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Abstract

In this paper, we introduce and investigate new types of Alexandroff spaces
using well known types of posets; under the conditions that the
corresponding poset is complete lattice, distributive lattice and Boolean
Algebra. We present some results about these types. Some

characterizations of A, —spaces, A, —spaces, A, —space and Ay —
spaces are obtained and it mainly shown thata T, A—space is A — space
if and only if it is homeomorphic to a product of N copies of Sierpinski
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space if and only if every join-irreducible element is an atom.

1. Introduction and Preliminaries:

An Alexandroff space (Alexandroff, 1937) (briefly
A—space) X is a topological space in which the
arbitrary intersection of open sets is open. In this
space, each element X possesses a smallest
neighborhood V (x) which is the intersection of all

open sets containing X. For every T, A-—space
(X,7), there is a corresponding poset (X,<) in

one to one and onto way, where each one of them is
completely determined by the other. If (X,7) is a

T, A-space, we define the corresponding partial
order <_,
by: a<_b iff ae{?} iff beV(a). On the other
hand, if (X,<) is a poset, then the collection B =
{1 x:x< X} forms a base for a T, A-space on X,
denoted by 7_. In this case, V (x) = Tx={y:y>x}

and X =4 x ={z:z<x}If X isa T, A—space, the

called (Alexandroff) specialization order,

the collection of closed sets forms a T, A—space,

denoted by X 9 and the induced order on X? is the
reverse order on X . We consider (X,7)) to be a

T, A-space (X,7r) together with its
corresponding poset (X,<).
A poset (X,<) satisfies the ascending chain

condition (briefly ACC), if for any increasing
sequence X; <X, <X; <--- in X, there exists
keN such that X, = X,,, = ---. X satisfies the
descending chain condition (briefly DCC), if for any
decreasing sequence X, =X, =X;=--- in X, there
exists K€ N such that X, = X, = --- A T, A—
space whose corresponding poset satisfies the
ACC (resp. DCC is called Artinian (resp.
Notherian) T, A-space (Mahdi & Elatrash, 2005).
Given a poset (X,<), the set of all maximal elements
is denoted by M (X) (or simply by M ) and the set
of all minimal elements is

' IUG Journal of Natural Studies (Islamic University of Gaza) / CC BY 4.0


http://resportal.iugaza.edu.ps/journal.aspx?id=3
http://creativecommons.org/licenses/by/4.0/
mailto:hmahdi@iugaza.edu.ps

New Types of Alexandroff Lattice Spaces

Hisham Mahdi
Heba Othman

denoted by m(X) (or simply by m).If X isa Artinian
(resp. Noetherian) T, A-space, then M (resp. m) is
non-empty.

For posets (X,,<;), i = 1,2,---,n, we can formulate

many types of partial orders on the cartesian product

n
H_ X; = X;xX,---x X . The most famous one is the

coordinatewise order <_. For two elements a =

<.-
(@.a,a)andb = (b.b b ) in H?Xi,we
have that a<_ b iff a Si bi vV i=12,---,n.

If X is a poset Ac X, define
A=y y<x,VxeA and A'=z:z>xVxecA. A
poset X is said to be a lattice if VX,y e X, bothe

XAy = sup{x,y} and xvy = inf{x y}" exist in
X VX, Yy € X . Aposetis bounded if it has a maximum (a

and we

top) T and a minimum (a bottom) L elements. Any
finite lattice is bounded. A subset of a lattice is called a
sublattice if it is closed under the meet and the join
operations. A lattice is distributive if the meet operator
distributes over the join operator. That is,
an(bvc)=(anb)v(anac).

Theorem 1.1 (Grdtzer, 2011) A lattice is distributive if
and only if neither the diamond nor the pentagon is
embedded to be a sublattice.

A lattice is modular if and only if the pentagon can not
be embedded as a sublattice, (see Figure 1). So every
distributive lattice is modular lattice.

e e

a a

Figure 1 (a) Diamond and (b) Pentagon

Let (X,<) be a poset and Sc X. Then we say
C=\S if x<cVvVXxeX and if reX such that

r>xvxeS, then r>c. Similarly,

d:/\S
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d<xVxeX andifte X suchthat t<XxVXeS§, then
t<d. A lattice X is complete if for any S < X both

v S and AS exists in X . Let (L,<) be a bounded

lattice and aeL. If there exists belL such that
avb=T and aab=1l, we say that a has a
complement element b. In general an element may
have more than one complement. However, in a
bounded distributive lattice every element has at most
one complement.

Definition 1.2 (Grdtzer, 2011) A Boolean lattice (or
Boolean algebra) is a bounded distributive lattice such
that each element has a complement.

The most famous example of a Boolean lattice is a

power set P(S) of anon-empty set S.

Theorem 1.3 (Grdtzer, 2011) A finite bounded lattice is
Boolean iff it is lattice isomorphic to a Boolean lattice of
all subsets of some finite set.

Theorem 1.4 (Grdtzer, 2011) Let S be a finite set with
N elements and (P(S),<) the Boolean lattice of power

set of S. If A={0,1} is the poset such that 0<1, then
P(S) is lattice isomorphic to the product of N copies of

A with coordinatewise order.
Theorem 1.5 (Mahdi, 2010) If (X,TX(SX)) and

Y,z (£,)) are two T0 A—spaces with corresponding
y
posets (X,<,), (Y,<,) respectively, then X xY isa T0

A—space induces a specialization order < coincides

p
with the coordinatewise order of the product of the
corresponding posets.

2. Alexandroff Complete Lattice Spaces:

Definition 2.1 (Othman & Mahdi, 2017) Let (X,7,.,) be
a T, A-space with corresponding poset (X,<). We say
that X is an Alexandroff lattice space (briefly, A -
space) if the corresponding poset (X,<) is lattice.
Theorem 2.2 Let (X,7)) be a T, A-space with
corresponding poset (X,<) and S < X. Then /S

exists if and only if there exists U€ X such that

V)=, V.
Proof. (=) Let Sc X and \/S = U. Then x<u
VX € S. Equivalently, ue ﬂxeSV (x), so V(@) c ﬂxesv (x)-
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On the other hand, let ae(7) V(x). Then x<a VxeS.
This implies that u <a and hence a €V (u). Therefore,
nXESV (X) =V (u). Conversely, if V(u)= ﬂxesV (x),
then V(U)cV(x) VX€S.So u>x VXeS. Suppose
that y>X VXeS. Then V(y)cV(x) VXeS, and
then v(y)c(\ V() = V(). y=u.
)

Corollary 2.3 Let (X,7r.)) be a T, A-space with

Therefore,

corresponding poset (X,<) and S< X. Then AS
exists if and only if there exists Ve X such that
(3= Y{x}:xeS}

Definition 2.4 Let (X,7.)) be a T, A-space with
corresponding poset (X,<). We say that X is an
Alexandroff complete lattice space (briefly, A, -space) if
the corresponding poset (X,<) is complete lattice.
Corollary 2.5 A T, A—space (X,7) is A, -space if and
only if for all S < X, there exist two elements ¢c,d such

that V (c) = YV (x): x € S} and {d} =Y} : x € S}.
Corollary 2.6 A T, A—space is A, -space iff the

intersection of any collection of minimal open sets
{V(x):xe Aand Ac X} equals a minimal open V (y)

for some y € X and the intersection of any collection of
minimal closed sets {;( :xeBand Bc X} equals a
minimal closed 7 forsome ze€ X.

Theorem 2.7 If X is A, -space, then X is bounded.

Corollary 2.8 If X is A, —space, then X is BBT, A—

space.

In general, a poset can be bounded even when it is
neither lattice nor complete lattice as illustrated in
Figure 2:
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Figure 2 Bounded poset
Example 2.9 A bonded A, —space need not be A, space.

Let Q be the set of rational numbers, and
X =1[0,2]"Q with it usual order. Then X is a bounded

A -space. Take S = [O,%)F\Q. Then \,S dose not

existin X .So X isnot A, -space.

Example 2.10 An A, -space is not necessarily Artinian
1

or Noetherian. Let X = {=:neN} {0} with the usual
n

order <. Then both X and X° are A, -space. But X is

not Noetherian and X° is not Artinian.
If X is a finite lattice, then X is complete. Hence we
get the following theorem.

Theorem 2.11 A finite A, -space is A, -space.

Theorem 2.12 Let (X, 7)) bean A, -spaceand S any
subset of X . Then B = SU{\/S, A S} is A_-subspace.
Proof. Let X,yeB.If XxvyeS we are done. If not,
then XV Yy=\/S. You should note that Xvy in X
need not be equal Xv y in B. Similarly with meet. >

A subspace of A, -space need not be A, -space as

shown in the following example:
Example 2.13 Let X = [0,2] with usual order. By

completeness property of R, X is complete lattice and
hence the induced T, A-space is A, -space. Let A =

[0,2] {1} and let S=[01)c A. Then \sS does not
exist in A. So A as a subspace is not A, -space.

Definition 2.14 Let X bea T, A—space and let C be a

not minimum element (resp. a not maximum element) in
X. Then C is called join-irreducible (resp. meet-
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irreducible) if whenever V (C) =V (X)NV(y) (resp. if
whenever C = )_(mgl), then either C=X or C=Y.
Definition 2.15 Let X be a T, A—space with a bottom
element | and Xe€ X. Then X is called atom if
G-} =1.

Theorem 2.16 Let X be a T, A—space with a bottom

element | and Xe€ X. If X is atom, then X is join-
irreducible.
Proof. Suppose that V(x)=V(a)nV(b). Then

V(x)cV(a) and V(X)cV(b). If x=a and X=#b,

then abe{x}—{x}. That is a=b=L and
V(x) =V (L) = X. This implies that X =_L, which is a
contradiction. o

The converse need not be true. Consider a linear order
poset with more than three elements. Each element is
join-irreducible, while at most there is one atom.

3. Distribution in Alexandroff Lattice Spaces:

Definition 3.1 Let (X,7.)) be an A -space. A subset
E of X is called non-distributive set if the following
conditions hold:
1. E contains exactly five elements.
2. Thereexists a € E suchthat EcV(a).
3. There exists € € E such that V(e) NE = {e}.
4. There exist two elements c,d different from
a,e such that {c}n{d} = {a} and V(c)nVv(d) =
Ve)-
If E is not non-distributive set, then it is called
distributive set.
Theorem 3.2 The set E in A —space X is non-
distributive iff E describes a pentagon or a diamond in

the corresponding lattice.
Proof. Consider the corresponding lattice (X,v,A), and

let E ={a,b,c,e,d} be a non-distributive subset of X .
By condition 2, we have a<b, a<c,a<d,and a<e
. By condition 3, we have e>c, e>b, and e>d.
Condition 3 implies that ¢ and d are incomparable.
Therefore, we have the following three cases:

Case 1: If b is comparable with C or with d (but not
both), then E -as a poset- is a pentagon.

Case 2: If b is incomparable with ¢ and d, then E isa
diamond.
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Case 3: If b is comparable with both ¢ and d, then
we will see that this case is impossible. Under this case,
we have the following three subcases:

Subcase 3.1: c<b and d<b. Then beV(c)nV(d)=V(e).

Hence beV(e)nE ={e}, which is a contradiction.
Subcase  3.2: b<c and b<d. Then
be{c}~{d}={a}. Hence b<a, but b#a, then
b ¢V (a), which contradicts condition 1.

Subcase 3.3: c<b<d or d<b<c. Then V(c)nV(d)
is either V(c) or V(d). Hence #V(e), which is a
contradiction. -
Definition 3.3 An A -space X is called Alexandroff
distributive lattice space (briefly, A, -space) if every
subset of X is distributive.

Corollary 3.4 An A -space X is A, -space if and only if
its corresponding poset (X, <) is distributive lattice.
Proof. The proof comes directly from Theorem 1.1 and

Theorem 3.2.
)

Definition 3.5 Let (X,7.)) be an A_-space. A subset
F of X is called non-modular set if the following

conditions hold:
1. F contains exactly five elements.
There exists a € F such that F <V (a).

2.
3. There exists € € F such that V(e) " F = {e}.
4. There exist two elements c,d different from
a,e such that {c}n{d} = {a} and V(c)V(d) =
V(e)-
5. V(c)cV(b).
If F is not non-modular set, then it is called modular
set.
Depending on Theorem 3.2, it is easy prove that a set A

is non-modular iff it describes a pentagon in the
corresponding lattice.

Definition 3.6 An A -space X is called Alexandroff
modular lattice space (briefly, A, -space) if all subsets

of X are modular. In this case, the corresponding poset
is modular lattice.

Since every distributive lattice is modular lattice, we
have the following remark:

Remark 3.7 Every A, -spaceis A, -space.
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The converse need not be true in general. To see this,

consider the diamond lattice as A, -space. Clearly it is
A, -space, which is not A, -space. In fact an A —
space is A, —space iff it contains no diamond

subspace.
In (Othman & Mahdi, 2017), we prove that a subspace

of A —space need not be A —space.

Theorem 3.8 Let X be an A, —space (resp. A, —
space) and B < X . If B as a subspace of X is A —
space, then B is A, —space (resp. A, —space).

Proof. Suppose that (B,7;) is non-distributive A -

space. So there exists a non-distributive subset A of B.
Hence A is also non-distributive subset of X.
Therefore (X,7.,) is non-distributive. )

4. Boolean Alexandroff Spaces:
Definition 4.1 Let (X,7,) be a bounded T, A-space

and ae X . If there exists b e X such that {a}~{b}={1}
and V(a)~V (b) ={T} then b is called a complement of
a. The complement need not be unique as the
following example shows:

Example 4.2 In a diamond space, b has two
complements, d and C. And in a pentagon space, d has
two complements, b and C.

Lemma 4.3 Let (X,7,) be a bounded A, -space and
ae€ X.If a has a complement, then it is unique.

Proof. If ¢,b are two complement elements of a, then
the subset A = {T,1,a,b,c} with its induced order

forms a non-distributive subset in X, which is a
contradiction.
-

Definition 4.4 A bounded A, -space X is called

Boolean Alexandroff space (briefly, Ay —space) if each
element has a complement.
If X is Ag —space, then the corresponding poset is

Boolean lattice. Moreover, from Theorem 1.3 and the
above definition one can easly see that if X is a finite

Ay —space, then the cardinality of X is | X |= 2" for
some natural number n.
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A Sierpinski space is a space X ={a,b} with a topology
r={J, X, {b}}. It is T, A—space with induced order
a<b.

Theorem 4.5 A finite T, A—space X is Ay -space iff it
is homeomorphic to a product of N copies of a Sierpinski

space.
Proof. The corresponding poset (X,<) is Boolean

lattice. So, by Theorem 1.3, there exists a set S with n
elements such that (X,<) is a lattice isomorphic to

(P(S),©), where P(S) is the collection of all subsets
of S. By Theorem 1.4, the Boolean lattice P(S) is a

lattice isomorphic of the cartesian product of N copies
of the poset {0,1} where 0 <1. Using Theorem 1.5, X

is homeomorphic to a product of N copies of the
induced Sierpinski topology on {0,1}. Conversely, the

corresponding poset (X <) has an isomorphism with
the product of n copies of the induced poset {0,1}
where 0 <1 of the Sierpinski space with coordinatewise
order. By Theorem 1.3, X is Ay -space.
D
Theorem 4.6 Let (X,7.,) be a bounded finite A, -
space. Then the following statements are equivalent:
1. (X,7y) isan Ag -space.
Every elementin X —{ L} is ajoin of atoms.

2
3. Every join-irreducible element is an atom.
4. For each xe X, there exists ye X such that

Xvy=Tand XAy = L.
Proof. (1= 2) Using Theorem 1.3, we can take
X =P(S) for some finite set S where the join

operation is the union operation. So the atoms are the
singleton sets. Let B € P(S), then B is the union of the

singleton sets of the elements in B.
(2=3) Suppose to contrary that a

irreducible which is not atom. Then by (2), there exist
distinct a,a,, -, a,,k>1 that
a=ava,v---va. Set C,=a,va;v---va,. Then
a=a,vC,. This implies that V(a)=V(a,)NV(c,),
[To see this, if xeV(a), then x>a. So X=a, and
X>C,. On the other hand, if xeV(a)NV(c,), then
X=4a, and X=C,. Hence, X=a, vC, =a]. Since a is

is a join-

atoms such
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join-irreducible, either @ =@, or a =C,. Since a is not

atom, a=C,=a,va;Vv--va. Again, set
c,=a,va,v---va,. We get a=a,VvC;, to get that
a = C,. Continue this process, we must have a = a, and

a is atom, which is a contradiction.

(3=2) Let x#L.If X is atom, we done. Otherwise X
is not join-irreducible. So, there exist a,b € X such that
V(x)=V(@)nV(b) and a#x,b=x. In this case,
X=avDb. For the elements a and b and similar to X,
if a is atom,take a, = a. Otherwise, we get a=4a, v 4,
where & #a and a,#a. If b is atom, take b =D.
Otherwise, b =b, vb,. Repeat this process for a; and bj,
we get
atoms

we must terminate and
X=ava,v---va vbv--vb, for
a,1=12,---,r and bj,j:1,2,~~~,s.

(2=4) If x=T, take y=1. So, suppose that x=T

and X#1.Then x=4a,va,v---va, for some atoms a,.

some

If AT is the set of atoms of X, then
AT —{a,a,,--a }# (otherwise, X=T). Suppose
that AT —{a,,a,,---a,}={b,,b,,---,b.}. Set y=b vb,v---vb,.
Then Xvy=T and xAy=1.

(4=1) Just the definition.
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