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 الممخص
توزيع حجم الحبيبات والعلاقات المتبادلة الطوبوغرافية أثناء نضوج أوستوالد: محاكاة 

 نموذج مونت كارلو بوتس
عمميا معظم المواد متعددة البمورات مثل السيراميك تتكمس بواسطة سائل أثناء معالجة      

عمى سبيل المثال يستخدم كربيد التنجستن في أدوات القطع. في عممية تمبد السائل فالسيراميك. 
موذج مونت كارلو يعتمد تركيب الحبيبات عمى عممية نضوج أوستوالد. في هذا العمل تم توظيف ن

بوتس لمحاكاة نضوج أوستوالد في خميط من الصمب والسائل. عمى أساس المحاكاة الحاسوبية تم 
والارتباطات الطوبوغرافية لسمسمة من الحجوم النسبية لمحبيبات الصمبة يبات تحميل توزيع حجم الحب

 %.04 -% 04تتراوح بين 
 والتوزيع الحبيبات حجم يبقى توزيع لثابتةا شبه الحالة في طويمة فترة بعد أنه جدو لقد و      

 يمكن الحبيبات حجم توزيع أن كذلك ويظهر. الوقت مرور مع ثابتا لجوانب الحبيبات الطوبوغرافي
 حجم النسبية العالية يكون توزيع الحجوم عند بينما. العادي التوزيع باقتران لمغاية جيد بشكل وصفه

 متوسط أساس نظرية عمى القائمة الحبيبات حجم ميمية لتوزيعالتح الدالة مع جيد اتفاق في الحبيبات
الحجم  عمى يعتمد الحبيبات حجم توزيع وجد أن ذلك عمى وعلاوة. الحبيبات لنمو الإحصائية المجال

 .النسبي زاد الحجم مامك أعمىلممنحنى قيمة النهاية العظمى  تصبحو  الصمبة النسبي لمحبيبات
Abstract 

Practically most polycrystalline materials such as ceramics are sintered 

by liquid during processing; for example, tungsten carbide applied for 

cutting tools. In liquid sintering, grain structure is controlled by Ostwald 

ripening. In this work, the Monte Carlo Potts model is employed to simulate 

Ostwald ripening in solid-liquid mixture. Based on the computer simulation, 
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the grain size distribution and the topological correlations were analyzed for 

a series of volume fraction of the solid grains varies between 40% - 90%.  

It is found that after a long time within the quasi-stationary state, the 

scaled grain size distribution and the topological distribution of grain sides 

keep invariant with time. It is further shown that the scaled grain size 

distribution can be described very well with the normal distribution 

function. Whereas at high volume fractions, the scaled grain size 

distribution is in very good agreement with an analytical grain size 

distribution function based on a statistical mean-field theory of grain 

growth. Moreover, the grain size distribution is found to be dependent on 

the volume fraction of the solid grains. It becomes more peaked as the 

volume fraction increases. 

  

I. Introduction 

Practically most engineering materials such as barium titanate electrical 

capacitors are processed using liquid phase sintering by dispersing solid 

grains in a liquid matrix. Sintering happens in a variety of temperatures and 

increases near the melting points. In liquid sintering, the solid grains 

dissolve in the liquid; therefore, the solid is wetted by the liquid producing 

capillary force, which attracts the grains (German et al., 2009). The two-

phase structure is unstable and undergo variation with time to reduce the 

interfacial energy between the solid grains and the liquid matrix. The 

interfacial energy is minimized by moving atoms from high interfacial 

curvature areas to low interfacial curvature through long-range diffusion. 

This process is named Ostwald ripening. As a result, the grain structure of 

the two-phase mixture varies with time (Voorhees, 1992). Thus, 

understanding grain structure during Ostwald ripening plays an important 

role in enhancing materials performance during industrial applications.  

The Ostwald ripening is theoretically investigated by Lifshitz, Slyozov 

and Wagner (Lifshitz and Slyozov, 1961; Wagner, 1961) and their approach 

renowned LSW theory for very finite volume fraction. They first studied the 

evolution of one grain in a random population and next considered the 

continuity equation. Then, they derived formulae for the variation of the 

mean grain size with time and the grain size distribution function. They 

showed that the mean grain size increases proportionally to the cubic root of 
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time; moreover, the grain size distribution is time invariant in the self-

similar regime.   

Ardell (1972) extended LSW theory to consider the volume fraction of 

the solid grains. He projected that the grain growth law R~t
1/3 

is kept the 

same as LSW theory. However, the grain size distribution widens swiftly at 

small values of volume fractions, φ and becomes duplicate to the grain size 

distribution developed by Wagner for interface-controlled coarsening in the 

limit φ=1. While the grain size distribution is similar to the one predicted by 

the diffusion-controlled LSW close to zero volume fraction.  

Voorhees and Glicksman (1984) considered Ostwald ripening using 

numerical methods based on multi-particle diffusion solution. They found 

that the grain structure evolved to indistinguishable steady distributions, 

which depend on the volume fraction of the growing phase. These time 

invariant distributions are dramatically different from LSW distribution; in 

addition, they become wider and further symmetric as the volume fraction 

increases.  

Marqusee and Ross (1984) investigated Ostwald ripening for finite 

volume fractions using a multiple scattering approach. They showed that the 

grain size distribution skewed to the right at higher volume fractions. 

However, Fang et al. (1992) predicted grain size distribution skewed to 

lower sizes by employing a numerical method based on finite differences to 

simulate Ostwald ripening statistically. 

Hillert (1965) was first considered grain growth classical theory based on 

LSW approach. Research efforts followed (Atkinson, 1988; Mullins, 1998; 

Streitenberger, 1998; Zӧllner and Streitenberger, 2006) to develop LSW 

approach for grain growth theory as well as the grain size distribution for 

topological correlations.  

Streitenberger (2013) developed an analytical approach to understand the 

effect of volume fraction on grain growth controlled by long-range 

diffusion. Based on the LSW technique, he derived an analytical grain size 

distribution function in terms of the scaled grain size variable.    

The purpose of this work is to implement computer simulations based on 

Monte Carlo Potts model to study grain size distribution of grain growth 

controlled by long-range volume diffusion in solid-liquid mixture.  The 

simulations will be performed for a broad range of solid grain fractions 

changes between 40%-90%. The simulated grain size distributions will be 

compared with grain size distribution derived by the authors in 
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(Streitenberger, 1998; Zӧllner and Streitenberger, 2006; 2010) together with 

the normal Gaussian distribution function. Another important property of 

the microstructure is the topological correlations, which will be established 

by considering the relationship between the number of sides per grain and 

the distribution of sides per grain.  
 

II. Theoretical grain size distribution and topology 

The grain structure during Ostwald ripening can be described by two 

geometric features: the average grain size of the ensemble and the grain size 

distribution. During Ostwald ripening, the atoms move from small gains to 

large grains by long-range volume diffusion. This process continues until 

the small grains shrink and vanish while large grains grow in size. 

Therefore, the number of grains decline and the grains grow in size.  

Simultaneously the grain structure evolves to a quasi-stationary state, which 

shows self-similarity. This implies that all grain size distribution functions 

in the self-similar regime end to a particular stationary grain size 

distribution function. 

In the quasi-stationary state, the set of grain size distribution function can 

be represented by the following formula,  

 

                                       F(R,t)=g(t).f(x)                                                 (1) 

 

where the stationary grain size distribution function f(x) varies only with 

variation of the relative grain size, x=R/<R>, and the only time dependent 

function g(t)=N/<R>. The time development of the mean grain size obeys 

the parabolic growth law 

 

                                       <R>
3 
= <R>0

3
+kt

                                                                     
(2) 

 
where k is the

 
growth factor. The area of each grain is equal to the number 

of Monte Carlo units representing the grain, where a Monte Carlo unit can 

be considered as a square with a length equal to the lattice spacing. 

Knowing that the total area A of the considered grain structure is conserved, 

the total number of grains can be given by  
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Substituting <R> from equation (2) into equation (3) produces the fitting 

formula 

 

                                             N(t) = (kt+<R>0
3
)

-2/3
                                        (4)  

                                   

 The LSW approach is the basis of the classical theory of Ostwald 

ripening.  In LSW approach, the relation between the growth law and the 

grain size distribution function through the continuity equation has been 

derived under the scaling assumption in equation (1). The grain size 

distribution function derived by LSW approach for volume diffusion 

controlled Ostwald ripening is given by the following expression (Lifshitz 

and Slyozov, 1961; Wagner, 1961), 

 

                   3/2for x ,x)
3

2
(1exp

x)(3/2x)(32

exp(1)x3
  f(x) 1

11/37/35/3

23




       (5) 

 

Streitenberger 's approach of grain growth (Zӧllner and Streitenberger, 

2006 ) is derived based on a statistical mean-field theory producing the 

following scaled grain size distribution function, 
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with the fitting parameter x0 given by 
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using the incomplete Gamma-function  ,aa 1  where a=a( 0x ) is a 

parameter given implicitly in equation (7). This grain size distribution 

function is normalized and relates to the average grain size variation with 

time as t
1/2

.  
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Another property of the microstructure is the topological correlations 

between the number of sides per grain and the distribution of sides per 

grain. Due to the grain growth process this correlation varies with time; 

however, within the quasi-stationary state the distribution of faces per grain 

keeps invariant with time. Next section is dedicated to present the 

simulation approach. Simulation results are given in section IV followed by 

conclusion in section V. 

 

III. Simulation approach 

The Monte Carlo Potts model has been applied to study grain growth in 

one-phase systems (Anderson et al., 1984; 1989; Song and Liu, 1998; 

Blikstein and Tschiptschin; 1999; Yu and Esche, 2003a; 2003b; Hui et al., 

2003; Huang et al., 2006; Zöllner and Streitenberger, 2008), two-phase 

systems (Tikare and Gawlez, 1998; German et al., 2009; El-Khozondar et 

al., 2006; El-Khozondar, 2004; Solomatov et al., 2002; El-Khozondar, 2015; 

El-Khozondar et al., 2014) and three-phase systems (El-Khozondar, 2009).  

In the present work, the Monte Carlo Potts model adapted by Solomatov et 

al. (2002) to study grain growth in two-phase polycrystalline materials was 

modified to study Ostwald ripening in solid-liquid materials. 
 

The microstructure is mapped on to a two-dimensional discrete square 

lattice with periodic boundary conditions. Each lattice point in the 

simulation is named a site, which characterizes an individual orientation of 

the crystalline lattice. In the presented two-dimensional simulations, the 

lattice size is 400×400. Thus, the total number of lattice sites is N = 

160,000.  The smallest time unit of the simulations is named one Monte 

Carlo step (MCS) and represents N orientation attempts. 
  

The initial microstructure were created by occupying in a probabilistic 

way the lattice with the volume fraction of phase A and phase B as needed. 

The A-sites are the grains of the solid phase and the B-sites are the liquid 

matrix. Each lattice point of phase A is assigned positive numbers selected 

randomly from different orientations between 1 and q where q is the total 

number of orientations and has the value of q=100. However, each lattice 

point of phase B is given a negative number which represent one state with 

value q=-1.   

 



 

 

 

 

 
Dr. Rifa J. El-Khozondar &et al, J. Al-Aqsa Unv., Vol.20 

45 

 

 

A grain is a cluster of sites with the same orientation. Therefore, a grain 

boundary is defined as a separation edge between grains with different 

orientations.  The interfacial energy between solid and liquid is Eab. The 

grain boundary between grains with different orientations is Eaa in the solid 

phase. In the liquid phase, the interfacial energy is absent (Ebb=0) because 

all sites have the same orientation. The values of the interfacial energies are 

chosen such that the value of Eaa are greater than the value of Eab. Ostwald 

ripening is simulated using  Eaa=2.5 and Eab=1. 
 

The microstructure changes by Ostwald ripening is simulated as follows.  

In the first step, a site randomly selected and its neighbor is chosen in a 

probabilistic way from its eight nearest neighbors. If the two sites are from 

different phases, then the A-site has an orientation qi and the current state of 

the lattice is called old state (Ei). In the second step, both A-site and B-site 

are permitted to exchange their orientation to generate a new state (Ej). In 

the third step, the energy difference (ΔE=Ej - Ei) of the two sites between 

new state Ej and old state Ei is calculated. The energy of a site is given by 

the following equation, 
 

                                             



8

1i

jii qqδ1E                                    (8) 

 

Each pair of nearest neighbors adds unit to the system energy if they have 

different orientations and zero otherwise. The new orientation of the two 

sites is selected by the next rule. If ΔE is less than zero, the exchange is 

accepted. However, if ΔE is greater than zero, the following exchange 

probability function is used. 
 

                                                                 )  
kT

ΔE
(P  exp                                   (9) 

 

where T is the temperature and k is the Boltzman constant. The temperature 

has the value of T=1.3. After each attempt, the time is incremented by 1/N 

MCS.   
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IV. Simulation Results 

In this paper, the Monte Carlo Potts model has been implemented in two 

dimensions based on the original works of Solomatov et al. (2002). An 

initial microstructure has been mapped onto a square lattice with eight 

nearest neighbors and periodic boundary condition. The grain 

microstructure resulted from grain growth can be described by geometrical 

features and topological features. The geometrical features are grain size 

and grain size distribution. The topological feature is the distribution of the 

number of sides, f (n) vs. the number of sides, n.    
 

It has been shown in previous work (El-Khozondar, 2015) that the grain 

growth during Ostwald ripening is controlled by long-range diffusion and 

the average grain size follows the power growth law Equation (2). As the 

growth continues, the average grain size increases and the number of grains 

drops. 
  

Figure 1 exhibits the number of grains as a function of time for a broad 

range of solid fractions varies between 40%-90%. It can be seen from 

Figure 1 that the number of grains declines (solid line) following the self-

similar regime Equation 4 having the value of exponent from numeric fit 

(dashed line) equals to -2/3. It can further be seen from Figure 1 that the 

self-similar regime is approached at different aging times varies with the 

volume fraction of the solid grains. The self-similar regime is approached at 

t=9000 MCS for volume fraction equals to 40%. At volume fraction equals 

to 50%, the self-similar regime is reached at t=7000 MCS. While the self-

similar regime is achieved at t=5000 MCS for both volume fractions having 

values of 60% and 70%. Whereas the the self-similar regime is attained at 

t=2000 MCS for volume fraction equals to 80%. When the volume fraction 

has a value equal to 90%, the self-similar regime is arrived at t=1000 MCS. 

This means that the self-similar regime is approached at earlier times as the 
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70% 40% 

  

80% 50% 

90% 60% 
 

Figure 1: Time dependence of the number of grains (N) for different volume 

fraction of the solid grains (solid line) fitted with equation (4) (dashed line). 

The volume fraction of the solid grains (phase A) ranges between 40 % - 

90% as indicted. 
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%80 50% 

  

%90 60% 
 

Figure 2: Grain size distribution as a function of the average grain size, R, 

for various volume fractions of the solid grains at t = 28348 MCS. The 

volume fraction of the solid grains (phase A) varies between 40% - 90% as 

indicated. 
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Figure 3: Dependence of scaled grain size distribution f(x) on solid fractions 

for three time steps, comparing with Equation (3) together with the normal 

Gaussian distribution function. The three time steps are 14463, 20248, 

28348 MCS. The volume fraction differs between 40%-90% as indicated.    
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70% 40% 
  

  

80% 50% 

90% 60% 

  

Figure 4: Variation of the distribution of the number of sides with volume 

fractions for three time steps. The three time steps are 14463, 20248, 28348 

MCS. The volume fraction changes between 40%-90% as indicated.  

However, the self-similar regime is approached later as the volume fraction 

of the solid grains decreases.   
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When the self-similar regime is attained, the grain size distribution F(R,t) 

is described by Equation (1). Consequently, the scaled grain size 

distribution f(x) ends to an indistinguishable stationary grain size 

distribution.  

  

Figure 2 displays the simulated grain size distribution F(R,t) at t= 28348 

MCS for different volume fractions vary between 40%-90%. The total sum 

of each interval multiplied by the interval width gives the total number of 

grains at this time step as specified in Figure 1. It can be noticed that the 

size distribution is more peaked at higher volume fractions of solid grains 

and skewed to smaller grains for solid fraction equal to 40%.   
 

The quasi-stationary state of grain growth by Ostwald ripening is 

presented in Figure 3 by plotting the scaled grain size distribution at three 

variant time steps for a range of solid fractions varies between 40%-90%. It 

can be noticed that the size distributions in the quasi-stationary state are 

indistinguishable from each other. In addition, the simulated size 

distribution within the quasi-stationary state can be described very well by 

the normal distribution function.  Comparing with the analytical distribution 

function Equation 6, it can be seen that the simulated size distribution within 

the quasi-stationary state is in excellent agreement with the analytical 

distribution function at high solid fraction with value equal to 90%. For 

solid fractions varies between 40%-80% the simulated size distributions 

within the quasi-stationary state are in very good agreement with the 

analytical distribution function but with higher peaks. The simulated size 

distributions within the quasi-stationary state are symmetric and peaked at 

x=1 for the broad range of solid fractions varies between 40%-90%. 

However,  the simulated size distributions within the quasi-stationary state 

is skewed to smaller grains at volume fraction of solid grains equal to 40%.  

   

Additional significant property of the grain structure is the topological 

correlation between the frequency of the number of sides per grain f(n) and 

the number of sides per grain (n).  Figure 4 shows the dependence of the 

distribution of the number of sides on volume fraction for three different 

time steps.  The three time steps are 14463, 20248, 28348 MCS. It can be 

observed that the distribution of the number of grain sides has a behavior 
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similar to the grain size distributions. This means that the distribution of the 

number of grain sides have self-similarity in the quasi-stationary state.                 
  

V. Conclusion 

Computer simulations based on Monte Carlo Potts model has been 

employed to investigate grain structure controlled by Ostwald ripening. The 

grain structure changes during Ostwald ripening and eventually approaches 

the quasi-stationary state. It is noticed that the quasi-stationary state is 

approached at different aging times depending on the case of the solid 

fraction. It has also been shown that within the quasi-stationary state, the 

scaled grain size distribution functions end to an identical self-similar time 

independent grain size distribution function.  
 

The simulated distribution function is found to be characterized very well 

by the normal distribution function; moreover, the simulated size 

distributions within the quasi-stationary state are in excellent agreement 

with the analytical distribution function at higher solid fraction. 

Additionally, the simulated size distributions within the quasi-stationary 

state is skewed to smaller grains at lower solid fraction equal to 40% 

whereas symmetric at higher solid fractions.  
  

Another property of grain structure is the topological correlation between 

the frequency of the number of sides per grain and the sides per grain. It has 

been shown that the distribution of sides per grain is time invariant and 

exhibits self-similarity in the quasi-stationary state as shown for grain size 

distribution.    
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