

 بسم الله الرحمن الرحيم

 زةــغ –ة ـة الإسلاميـالجامع

 ا ــات العليـادة الدراسـعم

 اتــا المعلومـة تكنولوجيـكلي

 Islamic University – Gaza

Deanery of Post Graduate Studies

Faculty of Information Technology

Efficient Load Balancing Algorithm in

Cloud Computing

Prepared by:

Hafiz Jabr Younis

Supervised By:

Dr.Alaa El Halees

A Thesis Submitted as Partial Fulfillment of the Requirements for

the Degree of Master in Information Technology

Feb., 2015

i

 Dr. Jabr Younes

ii

Acknowledgement

First of all I thank Allah for guiding me and taking care of me all the time.

I would like to express my profound sense of gratitude towards my guide Dr. Alaa El hales, Professor, Department

of Information technology, for his able guidance, support and encouragement throughout the period this work was

carried out. His readiness for consultation at all times, his educative comments, his concern and assistance even

with practical things have been invaluable.

I would also like to convey my sincerest gratitude and indebtedness to the entire faculty members and staff of the

Department of Information technology and for Dr.Mohamed Radi who bestowed their efforts and guidance at

appropriate times without which it would have been very difficult on my part to finish the project work.

Very special thanks to my Father who spent all his life to make me happy and always the best. Thanks for your

pray, for your patience, for helping, guiding and supporting me through all my life.

I wish to express my considerable gratitude to my dear Mother, my lovely Wife and my sweet Children for their

patience, motivation and continue support.

iii

Abstract

Recently, cloud computing become a new global trend of computing. It is a modern style of using

the power of Internet and wide area network (WAN) to offer resources remotely. It’s a new

solution and strategy to achieve high availability, flexibility, cost reduced and on demand

scalability. However cloud computing has many challenges such as poor resource utilization which

has deep impact in the performance of cloud computing. These problems arisen due to the huge

amounts of information. So the need for efficient and powerful cloud computing load balancing

algorithms is one of the most important issues in this area to improve the performance of cloud

computing.

Many researchers proposed various load balancing and job scheduling algorithms in cloud

computing, but there is still some inefficiency in the system performance and load still imbalance.

Therefore, in this research we propose a load balancing algorithm to improve the performance

and efficiency in heterogeneous cloud computing environment. We propose a hybrid algorithm

based on randomization and greedy algorithm, it takes advantages of both random and greedy

algorithms. The algorithm considers the current resource information and the CPU capacity factor

to achieve the objectives. The hybrid algorithm has been evaluated and compared with other

algorithms using CloudAnalyst simulator. The results showed improvements on average response

time and on processing time by considering the current resource information and the CPU capacity

factor compared with other algorithms, and this means the performance has improved.

 Keywords: Load Balancing, Cloud Computing, Virtual Machine, Virtualization, Cloud Analyst,

Scheduling.

iv

Table of Contents
Acknowledgement ... ii

Abstract ... iii

Table of Contents .. iv

List of Figures .. vi

List of Tables ...vii

List of Abbreviations .. viii

 Introduction ... 2 Chapter 1

1.1 Statement of the problem ... 3

1.2 Objectives .. 3

1.2.1 Main objective ... 3

1.2.2 Specific objectives .. 3

1.3 Research Methodology .. 3

1.4 Significance of the thesis ... 4

1.5 Scope and limitations ... 5

1.6 Research Organization ... 5

 Technical Background and Related Works... 7 Chapter 2

2.1 Technical Background .. 7

2.1.1 Cloud Computing ... 7

2.1.2 Cloud computing features ... 8

2.1.3 Cloud Service Model .. 9

2.1.4 Cloud Deployment Model .. 10

2.1.5 Virtualization .. 11

2.1.6 Cloud Computing Issues and Challenges ... 11

2.1.7 Cloudsim .. 21

2.2 Related works .. 27

2.3 Summary .. 31

 Proposed Algorithm ... 33 Chapter 3

3.1 Proposed Algorithm ... 33

3.1.1 Description ... 35

3.1.2 Implementation ... 35

v

3.1.3 Pseudo code ... 36

3.1.4 Evaluation .. 38

3.2 Summary .. 38

 Experiments and Results .. 40 Chapter 4

4.1 Experiments ... 40

4.1.1 Experiment 1: Test the hybrid algorithms without considering CPU capacity. 40

4.1.2 Experiment 2: Test the effect of considering the capacity of CPU. .. 43

4.1.3 Experiment 3: tested the effect of network delay with considering the Capacity of CPU 45

4.2 Summary .. 47

 Conclusion and Future Work ... 50 Chapter 5

5.1 Conclusion .. 50

5.2 Future Work ... 51

References ... 52

Appendix A ... 1

vi

List of Figures

Figure 1.1 Research Methodology ... 4

Figure 2.1 Cloud Computing Architecture ... 9

Figure 2.2 Types of Clouds ... 10

Figure 2.3 Load Balancing in Cloud Computing ... 13

Figure 2.4 Round Robin Algorithm ... 16

Figure 2.5 Random Algorithm .. 17

Figure 2.6 Equally Spread Current Execution Algorithm ... 18

Figure 2.7 Throttled Algorithm .. 19

Figure 2.8 Greedy Algorithm .. 20

Figure 2.9 Regions in Cloud Analyst Simulator .. 22

Figure 2.10 Users Based in CloudAnalyst Simulator .. 23

Figure 2.11 Data Center in CloudAnalyst ... 23

Figure 2.12 Data Center Details in CloudAnalyst ... 24

Figure 2.13 Hosts in Cloud Analyst Simulator .. 25

Figure 3.1 Steps to developing the proposed algorithm ... 33

Figure 3.2 The Proposed Hybrid Algorithm ... 34

Figure 3.3 Hybrid Algorithm Pseudo Code ... 37

Figure 4.1 All algorithm results Comparison without considering Capacity of CPU factor 42

Figure 4.2 All algorithm results Comparison for testing the effect Capacity of CPU factor 44

Figure 4.3 VM Allocations in Data center .. 45

Figure 4.4 All algorithm results Comparison for testing the effect of network delay 46

file:///C:/Users/HP/Desktop/Masters_Thesis-load_balancing_in_cloud_computing_systems_CompleteV1.7.docx%23_Toc415523360

vii

List of Tables

Table 4.1 Application development Configuration used in Experiment 1 ... 41

Table 4.2 User bases configuration used in Experiment 1 ... 41

Table 4.3 Data centers configuration used in Experiment 1.. 41

Table 4.4 Response Time and processing time results without considering Capacity of CPU factor 42

Table 4.5 Response time and processing time results for testing the effect of Capacity of CPU factor 43

Table 4.6 User Bases Configuration Used in Experiment3... 45

Table 4.7 Response timer and processing time results for testing the effect of network delay 46

viii

List of Abbreviations

DC Data Center

ESCE Equal Spread Current Execution

Exe Execution Instruction

Mbps Megabit per Second

Req Request

RR Round Robin

SLA Service-Level Agreement

SOA Service-Oriented Architecture

UB User Base

1

Chapter 1
Introduction

2

 Introduction Chapter 1

In recent years, Cloud computing become a new computing model emerged from the rapidly

development of internet. It leads the new IT revolution. Cloud computing considered as an

evolution of distributed systems. Cloud computing is a heterogeneous environment offers a

rapidly and on-demand wide range of services[1]. Heterogeneous environment means having

different hardware characteristics including CPU, memory, storage and other hardware [2].The

business owner can start and expand without invest in the infrastructure with lowering operating

and maintenance cost. It has moved computing and data away from desktop and portable PCs,

into large data centers[3]. It has the capability to harness the power of Internet and wide area

network (WAN) to use resources that are available remotely, thereby providing cost effective

solution to most of the real life requirements[3]. The National Institute of Standards and

Technology's (NIST) define a Cloud computing as "cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction. "[4]

Load balancing is considered as one of the challenges in cloud computing, it is the major factor to

improve the performance of the cloud computing. The current load balancing algorithms in cloud

computing environment is not highly efficient [5]. Load balancing in cloud computing environment

is very complex task till today, because prediction of user request arrivals on the server is not

possible. Each virtual machine has different specification, so it becomes a very difficult to schedule

job and balance the load among nodes [6].

Recently, we can find many research works that have been done on load balancing in cloud

computing such as Round Robin, Equally Spread Current Execution and Throttled Load Balancing

Algorithm. There is other works done using randomization such as ant colony algorithm [7].

In this research we propose a hybrid algorithm that takes advantages of both random and greedy

algorithm. The experiments done using cloud analyst to test the performance of the proposed

algorithm in heterogeneous of processors power. The experiments studied the effect of

considering the capacity of CPU factor with the hybrid algorithm in heterogeneous environment of

3

hosts, and studied the effect of network delay on the hybrid algorithm. The results showed

improvements on average response time and on processing time by considering the current

resource information and the CPU capacity factor compared with other algorithms, and this means

the performance has improved.

1.1 Statement of the problem

The current load balancing algorithms in heterogeneous of a processors power in cloud computing

environment is not highly efficient[5], so our problem in this research is how to overcome this

limitation by developing an efficient load balancing algorithm.

1.2 Objectives

1.2.1 Main objective

The main objective of this research is to propose a hybrid algorithm based on randomization and

greedy algorithm to achieve efficient performance in heterogeneous of a processors power in

cloud computing environment.

1.2.2 Specific objectives

The specific objectives of this research are:

 Design a new algorithm that adopts the characteristics of randomization and greedy to

make an efficient load balancing and covers their disadvantages

 Simulate the proposed algorithm using Simulator. (e.g. CloudAnalyst)

 Evaluate the proposed algorithm system using response time metrics.

 Compare the results of proposed algorithm with those of other famous algorithms such as

Round Robin and Equally Spread.

1.3 Research Methodology

In this research we propose a hybrid algorithm that takes advantages of both random and greedy

algorithms. The algorithm considers the current resource information and the CPU capacity factor

to achieve sufficient efficiency. Figure 1.1 shows the steps of the used methodology.

4

Figure 1.1 Research Methodology

First step we design a hybrid algorithm based on random and greedy algorithm, then testing the

current load balancing algorithms performance in heterogeneous environment of hosts. Then

studying the problem without the effect of network delay, and then testing the effect of

considering the Capacity of CPU factor on the hybrid algorithm. Then testing the effect of network

delay on the hybrid algorithm with considering the Capacity of CPU factor in a heterogeneous

environment of hosts. Finally comparing the hybrid algorithm with Round robin, ESCE, Random

and Greedy algorithms.

1.4 Significance of the thesis

 Improving the performance in heterogeneous of a processors power in cloud computing

environment.

 Developing an efficient hybrid load balancing algorithm based on randomization and

greedy algorithm.

 Studying the performance under different load balancing in low and high load.

Design a hybrid algorithm based on random and greedy algorithms.

Test the current load balancing algorithms performance in heterogeneous environment of
hosts.

Study the problem without the effect of network delay.

Test the effect of considering the capacity of CPU factor.

Study the problem with the effect of network delay.

Compare the results with round robin,ESCE,Random and greedy algorithms results.

Conclusion

5

 Studying the performance of load balancing in one data center with local users and with

distributed users.

1.5 Scope and limitations

This research propose a hybrid load balancing algorithm which is mainly concentrate on

overcoming the deficiencies in the performance of current algorithms. The limitations of this work

are as follows:

 It considers the processor power factor; other specifications are out of scope.

 It focuses on normal arrival rate; other arrival rates are out of our scope.

 It is a dynamic non-distributed load balancing algorithm.

 It focuses only on improving scheduling performance in heterogeneous of a processors

power in cloud computing environment.

 It is a local algorithm considers only one data center in one location.

 The performance of the proposed algorithm will be measured using simulator (cloud

analyst), but not real experiments.

1.6 Research Organization

The research was organized as follows. Chapter 2 is devoted to literature review. In Chapter 3 we

define the used model and the proposed algorithm. Chapter 4 is about experiments and results.

Chapter 5 is for the conclusions and future directions.

6

Chapter 2
Technical Background and Related Works

7

 Technical Background and Related Works Chapter 2

This chapter defines cloud computing and its characteristics and models. We discuss cloud

computing challenges and define the load balancing challenge and its types. We reflect a number of

researches that are worked on enhancing load balancing.

2.1 Technical Background

Cloud computing become a new computing model emerged from the rapidly development of

internet, it leads the new IT revolution. In this section we define the cloud computing and its

characteristics and models, and we will define the virtualization and the benefits of virtualization in

cloud computing. Also we discuss the cloud computing challenges and define load balancing

challenge and its types.

2.1.1 Cloud Computing

In recent years, Cloud computing become a new computing model emerged from the rapidly

development of internet, it leads the new IT revolution. Cloud computing considered an evolution

of distributed systems, it is a heterogeneous environment offers a rapidly and on-demand wide

range of services [1]. Heterogeneous environment means having different hardware

characteristics including CPU, memory, storage and other hardware [2]. The business owner can

start and expand without invest in the infrastructure with lowering operating and maintenance

cost. It has moved computing and data away from desktop and portable PCs, into large data

centers[3]. It has the capability to harness the power of Internet and wide area network (WAN) to

use resources that are available remotely, thereby providing cost effective solution to most of the

real life requirements[3]. Cloud computing is defined as a technical concept, where system users

save the information on remote servers which are managed by others, and use the applications

that are stored inside the server and executed from other locations, instead of from their own

computers[8]. The National Institute of Standards and Technology's (NIST) define a Cloud

computing as "cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction."[4]. Large companies such as Google , Amazon

and Microsoft provide more powerful, reliable and cost-efficient cloud platforms, Some examples

of emerging Cloud computing are Microsoft Azure, Amazon EC2, Google App Engine [4, 9, 10].

http://www.google.ps/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&ved=0CHYQFjAH&url=http%3A%2F%2Fwww.qubicgroup.com%2Fpages%2Fpress%2Fnews-feed%2Fcloud-computing-leads-the-new-it-revolution.php&ei=cXwbUt2aKMittAax_YBY&usg=AFQjCNFGg7FjE_QVMr1HzsjzC4suSvB8ng&bvm=bv.51156542,d.Yms
http://www.google.ps/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&ved=0CHYQFjAH&url=http%3A%2F%2Fwww.qubicgroup.com%2Fpages%2Fpress%2Fnews-feed%2Fcloud-computing-leads-the-new-it-revolution.php&ei=cXwbUt2aKMittAax_YBY&usg=AFQjCNFGg7FjE_QVMr1HzsjzC4suSvB8ng&bvm=bv.51156542,d.Yms

8

The cloud is a virtualization of resources that maintains and manages itself [11]. It builds on a wide

range of different computing technologies such as high-performance computing, distributed

systems, virtualization, storage, networking, security,’ management and automation, Service-

Oriented Architecture (SOA), Service-Level Agreement (SLA) and Quality of Service (QoS)[12].

2.1.2 Cloud computing features

Cloud computing provides several features that make it attractive to IT industry, such as :[4] [13].

- No up-front investment: The pricing model in cloud computing is based on a pay-per-use

principle. This model gives they the ability to rent services and resources from cloud as he

needs.

- Lowering operating cost: Cloud environment resources are allocated and de-allocated on

demand and this can provide a considerable saving in operating costs since resources can

be released when service demand is low.

- Scalability and Elasticity: the infrastructure providers have a large amount of resources

and infrastructure. So they can easily expand its service to handle the growing service

according to client demand [14]. On the other hand, Elasticity is the ability to scale

resources both up and down when required. Allowing the dynamic integration and

extraction of physical resources to the infrastructure. That’s mean elasticity enables

scalability [15].

- Easy access: the cloud services provided to users as a web-based services. So, they can

access the services through any devices supported with Internet connections.

- Reducing business risks and maintenance expenses: Shifts the business risks such as

hardware failures to infrastructure providers, because providers have better expertise

 and resources to manage these risks [14].

- Virtualization: Virtualization hides a computing platform’s physical characteristics from

users [16] [17], It allows abstraction and isolation of lower level functionalities and

underlying hardware.

- Mobility: Cloud Computing means mobility because users can access applications [18]

through internet easily at any point of time.

9

2.1.3 Cloud Service Model

Cloud Computing can be delivered through such delivery models as follow.

 Infrastructure as a Service (IaaS):

This model of Cloud computing provide Hardware as a Service via Internet such as storage, CPU

and other. There are many IaaS providers such as Amazon Elastic Cloud Compute (EC2),

Rackspace[8] [13].

 Platform as a Service (PaaS):

Cloud computing provide a platform as a services that required for building application, where

user using tools and libraries for Cloud service providers, and also consumers deployed their

applications without costing of hardware where providers of services provide the network,

storage. There are many PaaS providers such as Google App Engine, Windows Azure[8] [13].

 Software as a Service (SaaS):

Focus on providing different software hosted on the Cloud and usually referred to as on-

demand-software, where in this type of service, consumer will have to pay for usage of

software. Usually consumer access to the software via the Internet, therefore, user uses the

software don’t need any integration with other system[8] [13]. There are many SaaS provider

such as Google Apps, SalesForce.com as shown in Figure 2.1 [4].

Figure 2.1 Cloud Computing Architecture

11

2.1.4 Cloud Deployment Model

There are different types of clouds as shown in Figure 2.2 [19], each with its own benefits and

drawbacks.

Figure 2.2 Types of Clouds

 Public clouds: A cloud in which service providers offer their resources as services to the general

public. Public clouds offer several key benefits to service providers, including no initial capital

investment on infrastructure and shifting of risks to infrastructure providers. However, public

clouds lack fine-grained control over data, network and security settings, which hampers their

effectiveness in many business scenarios[4] [15].

 Private clouds: Also known as internal clouds, private clouds are designed for exclusive use by a

single organization. A private cloud may be built and managed by the organization or by

external providers. A private cloud offers the highest degree of control over performance,

reliability and security. However, they are often criticized for being similar to traditional

proprietary server farms and do not provide benefits such as no up-front capital costs[4] [15].

 Hybrid clouds: A hybrid cloud is a combination of public and private cloud models that tries to

address the limitations of each approach. In a hybrid cloud, part of the service infrastructure

runs in private clouds while the remaining part runs in public clouds[4] [15].

11

2.1.5 Virtualization

Virtualization separates resources and services from the underlying physical delivery environment

[13]. Virtualization is considered as a core of cloud computing technologies and one of the most

important technologies that enabled this paradigm [16] [17]. Virtualization hides a computing

platform’s physical characteristics from users [16] [17]. It allows abstraction and isolation of lower

level functionalities and underlying hardware. This enables portability of higher level functions and

sharing and/or aggregation of the physical resources [20].

Virtualization means “something which isn’t real”, but gives all the facilities of a real[6]. It is the

software implementation of a computer which will execute different programs like a real machine

[21].

Virtualization has three characteristics that make it very related with cloud computing which are

[13]:

1- Partitioning:

By partitioning the available resources, many applications and operating systems can run in

a single physical system.

2- Isolation:

By isolation, each virtual machine can run in its host with others virtual machine without

effect on others. So, if one virtual instance failed, it doesn’t affect the other virtual

machines.

3- Encapsulation:

A virtual machine encapsulated and stored as a single file, so a virtual machine can be

presented to an application as a complete entity without interfere with another

application.

2.1.6 Cloud Computing Issues and Challenges

There are many issues and challenges emerged from cloud computing and are required to be

addressed properly as following:

 Security

It is clear that the security issue has played the most important role in Cloud computing. Security

issues such as data loss, phishing, privacy and other threats, Whether at the enterprise level or

individual level that use the pooled computing resources in cloud computing, has introduced new

12

security challenges. So, we need novel techniques to reduce the impact of the endless dangers in

the cloud computing environment [22].

 Performance

It is the second issue in cloud computing [22]. Poor performance can be caused by lack of

resources such as disk space, limited bandwidth, lower CPU speed, memory, network connections

etc. The data intensive applications are more challenging to provide proper resources. Poor

performance can result in end of service delivery, loss of customers and reduce revenues [15].

Performance can be based on different methods, tools and simulations for cloud environments

such as fuzzy systems and a tool like Cloud Analyst [23]. There is a series of factor that affect the

performance such as:

- Security.

- Recovery and Fault tolerance.

- Service level agreements.

- Bandwidth.

- Storage capacity.

- Physical memory.

- Disk capacity.

- Processor Power.

- Availability.

- Number of users and Workload.

- Usability.

- Scalability.

- Location, data centers and their distance from a user’s location.

And there is a series of criteria for evaluating the performance such as [23] [24]:

- Average response time per unit time.

- Average waiting time per unit time.

- Workload to be serviced per second (Mbps) or a unit of time.

- Throughput (Req / Sec).

- The average time of processing (exe / sec).

- Percentage of CPU utilization.

13

- The number of requests executed per unit time.

- The number of requests per unit time buffer.

- The number of rejected requests per unit time.

 Load balancing

Load balancing is a process of reassigning the total load to the individual nodes of the collective

system to improve both resource utilization and job response time. It also avoids a situation where

some of the nodes are heavily loaded while other nodes are idle or doing very little work. Load

balancing ensures that all nodes in the system approximately equal amount of work at any instance

of time [3, 25]. The objective of load balance is to a achieve optimal resource utilization, maximize

throughput, minimum response time, and avoid overload [18]. The heterogeneous environment

considered as a major concern [26-28] because the heterogeneous environment consist of

heterogeneous resource, so the behaves of heterogeneous cloud different and has different

attributes and different response times for any process [27, 29].

Although load balancing in cloud computing is based on standard load balancing, it differs from

classical load-balancing such as in parallel computing. In cloud computing the architecture and

implementation of the load balancing process is different according to the use of commodity

servers to perform the load balancing, which provides for new opportunities and economies of

scale [30]. Figure 2.3 presents load balancing in cloud computing [31].

Figure 2.3 Load Balancing in Cloud Computing

14

As seen in Figure 2.3, the data center required a load balancing policy to process the users

requests. The load balancer responsible to assigns the virtual machine to the user request. Then

the data center sends the response to the users after processing the Request.

The load balancing is very important in cloud computing environment. The major goals of load

balancing algorithms are:

 Achieve an overall improvement in system performance at a reasonable cost [18].

 To have a backup plan in case the system fails even partially [21].

 To accommodate future modification in the system: the distributed system can change such as

applying new topology and scale up. So a load balancing algorithm must be scalable and

flexible to handle this changes [18].

The mathematical model of load balancing is defined as follows:

Let say that there are n set of Load or requests need to be scheduled given as:

 { } (1)

And there are K set of Virtual Machines in a Datacenter given as:

 { } (2)

The current Datacenter load is given as:

 { } (3)

We need to find a function f(L), where the set of load L can be mapped to the set of Virtual

Machines V, making the Load VLi of each Virtual Machine Vi be essentially equal, that is:

 (4)

Let us use τo to reflect the time needed for executing task Lo on the Virtual Machine Vi, so the time

needed for executing all the tasks on the Virtual Machine Vi is as follows:

 ∑ (5)

When k =1, that means there is only one Virtual Machine, and all the tasks should be executed

serially on this Virtual Machine, so the time needed for execution is the sum of all the time, which

can be represented as T1 shown below:

 ∑ (6)

15

When K > 1, that means there is more than Virtual Machine, and the tasks can be shared to

multiple server nodes for dealing with in parallel, the time needed is represented as Tk shown

below:

 (7)

Thus, the goal of load balancing is to solve the function f(L) to get the minimum of Tk in case of

VL1≈VL2≈ … ≈ VLk

Load balancing algorithm can be divided into two categories as 1) Static and 2) Dynamic.[32] [25].

- Static algorithms:

Static algorithms divide the traffic equivalently between servers and the load balancing strategy

has made by load balancing algorithm at compile time [6] By this approach the traffic on the

servers will be disdained easily and consequently it will make the situation more imperfectly. A

general disadvantage of all static schemes is that the final selection of a host for process allocation

is made when the process is created and cannot be changed during process execution to make

changes in the system load. Round robin algorithms are a static load balancing algorithm because

the work load distributions between processors are equal [24].

- Dynamic algorithms:

In dynamic algorithms decisions on load balancing are based on current state of the system. No

prior knowledge is needed for load balancing. So it is better than static approach. Dynamic load

balancing can be done in two ways [7] [24]:

o Distributed dynamic load balancing:

In the distributed one, the dynamic load balancing algorithm is executed by all nodes

present in the system and the task of load balancing is shared among them. A benefit, of

this is that even if one or more nodes in the system fail, it will not cause the total load

balancing process to halt; it instead would affect the system performance to some extent.

o Non-distributed dynamic load balancing:

In the non-distributed there is one node responsible for load balancing of the whole system.

The other nodes interact merely with the central node [32]. In this research the proposed

algorithm will be a type of non-distributed dynamic load balancing.

16

 Existing Load Balancing Algorithms

This section presents some of the popular load balancing algorithms which are used in cloud

computing environment. In our work, we are going to make experiments on some of these

algorithms and compare them with our work.

1. Round Robin Algorithm

It is considered as the most basic and the least complex scheduling algorithm [33], it use the

concept of time quantum and each processor take a time quantum, the processes are divided

between all processors as seen in Figure 2.4 [25]. Each process is assigned to the processor in a

round form order. If the process does not complete in a given time, it will be placed at the end

of waiting queue, The drawback of this algorithm is at any point of time some nodes may be

heavily loaded and others remain idle [18, 25].

Figure 2.4 Round Robin Algorithm

17

2. Random Algorithm

The idea of random algorithm is to randomly assign the selected jobs to the available Virtual

Machines (VM) [24]. As seen in Figure 2.5 the algorithm does not take into considerations the

status of the VM, which will either be under heavy or low load. Hence, this may result in the

selection of a VM under heavy load and the job requires a long waiting time before service is

obtained. The complexity of this algorithm is quite low as it does not need any overhead or

preprocessing [18, 34].

Figure 2.5 Random Algorithm

RANDOM ALGORITHM

1. RandomVmLoadBalancer maintains an index table of VMs.

2. The DatacenterController receives the user requests/cloudlets

3. Find a Random VM.

4. The VMLoadBalancer Allocate the request to the VM.

5. The DatacenterController receives the response to the request

sent and then take the next waiting request from the job

pool/queue.

6. Goto step-2.

18

3. Equally Spread Current Execution Algorithm.

Equally spread current execution algorithm as shown in Figure 2.6 [25]. it distribute the load

randomly by checking the size and transfer the load to that virtual machine which is lightly

loaded or handle that task easy and take less time , and give maximize throughput. It is spread

spectrum technique in which the load balancer spread the load of the job in hand into multiple

virtual machines [25, 34].

Figure 2.6 Equally Spread Current Execution Algorithm

19

4. Throttled Load Balancing Algorithm:

In this algorithm the load balancer maintains an index table of virtual machines as well as their

states (Available or Busy) [3, 33]. As seen in Figure 2.7 [25] the data center queries the load

balancer for allocation of the VM. The load balancer scans the index table from top until the

first available VM is found or the index table is scanned fully. If the VM is found, the data

center assigns the task to the VM by id, but if VM is not found, the load balancer returns -1 to

the data center. Then the data center will put this job in a queue [25].

Figure 2.7 Throttled Algorithm

21

5. Greedy Algorithm:

A greedy algorithm as shown in Figure 2.8 always makes the choice that looks best at the

moment. That is, it makes a locally optimal choice in the hope that this choice will lead to a

globally optimal solution [35]. It always selects the best site to execute the job according to

specific criteria such as: shortest queue length, least work load, and least queuing time.

Figure 2.8 Greedy Algorithm

6. Minimum Completion Time Algorithm:

Minimum Completion Time algorithm is an example of greedy load balancing algorithm. The main

idea of this algorithm [34] is to assign the received task to the available VM that can offer the

minimum completion time taking into account its current load. The completion time for every VM

is calculated depending on the processor speed and the current load on the VM. When a request

arrives, the load balancer scans the available VMs in order to determine the most appropriate

machine which has the minimum completion time, to perform the task. Although greedy algorithm

selects the best VM to handle the received task, the selection processes needs some complex

computation to find the best VM.

GREEDY ALGORITHM

1. GreedyVmLoadBalancer maintains an index table of VMs

with current allocation count for every VM. At start all VM’s

have zero allocation.

2. The DatacenterController receives the user requests/cloudlets

3. Find a VM with minimum current allocation count.

4. The VMLoadBalancer Allocate the request to the VM and

increase the current allocation count by 1.

5. When the VM finishes processing the request, and the

DatacenterController receives the response cloudlet, it notifies

the GreedyVmLoadBalancer to decrease the current allocation

count for the VM by 1.

6. The DatacenterController checks if there are any waiting

requests in the queue.

7. Continue from step-2.

7.

21

In this research we will propose a hybrid algorithm that takes advantage of both random and

greedy algorithms; every algorithm has some advantages and some limitations. For example, the

random algorithm which randomly selects a VM to process the received tasks, does not need

complex computation to make a decision but it does not select the best VM. On the other hand

the greedy algorithm selects the best VM to handle the received task, but the selection process

needs some complex computation to find the best VM.

2.1.7 Cloudsim

The proposed algorithm is tested in a cloud computing environment. We have two choices to test

it, the first choice is to use a real test such as Amazon EC2, and the second is to use simulation

tools to simulate a cloud environment. In our work we prefer to use a simulator, because using

real test limits the experiments to the scale of the infrastructure, and makes the reproduction of

results an extremely difficult undertaking [10]. Also it is very difficult and time consuming to

measure performance in real cloud environment [18]. In addition, accessing to the real

infrastructure incurs payments in real currency.

The simulation framework has some features as follow[36] :

1. Support for modeling and instantiation of large scale Cloud computing infrastructure,

including data centers, virtual machines , service brokers, scheduling, and allocation

policies.

2. Support for virtualization, which aids in creation and management of multiple,

independent, and co-hosted virtualized services on a data center node.

3. Flexibility to switch between space-shared and time-shared allocation.

Cloud Analyst is a graphical simulation tool based on Cloudsim for modeling and analysing

behavior of cloud computing environments, which supports visual modeling and simulation of

large-scale applications that are deployed on cloud Infrastructures [37].

The main features of Cloud Analyst are as following [38]:

1. Easy to use Graphical User Interface (GUI).

2. Ability to define a simulation with a high degree of configurability and flexibility.

Simulation of complex systems such as Internet applications depends on many

parameters.

22

3. Repeatability of experiments.

4. Graphical output.

5. Ease of extension.

The cloud analyst allows setting location of users, number of user and number of request per user

per hour. And also it allows setting the location of the data centers, number of virtual machines,

number of processors, amount of storage, network bandwidth and other necessary parameters

[25].

The main components of Cloud-Analyst are as follow:

1. Region

The world is divided into 6 regions based on the 6 main continents in the world. The other

main entities such as user bases and data centers belong to one of these regions [39]:

(N-American, S-American, Europe, Asia, Africa and Oceania). As shown in figure 2.9.

Figure 2.9 Regions in Cloud Analyst Simulator

23

2. Users based

A user base models a group of users that is considered as a single unit in the simulation and

its main responsibility is to generate traffic for the simulation. A single user base may

represent thousands of users but is configured as a single unit and the traffic generated in

simultaneous bursts representative of the size of the user base. The modeler may choose

to use a user base to represent a single user, but ideally a user base should be used to

represent a larger number of users for the efficiency of simulation [40]. Figure 2.10 shows

the user base configuration.

Figure 2.10 Users Based in CloudAnalyst Simulator

3. Datacenter

This component is used to control the various data center activities [41] such as VM

creation and destruction and does the routing of user requests received from user bases

via the Internet to the VMs [39]. It encapsulates a set of compute hosts (servers) that can

be either homogeneous or heterogeneous as regards to their resource configurations [36] .

Figure 2.11 and Figure 2.12 shows the data center configuration.

Figure 2.11 Data Center in CloudAnalyst

24

Figure 2.12 Data Center Details in CloudAnalyst

4. ServiceBroker

The responsibility of this component is to model the service brokers that handle traffic

routing between user bases and data centers. The service broker can use one of the

routing policies from the given three policies which are closest data center, optimize

response time and reconfigure dynamically with load [25].

5. Hosts

This class models a physical service in a cloud-based data center. It contains an amount of

memory and storage, a list of processing elements (to represent a multi-core machine), an

allocation policy for sharing the processing power among virtual machines, and policies to

provisioning memory and bandwidth to the virtual machines [42]. Figure 2.13 shows the

hosts configuration.

25

Figure 2.13 Hosts in Cloud Analyst Simulator

6. VmLoadBalancer

VM Load balancer is useful to determine which VM should be assigned the requests

(Cloudlet) for processing. Three policies are included currently in the Cloud-analyst which

are Round-robin Load Balancer, Active Monitoring Load Balancer and Throttled Load

Balancer [40, 41]

7. VMProvisioner

This abstract class represents the provisioning policy that a VM monitor utilizes for

allocating VMs to Hosts. The main responsibility of the VMProvisioner is to select available

host in a data center, which meets the memory, storage, and availability requirement for a

VM deployment [10].

8. Virtual Machine:

This class models an instance of a VM, whose management during its life cycle is the

responsibility of the Host component. The Host can simultaneously instantiate multiple

VMs and allocate cores based on predefined processor sharing policies (space-shared,

time-shared) [10].

9. Cloudlet

Cloudlet is a grouping of user requests. The number of requests bundled into a single

Cloudlet is configurable in CloudAnalyst. The Cloudlet carries information such as the size

of a request execution command, size of input and output files, the originator and target

application used for routing by the Internet and the number of requests [43].

26

The CloudAnalyst simulation has some metrics as follows [23]:

 Overall response time: Minimum, maximum and average.

 Overall processing time in the data center: Minimum, maximum and average.

 Response time per user: Minimum, maximum and average.

 Minimum, maximum and average time per data center.

 Virtual machine total cost.

 Cost per VM of Data Center.

 Cost of data in each data center.

 Total cost in each data center.

The Routing of user requests in Cloud-Analyst is done in nine steps as follows [39]:

1. User base generates an Internet Cloudlet, with application id for application and

also includes name of the user base itself as originator for routing back the

response.

2. Request is sent to the Internet with zero delay.

3. Internet consults the service broker for the data center selection. The service

broker uses any one of the service broker policy based on the Request.

4. Service broker sends information about selected data center controller to the

Internet.

5. Internet adds appropriate network delay with the Request and sends to the

selected data center controller.

6. Selected data center controller uses any one of the virtual machines load balancing

policy.

7. Virtual machines load balancer assigns the virtual machine to the user request.

8. Selected data center sends the response to the Internet after processing the

Request.

9. Internet uses the originator field of the Cloudlet information and adds appropriate

network delay with response and sends it to the user base.

27

2.2 Related works

Many researchers’ proposed different algorithms in load balancing and job scheduling in cloud

computing. In this section we review a number of researches that worked on enhancement of load

balancing.

James et al in [44] provide an algorithm called weighted Active VMLoadBalencer to decrease the

response time, and data processing time. In this algorithm they compute the power of VM’s in the

datacenter and use index table to store the count of requests that are currently allocated in VM.

When a new request is received, the load balancer looks at the table and identifies the least VM

loaded. Then the result return to the datacenter and the datacenter allocates the VM. Finally when

the VM finishes, it will notify the datacenter and the datacenter will de-allocate it.

The authors built index table to monitor each node in the system to quickly know the status of the

node and to allocate the best VM. Although this algorithm decrease the response time, but they

need to compares their results with other algorithms such as ESCE and Throttled in order to

evaluate the results.

Sethi et al in [30] introduce a load balancing algorithm using fuzzy logic with Round Robin (RR)

algorithm. The algorithm is based on various parameters such as processor speed, and assigned

load in VM and etc. The algorithm maintains the information of each VM and numbers of requests

currently allocated to VM. When a new request is received, the load balancer searches for the least

loaded VM and allocate it, but if there are more than one VM, the selection will be based on

processor speed and load in VM using fuzzy logic.

This algorithm enhanced the performance of load balancer and decreased the response time. In

addition, the results referred that its performance is better than RR algorithm. The drawback of this

approach that authors had focused only on how to decrease the response time of job scheduling

and they ignored talk about processing cost. In addition, the researchers compared their results

with only RR algorithm which had been enhanced and improved by many researchers before.

Sharma et al in [3] propose a new enhancement scheduling algorithm EEA, the main purpose of the

algorithm is to find the expected response time of each VM to achieve the maximum throughput

and decrease response time to avoid overhead. They compared their algorithm with three

algorithms, Round Robin (RR), Equal Spread Current Execution scheduling and Throttled algorithm.

28

The result shows that overall response time and data center processing time is improved as well as

cost is reduced in comparison to the existing scheduling parameters.

However this approach is limited on enhancement of response time and how to achieve the

maximum throughput but does not handle the fault tolerance and the problem caused by

deadlocks and server overflow.

Hu et al in [45] propose a new algorithm to enhance job scheduling using a genetic information.

The algorithm uses a historical data and current state of the system. It makes a mapping

relationship between the set of physical machines and the set of VMs. It chooses the least-affective

solution by computing ahead influence of the system after the deployment of the needed VM

resources. They used some equation to find the best scheduling solution using population.

The experimentation results show an improvement in the utilization of resources. On the other

hand, the proposed algorithm has high cost to store and retrieve the historical data of the system

nodes, and this may also increase the response time and the processing cost.

Fang et al in [46] try to obtain high resource utilization and meet dynamic requirements of task by

providing a two level task scheduling mechanism based on load balancing in cloud computing. They

paper improve the response time, resources utilization by mapping task to VMs and then VMs to

host resources. They use the first level of scheduling (from user’s application to the VM) to create a

description of VM including the task of computing resources, network resources, storage resources,

etc. and used the second level scheduling (from the VM to host resources) to find appropriate

resource for VM.

This approach may have succeeded in improving the resource utilization, but we think that using

two levels of task scheduling would increase the response time compared with other load balancing

algorithms.

Sharma et al in [47] proposed a new algorithm to enhance response time of each VM. The

proposed algorithm collects information about all VMs in a list and uses it to allocate appropriate

VM where status is available. When a new request is received, the load balancer looks at the table

and identifies VM whose current allocation count is less than max allocation, and then check its

status. The result is returned to the datacenter and then the data center allocates this resource to

the request. When the VM is finished, it notifies the datacenter to de-allocate it. The drawback of

http://link.springer.com/search?facet-author=%22Yiqiu+Fang%22

29

this algorithm is in some case such as the high workload it may increase the waiting queue because

the allocation depends on the available status only.

Subramanian et al in [48] propose a new algorithm that combine the advantages of three

algorithms and overcomes their disadvantages. These three algorithms were: greedy, round robin,

and power saver algorithm. The algorithm focused on best utilization of resources and minimizing

the power consumption. It scheduled the VMs to the nodes depending on their priority value,

which varies dynamically based on their load factor. When a request is received, the node with the

maximum available resource is determined and then it is checked whether the node had a load

factor less than 80%. If the highest priority node had a load factor less than 80%, then the VM is

scheduled to that node, otherwise it checks the next maximum resource. The idle nodes (which, no

VM is allocated to them) are turned off to save power. The main drawback of this algorithm is in

some case such as the high workload, the power saver algorithm will be inactive because all the VM

would be busy in most of the processing time and this would affect the performance.

Mishra et al in [7] propose a new algorithm that depend on ant colony technic. Ants depend on the

strength of the ant’s pheromone to select the optimal path that leads to their destination. In the

same way each node in the network has a pheromone. Each row in the pheromone table

represents the routing preference for each destination, and each column represents the

probability of choosing a neighbor as the next hop. If an ant is at a choice point when there is no

pheromone, it makes a random decision. If the pheromone exists, the node with high probability is

selected and then the pheromone table is updated by increasing the probability of this node and

decreasing other nodes probabilities. The main drawback of this algorithm is that it does not

consider the current workload information for each node. So in some case there are some nodes

may be heavily loaded and others remain idle.

Singh et al in [49] develop a new heterogeneous load balancing algorithm to distribute the load

across a number of servers. They create VMs of different datacenters according to host

specification including core processor, processing speed, memory, storage etc. Then allocate

weight count according to the RAM allocated to the VMs in the datacenter. They use a data

structure to maintain weight count and the current allocation count of the VM. They allocate the

VM which have available status and have a higher RAM. When allocating a new VM, the algorithm

returns the VM id to the DataCenterController, and then updates the allocation count for that VM

31

and adding the new allocation to the busy list. When the VM finishes processing the request the

algorithm de-allocates the VM and removes the VM from the busy list.

The main drawback of the algorithm is the authors allocates the VM which have higher RAM

specification, but they ignores others specification such as processor power. On other hands they

do not present any results and comparison with other algorithms.

Dave and Maheta in [33] propose new load balancing algorithm based on round robin algorithm,

they made a modification on round robin algorithm by implementing a dynamic time Quantum

based on algorithm execution round. The result shows an improvement in response time as

compared to normal round robin algorithm. The drawback of this paper is that authors had

focused only on how to decrease the response time and they ignored talking about processing cost.

In addition, they need to compares their results with other algorithms such as ESCE and Throttled in

order to evaluate the results.

Singhal and Jain in [50] propose a load balancing algorithm using Fuzzy Logic, the algorithm

focuses on a public cloud. The main idea of the algorithm is partitioning the cloud to several

partitions and each partition having its own load balancer, and there is a main controller which

manages all these partitions. With the idle partition status they use a fuzzy logic and in the normal

partition status they use a global swarm optimization based load balancing strategy. The result

shows enhancements in resource utilization and availability in cloud computing environment. The

drawback of this approach is the difficulty of testing the technique in a real environment to make

sure that it has achieved good results.

Recently, we can find other research works done on load balancing in cloud computing using

randomization such as ant colony optimization.

Zhan and Huo in [7] provide a mixed algorithm between Particle Swarm Optimization (PSO) and

Simulated Annealing (SA) algorithms to benefit from the characteristics of the strong

randomization of PSO algorithm.

31

2.3 Summary

In this chapter we defined the cloud computing and its characteristics and models, and we defined

the virtualization and the benefits of virtualization in cloud computing. We discussed on the cloud

computing challenges. We defined the load balancing challenge and its types. We also defined the

cloudAnalyst simulator and their components.

As presented in the related works we can conclude that the current load balancing scheduling

algorithms in cloud computing environment have some deficiency and this would affect the

performance. So we need to overcome this limitation by developing an efficient load balancing

algorithm that consider the response time in order to improve the performance of heterogeneous

of a processors power in cloud computing system.

32

Chapter 3
 Proposed Algorithm

33

 Proposed Algorithm Chapter 3

The current load balance scheduling algorithms in heterogeneous of a processors power in cloud

computing environment is not highly efficient. The main objective of this research is to achieve

efficient performance in heterogeneous of a processors power in cloud computing environment. In

this chapter we will present the proposed a hybrid algorithm that takes advantages of both

random and greedy algorithms.

3.1 Proposed Algorithm

In this research we proposed a hybrid algorithm that takes advantages of both random and greedy

algorithms. The random algorithm which randomly select a VM to process the received tasks, does

not need complex computation to make a decision but it does not select the best VM. On the

other hand greedy algorithm selects the best VM to handle the received task, but the selection

process needs some complex computation to find the best VM. The steps that followed to

accomplish this work presented in figure 3.1

Figure 3.1 Steps to developing the proposed algorithm

Desing the propose a hybrid algorithm based on random and
greedy algorithms.

Implement the proposed algorithm using Cloudanalyst
simulator.

Test the proposed algorithm in heterogeneous of
processors power without consideing network delay.

Test the proposed algorithm in heterogeneous of
processors power with considering network delay.

Compare the results of the proposed algorithm with current
algorithms results.

34

First we design the proposed a hybrid algorithm based on random and greedy algorithms. The

design process includes development of the model, specification and designing the algorithm,

checking the correctness of Algorithm, and analysis of Algorithm. Then we implement the

proposed algorithm using Cloudanalyst simulator. After that we test the proposed algorithm

using Cloud analyst simulator. Then we tested the proposed algorithm in a heterogeneous of

processors power without considering network delay. Then we tested the proposed algorithm

in heterogeneous of processors power with considering network delay. Finally we compared

the results of the proposed algorithm with current algorithms results.

The algorithm adopts the characteristics of randomization and greedy to make an efficient

load balancing and covers their disadvantages. The algorithm considers the current resource

information and the CPU capacity factor to achieve the objectives. Figure 3.2 shows the

abstract view of proposed a hybrid algorithm.

Figure 3.2 The Proposed Hybrid Algorithm

Cloud

V

M

V

M

V

M

V

M

V

M

V

M

Receive Requests

Assign Load to selected VM

Run Greedy Algorithm

Select K VMs Randomly

VM Info.

(Current Load,)

Selected K nodes

Distribute the VM according Host’s CPU capacity

35

3.1.1 Description

The hybrid algorithm consists of two main steps which are:

1- In the first step VMs is distribute over hosts according to the host qualifications. The

largest number of VMs is located at the most qualified host depending on the Hosts'

CPU capacity. For example if we have five VMs and three hosts, where the first host has

1 CPU and its speed = 10000, the second host has 2 CPUs and the speed of every CPU =

10000, and the third host has 3 CPUs and the speed of every CPU = 100000. So, the

capacity of the first host = 1*10000=10000, the second host =2*10000=20000 and the

third host =3*10000=30000. So according to hosts' capacities; first host will take 1 VM,

the second host will take 2 VMs, and the third host which has the largest capacity will

take 3 VMs.

2- In the second step the algorithm used a new index table to record the current loads for

each VM. And which used to check the current loads for VM at each iteration, the

algorithm read the value of VM load from the index table; when the data center

receives a request from the users, it sends the request to the hybrid load balancer. The

hybrid algorithm will select k nodes (VM) randomly, and then it will choose the current

load for each selected VM. Then it will choose a VM that have least VM current loads

and return the VM id to Data center. The Data center will assign the load to the

selected VM and update the value of selected VM in the index table of current loads.

Finally when the VM finishes processing the request, it will inform the data center to

updating its current load value.

3.1.2 Implementation

The experimentation is done using the Cloud Analyst simulator [51]. We Define the simulator

parameters such as (users Configuration, Data centers Configuration, VMs configuration), and we

identified several Configurations. The experiments implemented using the identified

configuration. In the first steps we studied the problem without the effect of network delay, we

tested the algorithm in heterogeneous environment of hosts, and each machine has different

number of CPUs and speed, and then we tested the effect of considering the Capacity of CPU

factor. Finally we tested the impact of effect of network delay on the hybrid algorithm with

considering the Capacity of CPU factor and in the heterogeneous environment of hosts. We

implement some of current load balancing algorithms such as Round Robin, Equally spread current

36

execution, Random and Greedy algorithms. Then we implement the hybrid algorithm. The code of

the hybrid algorithm is in appendix A.

3.1.3 Pseudo code

The Hybrid algorithm as given in Figure 3.3 is a load balancing algorithm used by the datacenter to

distribute the received tasks efficiently over the virtual machine under a normal workload by

finding the best VM among the group of VMs to assign the load in heterogeneous of a processors

power in cloud computing environment. The hybrid algorithm consists of both random and greedy

algorithms; the random algorithm which randomly select a VM to process the received tasks, does

not need complex computation to make a decision but it does not select the best VM. On the

other hand Greedy algorithm selects the best VM to handle the received task, but the selection

process needs some complex computation to find the best VM. The hybrid algorithm considers the

current resource information and the CPU capacity factor. The hybrid algorithm selects k nodes

(VMs) randomly, and chooses the current load for each VM selected. Then the hybrid algorithm

will choose a VM that have least VM current loads and return the VM ID to the Data center. The

data center will assign the load to the selected VM and update the value of selected VM in the

table of current loads. Finally when the VM finishes processing the request, it will inform the data

center to update its current load value.

37

Figure 3.3 Hybrid Algorithm Pseudo Code

The Hybrid Algorithm

The Hybrid Load balancing algorithm uses randomization and greedy, it distributes the load

over VMs to achieve efficient performance in heterogeneous cloud computing environment. The

algorithm depends on current resource allocation count.

Input: list of VMs VM_List(),Maintain an index table of VMs with current allocation count for every

VM Cl_Table(VM_id) , K where K is the number of VMs that will be selected randomly. VMids()

Maintain the index of selected node randomly with its current load, TempVMid is a temp VMid that

selected randomly

Output: VMid is the VM id that is selected to assign the load.

0. Distribute the VMs over the Hosts according to the host’s qualification (VM

provisioning).

1. Initialize, Cl_Table(0..n-1) ← 0 At start all VM’s have zero allocation., K← m, VM_id ←-1 ,

VMids()=-1,i← 0, currCount ← 0, minCount ← Max_Value, TempVMid ← -1;

2. Parses VM_List() to LoadBalancer:

3. For i← 0 to k //Select VM randomly

4. TempVMid ← random (VM_List()).

5. VM_id ← TempVMid

6. If vm_id Exist in Cl_Table(VM_id) then

7. currCount ← Cl_Table(VM_id)

8. Else

9. currCount ← 0

10. VMids() ← (VM_id, currCount).

11. End for

12. TempVMid ← -1

13. currCount ← 0

14. For i ← 1 to k

15. TempVMid ← i

16. currCount ← VMids(TempVMid)

17. If currCount < minCount then

18. minCount= currCount

19. VM_id ← TempVMid

20. End if

21. End for

22. Cl_Table(VM_id) ← Cl_Table(VM_id) + 1

38

3.1.4 Evaluation

There are various metrics used to evaluate different techniques. In our work we used two metrics

to measure the performance as follow:

1- Response Time: It is the time interval between sending a request and receiving its

response. We should minimize the response time in order to enhance the system

performance. The total response time can be obtained as follow:

Total response time = the users request processing delay + Network delay ….. (1)

2- Processing time: Average processing time: It is the amount of time actually needed to

process a task.

3.2 Summary

In this chapter we presented a new hybrid algorithm based on randomization and greedy

algorithm. The hybrid algorithm takes advantages of both random and greedy algorithms, and

considers the current resource information and the CPU capacity factor to achieve the efficient

performance in heterogeneous of a processors power in cloud computing environment.

We proposed a hybrid algorithm based on random and greedy algorithms. Then we implemented

the proposed algorithm using Cloudanalyst simulator. After that we tested the proposed algorithm

in heterogeneous of processors power without considering network delay. Then we tested the

proposed algorithm in heterogeneous of processors power with considering network delay. Finally

we compared the results of the proposed algorithm with current algorithms results.

39

Chapter 4

Experiments and results

41

 Experiments and Results Chapter 4

In this chapter we present the experiments and results are that done in this research. We have

obtained the results by comparing our algorithm with some current load balancing algorithms. We

used Cloud analysis simulator in the implementation.

As discussed in Figure 3.1. We studying the problem without the effect of network delay, then we

tested the algorithm in heterogeneous environment of hosts, and each machine has different

number of CPUs and speed. We testes the current algorithms performance with light loads in

normal state, and then we testes the effect of considering the capacity of CPU factor. Finally we

testes the impact of effect of network delay on the hybrid algorithm with considering the capacity

of CPU factor and in the heterogeneous environment of hosts; each machine has different number

of CPUs and speed. We compared the hybrid algorithm with Round robin, ESCE, Random and

Greedy algorithms.

Section 1 will be about presenting the Experiments and results that done in this research using

cloudAnalyst simulator. Section 2 will be about presenting the summery of the experiments and

results that are done.

4.1 Experiments

In the First step, we studied the problem without the effect of network delay, so all the user bases

configuration will be in the same data center and in the same region.

4.1.1 Experiment 1: Test the hybrid algorithms without considering CPU capacity.

In this experiment we tested the algorithm in heterogeneous environment of hosts; each machine

has different number of CPUs and speed.

4.1.1.1 Configuration

We defined the 50 virtual machines in the data center and the size used to host applications in the

experiment is 100MB. Virtual machines have 1GB of RAM memory and have 10MB of available

bandwidth. Simulated hosts have x86 architecture, virtual machine monitor Xen and Linux

operating system. The data center hosts 5 virtual machines dedicated. The hosts have 2 GB of

RAM and 100GB of storage. Each machine has different number of CPUs and speed, first host have

4 core processor with 2000 MIPS, second host have 5 core 5000 MIPS, third host have dual core

with 9000 MIPS, fourth host dual core with 10000 MIPS, and fifth host dual core with 15000 MIPS.

41

Users are grouped by a factor of 1000, and requests are grouped by a factor of 100. Each user

request requires 250 instructions to be executed. The simulation duration took one day. We used

the response time and processing time metrics to compare the algorithm with other current

algorithms. The configuration files as in Table 4.1, 4.2 and 4.3.

Table 4.1 Application development Configuration used in Experiment 1

Data Center #VMs Image Size Memory BW

DC1 50 10000 512 1000

Table 4.2 User bases configuration used in Experiment 1

Name Region Requests
per user per

Hr.

Data Size
per

req.(Bytes)

Peak Hours
Start(GMT)

Peak Hours
End(GMT)

Avg. Peak
Users

Avg. Off-
peak Users

UB1 0 12 100 13 15 400000 400000

UB2 0 12 100 15 17 100000 100000

UB3 0 12 100 20 22 300000 300000

UB4 0 12 100 1 3 150000 150000

UB5 0 12 100 21 23 500000 500000

UB6 0 12 100 9 11 800000 800000

Table 4.3 Data centers configuration used in Experiment 1

Id
Memory

(Mb)
Storage

(Mb)
Available

BW
Number of
Processors

Processor
Speed

VM Policy

0 204800 100000000 1000000 4 2000 TIME_SHARED

1 204800 100000000 1000000 5 5000 TIME_SHARED

2 204800 100000000 1000000 2 9000 TIME_SHARED

3 204800 100000000 1000000 2 10000 TIME_SHARED

4 204800 100000000 1000000 2 15000 TIME_SHARED

42

740

760

780

800

820

840

860

880

900

920

RR ECSP Random Greedy Hybrid

Avg. Response time

Avg. Processing time

4.1.1.2 Results

From this experiment we obtain results as in Table 4.4 and Figure 4.1:

Table 4.4 Response Time and processing time results without considering Capacity of CPU factor

Max(ms) Min(ms) Avg.(ms) Algorithms

3690.35 60.89 871.76 RT
Round Robin

3524.49 14.26 50.288 PT

4761.83 60.89 872.64 RT
ECSP

4696.53 14.26 804.41 PT

6085.35 51.61 887.85 RT
Random

5982.06 7.76 823.78 PT

3690.35 60.89 873.60 RT
Greedy

3524.49 14.26 804.37 PT

5824.38 58.39 898.71 RT
Hybrid

5675.84 12.57 830.19 PT

Figure 4.1 All algorithm results Comparison without considering Capacity of CPU factor

43

4.1.1.3 Discussion

The results showed that the Greedy, Round robin and ESCE had better results than the Hybrid

algorithm and the random algorithm. This was due to the equivalent distributing of loads among

all the VMs. Also we found that the Round Robin algorithm is better than the ESCE and Greedy

algorithm because it is very simple and does not have the overhead computation as ESCE and

Greedy.

In addition the random recorded the best min. response time 51.61 and the best min. processing

time 7.76. Because the random does not need a complex computation to takes decision to allocate

VM.

4.1.2 Experiment 2: Test the effect of considering the capacity of CPU.

This experiment studied the effect of considering the Capacity of CPU factor with the hybrid

algorithm in heterogeneous environment; each machine has different number of CPUs and speed.

4.1.2.1 Configuration

The configuration files are as in experiment one in table 4.1, 4.2 and 4.3.

4.1.2.2 Results

From this experiment we obtain results as in Table 4.5 and in Figure 4.2:

Table 4.5 Response time and processing time results for testing the effect of Capacity of CPU factor

Max(ms) Min(ms) Avg. (ms) Algorithms

63.0963 3090. 07.973 RT
Round Robin

63.595. .59.3 00.933 PT

573.906 3090. 076935 RT
ECSP

53.3936 .59.3 00595. PT

5819.01 56.26 888.18 RT
Random

5702.72 7.60 824.10 PT

3690.35 60.89 873.60 RT
Greedy

3524.49 14.26 804.37 PT

8216.86 48.76 747.24 RT
Hybrid

8084.95 5.89 679.79 PT

44

0

200

400

600

800

1000

RR ECSP Random Greedy Hybrid

Ti
m

e
 (

m
s)

Algorithms

All Algorithms Results

Avg. Response time

Avg. Processing time

Figure 4.2 All algorithm results Comparison for testing the effect Capacity of CPU factor

4.1.2.3 Discussion

In this experiment the VMs distributed on the hosts according the hosts qualification and

according the CPU capacity, the results showed that when considering the CPU capacity factor, the

host that has best qualification has more VMs than other hosts, so when we select K nodes

randomly from the VMs and choose the least loaded one from the selected VMs, the response

time will be improved because most of VMs selected will be in the qualified host as seen in figure

4.3.

The hybrid algorithm recorded the best average response time 747.24 (ms) and the best average

processing time 679.79 (ms) when K= 15. This result is better than round robin which had been the

best algorithm results before. Round robin recorded average response time 67.178 (ms) and the

average processing time 65.188 (ms). The difference between the results and other algorithms

results exceeded 100 (ms) on each average response and processing time. This means minimizing

the number of VM to 15 and with considering the CPU capacity factor, the hybrid algorithm

decreased the overhead computation. The hybrid algorithm adds a significant improvement on

average response time and on processing time compared with other algorithms. So, the hybrid

algorithm improved the cloud computing performance in heterogeneous environment.

45

Figure 4.3 VM Allocations in Data center

When we look at figure 4.3 we can observe that the VMs which were in the high qualified host

takes more tasks than the machine hosted in other hosts, for example VM 0 have 2176049 tasks

and VM 34 have 1331363 tasks. The decision to allocate the tasks on the hosts improved and

balanced.

In the second step, we will study the problem with considering the network delay by distributing

user bases all over the world.

4.1.3 Experiment 3: tested the effect of network delay with considering the Capacity of

CPU

This experiment tested the effect of network delay on the hybrid algorithm with considering the

Capacity of CPU factor and in the heterogeneous environment of hosts. Each machine has

different number of CPUs and speed.

4.1.3.1 Configuration

The configuration files are as in experiment one in Table 4.1, 4.2 and 4.3. And in order to test the

effect of network delay we distributed the user’s base in 6 regions, UB1 N-America, UB2 in S.

America, UB3 Europe, and UB4 in Asia, UB5 Africa and UB6 in Oceania as in Table 4.6.

Table 4.6 User Bases Configuration Used in Experiment3

Name Region
Requests
per user
per Hr.

Data Size
per

req.(Bytes)

Peak Hours
Start(GMT)

Peak Hours
End(GMT)

Avg. Peak
Users

Avg. Off-
peak Users

UB1 N-America 12 100 13 15 400000 400000

UB2 S. America 12 100 15 17 100000 100000

0

500000

1000000

1500000

2000000

2500000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

VMs

VM Allocation

Task

46

0

200

400

600

800

1000

1200

RR ECSP Random Greedy Hybrid

Ti
m

e
 (

m
s)

Algorithms

All Algorithms Results

Avg. Response time

Avg. Processing time

UB3 Europe 12 100 20 22 300000 300000

UB4 Asia 12 100 1 3 150000 150000

UB5 Africa 12 100 21 23 500000 500000

UB6 Oceania 12 100 9 11 800000 800000

4.1.3.2 Results

From this experiment we obtain results as in Table 4.7 and Figure 4.4:

Table 4.7 Response timer and processing time results for testing the effect of network delay

Max(ms) Min(ms) Avg.(ms) Algorithms

3999.53 74.78 1050.20 RT
Round Robin

3415.15 7.49 735.88 PT

4999.80 74.78 1068.58 RT
ECSP

4659.96 7.50 754.69 PT

6234.36 71.12 1067.78 RT
Random

5681.28 7.49 761.99 PT

4963.67 74.78 1068.56 RT
Greedy

4621.32 7.50 754.68 PT

8520.93 62.79 930.77 RT
Hybrid

7983.89 5.83 620.07 PT

Figure 4.4 All algorithm results Comparison for testing the effect of network delay

47

4.1.3.3 Discussion

In this experiment we distributed the user in different areas to study the effect of network delay

on the hybrid algorithm with considering the Capacity of CPU factor and in the heterogeneous

environment of hosts. The results found that the network delay did not affect on the performance

of hybrid algorithm, and the hybrid algorithm still recorded the best response time and processing

time compared with other algorithms. The average response time was 930.77(ms) and the average

processing time was 620.07(ms) when K= 20. This result was better than round robin which gave

been the best algorithm results before. Round robin recorded average response time 1050.20(ms)

and the average processing time 735.88(ms). The difference between the results and other

algorithms results exceeded 100 (ms) on each average response and processing time. This means

the hybrid algorithm add a significant improvement on average response time and on processing

time with a network delay compared with other algorithms. The performance is improved in

heterogeneous of a processors power in cloud computing environment.

4.2 Summary

In the first experiment we studied the problem without considering the network delay and

without considering the CPU Capacity factor, the results shown that the Greedy, Round robin and

ESCE had a better result than the Hybrid algorithm and the random algorithm. This was due to the

equivalent distributing of loads between all the VMs.

On other hand in the second experiment when the VMs distributed on the hosts according to

hosts qualification and CPU Capacity, the host that have best qualification had more VMs than

other hosts, so when we select K nodes randomly from the VMs and choose the least loaded one

from the selected VMs, the response time was improved because most of VMs selected have been

in the qualified host. The hybrid algorithm without considering the network delay recorded the

best average response time 747.24 (ms) and the best average processing time 679.79 (ms) when

K= 15.

Finally, in the third experiment we studied the problem with considering the network delay. The

results found that the network delay did not affect the performance of hybrid algorithm, and the

hybrid algorithm still recorded the best response time and processing time compared with other

algorithms. The average response time was 930.77 (ms) and the average processing time was

48

620.07 (ms) when K= 20. The difference between others algorithms results exceeded 100 (ms) on

each average response and processing time. This means the hybrid algorithm add a significant

improvement on average response time and on processing time with a network delay compared

with other algorithms. The performance has improved in heterogeneous of a processors power in

cloud computing environment in normal state.

49

Chapter 5
Conclusion and Future Works

51

 Conclusion and Future Work Chapter 5

5.1 Conclusion

Load balancing is one of the important issues in cloud computing. The current load balancing

scheduling algorithms in cloud computing environment have some deficiency and this would affect

the performance. Therefore we proposed a hybrid algorithm to enhance the cloud computing

performance. The hybrid algorithm based on randomization and greedy algorithm, they take the

advantages of both random and greedy algorithms and consider the current resource information

and the CPU capacity factor to achieve the objectives. The experiments were implemented in the

CloudAnalyst Simulator.

Without considering the CPU Capacity factor, the results have shown that the Greedy, Round robin

and ESCE had a better result than the Hybrid algorithm and the random algorithm. This was due to

the equivalent distributing of loads between all the VMs. Also we found that the Round Robin

algorithm was better than the ESCE and Greedy algorithm because it is simple and does not have

the overhead computation as ESCE and Greedy

On the other hand when the VMs distributed on the hosts according the hosts qualification and

according the CPU Capacity, the host that have best qualification will have more VMs than other

hosts, so when we select K nodes randomly from the VMs and choose the least loaded one from

the selected VMs, the response time will be improved because most of VMs selected will be in the

qualified host.

The hybrid algorithm without considering the network delay recorded the best average response

time 747.24 (ms) and the best average processing time679.79 (ms) when K= 15. In addition the

hybrid algorithm with considering the network delay recorded also a best response time 930.77

(ms) and a best processing time 620.07 (ms) when K= 20. This result was better than round robin

which had been the best algorithm results before. Round robin without considering the network

delay recorded average response time 67.178 (ms)and the average processing time 65.188(ms) and

with considering the network delay recorded average response time 1050.20 (ms) and the average

processing time 735.88(ms). The difference between the results exceeded 100 (ms) on each

average response and processing time around 9.02 %; this means the hybrid algorithm adds

significant improvements on average response time and on processing time compared to other

51

algorithms. The performance has improved in heterogeneous of a processors power in cloud

computing environment.

5.2 Future Work

Load balancing considered as one of the most challenges in cloud computing, it is the major factor

to improve the performance of the cloud computing. We discussed only on improving the

performance on one data center, but there are still other approaches that can be applied to

balance the load in clouds computing environment with distributed Data centers. So we are going

to implement a new load balance algorithm to improve the service broken policy. We tested

only the effect of considering CPU capacity but there are other factors such as memory, bandwidth

and storage. And we can also consider other parameters for efficient utilization of resources such

as consider cost, failover etc. We studied the load balance in a normal state but there are still

other state can be studied such as bursty load state. We are going to study on how we can

overcome the problem of deadlocks and server overflow.

52

References

1. Florence, A.P. and Shanthi, V., Intelligent Dynamic Load Balancing Approach for Computational
Cloud. International Journal of Computer Applications: pp. 15-18,(2013).

2. Heterogeneous computing. [cited 2015; Available from:
http://en.wikipedia.org/wiki/Heterogeneous_computing.

3. Sharma, T. and Banga, V.K., Efficient and Enhanced Algorithm in Cloud Computing. International
Journal of Soft Computing and Engineering (IJSCE), 3(1),(March 2013).

4. Zhang, Q., Cheng, L., and Boutaba, R., Cloud computing: state-of-the-art and research challenges.
Journal of Internet Services and Applications, 1(1): pp. 7-18,(2010).

5. Singh, A., Gupta, S., and Bedi, R., Comparative Analysis of Proposed Algorithm With Existing Load
Balancing Scheduling Algorithms In Cloud Computing. International Journal of Emerging Trends &
Technology in Computer Science (IJETTCS), 3(1): pp. 197-200,(2014).

6. Tiwari, M., Gautam, K., and Katare, K., Analysis of Public Cloud Load Balancing using Partitioning
Method and Game Theory. International Journal of Advanced Research in Computer Science and
Software Engineering, 4(2): pp. 807-812,(2014).

7. Ratan, M. and Anant, J., Ant colony Optimization: A Solution of Load Balancing in Cloud.
International Journal of Web & Semantic Technology (IJWesT), III,(2012).

8. Khatib, V. and Khatibi, E. Issues on Cloud Computing : A Systematic Review. in International
Conference on Computational Techniques and Mobile Computing. Singapore, (2012).

9. Kulkarni, G., Gambhir, J., and Palwe, R., Cloud Computing-Software as Service. International Journal
of Computer Trends and Technology, 2(2): pp. 178-182,(2011).

10. Buyya, R., Ranjan, R., and Calheiros, R.N. Modeling and Simulation of Scalable Cloud Computing
Environments and the CloudSim Toolkit: Challenges and Opportunities. in International Conference
on High Performance Computing and Simulation. Proceedings of the 2009 International Conference
on High Performance Computing and Simulation, HPCS 2009, (2009).

11. Kaleeswari and Juliet, N., Dynamic Resource Allocation by Using Elastic Compute Cloud Service.
International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), 3(5):
pp. 12375-12379,(2014).

12. Jararweh, Y., Alshara, Z., Jarrah, M., Kharbutli, M., and Alsaleh, M.N. TeachCloud: A Cloud
Computing Educational Toolkit. in The 1st International IBM Cloud Academy Conference. North
Carolina, USA, pp. 1-16, (2012).

13. Sareen, P., Cloud Computing: Types, Architecture, Applications, Concerns, Virtualization and Role of
IT Governance in Cloud. International Journal of Advanced Research in Computer Science and
Software Engineering, 3(3): pp. 533-538,(2013).

14. Shah, J., Cloud Computing: The Technology for Next Generation. International Journal of Advances
in Computer Science and Technology, 3(3): pp. 152-155,(2014).

15. Sajid, M. and Raza, Z. Cloud Computing: Issues & Challenges. in International Conference on Cloud.
pp. 35-41, (2013).

16. Marisol, G.-V., Cucinotta, T., and Lu, C., Challenges in real-time virtualization and predictable cloud
computing. Journal of Systems Architecture (ELSEVIER): pp. 1-15,(2014).

17. Kumar, S. and Aramudhan, M., Performance Analysis of Cloud under different Virtual Machine
Capacity. International Journal of Computer Applications, 68(8): pp. 1-4,(2013).

18. Ray, S. and De Sarkar, A., Execution Analysis Of Load Balancing Algorithms In Cloud Computing
Environment. International Journal on Cloud Computing: Services and Architecture (IJCCSA), 2(5):
pp. 1-13,(2012).

19. Johnston, S. Cloud Computing Types: Public Cloud, Hybrid Cloud, Private Cloud. samj 2009 March 6;
Available from: http://samj.net/2009/03/cloud-computing-types-public-cloud.html.

20. Vouk, M.A., Cloud Computing – Issues, Research and Implementations. Journal of Computing and
Information Technology - CIT: pp. 235-246,(2008).

21. Padhy, R.P. and Rao, G.P., Load Balancing in Cloud Computing Systems: Orissa, India, (2011).

http://en.wikipedia.org/wiki/Heterogeneous_computing
http://samj.net/2009/03/cloud-computing-types-public-cloud.html

53

22. O., K.S., F., I., and O., A., Cloud Computing Security Issues and Challenges. International Journal of
Computer Networks (IJCN), 3(5): pp. 247-255,(2011).

23. Khanghahi, N. and Ravanmehr, R., Cloud Computing Performance Evaluation: Issues And
Challenges. International Journal on Cloud Computing: Services and Architecture (IJCCSA), 3(5): pp.
29-41,(2013).

24. Deepika, Wadhwa, D., and Kumar, N., Performance Analysis of Load Balancing Algorithms in
Distributed System. Advance in Electronic and Electric Engineering, 4(1): pp. 59-66,(2014).

25. Mohapatra, S., Rekha, K.S., and Mohanty, S., A Comparison of Four Popular Heuristics for Load
Balancing of Virtual Machines in Cloud Computing. International Journal of Computer Applications,
68,(2013).

26. Yao, J.H., Ju-hou. Load Balancing Strategy of Cloud Computing Based on Artificial Bee Algorithm in
Computing Technology and Information Management (ICCM). Seoul: IEEE, pp. 185 - 189, (2012).

27. Shameem, P.M. and Shaji, R.S., A Methodological Survey on Load Balancing Techniques in Cloud
Computing. International Journal of Engineering and Technology (IJET), 4(5): pp. 3801-3812,(2013).

28. Behal, V. and Kumar, A. Cloud Computing: Performance Analysis of Load Balancing Algorithms In
Cloud Heterogeneous Environment. in Confluence The Next Generation Information Technology
Summit (Confluence). Noida: IEEE, pp. 200 - 205, (2014).

29. Kaushik, V.K., Sharma, H.K., and Gopalani, D. Load Balancing in Cloud Computing Using High Level
Fragmentation of Dataset. in International Conference on Cloud, Big Data and Trust. pp. 118-126,
(2013).

30. Sethi, S., Anupama, S., and Jena, K., S, Efficient load Balancing in Cloud Computing using Fuzzy
Logic. IOSR Journal of Engineering (IOSRJEN), 2(7): pp. PP 65-71,(2012).

31. Pathak, K.K., Yadav, P.S., Tiwari, R., and Gupta, T., A Modified Approach for Load Balancing in Cloud
Computing Using Extended Honey Bee Algorithm. IJRREST: International Journal of Research Review
in Engineering Science and Technology, 1(3): pp. 12-19,(2012).

32. Mehta, R., Yask, P., and Harshal, T., Architecture for Distributing Load Dynamically in Cloud Using
Server Performance Analysis Under Bursty Workloads. 1(9),(2012).

33. Dave, S. and Maheta, P., Utilizing Round Robin Concept for Load Balancing Algorithm at Virtual
Machine Level in Cloud Environment. International Journal of Computer Applications, 49(4),(2014).

34. Mohialdeen, I.A., Comparative Study of Scheduling Algorithms In Cloud Computing Environment.
Journal of Computer Science, 2(9): pp. 252-263,(2013).

35. Cormen, T., Leiserson, C., Rivest, R., and Stein, C., Introduction to Algorithms. (2009).
36. Calheiros, R.N., Ranjan, R., De Rose, C.A.F., and Buyya, R., CloudSim: A Novel Framework for

Modeling and Simulation of Cloud Computing Infrastructures and Services. pp. 1-9, (2009).
37. Pakize, S.R., Khademi, S.M., and Gandomi, A., Comparison of CloudSim, CloudAnalyst And

CloudReports Simulator in Cloud Computing. International Journal of Computer Science And
Network Solutions, 2: pp. 19-27,(2014).

38. Wickremasinghe, B., Calheiros, R.N., and Buyya, R. CloudAnalyst: A CloudSim-based Visual Modeller
for Analysing Cloud Computing Environments and Applications. in 24th International Conference on
Advanced Information Networking and Applications (AINA). IEEE Computer Society, pp. 446-452,
(2010).

39. Mishra, R.K. and Bhukya, S.N., Service Broker Algorithm for Cloud-Analyst. International Journal of
Computer Science and Information Technologies, 5 (3): pp. 3957-3962,(2014).

40. Limbani, D. and Oza, B., A Proposed Service Broker Strategy in CloudAnalyst for Cost-Effective Data
Center Selection. International Journal of Engineering Research and Applications, 2(1): pp. 793-
797,(2012).

41. Ahmed, T. and Singh, Y., Analytic Study of Load Balancing Techniques Using Tool Cloud Analyst.
International Journal of Engineering Research and Applications (IJERA), 2(2): pp. 1027-1030,(2012).

42. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., and Buyya, R., CloudSim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1): pp. 23-50,(2011).

54

43. Wickremasinghe, B., CloudAnalyst: A CloudSim-based Tool for Modelling and Analysis of Large Scale
Cloud Computing Environments, (2009).

44. James, J. and Verma, B., Efficient Vm Load Balancing Algorithm for a Cloud Computing Environment.
International Journal on Computer Science and Engineering (IJCSE), 4(09): pp. 1658-1663,(2012).

45. Hu, J., Gu, J., Sun, G., and Zhao, T. A Scheduling Strategy on Load Balancing of Virtual Machine
Resources in Cloud Computing Environment. in 3rd International Symposium on Parallel
Architectures, Algorithms and Programming. IEEE, pp. 89-96, (2010).

46. Fang, Y., Wang, F., and Ge, J., A Task Scheduling Algorithm Based on Load Balancing in Cloud
Computing. Lecture Notes in Computer Science, Jg. 2010(6318): pp. 271-277,(2010).

47. Sharma, T. and Banga, V.K., Proposed Efficient and Enhanced Algorithm in Cloud Computing.
International Journal of Engineering Research & Technology (IJERT), 2(2),(2013).

48. Subramanian S, N.K.G., Kiran Kumar M, Sreesh P, and G R Karpagam, An Adaptive Algorithm for
Dynamic Priority Based Virtual Machine Scheduling in Cloud. International Journal of Computer
Science Issues, 9(6),(2012).

49. Singh, A., Bedi, R., and Gupta, S., Design and implementation of an Efficient Scheduling algorithm
for load balancing in Cloud Computing. International Journal of Emerging Trends & Technology in
Computer Science (IJETTCS), 3(1),(2014).

50. Singhal, U. and Jain, S., A New Fuzzy Logic and GSO based Load balancing Mechanism for Public
Cloud. International Journal of Grid Distribution Computing, 7(5): pp. 97-110,(2014).

51. cloudsim. cloudbus; Available from: http://www.cloudbus.org/cloudsim/.

http://www.cloudbus.org/cloudsim/

1A

Appendix A

2 A

1- Proposed Algorithm.

package cloudsim.ext.datacenter ;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Random;
import java.util.Set;
import org.omg.CORBA.PRIVATE_MEMBER;
import cloudsim.VirtualMachine;
import cloudsim.VirtualMachineList;
import cloudsim.ext.Constants;
import cloudsim.ext.InternetCloudlet;
import cloudsim.ext.event.CloudSimEvent;
import cloudsim.ext.event.CloudSimEventListener;
import cloudsim.ext.event.CloudSimEvents;

public class VMLB extends VmLoadBalancer implements CloudSimEventListener
{
 public DatacenterController dcbs;
 public InternetCloudlet cl;
 public Map<Integer, Integer> allocationCounts;

 public VMLB(DatacenterController dcb) {
 // TODO Auto-generated constructor stub
 dcb.addCloudSimEventListener(this);
 this.dcbs=dcb;
 dcb.getVmCost();
 this.allocationCounts = getVmAllocationCounts();//number of allocations for
each VM.
 }
 @Override
 public int getNextAvailableVm() {
 // TODO Auto-generated method stub
 int temp=-1;
 int i;
 int k=30; // K is the number of VMs that will be selected randomly
 int vmId=-1;
 int currCount=0;
 int minCount = Integer.MAX_VALUE;
 Map<Integer, Integer> Mvmids = new HashMap<Integer, Integer>();//Maintain
the index of selected node randomly with its current load
 Random randomGenerator = new Random();

3 A

//Step 1: This command for Select (K) VMs randomly(random)

 for (i=0;i<k;i++)//Select 25 VM Randomly
 {

 //Generate random number between 0-50
 temp = randomGenerator.nextInt(dcbs.getVmStatesList().size());

 //check if this VM allocated before or not.
 if (currentAllocationCounts.containsKey(temp))
 currCount = currentAllocationCounts.get(temp);
 else
 currCount=0;

 //add the selected VMs_id and current allocating count. to a selected VMs table.
 Mvmids.put(temp, currCount);
 }
//end Step 1

//Step 2: Select VM with lest current Allocation Counts of Task (greedy)

 temp=-1;
 currCount=0;
 for (Iterator<Integer> itr = Mvmids.keySet().iterator(); itr.hasNext();)
 {//Select Vm_id from the table of a random Virtual Machines
 temp = itr.next();
//Select the current count for each VM

 currCount = Mvmids.get(temp);
//check if this current count is the min. current count.

 if (currCount < minCount)
 {
 minCount = currCount;
 vmId = temp;
 }
 }

//End step 2

 allocatedVm(vmId);
 return vmId;
 }
 @Override
 public void cloudSimEventFired(CloudSimEvent e)
 {// TODO Auto-generated method stub
 if (e.getId() == CloudSimEvents.EVENT_CLOUDLET_ALLOCATED_TO_VM)
 {
//this event indicate that the VM allocated and the current allocate count will increase by 1;
 int vmId = (Integer) e.getParameter(Constants.PARAM_VM_ID);

4 A

 Integer currCount = currentAllocationCounts.remove(vmId);
 if (currCount == null)
 {
 currCount = 1;
 }
 else
 {
 currCount++;
 }
//Update the Value for allocated VM
 currentAllocationCounts.put(vmId, currCount);
 }
 else if (e.getId() == CloudSimEvents.EVENT_VM_FINISHED_CLOUDLET)
 {
//this event indicate that the VM deallocated and the current allocate count will decrease by
1;
 int vmId = (Integer) e.getParameter(Constants.PARAM_VM_ID);
 Integer currCount = currentAllocationCounts.remove(vmId);
 if (currCount != null)
 {
 currCount--;
//Update the Value for allocated VM

 currentAllocationCounts.put(vmId, currCount);
 }
 }
 }
}

