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1. Introduction and Preliminaries: 

An Alexandroff space (Alexandroff, 1937)  (briefly 
A space) X  is a topological space in which the 

arbitrary intersection of open sets is open. In this 
space, each element x  possesses a smallest 
neighborhood )(xV  which is the intersection of all 

open sets containing x . For every 0T  A space 

),( X , there is a corresponding poset ),( X  in 

one to one and onto way, where each one of them is 
completely determined by the other. If ),( X  is a 

0T  A-space, we define the corresponding partial 

order   , called (Alexandroff) specialization order, 

by: ba   iff }{ba  iff )(aVb . On the other 

hand, if ),( X  is a poset, then the collection B  = 

}:{ Xxx   forms a base for a 0T  A-space on X , 

denoted by  . In this case, )(xV  = }:{= xyyx   

and }:{== xzzxx  .If X  is a AT  0 space, the 

the collection of closed sets forms a AT  0 space, 

denoted by X , and the induced order on X  is the 

reverse order on X . We consider ),( )(X  to be a 

0T  A space ),( X  together with its 

corresponding poset ),( X . 

A poset ),( X  satisfies the ascending chain 

condition (briefly ACC ), if for any increasing 

sequence  321 xxx  in X , there exists 

Nk  such that kx  = 1kx  =  . X  satisfies the 

descending chain condition (briefly DCC ), if for any 

decreasing sequence  321 xxx  in X , there 

exists Nk  such that kx  = 1kx  =   A AT  0

space whose corresponding poset satisfies the 

ACC  (resp. DCC  is called Artinian (resp. 

Notherian) 0T  A-space (Mahdi & Elatrash, 2005). 

Given a poset ),( X , the set of all maximal elements 

is denoted by )(XM  (or simply by M ) and the set 

of all minimal elements is 
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denoted by )(Xm  (or simply by m ). If X  is a Artinian 

(resp. Noetherian) 0T  A-space, then M  (resp. m ) is 

non-empty. 

For posets ),( iiX  , i  = n,1,2, , we can formulate 

many types of partial orders on the cartesian product 

i

n

i

X  = nXXX  21 . The most famous one is the 

coordinatewise order c . For two elements a  = 

),,,(
21 n

aaa   and b  = ),,,(
21 n

bbb   in i

n

i

X , we 

have that ba c  iff 
iii

ba     ni ,1,2,=  . 

If X  is a poset and XA , we define 

AxxyyAl  ,:=  and AxxzzAu  ,:= . A 

poset X  is said to be a lattice if Xyx  , , bothe 

yx  = lyx },{sup  and yx  = uyx },{inf  exist in 

XyxX  , . A poset is bounded if it has a maximum (a 

top)   and a minimum (a bottom)   elements. Any 
finite lattice is bounded. A subset of a lattice is called a 
sublattice if it is closed under the meet and the join 
operations. A lattice is distributive if the meet operator 
distributes over the join operator. That is, 

)()(=)( cabacba  . 

Theorem 1.1 (Grätzer, 2011) A lattice is distributive if 
and only if neither the diamond nor the pentagon is 
embedded to be a sublattice.  
A lattice is modular if and only if the pentagon can not 
be embedded as a sublattice, (see Figure 1). So every 
distributive lattice is modular lattice. 
 

 
Figure  1   (a)  Diamond and  (b)  Pentagon 

 

Let ),( X  be a poset and XS  . Then we say 

Sc =  if Xxcx    and if Xr  such that 

Sxxr   , then cr  . Similarly, Sd =  

Xxxd    and if Xt  such that Sxxt   , then 

dt  . A lattice X  is complete if for any XS   both 

S  and S  exists in X . Let ),( L  be a bounded 

lattice and La . If there exists Lb  such that 

 =ba  and  =ba , we say that a  has a 

complement element b . In general an element may 
have more than one complement. However, in a 
bounded distributive lattice every element has at most 
one complement.  
Definition 1.2 (Grätzer, 2011) A Boolean lattice (or 
Boolean algebra) is a bounded distributive lattice such 
that each element has a complement.  
 The most famous example of a Boolean lattice is a 

power set )(SP  of a non-empty set S . 

Theorem 1.3 (Grätzer, 2011) A finite bounded lattice is 
Boolean iff it is lattice isomorphic to a Boolean lattice of 
all subsets of some finite set.  

Theorem 1.4 (Grätzer, 2011)  Let S  be a finite set with 
n  elements and )),(( SP  the Boolean lattice of power 

set of S . If {0,1}=A  is the poset such that 10  , then 

)(SP  is lattice isomorphic to the product of n  copies of 

A  with coordinatewise order.  

Theorem 1.5 (Mahdi, 2010) If ))(,( x
x

X   and 

))(,( y
y

Y   are two 
0

T A spaces with corresponding 

posets ),( xX  , ),( yY   respectively, then YX   is a 
0

T  

A space induces a specialization order 
p

  coincides 

with the coordinatewise order of the product of the 
corresponding posets.  

2. Alexandroff Complete Lattice Spaces: 

Definition 2.1 (Othman & Mahdi, 2017) Let ),( )(X  be 

a AT  0 -space with corresponding poset ),( X . We say 

that X  is an  Alexandroff lattice space (briefly, LA -

space) if the corresponding poset ),( X  is lattice.   

Theorem 2.2  Let ),( )(X  be a AT  0 -space with 

corresponding poset ),( X  and XS  . Then S  

exists if and only if there exists Xu  such that 

)(=)( xVuV
Sx 

.   

Proof. )(  Let XS   and S  = u . Then ux   

Sx . Equivalently, )(xVu
Sx 

 , so )()( xVuV
Sx 

 . 
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On the other hand, let )(xVa
Sx 

 . Then ax   Sx . 

This implies that au   and hence )(uVa . Therefore, 

)()( uVxV
Sx


 . Conversely, if )(=)( xVuV

Sx 
, 

then )()( xVuV   Sx . So xu   Sx . Suppose 

that xy   Sx . Then )()( xVyV   Sx , and 

then )()( xVyV
Sx 

  = )(uV . Therefore, uy  .              

  

Corollary 2.3  Let ),( )(X  be a AT  0 -space with 

corresponding poset ),( X  and XS  . Then S  

exists if and only if there exists Xv  such that 

}:}{{=}{ Sxxv  .  

Definition 2.4 Let ),( )(X  be a AT  0 -space with 

corresponding poset ),( X . We say that X  is an  

Alexandroff complete lattice space (briefly, clA -space) if 

the corresponding poset ),( X  is complete lattice.  

Corollary 2.5 A AT  0 space ),( X  is clA -space if and 

only if for all XS  , there exist two elements dc,  such 

that }:)({=)( SxxVcV   and }:}{{=}{ Sxxd  .  

Corollary 2.6 A AT  0 space is clA -space iff the 

intersection of any collection of minimal open sets 
}  :)({ XAandAxxV   equals a minimal open )(yV  

for some Xy  and the intersection of any collection of 

minimal closed sets }  :{ XBandBxx   equals a 

minimal closed z  for some Xz .  

Theorem 2.7 If X  is clA -space, then X  is bounded.   

Corollary 2.8 If X  is clA space, then X  is ATBB   0

space.  
In general, a poset can be bounded even when it is 
neither lattice nor complete lattice as illustrated in 
Figure 2:  

 
Figure  2   Bounded poset 

Example 2.9 A bonded LA space need not be clA space. 

Let Q  be the set of rational numbers, and 

Q[0,2]=X  with it usual order. Then X  is a bounded 

LA -space. Take S  = Q)
2

1
[0, . Then S  dose not 

exist in X . So X  is not clA -space.  

Example 2.10 An clA -space is not necessarily Artinian 

or Noetherian. Let X  = {0}}:
1

{ Nn
n

 with the usual 

order  . Then both X  and X  are clA -space. But X  is 

not Noetherian and X  is not Artinian.  
If X  is a finite lattice, then X  is complete. Hence we 
get the following theorem.  

Theorem 2.11 A finite LA -space is clA -space.  

Theorem 2.12 Let ),( )(X  be an clA -space and S  any 

subset of X . Then B  = },{ SSS   is LA -subspace.  

Proof. Let Byx , . If Syx   we are done. If not, 

then Syx  = . You should note that yx  in X  

need not be equal yx  in B . Similarly with meet.       

A subspace of clA -space need not be clA -space as 

shown in the following example:  
Example 2.13 Let X  = [0,2]  with usual order. By 

completeness property of R , X  is complete lattice and 

hence the induced AT  0 -space is clA -space. Let A  = 

{1}[0,2]  and let AS [01)= . Then S  does not 

exist in A . So A  as a subspace is not clA -space. 

Definition 2.14 Let X  be a AT  0 space and let c  be a 

not minimum element (resp. a not maximum element) in 
X . Then c  is called join-irreducible (resp. meet-

http://resportal.iugaza.edu.ps/journal.aspx?id=3
http://creativecommons.org/licenses/by/4.0/


New Types of Alexandroff Lattice Spaces  Hisham Mahdi 
Heba Othman 

   

 

 
 
322 

 
 

IUG Journal of Natural Studies (Islamic University of Gaza) / CC BY 4.0 

 

irreducible) if whenever )()(=)( yVxVcV   (resp. if 

whenever yxc = ), then either xc =  or yc = . 

Definition 2.15 Let X  be a AT  0 space with a bottom 

element   and Xx . Then x  is called atom if 

}{}{ xx   = . 

Theorem 2.16 Let X  be a AT  0 space with a bottom 

element   and Xx . If x  is atom, then x  is join-
irreducible. 
Proof. Suppose that )()(=)( bVaVxV  . Then 

)()( aVxV   and )()( bVxV  . If ax   and bx  , 

then }{}{, xxba  . That is == ba  and 

XVxV =)(=)(  . This implies that =x , which is a 

contradiction.                                                                             
The converse need not be true. Consider a linear order 
poset with more than three elements. Each element is 
join-irreducible, while at most there is one atom. 

3. Distribution in Alexandroff Lattice Spaces: 

Definition 3.1  Let ),( )(X  be an LA -space. A subset 

E  of X  is called non-distributive set if the following 
conditions hold:   

1. E  contains exactly five elements.  

2. There exists Ea  such that )(aVE  .  

3. There exists Ee  such that EeV )(  = }{e .  

4. There exist two elements dc,  different from 

ea,  such that }{}{ dc   = }{a  and )()( dVcV   = 

)(eV .  

If E  is not non-distributive set, then it is called 
distributive set.  

Theorem 3.2 The set E  in LA space X  is non-

distributive iff E  describes a pentagon or a diamond in 
the corresponding lattice. 
Proof. Consider the corresponding lattice ),,( X , and 

let E  = },,,,{ decba  be a non-distributive subset of X . 

By condition 2 , we have ba  , ca  , da  , and ea 

. By condition 3, we have ce  , be  , and de  . 

Condition 3 implies that c  and d  are incomparable. 
Therefore, we have the following three cases:   

Case 1: If b  is comparable with c  or with d  (but not 

both), then E  -as a poset- is a pentagon.  

Case 2: If b  is incomparable with c  and d , then E  is a 
diamond.  

 Case 3: If b  is comparable with both c  and d , then 
we will see that this case is impossible. Under this case, 
we have the following three subcases:   
 Subcase 3.1: bc   and bd  . Then )(=)()( eVdVcVb  . 

Hence }{=)( eEeVb  , which is a contradiction. 

Subcase 3.2: cb   and db  . Then 

}{=}{}{ adcb  . Hence ab  , but ab  , then 

)(aVb , which contradicts condition 1.  

Subcase 3.3:  dbc <<  or cbd << . Then )()( dVcV   

is either )(cV  or )(dV . Hence )(eV , which is a 

contradiction.                                                                            

Definition 3.3  An LA -space X  is called Alexandroff 

distributive lattice space (briefly, dLA -space) if every 

subset of X  is distributive.  

Corollary 3.4 An LA -space X is dLA -space if and only if 

its corresponding poset ),( X  is distributive lattice.  

Proof. The proof comes directly from Theorem 1.1 and 
Theorem 3.2.                                                                                
 

Definition 3.5  Let ),( )(X  be an LA -space. A subset 

F  of X  is called non-modular set if the following 
conditions hold:   

1. F  contains exactly five elements.  
2. There exists Fa  such that )(aVF  .  

3. There exists Fe  such that FeV )(  = }{e .  

4. There exist two elements dc,  different from 

ea,  such that }{}{ dc   = }{a  and )()( dVcV   = 

)(eV .  

5. )()( bVcV  .  

If F  is not non-modular set, then it is called modular 
set.  
Depending on Theorem 3.2, it is easy prove that a set A  
is non-modular iff it describes a pentagon in the 
corresponding lattice.  

Definition 3.6 An LA -space X  is called  Alexandroff 

modular lattice space (briefly, mLA -space) if all subsets 

of X  are modular. In this case, the corresponding poset 
is modular lattice. 
Since every distributive lattice is modular lattice, we 
have the following remark: 

Remark 3.7 Every dLA -space is mLA -space.  

http://resportal.iugaza.edu.ps/journal.aspx?id=3
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The converse need not be true in general. To see this, 

consider the diamond lattice as LA -space. Clearly it is 

mLA -space, which is not dLA -space. In fact an mLA

space is dLA space iff it contains no diamond 

subspace. 
In (Othman & Mahdi, 2017), we prove that a subspace 

of LA space need not be LA space.  

Theorem 3.8  Let X  be an dLA space (resp. mLA

space) and XB . If B  as a subspace of X  is LA

space, then B  is dLA space (resp. mLA space).  

Proof. Suppose that ),( BB   is non-distributive LA -

space. So there exists a non-distributive subset A  of B . 
Hence A  is also non-distributive subset of X . 

Therefore ),( )(X  is non-distributive.                              

4. Boolean Alexandroff Spaces: 

Definition 4.1 Let ),( )(X  be a bounded AT  0 -space 

and Xa . If there exists Xb  such that }{}{ ba  = }{  

and )()( bVaV   = }{  then b  is called a complement of 

a . The complement need not be unique as the 
following example shows: 

Example 4.2 In a diamond space, b  has two 

complements, d  and c . And in a pentagon space, d  has 

two complements, b  and c .  

Lemma 4.3 Let ),( )(X  be a bounded dLA -space and 

Xa . If a  has a complement, then it is unique.  
Proof. If bc,  are two complement elements of a , then 

the subset A  = },,,,{ cba  with its induced order 

forms a non-distributive subset in X , which is a 
contradiction.                                                                              
 

Definition 4.4 A bounded dLA -space X  is called 

Boolean Alexandroff space (briefly, BLA space) if each 

element has a complement.  

If X  is BLA space, then the corresponding poset is 

Boolean lattice. Moreover, from Theorem 1.3 and the 
above definition one can easly see that if X  is a finite 

BLA space, then the cardinality of X  is nX 2|=|  for 

some natural number n . 

A Sierpinski space is a space },{= baX  with a topology 

}}{,,{= bX . It is AT  0 space with induced order 

ba  . 

Theorem 4.5 A finite AT  0 space X  is BLA -space iff it 

is homeomorphic to a product of n  copies of a Sierpinski 
space.  
Proof. The corresponding poset ),( X  is Boolean 

lattice. So, by Theorem 1.3, there exists a set S  with n  
elements such that ),( X  is a lattice isomorphic to 

)),(( SP , where )(SP  is the collection of all subsets 

of S . By Theorem 1.4, the Boolean lattice )(SP  is a 

lattice isomorphic of the cartesian product of n  copies 

of the poset {0,1} where 10  . Using Theorem 1.5, X  

is homeomorphic to a product of n  copies of the 
induced Sierpinski topology on {0,1}. Conversely, the 

corresponding poset )( X  has an isomorphism with 

the product of n  copies of the induced poset {0,1} 

where 10   of the Sierpinski space with coordinatewise 

order. By Theorem 1.3, X  is BLA -space.                           

 

Theorem 4.6 Let ),( )(X  be a bounded finite dLA -

space. Then the following statements are equivalent:   

1. ),( )(X  is an BLA -space.  

2. Every element in }{X  is a join of atoms.  

3. Every join-irreducible element is an atom.  

4. For each Xx , there exists Xy  such that 

yx  =   and yx  =  .  

Proof. 2)(1  Using Theorem 1.3, we can take 

)(= SPX  for some finite set S  where the join 

operation is the union operation. So the atoms are the 
singleton sets. Let )(SPB , then B  is the union of the 

singleton sets of the elements in B . 
3)(2  Suppose to contrary that a  is a join-

irreducible which is not atom. Then by (2), there exist 

distinct atoms 1> ,,,, 21 kaaa k  such that 

kaaaa  21= . Set kaaac  322 = . Then 

21= caa  . This implies that )()(=)( 21 cVaVaV  , 

[To see this, if )(aVx , then ax  . So 1ax   and 

2cx  . On the other hand, if )()( 21 cVaVx  , then 

1ax   and 2cx  . Hence, acax =21  ]. Since a  is 

http://resportal.iugaza.edu.ps/journal.aspx?id=3
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join-irreducible, either 1= aa  or 2= ca . Since a  is not 

atom, 
kaaaca  322 == . Again, set 

kaaac  433 = . We get 32= caa  , to get that 

3= ca . Continue this process, we must have kaa =  and 

a  is atom, which is a contradiction. 

2)(3  Let x . If x  is atom, we done. Otherwise x  

is not join-irreducible. So, there exist Xba ,  such that 

)()(=)( bVaVxV   and xbxa   , . In this case, 

bax = . For the elements a  and b  and similar to x , 

if a  is atom,take aa =1 . Otherwise, we get 21= aaa   

where aa 1  and aa 2 . If b  is atom, take bb =1 . 

Otherwise, 
21= bbb  . Repeat this process for ia  and jb , 

we must terminate and we get 

sr bbaaax   121=  for some atoms 

riai ,1,2,= ,   and sjbj ,1,2,= ,  . 

4)(2  If =x , take =y . So, suppose that x  

and x . Then 
kaaax  21=  for some atoms ia . 

If AT  is the set of atoms of X , then 

 },,{ 21 kaaaAT   (otherwise, =x ). Suppose 

that },,,{=},,{ 2121 rk bbbaaaAT  . Set rbbby  21= . 

Then  =yx  and  =yx . 

1)(4  Just the definition.                                      

 

References 

Alexandroff, P. (1937). Diskrete Räume. Mat. Sb. (N.S), 
2, 501-518. 

Grätzer, G. (2011). Lattice theory: foundation. Springer 
Science & Business Media. 

Mahdi, H., & Elatrash, M. (2005). On 0T  Alexandroff 

spaces. Journal of the Islamic University,  13, 19-46 . 

Mahdi, H. (2010). Product of Alexandroff Spaces. Int. J. 
Comptemo. Math. Scinces, 5(41), 2037-2047. 

Othman, H., & Mahdi, H. (2017). Alexandroff lattice 
spaces. Pure Mathematical Sciences, 6(1), 1-10. 

 
 

 
 
 

 

 

 
 
 
  
 
 

 الكساندرووف التس لفضاءات جديدة أنواع

 
 من معروفة أنواع استخدام خلال من الكساندرووف فضاءات من جديدة أنواع ودراسة بتعريف قمنا البحث، هذا في

. الأنواع هذه على النتائج بعض بإثبات قمنا .البوليني والجبر للتوزيع القابل واللاتس المتكامل اللاتس مثل المرتبة المجموعات

 يكون الكساندرووف T0 الفضاء أن إثبات تم أساسي، بشكل .ABL وكذلك ،Acl، AdL، AmL للفضاءات وصف على حصلنا

 كل كان إذا وفقط إذا سيربنسكي فضاء نسخ من n لعدد الضرب فضاء مع توبولوجيا   متماثل كان إذا وفقط إذا ABL فضاء

 .ذرة يكون الإنضمامي للاختزال قابل غير عنصر

 كلمات مفتاحية:
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 اللاتس،
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