
the
united nations

educational, scientific
and cultural
organization

international atomic
energy agency

abdus salam
international
centre
for theoretical
physics

XA0056387

'.ft ."

ELECTRONIC CONDUCTANCE OF QUANTUM
WIRE WITH SERIAL PERIODIC

POTENTIAL STRUCTURES

Hisham M. Fayad

Mohammed M. Shabat

and

Hala - M. Khalil

3 1 / 4



Please be aware that all of the Missing Pages in this document were
originally blank pages



IC/2000/92

United Nations Educational Scientific and Cultural Organization
and

International Atomic Energy Agency

THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

ELECTRONIC CONDUCTANCE OF QUANTUM WIRE
WITH SERIAL PERIODIC POTENTIAL STRUCTURES

Hisham M. Fayad
Department of Physics, College of Education,

Gaza, Gaza Strip, Palestinian Autonomous Territories,

Mohammed M. Shabat *
Department of Physics, The Islamic University,

Gaza, P. O. Box 108, Gaza Strip, Palestinian Autonomous Territories
and

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

and

Hala - M. Khalil
Department of Physics, College of Women's, Ain Shams University,

Heliopolise, Cairo, Egypt.

Abstract

A theory based on the total transfer matrix is presented to investigate the
electronic conductance in a quantum wire with serial periodic potentials. We apply the
formalism in computation of the electronic conductance in a wire with different physical
parameters of the wire structure. The numerical results could be used in designing some
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Introduction:

In recent years, there has been a significant advancement in the fabrication technology

of ultra-small structures', using the molecular beam epitaxy together with electron-beam

lithography, which can provide us with many mesoscopic metal or semi conductor

structures. Furthermore, the scanning tunneling microscope has made it possible to

visualize atomic-scale structures. Using these techniques, one can make extremely high

mobility quantum wires with narrow widths, in which the lowest subbands are occupied

and the transport is approximately ballistic. The allowed modes in the quantum wires

are then considered to be the waveguide modes.

Electronic behavior in one-dimensional periodic, disordered and quasi-periodic

structures is a very important subject in mesoscopic physics2'3, where in the nano-meter

sizes, the mean free path of electrons at low temperature can be larger than the sample

dimension. Therefore, the electron motion is dominated by the wave nature and is

mainly governed by quantum mechanics. One of the most important problems in

mesoscopic physics is to obtain an understanding of the electron transport in a quasi-one

dimensional system where the electrons are confined in a narrow channel. For a

structure with transverse dimensions comparable to the electron wavelength, the essence

is that an electron can transport coherently across the whole system with negligible

inelastic scattering. As a result, a variety of interesting interference phenomena can be

exhibited, such as the quantized conductance in the point contacts, persistent currents in

metallic loops, universal conductance fluctuations. These may provide potential

applications to the fabrication of new quantum interference devices4.

Over the past few years, several analytical and numerical approaches to ballistic

transport have been established. In the theoretical studies, the single-electron and

effective-mass approximations are usually applied, and it is often supposed that the

waveguide structures have hard potential walls and they do not allow any penetration of

the electron wave function into the lateral barriers. Several theoretical and numerical

methods, such as the recursive Green's-function method5, the mode-matching method6,

the finite element method7, and the finite difference method8, have been extensively

used for the investigation of electron conduction in quantum waveguides. The transfer

matrix approach ' is another important tool in the investigation of electron transport in

low-dimensional systems, particularly useful for a wire consisting of several distinct



units. In addition, the transfer matrix method also proves to be very efficient in studies

of disordered systems2.

Recently, J. B. Xia" have considered the transmission across a T-shaped device

consisting of a main wire of constant width attached to a stub perpendicular to the wire.

Many interesting conductance characteristics in this structure were revealed, such as a

sharp drop to zero transmission at certain values of the stub length, repeated

periodically.

Now if a multiple stub configuration is taken, the sharp drops to zero in transmission

become extended to forbidden bands and the round tops become squared, along with

resonances to form allowed bands. The theoretical calculation showed that relatively

small changes in the stub length could induce significant variation in the electron

transmission across the structure12.

In a different manner, Griffith and Taussig have considered a one-dimensional

scattering from a series of delta-function barriers3. In their structure, the band formation

characteristic of periodic potentials had emerged even when the number of barriers was

quite small. In contrast to the multiple-stub structure, the zero transmission has not been

shown in delta-function potential with finite scatters.

In this paper, we study the electronic conductance in a one-dimensional wire with a

series of delta-function potentials by using the transfer matrix approach. We

demonstrate the evolution of a conductance for delta-function potentials with, different

strength, double periodicity and single defect at the center of a periodic arrangement of

delta-function potentials. Disordered effects are also illustrated.

The One Dimensional Periodic Potential

In this section, we study the electronic transport in quasi-one dimensional waveguide

systems. The structure under investigation consists of one main quantum wire with

uniform section containing a row of periodic potential, as the periodic potential has a

value on a finite interval and zero value elsewhere. Two semi-infinite leads are also

attached on either side of the wire at each end, which serve as reservoirs.

The proposed periodic potential is characterized by a delta-function potential, where the

potential is given by

~~ ',S(x-x,) (1)



where [/, and Xj represent the "strength" and the position of they'th barrier respectively.

Therefore N barriers are formed in the main wire. The distance between the adjacent

barriers are given by ds = xJ+\-Xj (j- 1,2,3,..., N - 1). Noting that the centers of the

peaks have the coordinates x - Xj. In general, the "strengths" and positions of barriers

vary along the wire.

The wire structure may be considered as modified models of the previous work3' l3 as

we assume both variation of the strengths and positions of the potential barriers, where

they3"!3 considered these parameters as constants over the entire device.

As a model system, we consider a sufficiently narrow wire that only electron motion is

in the direction of the wire. This single-channel case provides a good approximation to a

real wire with narrow width at low temperatures at which only the lower subband is

filled12.

The single-electron and the effective-mass approximations are applied as is usual in the

literature. We also assume that the structure has hard-wall boundaries.

We start from the one-dimensional Schrodinger equation in order to get the electron

wave function in the wire as

-h2 d2W
+ VWW = EV (2)

2m dx

where m is the electron effective mass.

The solutions of the Schrodinger equation in quantum wires are well known as given in

Ref. 14. We first derive the transfer matrix for the 7th barrier. This matrix relates the

coefficients of the wave function at one end to those at the other end.

The potential in the two leads connected to the 7th barrier is zero. We express the wave

function in these two leads as

xYL{x) = Ae'kx + Be"kx (3)

for the left lead (Xj.\< x < Xj ),and

VR(x) = Celki+De"kx (4)

for the right lead (XJ< x < x]+i ), where the wave number is k = \2mEJh2) '.

The normal derivative of the wave function is no longer continuous whenever V (x) t- 0.

We need to derive the generalized boundary conditions applicable when the delta-

function potential is present.

Integrating the Schrodinger equation at x} from ( Ay- 8 ) to ( Xj+ e ), and taking the limit

£—> 0, we have



dx dx
(5)

where " xR " and " xL " refer to the limits from the right to left respectively, and

Yj =2mUJ/h
2.

We also see that the continuity of the wave function at x = Xj is preserved, that is:

4**00 = 4^00 (6)

Imposing the above mentioned boundary conditions at x = Xj, we obtain the coefficients

C and D in terms of A and B, thus we obtain

C = (1 - iP )A — iP Be '"' (7)

D = iPjAe1'1"' + (1 + iPj )B (8)

where Pj - {y J2k).

The above two equations can be rewritten in a matrix form as:

{ D ) { 0 e'lkx') { iPj 1 + ̂ J ( 0 e-^J^B)

Accordingly, we define the transfer matrix at a given barrier. For instance, at barrier j ,

we have

j = S ~\ikxj).r (fij).S (ikxj). (10)

where S represents the first and the third matrices in Eq. 9, while F represents the

middle one.

The total transfer matrix that represents the electron wave propagation through the

entire device is just the product of the transfer matrices of the barriers in order. Thus we

obtain

Mun =
N-l

•5(0) (11)

The transmission amplitude of the electrons is related to the element of Mun as

T(k)= „ * . (12)

The two terminal conductance G, which is the ratio of the transmitted current to the

potential difference between two reservoirs is evaluated using the two Probe Landauer-

Buttiker formula1516



— T\ (13)

Numerical Results for the delta-function potentials

The discussion in the previous section makes the calculations very straightforward and

allows an easy using of the different parameters defining the device. In the following,

we assume a dimensionless strength for the delta- function potentials17,

Q ; = mdJ(Jj/n
2h2, with ^ =mUJ/kh2, we find, /3; = n2&]/kd}.ln Fig.l we plot

the one dimensional conductance as a function of the wave number of electrons for two

values of the barrier strengths. The distance between adjacent barriers is fixed at dj = d .

The standard strength of the barriers is £2, and the number of the barriers is N = 5. The

strength of the potentials considered in Fig.l is (a) Q, = 0.2, and (b) Q = 0.5. It is seen

from the graphs that, the allowed and forbidden regions are appearing although the

number of barriers is quite small, and each allowed band contains 7V-1 maxima "spikes".

Such spikes are a feature for delta- function potential18. Also, we note that the allowed

bands become slowly wider as k increases, and this is because /? = n2£ljkd has a

slow decline. The standard analysis of the transmission through a row of delta- function

potentials is given in Refs. 3,13, and 18. The conclusion is quite simple that is the

transmission is not simply unity when k is in an allowed region, even in the limit of

N —» oo, but is almost always less than unity. Graphs a and b in Fig.l display the

variation of the calculated conductance G (in units of 2e2/ h) versus X (k=kd In) through

a row of delta function potentials. The dimensionless strength values of the potentials in

the Fig. l.a equal 0.2 and in the Fig. l.b equal 0.5. If one wants to compare the two

pictures, he can easily notice that the increasing of the potential strength leads to form

the allowed region rapidly. The increasing of the potential strength from 0.2 to 0.5

forms two complete allowed regions in Fig.lb while it does not form any complete

region in Fig.la for the small value of Q. We also notice that the increasing of the

potential strength makes the allowed regions to be narrower, and then the spikes

become very sharp and very deep. So it is easy to state that the number of potential

barriers and the potential strength can control the conductance spectra in these kinds of

potentials.

Fig.2. illustrates the one dimensional conductance as a function of the Fermi wave



number k, as in Fig. 1.The distance between adjacent barriers is fixed at dj=d. The

strength of the potential barriers is taken double periodic with values {£>=0.2, Q=0.3}in

Fig.la, and {Q=0.2,Q=0.5} in Fig.lb. The number of potential barriers N is taken to be

6. Fig.2 shows that the double periodic arrangement leads to split the allowed regions

and the splitting of the allowed region in Fig.2a become a valuable due to the reduction

of the medium spike in every allowed region due to the small value of the difference of

the potential strength (AQ= 0.1). The increasing of the difference of the potential

strength (AQ= 0.3) is leading to the reflection process of the medium spike in every

allowed region as this reflection appears in the form of a deep valley where this valley is

well fitted with the size of its region. It means that the increasing of the difference of the

strength potential leads to a complete split of the allowed region forming a forbidden

region inside the allowed region at small values of k. These phenomena can be

explained due to the destruction interference between the incident and reflected waves

at the potential barriers.

In Fig.3. we present the calculated conductance as a function of the Fermi wave number

k for the row of delta- function potentials. Here we shall show how a single defect at the

center of the row can alter the band formation, which changes with the strength of the

defect. The strengths of all the barriers are assumed to be identical, except the central

one. The distance between adjacent barriers is fixed at d-s - d. We have taken three

barriers on either side of the defect barrier. We clearly observe two cases. The first one

can be observed where the defect strength Qrf is less than values of the potential as in

Fig.3a where Q. = 0.5 and Q.^ - 0.2. We notice that some changes have occurred in the

internal structure of the allowed regions and at the same time keeping the general form

of that region. The changes take the form of multiple splitting inside the allowed region.

This splitting varies in the strength inside the one region and it varies according to the

size of the region where they exist. We also notice that the number of spikes in the

structure has kept its distinguished feature for delta function potential which equals (N-

1) in every allowed region. So we have six spikes in this case. If we look at the spikes at

both sides of the graph in every allowed region, we notice that the spikes become deeper

and sharper. But at the lower value of the wavelength k, the spikes tend to form, which

is called quasi-bound state. The second case as the defect strength is bigger than the

potential value (Q. = 0.2 and Orf= 1) as in Fig.3b. We found that the spectra of the

conductance have changed totally from which has been shown previously in Fig.3a, as



the number of the spikes has changed in every allowed region and becomes as [(/V-l)/2].

This value is equal to the number of the potential barriers at each side of the defect

strength. We also notice that the difference of the height of the spikes is bigger at the

lower values of k than at the higher values. This difference will also be reduced by

increasing the values of k. It is easy to state in general that the above mentioned cases

can be the distinguished feature for these kinds of the potentials as the conductance

spectra will have similar features for the two cases taking into account the effects of the

number of the potential barriers and their strengths.

Fig.4. Presents the calculated conductance for the disordered lead connections between

adjacent barriers (barrier distances). We assume that the average barrier distance is d

and the number of the barriers is /V = 5. To produce disorder configurations, the barrier

distances are given by dj = (l+LR) d, where R represents the random values with a

uniform distribution in the range [-0.5,0.5] as L describes the extent of the disorder. In

Fig.4 graphs a, b, and c correspond to different barrier distance disorders of L: 0.1, 0.15,

and 0.2 respectively. The process of disorder in the distance between the potential

barriers leads to a clear change in the conductance spectra as shown in Figs.4. as the

spikes at each side in each allowed region have been changed rapidly. The reduction of

the spikes is increasing due to the increasing of the parameter L at the lower value of the

wave number k. The conductance spectra also takes the form of the oscillations at the

bigger value of k, which has been caused due to the reflection of the separated valleys

between the allowed regions. We also notice that the values of the disorder L do not

lead to the bigger differences between the conductance spectra for the three figures.

Conclusions

In conclusion, we have presented the transfer matrix method to model a quantum wire

containing a row of delta-function barriers. We hope that this article will act as a

stimulus for further work in this promising area. The results could be useful in

introducing quantum wires for designing some future nano-electronic devices.
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Fig.l. Calculated conductance G (in units of 2e2//?) through a row
of N=5 delta function potentials, plotted against (X= kd/n). The
dimensionless strength of the potential is (a) Q = 0.2, and (b) Q=.5.
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FIG. 2 . Calculated conductance G (in units of 2e2//j) through
an row of N = 6 delta function potentials, plotted against (k =
kd/n). The strength of the potential is double periodic taking
values of: (a){Q =0.2, 0.3}, and (b){Q =0.2, 0.5}.
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(a)
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FIG.3. Calculated conductance , G ( in units of 2e^/h ) through an
row of delta function potentials, plotted against (k= kd/n ). A single
defect strength ndat the centre oi" an otherwise periodic
arrangement of 3 delta function potentials on either side of the
defect strength. Where the strengths potentials as follow: In (a)
{n=0.5,nd=0.2},and(b) {n=0.2,nd=l}.
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FIG 1 The same parameters as Fig.l(a). Figs, (a)-(c) correspond to
different values of L, 0.1, 0.15, and 0.2.
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