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Abstract: This paper introduces two robust forecasting models for efficient 

forecasting, Artificial Neural Networks (ANNs) approach and Autoregressive 

Integrated Moving Average (ARIMA) models. ANNs approach to univariate 

time series forecasting and relevant theoretical results are briefly discussed. 

To choose the best training algorithm for the ANN model, several 

experimental simulations with different training algorithms are made. We 

compare ANNs approach with ARIMA model on real data for electricity 

consumption in Gaza Strip.  
    The main finding is that, comparison of performance between the two 

proposed models reveals that ANNs outperform and preferable in selecting 

the most appropriate forecasting model over the ARIMA model. 

Keywords: Forecasting, Box-Jenkins methodology, Neural Networks, 

Multilayer Perceptrons. 
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1. Introduction 

Neural networks are the preferred tool for many predictive data mining 

applications because of their flexibility, power, accuracy and ease of use.  

Electricity consumption forecasting is an important issue for energy service 

companies. Having reliable electricity consumption forecasting information 

will make better financial decision. The electricity consumption influence 

factors, such as load, weather, market forces, and bidding strategy are 

undulating and undetermined, so the consumption forecasting with high 

precision is more difficult, see for example  Pousinho, H., et al. (2012) and 
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Unsihuay, V., et al. (2010). Therefore, it has becoming the commonly and 

difficulty problem to forecast electricity consumption in competitive 

markets all over the world. 

In 1976, Box–Jenkins used statistical models to forecast the financial 

market, Box, G. & Jenkins, G. (1976). However, the statistical methods 

assume that data are linearly related and therefore is not true in real life 

applications. The newly introduced method, the artificial neural network 

(ANN) has emerged to be popular as it does not make such assumptions. 

The ANN which is inherently a nonlinear network and does not make such 

assumptions therefore is well suited for prediction purpose. 

Mabel, M. and Fernández, E. (2008), showed that with the development of 

artificial technique, some artificial intelligent prediction methods have been 

discussed, including ANNs. To attain better performance, most proposed 

models are combinations of several kinds of the upper methods, see for 

example Barbounis, T. and Theocharis, J. (2007).   

In this study, ARIMA and the ANN have been conducted for electricity 

consumption forecasting. The time series models such as ARIMA model is 

used to find the potential forecasting model. During the calculation process 

of time series modeling, the Autocorrelation Function (ACF), the Partial 

Autocorrelation Function (PACF) and the Extended Autocorrelation 

Function (EACF) criterion will be adopted. 

The purpose of this work is to find a simple and reliable forecasting model 

for the electricity consumption in Gaza Strip. This paper is organized as 

follows: Section 2 presents overview and literature of ANN; Section 3 

illustrates some basic concepts and definitions; Sections 4 and 5 display two 

forecasting cases fitting ARIMA and ANN models for electricity 

consumption data; and Section 6 concludes some important results of this 

work. 

Data Source: We use a data set of electricity consumption from Palestinian 

Energy Authority-Gaza branch. The dataset contains the monthly 

consumption of electricity in Gaza Strip during the period January 2000 

through December 2011. 

2. Overview and Literature of ANN 

The ANN has been used in signal processing due to its nonlinear capacity 

and robust performance. The structure of the ANN is very important for its 

performance. Cadenas, E. and Rivera, W. (2009) showed that three-layer 

network is enough to fit any non-stationary signal. In ANN theory, the 

training data format can affect the performance of network directly. 

ANNs constitute one of the most powerful tools for pattern classification 

due to their nonlinear and non-parametric adaptive-learning properties. 
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Many studies have been conducted that have compared ANNs with other 

traditional classification techniques, since the default prediction accuracies 

of ANNs are better than those using classic linear discriminant analysis and 

logistic regression  techniques, see for example Lee, T. and Chen, I., (2005) 

and Lee, T., et al. (2002).  

The Multilayer Percepteron (MLP) produces a predictive model for one or 

more dependent  variables based on the values of the predictor variables. 

Blanco, A., et al. (2013) introduced several non-parametric credit scoring 

models based on the MLP approach and benchmarks their performance 

against other models which employ the traditional linear discriminant 

analysis, quadratic discriminant analysis, and logistic regression techniques. 

Based on a sample of almost 5500 borrowers from a Peruvian microfinance 

institution, the results reveal that neural network models outperform the 

other three classic techniques both in terms of area under the receiver-

operating characteristic curve (AUC) and as misclassification costs. 

ANN usually uses Back Propagation (BP) as its training algorithm. To 

improve the performance of the neural network with BP, more training 

algorithms have been reported in recent years, including Quick Back 

Propagation (QBP), Resilient Back Propagation (RBP), Broyden – Fletcher 

– Goldfarb - Shanno Quasi-Newton Back Propagation (BFGS). Liu, H., et 

al. (2012) showed that BGFS algorithm  gives the best performance. Hence, 

BGFS algorithm is chosen as the training algorithm of the ANN model.  

Majhi, B. et al., (2012) introduced two robust forecasting models for 

efficient prediction of different exchange rates for future months ahead. 

These models employ Wilcoxon artificial neural network (WANN) and 

Wilcoxon functional link artificial neural network (WFLANN). Comparison 

of performance between the two proposed models reveals that both provide 

almost identical performance but the later involved low computational 

complexity and hence is preferable over the WANN model. 

Many hybrid models have been suggested using the ANN for exchange rate 

forecasting. Khashei, M. and Bijari, M. (2011) proposed a novel 

hybridization of artificial neural networks and ARIMA model in order to 

overcome limitation of ANNs and has been demonstrated it to be a more 

accurate model than the traditional ones. This model has the unique 

advantages of ARIMA models in linear modeling to identify and magnify 

the existing linear structure in the data, and then a neural network is used in 

order to determine a model to capture the underlying data generating 

process and predict, using preprocessed data. 
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3.  Preliminaries 

This section introduces some basic definitions and concepts. 
 

The Multilayer Percepteron (MLP) 

MLP networks are constructed of multiple layers of computational units. 

Each neuron in one layer is directly connected to the neurons of the 

subsequent hidden layer. MLP utilizes a supervised learning technique 

called back propagation (BP) for training the network, which is the most 

popular being used. Each MLP is composed of a minimum of three layers 

consisting of an input layer, one or more hidden layers and an output layer. 

The input layer distributes the inputs to subsequent layers. Input nodes have 

linear activation functions and no thresholds. Each hidden unit node and 

each output node have thresholds associated with them in addition to the 

weights. The hidden unit nodes have nonlinear activation functions and the 

outputs have linear activation functions (See for example, Walter, H. and 

Michael, T., 2005, and  Nazzal, J., et al. , 2008). MLPs using a BP algorithm 

are the standard algorithm for any supervised learning pattern recognition 

process.  

 It has been shown most problems it would be enough to have 

only one layer of hidden neurons, Hornik, K., et al. (1989).  

 The mathematical representation of the function applied by the 

hidden neurons in order to obtain an output value pjb , when faced with the 

presentation of an output vector ,,,,: 1 pNpipp xxxX   is defined by: 
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(3.1) 

where Lf is the activation function of hidden neurons j  , ijw  is the weight of 

the connection between input neuron i and hidden neuron j and pix is the 

input signal received by input neuron i  for pattern p . 

 Once the output of the output neurons is concerned, it is 

obtained using 
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(3.2) 

where pkŷ is the output signal provided by output neuron k  for pattern p ,  

Mf  is the activation function of output neurons M  , k  is the threshold of 

output neuron k  and kjv is the weight of the connection between hidden 

neuron j and output neuron k , Moreno, J., et al. (2011). 
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MLP allow a neural network to perform arbitrary mappings. A 2-hidden 

layer neural network is shown in Figure 3.1. The aim is to map an input 

vector x  into an output  xy ). 

 
Figure 3.1: A 2-Hidden Layer Neural Network 

 

The overall performance of the MLP is measured by the mean square error 

(MSE) expressed by : 
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where, vN  is a set  of training patterns  pp tx , where P represents the pattern 

number. 

PX  corresponds to the N-dimensional input vector of the thp  training 

pattern and PY  corresponds to the M-dimensional output vector from the 

trained network for the thp  pattern. 

Note     
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Corresponds to the error for the thp pattern and pt  is 

the desired output for the thp  pattern (Nazzal, J., et al. 2008). 
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ARIMA Models 

A time series  tY is said to follow an autoregressive-integrated moving 

average model (ARIMA) if the d
th

 difference d

t tW Y  is a stationary 

ARMA process. If  tW follows and ARMA(p,q) model, we say that  tY is 

an ARIMA (p,d,q) process. An ARIMA (p,d,q) time series can be 

represented in a shorter form using the notation of lag operator.  

          The lag operator B , is defined as t t 1BY Y  , the operator which 

gives the previous value of the series.  

 

Definition: The general ARIMA(p,d,q) process is given by (Box, G., et al. 

1994) 

 
d

t t(B) Y (B) ,     

 

(3.4) 

where d 1   is the degree of differencing, 1 B    is the differencing 

operator, (B)  and (B)  are polynomials of degree p and q in B, 
2 p

1 2 p(B) 1 B B B       (3.5) 

and  
2 q

1 2 q(B) 1 B B . B       (3.6) 

Stationarity requires the roots of (B) to lie outside the unit circle, and 

invertibility places the same condition on the roots of (B) . 

 

Mean Squared Error 
Many measures of forecast accuracy have been developed in the past , and 

several authors have been made recommendations about what should be 

used comparing the accuracy of forecast methods applied to univariate time 

series data. For example, Hyndman, R. and Koehler, A. (2005) introduced 

the Mean Square Error (MSE) as a measure of dispersion between the actual 

and the predicted value. 

 

Definition: The MSE is given by: 
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where  Yi is the actual value of the  i
th

  iteration and , iŶ  is the predicted 

value of the same  i
th

 iteration. MSE is one of the most commonly used 

measures of forecast accuracy. 
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AIC Criterion 

Akaike’s (1973) information criterion (AIC) plays a major role for selecting 

the best order of the ARIMA(p,d,q) model when we have several models 

that all adequately represent a given set of time series.  

Definition: Suppose  tY  is a Gaussian autoregressive ARMA(p,q) process 

with coefficient vector   ,   .  For a zero-mean causal invertible 

ARMA(p,q) process, the AIC is given by 

 

    x xAIC 2ln L ,S n 2k,       (3.8) 

where   x xL ,S n   is the likelihood function, n  is the sample size, and 

k  is the total number of parameters, i.e. k p q 1   . 

For fitting autoregressive models, Jones, R. (1975) and  Shibata, R. (1976) 

suggested that AIC has a tendency to overestimate p. The AIC is a biased 

estimator, Hurvich and Tsai (1989) showed that the bias can be 

approximately eliminated by adding another nonstochastic penalty term to 

the AIC, resulting in the corrected AIC, denoted by AICc and defined by the 

formula 

  
c

2 k 1 k 2
AIC AIC

n k 2

 
 

 
 

(3.9) 

BIC Criterion 

Schwarz's Bayesian information criterion (1978), known as (BIC) is another 

criterion that attempts to correct the overfitting nature of the AIC. For a 

zero-mean causal invertible ARMA(p,q) process, the BIC is given by: 

 

      x xBIC 2ln L ,S n k log n       (3.10) 

 

As a rule of thumb, we would expect as small value as possible for all of 

these criteria to select the most appropriate autoregressive model. 

KPSS test 
The most commonly used stationarity test, the KPSS test, is due to 

Kwiatkowski, Phillips, Schmidt and Skin (1992). They derived their test by 

starting with the model 

 
t 0 1 t t
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t t 1 t t
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(3.11) 
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where tu is stationary time series and is said to be integrated of order zero, 

I(0) and may be heteroskedastic. The null hypothesis that tY  is I(0) is 

formulated as 2

0H : 0  , which implies that t  is a constant. This test also 

implies a unit moving average root in the ARMA representation of tY .  

 

Definition: The KPSS test statistic is the Lagrange Multiplier (LM) or score 

statistic for testing 2

0H : 0   versus 2

aH : 0   and is given by (Kozhan, 

R., 2010) 
T

2 2 2

t

t 1

ˆ ˆKPSS T S ,



   
(3.12) 

where 
t

2

t j

j 1

ˆ ˆS u


 , tû is the residual of a regression tY on t and 2̂  is a 

consistent estimate of the long-run variance of tu  using tû . 

Ljung-Box portmanteau test  

Portmanteau test firstly has been studied by Box, G. and Pierce, D. (1970). 

Ljung, G. and Box, G. (1978) proposed a modified version of that test. 

Definition: Ljung-Box LBQ  portmanteau test  is  

2

1

ˆ
ˆ( ) ( 2) ,
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(3.13) 

where k̂r is the sample autocorrelation of order k of the residual and n is 

the sample size, and m is the number of lag. Notice that    n 2 n k 1    

for k 1 . 

 

The Autocorrelation Function (ACF) 

Definition: For a covariance stationary time series { }tY  the autocorrelation 

function k  is given by  

( , ) tk t kCorr Y Y  for 1, 2, 3,k   (3.14) 

 

ACF is a good indicator of the order of the MA(q) model since it cuts off 

after lag q (i.e. k k = 0 for k > q ). On the other hand the ACF tails off for 

AR(p) model.  
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The Partial Autocorrelation Function (PACF) 

Definition: If { tY } is normally distributed time series, then the PACF at 

lag k is given by  

1 2 1( , | , , , )t t tkk t k t kCorr Y Y Y Y Y      (3.15) 

 

PACF is a good indicator of the order of the AR(p) model since it cuts off 

after lag p (i.e. kk  = 0 for k > p ). On the other hand the PACF tails off for 

MA(q) model.  
 

The Extended Autocorrelation Function (EACF) 

For a mixed ARMA model, ACF and PACF have infinitely many nonzero 

values, making it difficult to identify mixed models from the sample ACF 

and PACF. The extended autocorrelation function (EACF) (Tsay, R. and 

Tiao, G., 1984) is a graphical tool is used to identify the ARMA orders.  
 

Definition: (Cryer, J. and Chan, K., 2008) Let 

t,k, j t 1 t 1 k t kW Y Y Y      (3.16) 

be the autoregressive residuals defined with the AR coefficients estimated 

iteratively assuming the AR order is k and the MA order is j. The sample 

autocorrelations of t ,k, jW are referred to as the EACFs. Tsay, R. and Tiao, G. 

(1984) suggested summarizing the information in the sample EACF by a 

table with the element in the kth row and jth column equal to the symbol X 

if the lag j + 1 sample correlation of t ,k, jW  is significantly different from 0. 

In such a table, an ARMA(p,q) process will have a theoretical pattern of a 

triangle of zeroes, with the upper left-hand vertex corresponding to the 

ARMA orders. 
 

4. Fitting ARIMA Model for Electricity Consumption Data 

Consider the monthly consumption of electricity (in millions of kilowatt-

hours, MKWH) in Gaza Strip, from January 2000 through December 2011. 

R-statistical software is used for fitting ARIMA model for the time series. 

Figure 4.1 displays the time series plot. The series displays considerable 

fluctuations over time, especially since 2004, and a stationary model does 

not seem to be reasonable. The higher values display considerably more 

variation than the lower values. Note all Figures are shown in the Appendix. 

The sample ACF for the data is displayed in Figure 4.2. All values shown 

are “significantly far from zero,” and the only pattern is perhaps a linear 

decrease with increasing lag. This means that we are dealing with a 

nonstationary time series. 
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In addition, software implementation of the KPSS test for level stationarity  

applied to the original consumption leads to a test statistic of  3.9841 and a 

p-value of 0.01. With stationarity as the null hypothesis, this provides strong 

evidence supporting the nonstationarity and the appropriateness of taking a 

difference of the original series. 

The differences of the electricity values are displayed in Figure 4.3. The 

differenced series looks much more stationary when compared with the 

original time series shown in Figure 4.1. On the basis of this plot, we might 

well consider a stationary model as appropriate. 

KPSS test is applied to the differenced series leads to a test statistic of  

0.0156 and a p-value of 0.10. That is, we do not reject the null hypothesis of 

Stationarity. 

The sample ACF and PACF are shown in Figures 4 .4 and 4.5, respectively. 

It is quite difficult to identify the AR, MA, or mixed model from these 

figures. 

The sample EACF computed on the first differences of the electricity 

consumption series is shown in Table 4.1.  In this table, an ARMA(p,q) 

process will have a theoretical pattern of a triangle of zeroes, with the upper 

left-hand vertex corresponding to the ARMA orders. 
 

Table 4.1: EACF for Difference of Electricity Consumption Series 
 MA 

AR 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 0 0 x X 0 X 0 0 0 0 0 0 0 0 

1 X 0 0 X 0*
 0 0 0 0 0 0 0 0 0 

2 0 0 0 X 0 0 0 0 0 0 0 0 0 0 

3 x x x X 0 0 0 0 0 0 0 0 0 0 

4 x x x 0 0 0 0 0 0 0 0 0 0 0 

5 x x x x 0 X 0 0 0 0 0 0 0 0 

6 0 x x 0 0 0 0 0 0 0 0 0 0 0 

7 x 0 x x x 0 0 0 0 0 0 0 0 0 

 

Table 4.1 displays the schematic pattern for an ARMA(1,4) model. The 

upper left-hand vertex of the triangle of zeros is marked with the symbol 0* 

and is located in the p = 1 row and q = 4 column—an indication of an 

ARMA(1,4) model. The model for the original electricity consumption 

series would then be a nonstationary ARIMA(1,1,4) model.  

Different  combinations of ARIMA models with 5p q  and their 

corresponding criteria are shown in Table 4.2. These choices confirm our 
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suggestion-ARIMA (1,1,4)- based on the smallest values of AIC, AICc, BIC 

and RMSE among the other ARIMA choices. 
 

Table 4.2: Different  combinations of ARIMA models 

Model Order AIC AICc BIC RMSE 

(1,1,0) 836.96 837.15 845.58 5.769887 

(2,1,0) 838.91 839.22 850.41 5.768732 

(3,1,0) 833.89 834.37 848.27 5.612885 

(4,1,0) 828.56 829.24 845.81 5.453366 

(5,1,0) 830.12 831.03 850.25 5.443784 

(0,1,1) 836.96 837.15 845.58 5.769885 

(0,1,2) 838.83 839.15 850.33 5.766890 

(0,1,3) 815.38 815.86 829.76 5.148814 

(0,1,4) 813.08 813.76 830.33 5.072234 

(0,1,5) 814.14 815.05 834.27 5.050224 

(1,1,1) 820.98 821.30 832.48 5.322629 

(1,1,2) 820.36 820.84 834.74 5.265777 

(1,1,3) 813.90 814.57 831.15 5.088764 

(1,1,4) 811.59 812.50 831.72 4.980446 

(2,1,1) 818.87 819.35 833.24 5.232006 

(2,1,2) 823.35 824.03 840.61 5.287416 

(2,1,3) 815.78 816.69 835.91 5.085641 

(3,1,1) 816.08 816.76 833.33 5.128288 

(3,1,2) 818.02 818.93 838.14 5.127499 

(4,1,1) 826.38 827.30 846.51 5.363132 
 

We use maximum likelihood estimation and show the results obtained from 

the R statistical software in Table 4.3. Here we see that 

ˆ 0.5743,   1 2 3
ˆ ˆ ˆ0.4091, 0.3326, 0.5791      , and 4

ˆ 0.4974   . We 

also see that the estimated noise variance is  2ˆ =24.99e . Noting the P-

values, the estimates of all autoregressive and moving average coefficients 

are significantly different from zero statistically, as is the intercept term.  
 

Table 4.3: Maximum Likelihood Estimates from R Software: Electricity 

Consumption Series 

Coefficients: AR(1) MA(1) MA(2) MA(3) MA(4) Intercept* 
 -0.5743 0.4091 -0.3326 -0.5791 -0.4974 0.4235 

SE 0.1822 0.1767 0.0817 0.1068 0.0814 0.0283 

T -3.1528 2.3151 -4.0703 -5.4205 -6.1074 14.9573 

P-value 0.0020 0.0222 0.0008 < 0.0001 < 0.0001 < 0.0001 

 
sigma^2 estimated as 24.99:  log likelihood = -398.8 AIC = 811.59   AICc = 812.5   BIC = 831.72 
* The intercept here is the estimate of the process mean   not of 0 . 
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The estimated model would be written 

 1 1 2 3 40.424 0.574 0.424 0.409e 0.333e 0.579e 0.497e ,            t t t t t t tW W e
 

(4.1) 

where 1t t tW Y Y   , and the intercept of ARIMA is  0 1 ,    then 

 0 0.4235 1 0.5743 0.6667    . Therefore, the estimated model is 

 

1 2 1 2 3 40.667 0.426 0.574 0.409e 0.333e 0.579e 0.4974e            t t t t t t t tY Y Y e  (4.2) 

 

Figure 4.6 displays the time series plot of the standardized residuals from 

the ARIMA(1,1,4) model estimated for the electricity consumption time 

series. The model was fitted using maximum likelihood estimation. There is 

only one residual with magnitude larger than 1.  

A quantile-quantile plots are an effective tool for assessing normality. Here 

we apply them to the residuals of the fitted model. A quantile-quantile plot 

of the residuals from the ARIMA(1,1,4) model estimated for the electricity 

consumption series is shown in Figure 4.7. The points seem to follow the 

straight line fairly closely. This graph would not lead us to reject normality 

of the error terms in this model. In addition, the Kolmogorov-Smirnov of 

composite normality test applied to the residuals produces a test statistic of 

ks = 0.0546, which corresponds to a p-value of 0.50, and we would not 

reject normality based on this test.  

To check on the independence of the error terms in the model, we consider 

the sample autocorrelation function of the residuals. Figure 4.8 displays the 

sample ACF of the residuals from the ARIMA(1,1,4) model of the 

electricity consumption data. The dashed horizontal lines plotted are based 

on the large lag standard error of  2 0.174n   . The graph does not 

show statistically significant evidence of nonzero autocorrelation in the 

residuals. In other words, there is no evidence of autocorrelation in the 

residuals of this model. These residual autocorrelations look excellent. 

In addition to looking at residual correlations at individual lags, it is useful 

to have a test that takes into account their magnitudes as a group. Figure 4.9 

shows the p-values for the Ljung-Box test statistic for a whole range of 

values of K from 6 to 20. The horizontal dashed line at 5% helps judge the 

size of the p-values. The Ljung-Box test statistic with K = 7 is equal to 

2.996. This is referred to a chi-square distribution with two degrees of 

freedom. This leads to a p-value of 0.2236, so we have no evidence to reject 

the null hypothesis that the error terms are uncorrelated. The suggested 

model looks to fit the modeling time series very well.  
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Therefore the estimated ARIMA(1,1,4) model seems to be capturing the 

dependence structure of the difference of electricity consummation time 

series quite well. Figure 4.10 shows the data and forecasting results of ARIMA 

(1,1,4) models for Electricity consumption (MKWH) in 2012.

 

Figure 4.10: Data and Forecasting results of ARIMA (1,1,4) models for Electricity 

consumption (MKWH) in 2012

 
The runs test may also be used to assess dependence in error terms via the 

residuals. Applying the test to the residuals from the ARIMA(1,1,4) model 

for the electricity consumption series, we obtain expected runs of 66.86364 

versus observed runs of 74. The corresponding p-value is 0.245, so we do 

not have statistically significant evidence against independence of the error 

terms in this model. In addition, the minimum Root Mean Squares Error 

(RMSE) for ARIMA (1,1,4) model equals 4.9804. 
 

5. Fitting ANN Model for Electricity Consumption Data 

Applying ANN, the percentage of observations for training, which must 

have the same number of observations, 132, as we have in ARIMA for 

training is determined, so we have increased in a series of 12 observations. 

Thus, we have an input consists of 144 observations, 90% for training, and 

10% for comparison in the prediction. The layers may be described as: Input 

layer: accepts the data vector or pattern; Hidden layers: one or more layers. 

Output layer: takes the output from the final hidden layer to produce the 

target values. 

In choosing the number of layers the following considerations are made. 

Multi-layer networks are harder to train than single layer networks. A two 
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layer network (one hidden) can model any decision boundary. Two layer 

networks are most commonly used in pattern recognition. 

The number of output units is determined by the number of output classes. 

The number of inputs is determined by the number of input dimensions. The 

network will not model complex decision boundaries for few hidden units 

and it will have poor generalization for too many number of hidden units  

We started with one hidden layer and end with fifteen layers. The 

performance of the algorithm is influence with choosing different learning 

rates. The algorithm may could become unstable for high learning rate and 

might take longer time to converge.  

R-software is used for fitting ANN model for the time series. Some 

commands and functions with input and output variables have been used. 

The R library ‘neuralnet’ is used to train and build the neural network. The 

nnet function is used to fit neural networks. The  arguments are: size which 

determines the number of units in the hidden layer, and maxit determines the 

maximum number of iterations. The objects are: fitted.values is used for the 

fitted values for the training data and residuals is used to show the residuals 

for the training data (Venables, W. N. and Ripley, B. D. ,2002).  

RMSE is used as stopping criteria in the network. Smaller values of RMSE 

indicate higher accuracy in forecasting. The Neural network result shows 

that the minimum RMSE equals 0.0768 for considering the model with 

fifteen units in the hidden layer, two lags and the learning rate equals to 

0.01   

 

Table 5.1 shows the actual and forecasting results for Electricity 

consumption (MKWH) in 2011 based on ANN and ARIMA (1,1,4) models. 

It is quite obvious that the ANN forecasts mimic the actual values of the 

electricity consumption. Table 5.2 and shows the forecasting results for 

Electricity consumption (MKWH)  in 2012 based on ANN and ARIMA 

(1,1,4) models. 
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Table 5.1: Actual and Forecasting results of ANN and ARIMA (1,1,4) models for 

Electricity consumption (MKWH) in 2011 

Year (2011) 
Actual data 

Forecast 

ANN ARIMA  

Jan         96.375285  96.375300 95.939790 

Feb       104.044598  104.044600 99.279110 

Mar         92.962289  92.962300 98.211320 

Apr         99.571429  99.571400 100.520520 

May         96.067993  96.068000 99.861080 

Jun       101.550216  101.550200 100.906510 

Jul       104.943501  104.943500 100.972850 

Aug       105.816438  105.816400 101.601470 

Sep       113.183204  113.183200 101.907180 

Oct       107.519680  107.519700 102.398330 

Nov       120.037919  120.037900 102.782980 

Dec         91.942274  91.942300 103.228800 

 

Table 5.2: Forecasting results of ANN and ARIMA (1,1,4) models for 

Electricity consumption (MKWH) in 2012 

Year (2012) 

Forecast 

ANN ARIMA  

Jan 103.0393 103.6395 

Feb 105.8420 104.0704 

Mar 96.60480 104.4896 

Apr 99.73830 104.9156 

May 101.6009 105.3377 

Jun 97.95320 105.7620 

Jul 98.71340 106.1850 

Aug 99.75960 106.6088 

Sep 98.27490 107.0321 

Oct 98.34590 107.4557 

Nov 98.88840 107.8792 

Dec 98.28100 108.3027 
 

The RMSE for ARIMA and ANN equal 4.9804 and 0.0768, respectively. 

This result shows that RMSE of ANN is 1.54% of RMSE for ARIMA. In 

other words, the RMSE of ARIMA model  is 64.85 times RMSE of the 
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ANN model. This means ANN model for forecasting is much more accurate 

and efficient than the ARIMA forecasting model. 
 

6. Conclusion 

This paper has proposed two efficient approaches forecasting models. In the 

first model multilayer neural network is trained by minimizing RMSE and 

the second model consists of using ARIMA model on real data for 

electricity consumption in Gaza Strip. The results of both models reveal that 

ANNs outperform and offer consistent prediction performance compared to 

ARIMA model and hence preferable as a robust prediction model for 

electricity consumption. 
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Appendix 
 

Figure 4.1: Monthly Consumption of Electricity (MKWH): January 2000–

December 2011 
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Figure 4.2: Sample ACF for the Electricity Consumption Time Series 

 
Figure 4.3: The Difference Series of the Monthly Electricity Consumption 
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Figure 4.4: Sample ACF for Difference of Electricity Consumption Series 

 
 

Figure 4.5: Sample PACF for Difference of Electricity Consumption Series 
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Figure 4.6: Standardized Residuals of the Fitted Model from Electricity 

Consumption ARIMA (1,1,4) Model 
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Figure 4.7: Quantile-Quantile Plot  of the  Residuals of the Fitted Model from 

Electricity Consumption ARIMA (1,1,4) Model 
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 Figure 4.8: Sample ACF of Residuals of the Fitted Model ARIMA(1,1,4) Model 

 
Figure 4.9: P-values for the Ljung-Box Test for the Fitted Model 
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