
after 100 generation. Figure 5.17 shows the change of the fitness values after running the
Matlab code.

0.31

0.305 | B

029} -
-
B 029 -
m
ozes| :
ozt -
ozrsf — .
02? 1 1 1 1 1 1 1 1 1
0 10 20 3 40 S0 80 70 80 90 100

Times

Figure (5.17): FitnessValues

69

Figure 5.17 shows that the value of fitness function is decreased from 0.305 to 0.275. Figure
5.18 shows the memberships shape of the inputs and output.

HE il h| M= il FP= Fha F
1
0 -
I:I 1 1 1 1 1 1 1 1
-1 -0.S 0.5 -0.4 -0z 0 [= 0.4 0.5 0.s 1

Figure (5.18): Membership Functions of the Fuzzy Controller with GA

Table 5.2 shows the difference between gain parameters with and without GA optimization

Table 5.2 Gain Valueswith and without GA optimization

Gains | with GA optimization without GA optimization
err_g | 1.0955 1

ce g | 154941 15

out_g | 15.4932 15

pg | 015797 0.1

pi_g | 2.7363 1

Figure 5.19, 5.20 and 5.21 show the system response of step, sin wave and square wave
inputs with these new values.

70

0.7
ogk- Aoonaaaa R T A i

0sf

0.4
Set Point
0.3

02F

01r

i | i i 1 i | i i
u} 002 004 005 0038 0.1 012 014 016 018 0z
Time

Figure (5.19): Step Response of the System with GA

07

0B s

0s5fF

i 0.4
Set Point

03

0.2 H

o1H-- BanaaRaa: [T i

Time

Figure (5.20): Sine Wave Output Response with GA

0a

e ________ b

ask... I O o [aaaas T _

Set Point 0.4

0.3

0z

0.1

Figure (5.21): Square Wave Output Response with GA

71

From Figure 5.19 the overshoot is nearly 6%, the settling time is 0.046 sec and rising time is
0.023 sec. table 5.3 shows the comparison between the system response with and without GA

optimization

Table 5.3 System Response with and without GA optimization

System response | With GA Without GA
for step input optimization optimization
Overshoot 6% No overshoot
Settling time 0.046 sec 0.15 sec
Rising time 0.023 sec 0.106 sec

by comparison between these results with without GA optimization can find that GA give
better results and improved the response of the system.

5.6 Comparison between Fuzzy GA controller and H, Controller

H, controller one of the famous optimal control techniques, This type of controllersis
used to reach the optimal state of the system. But the design of this technique is difficult
task, because it works with linear systems, needs the mathematical model of the system and it
depends on weighted functions. Figure 5.22 shows the block diagram of H; controller [32].

AUGMENTED PLANT Fs)

CONTROLLER

Kis)

Figure(5.22): H, Controller Block Diagram

72

In this section the H, controllers will be designed and will be compared with fuzzy GA
controller. First step, find the linear approximation model of the magnetic levitation equations
(5.29), (5.30). Second step, test the stability and controllability of the system as shown in
5.3.6. Third step, convert single input SISO system to MIMO system because H, controller
works as MIMO controller [33]. Fourth step, finding Figure 5.23 shows the matlab simulink
blocks of H, controller for CE152 magnetic levitation. The H, controller block in this figureis
stat space block has 4 parameters A, B,C and D matrices. These matrices is generated after
running the matlab code in appendix (C).

Scope
0.8
Setpoint Offsat
I alh3 Je Ball.transl ation
Coordinates WE Sink
Transtarmation
¥
[y it [y D
Ll Ll HZ controller "=
Sum
Zero-Order
Hold state space
W - output woltage u - Input woltage [ill] j
Magnetic Levitation Plant bModel

Figure(5.23): H, Controller for Magnetic Levitation CE 152 model

Figure 5.23 shows that the set point is 0.5 and the H, controller can be implemented as stat
space model. Figure 5.24 shows the output response of the magnetic levitation after using H,
controller, the rising time is nearly 0.0235, settling time is nearly 0.156, overshoot is nearly
20%. Table 5.4 shows comparison between H, controller fuzzy controller with GA
optimization. This table shows that the rising time of two controller is nearly equal, but the
overshoot and settling time of fuzzy controller using GA optimization is less than the settling
time and overshoot of H, controller. These results prove that the GA optimization with fuzzy

control can work properly with nonlinear system and give better results.

73

setpoint

Time

Figure (5.24): Step Response of the System with H, Controller

Table 5.4 Comparison between H, Controller and Fuzzy-GA controller

System response | Fuzzy controller With | H, controller
for step input GA optimization

Overshoot 6% No overshoot
Settling time 0.046 sec 0.15 sec
Rising time 0.023 sec 0.106 sec

74

CHAPTER 6 FPGA IMPLEMINTATION FOR FUZZY
CONTROLLER

6.1 VHDL Fuzzy Controller Implementation

This chapter will discuses the implementation of the fuzzy controller without GA
optimization using VHDL code that will use to program the Xilinx Spartan 3e FPGA. Figure
6.1 shows the block diagram of our controllers using FPGA. It consist of three main parts,
ADC, FPGA, DAC. ADC and DAC that will be used in this thesis have 8 bits resolution. The
integrated circuits (ICs) that will be used is PIC 16877 as ADC, and DAC 0800. These two
ICs have eight bits parallel interface with FPGA.

] Cutput ADC Dac

] /////////////

Analog | U
Input

Plant]

h

\.\. s
r

"\\"\ N

Cnatput

Figure(6.1): TheBlock Diagram of the FPGA and its|nterface with the System

The controller consists of three parts. Summation part has two inputs set point and feedback,
and generates the error and change of error that are inputs to fuzzy controller part. Fuzzy
controller is generated using Xfuzzy CAD tool and has two inputs (error and change of error)
and one output (change of voltage). Pl part has one inputs (change of voltage) and one output
(effective voltage). Xilinx company had developed Matlab simulink tools (Xilinx System
Generator) that work with different kinds of Xilinx FPGA, this thesis uses this tool to test the
controller with the magnetic levitation CE152 model. Figure 6.2, 6.3, 6.4, 6.5 show the fuzzy

controller design using Xfuzzy tool

75

Type Edition
HMarme IE
Universe of discowmrse I -0 5 —1.0
Tl llggl¥iggl lI:I.EI
PAaxirmLarT. l255.l:|
Cardinality llz=e
M.F. Families T =
T
[LL =

boAir.

Membership Functions

-
-

Error Input Using Xfuzzy Tool

Figure (6.2):
Type Edition |
Harmme Il::e
I o —1 .0
0.5

Universe of discourse
i ll:I .0
PlAaxirmLarm l255.D
Cardinalibw IEEEF

M.F. Famiilies

Membership Functions

o
= b

it
it
it

Change of Error Input Using Xfuzzy Tool

Figure (6.3):
M fedit | -
Twpe Edition
Harme Il::'\u'
Universe of discourse I 07 —1.0
P II:I_I:I
Ilaxcirrarm l255.|:|
Cardinality llz=ss
M_F. Families -5 0.5
Membership Functions
r:fl‘lf é 1
S = flir. L ="kt
Figure (6.4): Change of Voltage Output Using Xfuzzy Tool

76

R Edition
HName |invp_ru|es |/ Free form r Table form r Matrix form |
Operatorset |and70p - ==
Input variables nw mnu snu zu spu mpw Ipv

e It Inf Inf Inf Inf nf =nt =t
ce mnit Nt Nt Nt nf =nt =t =pt
=nt nf Inf nf Enf zf Pt pf

=t nt nt snf Et spt ot ot

spt nf =nt =t =pt 218 'pf [=1]

miit nf 43 Rt 238 Rt pf [z}

It Ef =pf pf pf pf pf 21

Output variables

[H| i [[»

Ok Apply Reload Cancel

Figure (6.5): Fuzzy Rules Xfuzzy Tool

Xfvhdl

Build Synthesizable VHDL implementation for maginew

VHDL generation options

J Bitsize information
Bits for /0 9

Files and directories information

Input XFL file |F bl e Liieflizzy file simag inew.]

Bits for membership degree tE]
Prefix for Output files FLC - - = n

Bits for defuzzification weight =}

Output directory
Components library directory | niversal.v3. a0.b.3-MNULxfuzzy 3 SbinHDLlib

Bits for membership function slope

Binary point of MF slopes 5

Implementation information

Memory to be used IROM [oletalilt) | -

Synthesis tool information
Tool _|xilinx xST [~

Syntesis optimization information
Optimization IW’rthou‘t optimization | -

Map effort used in synthesis information
Effort |LDW | -

FPGA family information |
FPGA Family |spartana

FPGA device information

] Device [[xc351000-1256-4

Complementary files information

Extra parameters information
Extra parameters ||

[] Generate complementary files

Generate VHDL code Generate and Synthetize | Close

Figure (6.6): VHDL Code Generation Using Xfuzzy Tool

Figure 6.6 shows that the number of bits of input and output is 9 bits, because the set point
will be from 0 to 255 and the error isin interval [255 -255]. After generating the VHDL code
of fuzzy controller this code is used with "sum.vhd" and "pi.vhd" (appendix B) files to
complete the controller. These files will be used with ISE 10.1 software to generate bit file
that is uploaded to FPGA. Xfuzzy tool will generate System Generator blocks of fuzzy
controller that is used with Matlab simulink. "Black Box" block that is in the System
Generator Matlab toolbox will be used to insert the "sum.vhd" and "pi.vhd" into Matlab
simulink as shown in Figure 6.7 and 6.8 respectively.

77

Yy

Scopel

Canstanti & ateway In ERR_OUT L 24
(Wt} 4
i atewway In
Inz CH_ERR_OUT
=t _Lp
=g
Constant Black Box e

Scalet

Figure (6.7): Block Diagram of Summation Subsystem

D
Constant r=t Outz

dout
L.rdin
Black Box

-
— L | out]

& atewnay Out

In-

Scopel

Scopez

Figure (6.8): Block Diagram of Pl Subsystem

Figure 6.9 shows the blocks of fuzzy controller that is generated using Xfuzzy tool. figure
6.10 shows the final system after connecting all sub systems. After building the simulink
model of fuzzy controller using System Generator toolbox, the system runs at three different
set points, step, sine wave and square wave to test the VHDL code if it work properly or not.
Figure 6.11 shows the output response of the system at set point equal 127. (0.5 at normalize
mode). Figure 6.12 shows the error and change of error of the ball position, the two values are
shifted by 255, because the VHDL code of fuzzy controller works only in the interval [0 510],
Where 0 means that the -255 and 510 means 255, so 0 error in matlab equal 255 in vhdl code.
We need to set the simulation time in System Generator block to be 0.00000002 sec to work
asreal FPGA because the FPGA clock that isused in vhdl codeis 50 mhz

78

Coitol 2

P

[LTi] Y]

"

A_MFCT

yYey
g

mnz T

A_MFCZ

YYYYYYYYYY
="
[=]

Rak_sekct 2

R Ll

cl

RVE_Mem_F R

Dk kn

Figure (6.9): Block Diagram of Fuzzy Controller Subsystem

> 4

p—

Scope

Y

In1 Otz

[
Scoped Scopes

iy

System
Generator
2
o Inz
oot 1
summation
| [
subsystem
Scoped
Zero-Order

Haold

—

tagnetic Levitation Plant Model

Y

fuzzy subsystem

Y

Fl subsystem

Figure (6.10): Block Diagram of Fuzzy Controller Using VHDL Code

- -pall position 127
Oto 255 ===01t01 at
normalize mode

Set Point

Time

Figure (6.11): Step Response of the System Using VHDL Code

79

erru:;r is
shifted by

Error

chﬁnge of errar
is shifted by 255

Change of error

Time

Figure (6.12): Error and changeof error using VHDL code

Figure 6.13 and 6.14 show the output response when the set point is sine wave and square
wave respectively. But there are steady state error in all set points, there are to reasons for
these error. First the approximation in vhdl code for example, O error and O change of error
and 0 change of voltage in fuzzy memberships equal 127.5 but FPGA works only with
integer number, so that we set 0 value of all memberships equal 128. Second CE 152 model
work with 14 bits DAQ and the difference between all steps equal 0.0000061.3 =1/2**, but in
this thesis the DAC and ADC is 8 bits and the difference between steps 0.0039=1/2%. The

large difference between steps case low accuracy.

Set Point

Time

Figure (6.13): Sine Wave Output Response Using VHDL Code

80

Set Point

Time

Figure (6.14): Square Wave Output Response Using VHDL Code

Previous Figures show that the VHDL code work properly with the CE152 model and can
work with different set points shape. After testing the VHDL code of fuzzy controller using
Matlab. There is another software that is used to program the FPGA. ISE 10.1 software is
developed by Xilinx Company to work with most of FPGAS that are designed by this
company. Figure 6.15 and 6.16 show the main windows of the ISE 10.1 and the schematic
diagram of the al fuzzy controller blocks respectively.

81

\fpgalfuzzy2011\fuzzy201
iew Project Source Process Window Hel
[OPHS LidBEX Do
00

e - [Design Summary]

 POMH PR [N BB DD :FA? MG boevector 7 iQOR DL

FEIE e

3

5 FPGA Diesign Summary =l | fuzzy2011 Project Status
5 for: | Implementat 5
oureeciior | mplamentaion ¥ | = Design Duerview Project File: | fuzzy2011 ise Current State: Programming File
& fuzzy2011 - [E] Summary Generated
B 3 xe35500=-4ig320 51108 Propsties | Module | uzayt « Errors: No Errors
] MPBI - Behavioral (MPBIA, vhd) - [E) Module Level Utiization Name:
i3 = T - o
= gl fuzzptl - Behavioral (fuzzytl.vhd] [2) Timing Constraints T 2395006419320 + Warnings: 78 Warnings
[IMST_pi - pi - Behavioral (pi.vhd] - [2] Pinout Report Device:
NST_SUM - sum - Behavioral [sum.vhd) [2) Clock Report Product ISE101- + Routing Al Signals Completely
[IMST_FLE - FLE - FPGA (magl_vhd vhd) = Ertors and Warnings || Version: \WebPACK Results: Fiouted
[l uzzyil et [fuzzptluef) [E) Syrthesis Messages | Design Goal: | Balanced + Timing)l Constraints Met
[2) Translation Messages Constraints: =
‘] [Z) Map Messages Design | ilirw Detault + Final Timing | 0[Timing Asport
a8 Sources | D3 Fier | @ Sraptots | (DY Liraries [2)Place and Route Messages ||| Strategy: | [unlocked) Score:
 —— ~ B Timing Messages ;
| P =) Bitgen Messages L] fuzzy2011 Partition Summany
Processes for: fuzzptl - Behavioral 1 | Project Properties No partition information was found.
R ‘@ Enable Enhanced Design Summary
¥ Desion Utiities 1 Enable Message Filtering T
A User Constraints [Display Incremental Messages Device Utilization Sum.!my) [E]
=20, _ﬁSynthesize—XST Erhanced Design Summary Contents Logic Utilization | Used | Available | Utilization | Mote(s)
 [£1@View Sunthesis Report Show Patiiion Data Humbe of $lice Flip Flops | 2312 4%
] O ShowE 1 - r -
[E ViewRTL Schematic R Humber of 4 input LUTs 532 9312 3
View Technalogy Schematic b | DWW AITiNgs | TR) - I
B ot sorton O Show Failing Canstraints | Logic Distribution
- O Show Clock Repott i 2
T2 Gensialo Post Synthesis Simulation Model v Sikiavias Humber of gccupied Sliees 152 b 355
e ; [p——T e [iAne L
focesses ‘ What's New in ISE Design Suite 101 | 55 Deesign Summary
Started : "Launching Design Summary®.
Started : "Launching RTL Schematic Viewer for fuzzytl.ngr".
]) 8
Corsole | @Emos | g Warings | ETdlShel | (g FindinFiles |
[[152,-4]

»

= W ©

/4 start

Figure (6.15):

| SE 10.1 Software Main Window

back in{d:1) f_Back[S1) CH_ERR_OUTS 1) p—
——setpis)
[CRED — o
[rst> —{mt ERR_CUIT8:0) j—

SUM vhd

s i 2:0}

ck50

—rst

dout{7-0)

Plvhd

Fuzzy_controller

inB:1)
A3 1)
ok

— resat

output{S: 1)

valid_in

valid_out

Figure (6.16): Schematic Diagram of Fuzzy Controller

82

valid_in

valid_out >

CHAPTER 7 CONCLUSION

7.1 Conclusion

In recent years, tremendous progress has been made in the techniques of control field.
The control field entered almost all areas such as medical applications, military and civilian.
Fuzzy control is one of those techniques. This technique in recent years has become involved
in many applications and integrated with other technologies to improve their performance.
GA is one of this technologies, that can be used to optimized the fuzzy controller. With
development of fuzzy control there became a need to develop hardware to deal with it. FPGA
is one of these hardware, that is programmed using VHDL language, because it has high
speed time process, and its program work in parallel mode. But the representation of fuzzy
logic in FPGA is not easy, Therefore, there is a need to develop CAD tools to help the
controller designer and safe the time of design the fuzzy controller code. Xfuzzy one of these

tools, The most important features of Xfuzzy that can generate VHDL code of fuzzy logic.

e In this thesis the magnetic levitation CE152 Model is used as practica example of
nonlinear systems, because it is one of the famous systems in control engineer. The
mathematical equation of the model showed that the Magnetic Levitation is unstable
system and controllable. There are many controllers used to control the magnetic levitation
in this thesis fuzzy logic control was used. Because fuzzy controller work with the system
as black box so the designer does not need to find the mathematical model of the system.
The genetic algorithm is used to improve the performance of the fuzzy controller. The
biggest problem face fuzzy controller is how to implement it in hardware controllers so this
thesis used FPGA as embedded system to implement fuzzy controller. The fuzzy controller
was designed with Matlab software and this controller was tested with the CE152 Model
that is found in Matlab the fuzzy controller stabilized the Magnetic Levitation CE152
Model under different set points. The GA optimization method was used to optimize the
membership function of the inputs and output of the fuzzy controller and aso to optimize
the gans p g, pi_g, ce g, er g and out g, The CE152 was tested with the new
membership functions and new gains and the results was better than the results of old
fuzzy controller under different set points. The results of fuzzy controller using GA was

compared with H, controller that is one of the famous techniques in optimal control. GA

83

optimization gave better results than H, controller. The Xfuzzy tool was used to generate
the VHDL code of fuzzy controller, this code was used with "sum.vhd" and "pi.vhd"
VHDL codes to give the over al controller of Magnetic Levitation CE152 Model. These
codes were tested using Matlab/Simulink under different set points and the results were
good. After design the VHDL codes of fuzzy controller this code was programmed and
tested using Spartan 3E FPGA and the CE152 Model was stable.

7.2 Future Works

1- Sugeno method can be used instead of Mamdani model and make comparison between two
methods.

2- Using fuzzy supervised PID techniques.

3- In the future research the GA can be used in learning of rule base with Tuning of the data
base to give better results.

4- Changethe 8 bits of The ADC and DAC with 12 bit or higher to give more accuracy.

5- The researcher can try to change the CE 152 model with practical model such as small

Magnetic Levitation train.

84

[1]

[2]

[3]

[4]

[S]

[6]

[7]

[8]

[9]

REFERENCES

Phillips C.L, & R.D. Harbor, Feeedback Control System, 2nd, Prentice hall, Englewood
Cliffs, 1988.

Michael McKenna and Bogdan M. Wilamowski, "Implementing a Fuzzy System on a
Field Programmable Gate Array,” |IEEE International Joint Conference on Neura
Networks, Volume: 1, p.189-194, 2001.

MJ. Patyra & JL. Grantner, "Hardware Implementation of Digita Fuzzy Logic
Controller,”. Information Science — An International Journal (113): pp.19-54, 1999.

T. Philip, M. Vuong, asad, Madni and b. jim Vuong, ” VHDL implementation for a

fuzzy logic controller”, BEI technologies, inc. 13100 telfair avenue, sylmar, 2006.

J.E. Bonilla, V.H. Grisdes and M.A. Méelgargjo, "Genetic tuned FPGA based PD fuzzy
LUT controller,” IEEE International Conference. Fuzzy Systems, Vol 3,pp :1084 — 1087,
2001.

Chia-Feng Juang; Chun-Ming Lu, "Ant Colony Optimization Incorporated With Fuzzy
Q- Learning for Reinforcement Fuzzy Control," IEEE Trans. Systems, Vol 39,pp.597-

475, May 2009.

John Yen & Langari Reza, Fuzzy Logic Intelligence Control and Information, Prentic-
Hall, Englwood Cliffs,1999.

Z. Kovacic & S. Bogdan, Fuzzy Controller Design: Theory and Application, Taylor &
Francis Group: CRC Press, 2006.

P. Basehore, "Fuzzy Logic Outperforms PID Control," PCIM, Vol 17, pp. 40-46, March,
1993.

85

[10] Robert Fulle’r, "Fuzzy Reasoning and Fuzzy Optimization,” TUCS Genera
Publications, No. 9, Turku Centre for Computer Science, Abo, 1998.

[11] M. lbrahim, Fuzzy Logic for Embedded Systems Applications, Elsevier Science, MA,
USA, 2004.

[12] C. W. Silva, Intelligent Control-Fuzzy Logic Application, CRC, Boca Raton, FL, 1995.

[13] Lotfi A.Zadah, "Fuzzy Logic,” University of California, Berkeley,1989.

[14] Prasad, Ram., "Fuzzy Logic Control," class handout, New Mexico State University,
Electrical & computer Engineering, 1996.

[15] Peri, Vamsi Mohan, "Fuzzy Logic Controller for an Autonomous Mobile Robot,"
Jawaharlal Nehru Technological University, IndiaMay, 2002.

[16] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, MA,1989.

[17] JH. Holland, Adaptation in Natural and Artificial systems, University of Michigan
Press, Ann Arbor, 1975.

[18] O. Cordon, F. Herrera, F. Hoffman and L. Magdalena, “Genetic Fuzzy System
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases" Worlds Scientific,

Singapore, 2001.

[19] S.N. Sivanandam and S.N. Deepa, Introduction to Genetic Algorithms, Springer, New
York, , 2008.

[20] A. Alibeiki and S.S. Falahi, "Genetic Algorithm and Comparison with Usual
Optimization Methods,” World Applied Sciences journa 11 (6):752-754, 2010.

[21] Outi Raiha, Applying Genetic Algorithms in Software Architecture Design, University
of Tampere, Department of Computer Sciences Computer Science ,M.Sc thesis,
February, 2008.

86

[22] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 3rd edition. Springer.
New York, 1996.

[23] Hung-Cheng Chent and Sheng-Hsiung Chang, "Genetic Algorithms Based Optimization
Design of a PID Controller for an Active Magnetic Bearing,” IJCSNS International
Journal of Computer Science and Network Security, VOL.6 No.12, December 2006.

[24] Maxfield, Clive, "The Design Warrior's Guide to FPGAS," Newnes, 2004.

[25] Balasaheb S. Darade, Abhishek Singh Chauhan and Tarun A.Parmar, "Paper
Presentation On Programming FPGA's Using Handel-C," Jawaharlal Nehru Engineering
College Aurangabad.

[26] Xilinx Inc. "Using Digital Clock Managers (DCMs) in Spartan-3 FPGAS," XAPP462
(V1.1), Jan 2006.

[27] K. Mabasa, Mohamed Akil, Thierry Grandpierre, B.J. Van Wyk and M.A. Van Wyk
"Automatic VHDL Code Generation for Fuzzy Logic Systems,”, African Journal of
Science and Technology, 2008.

[28] Gersnoviez and M. Brox, “Using Xfuzzy Environment for the Whole Design of Fuzzy
Systems,” Proc. IEEE International Conference on Fuzzy Systems, London, July 23-26,
2007.

[29] D. R. Lopez, S. Sanchez-Solano, and A. Barriga, "Xfuzzy: A Design Environment for
Fuzzy Systems,"” Proc.7th IEEE Internationa Conference on Fuzzy Systems, pp.1060-
1065, Anchorage, May 1998.

[30] F.JM. Velo, L. Baturone, S.S. Solano and A. Barriga, "Rapid design of fuzzy systems
with Xfuzzy," Proceedings of the IEEE 12th International Conference on Fuzzy Systems,

May 25-28, Sevilla, Spain, pp: 342-347.2003.

[31] CE 152 magnetic levitation model-education manual. Humusoft s.r.o 2002.

87

[32] Math work, Help Manual, Matlab R2008a .

[33] Tongwen Chen and Bruce Francis, Optimal Sampled-Data Control System, Berlin:
Springer-Verlag, 1995.

88

APPENDIX A GA MATLAB PROGRAMS

1- GAFUZZY MATLAB CODE MAIN PROGRAM

%

clc

clear

global rin yout timef

Ts=0.001;

magll=readfis('magl');

open_system('fuzzy mag');

MAXGEN = 100; % maximum Number of generations

NVAR = 13; % Generation gap, how many new individuals are created
GGAP = .5; % Generation gap, how many new individuals are created
PRECI = 10; % Binary representation precision

NIND = 50; % No. of individuals per subpopulations

% First, a field descriptor is set up

FieldD = [rep([PRECI], [1, NVAR]); rep([-0.1;0.1],[1, NVAR]);...
rep([l; 0; 1 ;11, [1, NVAR])];

FieldD(2,1)=0.9;FieldD(2,2)=14.5;FieldD(2,3)=14.5;FieldD(2,12)=2.4;FieldD(2
,13)=0;
FieldD(3,1)=1.1;FieldD(3,2)=15.5;FieldD(3,3)=15.5;FieldD(3,12)=2.8;FieldD(3
,13)=0.2;

FieldD;

BsJ=0;

E = crtbp (NIND, NVAR*PRECI) ;

E(1,:)=11,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,1,0,0,1,1,0,0,0,1,1,1,1,1,1,1,1,0
,0,1,1,0,1,0,0,0,0,1,1,0,0,1,0,0,1,0,12,1,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,1,1,
1,0,1,0,0,0,1,0,1,0,1,0,1,1,1,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0
,1,1,1,0,0,1,0,1,0,1,0,1,1,0,1,1,1,0,1,0,1;1;

E(2,:)=(1,0,0,0,0,0,0,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0
,0,1,1,0,1,0,0,0,0,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0,1,1,
¢,1,1,0,0,0,0,1,1,1,0,0,1,1,1,0,0,0,1,1,1,0,1,1,0,0,1,1,0,1,1,1,1,0,1,0,0,1
,0,1,1,0,1,1,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1;1;

89

E(3,:)=11,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,
g,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,1
,0,1,0,1,1,1,1,0,0,1,0,1,0,1,0,1,1,1,1,0,0;1;

E(4,:)=1,0,0,0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0,0,0
,0,0,0,0,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,1,1,0,0,1,0,1,1,0,0,0,0,1,1,0,1,1,0,
i,1,1,1,0,10,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,1,0,0,0,1,0,1,1,1,0,0,1,0,1,0,0
,1,0,0,1,1,0,0,0,0,1,1,0,1,1,0,1,1,0,0,0,0;1;

for kg=1:1:MAXGEN
time (kg)=kg;
Kfuzzy=bs2rv (E,FieldD) ;

for s=1:1:NIND

%*************** Step 1 . Evaluate BestJd kAhkkhkkhhkhkkhkhhkhkkhhkrkhkhhrhkkhhrhkhkhrkhkxx*k

Kfuzzyi=Kfuzzy (s, :);

[Kfuzzyi,BsJ]=mychap5 2f3 (Kfuzzyi,BsJ);

BsJi (s)=BsJ;
end
[OderJi, IndexJil=sort (BsJi) ;
BestJ (kg)=0derJi (1) ;
BJ=BestJ (kg) ;
Ji=BsJi+le-10;
fi=1./J1;
[Oderfi, Indexfi]=sort (fi);
Bestfi=0Oderfi (NIND) ;
BestS=E (Indexfi (NIND), :);
kg
BJ
BestS;

GrRAFIxAKALK Step 2 : Select and Reproduct Operation®**xxxkkdkkkkxxhdkkx

fi sum=sum(fi);

fi Size=(Oderfi/fi sum) *NIND;

90

fi S=floor (fi Size); %Selecting Bigger fi wvalue
kk=1;
for i=1:1:NIND
for j=1:1:fi S (i) %$Select and Reproduce
TempE (kk, :)=E (Indexfi (i), :);

kk=kk+1; %kk is used to reproduce
end
end
%‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k* Step 3 . Crossover Operation R IR IR I I e b b b b b g
pc=0.99;

n=ceil (100*rand) ;
for i1i=1:2: (NIND-1)
temp=rand;
%1f pc>temp %Crossover Condition
for j=n:1:100
TempE (i, 3)=E(i+1,3);
TempE (1+1,3)=E(i,7)
end
%end
end
TempE (NIND, :)=BestS;

E=TempE;

%*********** Step 4 . Mutation Operation Ak Ak hkrhkhkhkhkhkhkrhkhkhrhkhhkhkhkhkhhkhkkkk*k

pm=0.001-[1:1:NIND]*(0.001) /NIND; %Bigger fi, smaller pm
for i=1:1:NIND
for §j=1:1:3*PRECI
temp=rand;
if pm(i)>temp $Mutation Condition
if TempE (i, 3)==0
TempE (1, 3)=1;
else
TempE (1, 3)=0;
end
end
end
end
TempE (NIND, :)=BestS;

E=TempE;

91

S ARk A A AR A AR A AR A AR A AR A AR A AR A A AR A KRR A KA A A A A A A A AR AR A A AR A AR AR A A A A A A A A kA A Ak Ak kK

end

Bestfi

BestS

Kfuzzyi

Best J=BestJ (MAXGEN)

figure (1) ;

plot (time,BestdJ) ;

xlabel ('Times');ylabel ('Best J'");

92

2- GAFUZZY MATLAB CODE CALL SIMULINK PROGRAM

function

[Kfuzzyi,BsJ]=fuzzy gaf (Kfuzzyi,BsJ)

global rin yout timef

a=newfis('magl');

a=addvar (a, "input','
a=addmf (a, "input', 1,
a=addmf (a, "input', 1,
0.3332-Kfuzzyi(7)]);
a=addmf (a, "input', 1,
Kfuzzyi(5),01]1);
a=addmf (a, "input', 1,
a=addmf (a, "input', 1,
a=addmf (a, "input', 1,
zzyi(9)1);
a=addmf (a, "input', 1,

a=addvar(a, "input', 'ec', [-1,1]);

a=addmf (a, "input', 2,
a=addmf (a, "input', 2,
0.3332-Kfuzzyi(7)]);
a=addmf (a, "input', 2,
Kfuzzyi(5),01);
a=addmf (a, "input', 2,
a=addmf (a, "input', 2,
a=addmf (a, "input', 2,
zzyi(9)1);
a=addmf (a, "input', 2,

a=addvar (a, 'output',

a=addmf (a, 'output', 1,
a=addmf (a, 'output',1,

0.3332-Kfuzzyi(7)1);

a=addmf (a, 'output',1,

Kfuzzyi(5),01]);

e'l [_111]);

$Parameter e
'NB', "zmf', [-1,-0.6668-Kfuzzyi (10)]);
'NM'", "trimf', [-1-Kfuzzyi(9),-0.6668-Kfuzzyi(8), -

'NS', "trimf', [-0.6668-Kfuzzyi (6),-0.3332-

'z', "trimf', [-0.3332-Kfuzzyi(4),0,0.3332+Kfuzzyi(4)]);
'PS', "trimf', [0,0.3332+Kfuzzyi(5),0.6666+Kfuzzyi(6)1]);
'"PM', "trimf', [0.3332+Kfuzzyi(7),0.6666+Kfuzzyi (8),1+Kfu

'PR', "smf', [0.6666+Kfuzzyi(10),1]);
$Parameter ec
'NB', "zmf', [-1,-0.6668-Kfuzzyi(10)]);
'NM', "trimf', [-1-Kfuzzyi(9),-0.6668-Kfuzzyi(8), -

'NS', "trimf', [-0.6668-Kfuzzyi(6),-0.3332-

'Z', "trimf', [-0.3332-Kfuzzyi(4),0,0.3332+Kfuzzyi(4)1]1);
'PS', "trimf', [0,0.3332+Kfuzzyi(5),0.6666+Kfuzzyi(6)]);
'"PM', "trimf', [0.3332+Kfuzzyi(7),0.6666+Kfuzzyi (8),1+Kfu

'PB', "smf', [0.6666+Kfuzzyi(10),1]);

u', [-1,11); %SParameter u
'NB', "zmf', [-1,-0.6668-Kfuzzyi(10)]);

'NM'", "trimf', [-1-Kfuzzyi(9),-0.6668-Kfuzzyi(8), -

'NS', 'trimf', [-0.6668-Kfuzzyi(6),-0.3332-

a=addmf (a, 'output',1,'Z2", "trimf', [-0.3332-Kfuzzyi(4),0,0.3332+Kfuzzyi(4)1]1);
a=addmf (a, 'output',1,'PS', "trimf"', [0,0.3332+Kfuzzyi(5),0.6666+Kfuzzyi(6)]);

93

a=addmf (a, 'output',1,'PM', "trimf', [0.3332+Kfuzzyi(7),0.6666+Kfuzzyi (8),1+Kf
uzzyi(9)1):;
a=addmf (a, 'output', 1, 'PB', 'smf', [0.6666+Kfuzzyi (10),1]);

rulelist=[1 111 1; %Edit rule base
12111;
1 3111;
14111;
15211;
16 311;
1741 1;

NN NN N
< o s W N
oo W N R R
R

w W W W W w w
<4 o0 o W N
o s W N
[T = S e O S S =

T N N SO N N
< o s W N
< o s W N
R N

94

SN, IS, B
-~ o 0o
< 9 o O,
N

~e

~e

~e

o O O O & O O
<4 o0 o W N
PG R e N A B N V)
[= = T = S S S
R = = = = =

~.

~.

4
4
17

a=addrule (a, rulelist);

IS G G
< o s W N
RS S N e R S
e e
e e

7

a=setfis(a, 'DefuzzMethod', 'centroid");
writefis(a, 'magl');

magll=readfis('magl');

ke=num2str (Kfuzzyi(1l));

kce=num2str (Kfuzzyi(2));

ku=num2str (Kfuzzyi(3));

ki=num2str (Kfuzzyi (12));

kp=num2str (Kfuzzyi (13));

set param('fuzzy mag/fuzzy sub/err g','Gain', ke);
set param('fuzzy mag/fuzzy sub/ce g','Gain', kce);
set param('fuzzy mag/fuzzy sub/out g','Gain', ku);
set param('fuzzy mag/pi sub/pi g','Gain',ki);

set param('fuzzy mag/pi sub/p g','Gain', kp);

[t,x,y]l=sim('fuzzy mag');
clear t;
clear x;

clear vy;

95

BsJ=0;
ts=0.001;
for k=1:1:201
timef (k)=k*ts;

Ji(k)=(e_abs.time (k) *e abs.signals

BsJ=BsJ+J1i (k) ;

end

end

96

.values (k));

APPENDIX B VHDL CODES

library IEEE®

use IEEE.STD_LOGIC_1164.ALL¢

use [IEEE.STD_LOGIC_ARITH.ALL:
use [IEEE.STD_LOGIC_SIGNED.ALL:

entity sum s
Port (set_ p:in STD_LOGIC_VECTOR (9 downto 1¢(
f back:in STD_LOGIC_VECTOR (9 downto 1¢(
CLK50:in STD_LOGIC:
rst: in std_logict
ERR_OUT : out STD_LOGIC_VECTOR (8 downto 0):="011111111¢"
CH_ERR _OUT : out STD_LOGIC_VECTOR (9
1):="011111121¢("
end sum:

architecture Behaviora of sumis

signal set_p_b: std logic_vector(8 downto 0):="000100100¢"

signa f_back b: std logic_vector(8 downto 0):="010000000:"

signal e _b: std logic_vector(9 downto 0):="0000000000:"

signa e bl: std logic_vector(9 downto 0):="0000000000¢"

signa ch_err_b: std_logic_vector(14 downto 0):="000000000000000¢"

signal sh_err: std_logic_vector(9 downto 0):="0000000000¢"

signa CH_ERR _OUTDb: std_logic_vector(14 downto 0):="000000000000000¢"

begin
process (clk50,set_p,f_back,set p b,f back b(
variable count: integer :=0¢
begin
if clk50" event and clk50="1" then
count:=count+1¢
if count=50000 then
count:=0¢
- e b<=('0&set_p h)-('0'&f_backs(
ERR_out<=sh_err(8 downto 0¢(
ch_err_out<=ch_err_outb(8 downto 0¢(
e bl<=e b
end if¢
end if¢

97

downto

end process

process (clk50,set_p,f_back,set p b,f back b(
begin
if clk50" event and clk50="1" then
e b<=('0&set_p_h)-('0&f_backs(
sh_err<=e b+"0011111111¢"

ch_err_b<=((e_b-e b1)*"001111")+255¢
if ch_err_b>=510 then
CH_ERR_OUTb<="000000111111110¢"
elsif ch_err_b<0 then
CH_ERR_OUTb<="000000000000000¢"
ese
CH_ERR_OUTb<=ch_err_b;--(8 downto 0¢(
end if¢
-- e _bl<=e bt
end if¢
end processt
end Behavioral¢

98

-------------- SR oY: L——

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use [IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitivesin this code.

--library UNISIM;

--use UNISIM.V Components.all;

entity pi is
Port (clk50:in STD_LOGIC;
rst: in STD_LOGIC;
dout : out STD_LOGIC_VECTOR (7 downto 0):=(others=>'0’);
din:in STD_LOGIC VECTOR (8 downto 0):=(others=>'0"));
end pi;

architecture Behaviora of pi is

signal eb: std_logic_vector(9 downto 0):=(others=>'0);
signal ul: std logic vector(31 downto 0):=(others=>'0";
signal u: std_logic_vector(31 downto 0):=(others=>'0");

signa acu_in: std_logic_vector(14 downto 0):=(others=>'0");
signal ebgain: std_logic_vector(14 downto 0):=(others=>'0");
signa p_out: std logic vector(22 downto 0):=(others=>'0";
signal c_out: std_logic_vector(31 downto 0):=(others=>'0");
signa c¢_outh: std logic_vector(31 downto 0):=(others=>'0);
signa doutb: std_logic_vector(7 downto 0):=(others=>'0');

begin
process (clk50,din,acu_in,ebgain,p_out,c_out,c_outb,u)
begin
if clk50" event and clk50="1" then
eb<=('0&din)-"0011111111";
acu_in<=eb*"000111";
ebgain<=eb*"000111";
u<=(eb*"01111")+ul;--acu_in+ul;
p_out<=ebgain*"01100100";
C_outb<=u+p_out;
if c_outb(31)="1" then
c_out<=(others=>'0);
else
C_out<="000000000"&c_outb(31 downto 9);
end if;
if c_out>=255 then

99

doutb<="11111111";
else
doutb<=c_out(7 downto 0);
end if;

endif;
end process;

process (clk50,din,acu_in,ebgain,p_out,c_out,c_outb,u)
variable count: integer :=0;

begin

if clk50" event and clk50="1" then
count:=count+1,

if count>50000 then

count:=0;

dout<=not(doutb);

ul<=u;

if ul(31)="1"and u1(30)="0" then
--u1<="00000000000000000000000011111111";
ul<="10111111111111111111111111111111";
elsif ul(31)='0"and ul(30)="1" then
ul<="01000000000000000000000000000000";
--u1<="11111111111111111111111100000000";
end if;

end if;

end if;

end process,

end Behavioral;

100

APPENDIX C H, CONTROLLER MATLAB CODE

o©

All of the parameters are read in from MATLAB workspace variables.
The plant model is [a,b,c,d].

-1 numl (s) num?2 (s) -1 num3 (s)
wl (s) = ——————- ;o ow2(s) = ——————- ; w3 (s) = ——————-

denl (s) den?2 (s) den3 (s)

are the performance weighting function, input weighting function, and
robustness weighting function respectively. The curves inside the
weighting function blocks are the magnitudes of the bode plots
of each weighting function.

o0 o o° o° A° o° A o o

oe

The designed H 2 controller is given by [ae,be,ce,de]. During the
simulation system measurement noise is added.

o oP

o°

By changing the plant and the weighting function parameters, you
can convert the example to solve a problem of your own.

o° o

oe

Re-Load Data
Re-load data from file. This refreshes the data in the workspace.

o° o

o°

Re-Design
After changing the workspace parameters, you should redesign the
controller to fit your data.

o o oP

o\°

In this design, the following commands in the Robust Control
Toolbox are used:

o©

% augss --- state space plant augmentation with weighting function
% obalreal --- balance realization
% h2lgg -—-—- H 2 optimal controller design

o

o\

A MIMO control system can be designed using a similar structure.

o\°

format short
clear
clc
Ts=0.001
Gm————————— Magnetic Levitation Parameters -----------

Dk = 12.7e-3;
mk = 0.0084;

oe

ball diameter [m]
ball mass [kg]

o

g = 9.81; % gravity accelleration constant [m.s"-2]
L = 19e-3 - Dk; % distance of limits [m]

U DAm = 5; % maximum DA converter output voltage

Rc = 3.5; % coil resistance [Ohm]

Lc = 30e-3; % coil inductance [H]

Rs=0.25; % current sensor resistance [Ohm]

Ks = 13.33; % current sensor gain [-]

o

K am = 100; power amplifier gain [-]

I am = 1.2; maximum power amplifier output current

Ta =0.003;% L/ ((Rc+Rs)+Rs*Ks*K am) ; % amplifier time constant [s]
k i = K am / ((Rc+Rs)+Rs*Ks*K _am); % amplifier gain [A/V]

o

KFv=0.02; % viscose friction

k DA= 10; % D/A converter gain

k AD=0.2; % A/D converter gain

k x=797.4603; % position sensor constant

k £ =0.606e-6; %aggregated coil constant [N/V])

k c=k f/(k _1)"2; %$coill constant

x 0= 8.26e-3; % ball position at equilibirum point (x00,v00,1i00)

101

v00 = 0; % ball velocity [m/s] at equilibirum point
(x00,v00,100)

x00= L/2; $ coil limit bias [m]

u00 = - sgrt(mk * g / k £) * (x00-x0); % model input voltage
[m/s”2] at equilibirum point (x00,v00,100)

i00 = w00 * k 1i; %coil current at equilibirum point (x00,v00,100)
fporintf (' Feedback Linearization of Magnetic Levitation
System\n\n")

fprintf ('The desired over-shoot = 10%% and settling Time = 0.5 sec\n')

fprintf ('The state space equation of the system is:\n ')
% State Space Equation of Magnetic Plant

a=1[010; -2%¥i00"2*k_c¢/(x00-x_0)"3/mk -KFv/mk 2*i00*k c/(x00-x_0)"2/mk
; 00 -1/Ta]

b=%kDA*[0 0 k i/Ta 1°'

c = (kx*k AD)*[1 0 0]

d [01

o°

performance weighting function Wl

numl=[1 300];
denl=[0.5 0.01];

[

% input weighting function W2

num2=[0.017];
den2=[1];

[

% robust weighting function W3

num3=[0.1];
den3=[1] ;

[

% Construct the wieghting functions

sys = ss(a,b,c,d)
[awl,bwl, cwl, dwl]
[aw2,bw2,cw2,dw2]
[aw3,bw3,cw3, dw3]

= tf2ss(numl,denl); syswl = ss(awl,bwl,cwl,dwl);
tf2ss (num2,den2); sysw2 ss (aw2,bw2,cw2,dw2) ;
tf2ss (num3,den3); sysw3 ss (aw3,bw3,cw3,dw3) ;

s=zpk('s');

sys_=augtf (sys, syswl, sysw2, sysw3) % augss --- state space plant
augmentation with weighting function

(A,B1,B2,C1,C2,D11,D12,D21,D22]=branch(sys_);

[K,CL,GAM]=h2syn(sys);

[ss _cp,ss _cl]l=h2lgg(sys); % h2lqgg -—-- H 2 optimal controller design
[A,B,C,D]=ssdata (K)

[ae,be,ce,de]=ssdata(ss_cp)

p=[A Bl B2;Cl D11 D12;C2 D21 D22] %

disp('H2 Controller is now ready')

102

103

