
International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

12

Avoiding Objects with few Neighbors in the K-Means

Process and Adding ROCK Links to Its Distance

Hadi A. Alnabriss
The Islamic University-Gaza

Alremal Neighborhood
Gaza, Palestinian Territories

Wesam Ashour
The Islamic University-Gaza

Alremal Neighborhood
Gaza, Palestinian Territories

ABSTRACT

K-means is considered as one of the most common and powerful

algorithms in data clustering, in this paper we're going to present

new techniques to solve two problems in the K-means

traditional clustering algorithm, the 1st problem is its sensitivity

for outliers, in this part we are going to depend on a function

that will help us to decide if this object is an outlier or not, if it

was an outlier it will be expelled from our calculations, that will

help the K-means to make good results even if we added more

outlier points; in the second part we are going to make K-means

depend on Rock links in addition to its traditional distance, Rock

links takes into account the number of common neighbors

between two objects, that will make the K-means able to detect

shapes that can't be detected by the traditional K-means.

General Terms

Data Clustering Algorithms, K-means, ROCK, Centroids'

Initialization.

Keywords

Robust K-means, Rock links, Optimized K-means, Initializing

K-means, electing centroids, Optimizing K-means distance

measurement.

1. INTRODUCTION
K-means is considered as one of the most powerful and popular

algorithms in the data clustering field[1], it has the ability to

make good results in discovering similar data and separate them

in different groups[2][3], one of the main attractive reasons for

this algorithm –in addition to its power- its simplicity, it is a

very simple algorithm, it depends on defining a number of

clusters, then the algorithm will initialize a number of centroids,

one for each cluster, every point in the dataset will be assigned

to the nearest centroid; after applying n iterations, we'll find out

that objects with the same characteristics are assigned to the

same centroid.

Unfortunately K-means is vulnerable for some issues, its first

problem is its sensitivity for outliers, a distant object can be

assigned to a particular centroid, this outlier object will make the

centroid move to the wrong way, many researches tried to solve

this problem by detecting and removing outliers[5][7].

The second problem is its dependability on the distances

regardless of any other factors, that makes K-means very weak

when it faces non-globular shapes.

In Figure 1, it's obvious that object A is connected to the

centroid C2, the connectivity here depends on the number of

common neighbors between the object and the centroid, but if

you measured the distance, the Euclidian distance for example,

you'll find that object A is closer to centroid C1, in K-means it

will be assigned to cluster 2, and that doesn't seem right.

The third problem with K-means is its sensitivity for the initial

state of the centroids location, which will make K-means stuck

in local minima instead of finding the global minima or the right

groups.

Figure 1, A is closer to C1, but it is more connected to C2

Another drawback in the K-means operation is its dependency

on the number of clusters as an input, in data clustering we

prefer algorithms that have only one input: the data, the

algorithm should not know any idea about the number of

clusters, the type of the data, the priority of the attributes, etc.

In section 3 we are going to present two techniques, the first is

used for eliminating the effect of outliers in the K-means

process,in this part we will depend on a function that decides if

this object has to be eliminated or not, this function depends on

the number of neighbors for this object, the second technique

will involve the ROCK similarity measurement in the K-means

process, this technique will help the K-means to detect clusters

like the one in Figure 1.

The two techniques are applied for four artificial datasets and

another two real datasets, the results show that the proposed

algorithm is more robust for outliers, and can detect some types

of non-globular shapes.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

13

2. RELATED WORK
Many papers tried to make the K-means depend on other factors

in addition to the traditional distance, Some algorithms tried to

solve this problem by using novel ideas for measuring distance,

ROCK[6] for example depends on the number of common

neighbors to measure the similarity instead of the traditional

distance to solve this problem.

The similarity in ROCK is called links and it depends on the

number of shared neighbors between the centroid and the object.

Other papers proposed new ideas to cluster data, The proposed

algorithm in [13][14] adopts a new non-metric measure based on

the idea of symmetry.

Many papers proposed new ideas for initializing the centroids in

K-means to make good results[4][11].

In [7] new techniques were added to eliminate outliers, these

methods tried to make K-means more robust for outliers, to

solve the K-means problem of sensitivity for outliers.

Other ideas were proposed in the field of prototypes'

initialization[4][15], these ideas tried to solve the problem of K-

means sensitivity for initial location of centroids.

3. PROPOSED ALGORITHM
In this section we are going to talk about our proposed

algorithm, in these techniques we will try to solve the problem

of outliers' sensitivity in K-means by making it more robust for

outliers, this will be done by evaluating each object, and

counting the number of its neighbors, eventually some objects

will look like sole or isolated objects, that means that the closest

neighbor is further than it should be.

The second technique will alter the way of measuring distances

in K-means by adding some techniques inspired from the

ROCK algorithm, the rock algorithm depends on a new concept

of distance, it does not depend on the traditional concept of K-

means, it counts the number of neighbors between two points,

the more the number the strongest the relation and the

similarity[6], that concept will be used in our technique to make

K-means able to discover non-globular shapes.

We implemented our proposed techniques in Java, our

application receives the dataset in a csv file, and the data should

be normalized in another application in advance.

3.1 Eliminating Outliers
In this part we are going to depend on a novel function that

calculates the number of neighbors for each point, if f(N) = 5,

then each point should has at least 5 points as neighbors, if it has

only 4 points, then it should be eliminated; our proposed

function is:

f(N) = ln (N)

Where N is the number of the points or objects in the dataset, so

if we have 10 points in the data set, then each point must has at

least 2 neighbors, when the number of the objects increases too

much –a billion for example- this function will not make the

number that we might think, so we have to solve this problem by

raising this function to a particular power, say two, but we still

have another problem!, what if we have 10 objects, and the

number of wanted clusters is k=5?, it's obvious that one

neighbor for each object is enough, so we have to involve the

number of clusters in this function, so our improved function

will be according to the formula:

where N is the number of objects in the dataset, and k is the

number of clusters.

The following table shows some samples for different N values

and number of clusters k=2:

Table 2 shows the results for the same function but when k=3

Note:f(N)will be mentioned as Ө in this paper.

But how can we decide if object xi is neighbor of xj or not?

In the beginning of our algorithm we measure a value called the

average distance davg, this value calculates the average distance

between each point and the others, divided by the number of the

points in the dataset, then the average of the calculated distances

will be calculated, by summing the distances and dividing them

on the number of the objects.

Now, if the distance between objects xi and xj is less than davg,

they are considered neighbors.

In the beginning of our algorithm we have to measure the davg

value, and then count the number of neighbors for each object,

and according to our function we have to eliminate each object

with neighbors < f(N) or Ө, that can be done by assigning these

objects to cluster -1, which contains all the noise.

These eliminated objects will not take a part on the future

process, that will make centroids follow the points of interest

instead of following far objects, these objects can be assigned to

the nearest centroid in the end of the process.

K-means initialization depends on selecting random objects as

centroids, in our case, the points of cluster -1 –the eliminated

ones- will not be selected as centroids, that will help K-means in

selecting core points as centroids instead of wasting time and

processing in the case of selecting outlier objects.

Table 1. f(N) for different datasets and k=2

10 20 100 1000 Million Billion N

2 4 10 23 95 214 f(N)

Table 2. f(N) for different datasets and k=3

10 20 100 1000 Million Billion N

1 2 7 15 63 143 f(N)

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

14

The following code illustrates the above process:

Code 1 – Eliminate Outliers

procedurecompute neighbors(S)

begin

1. Compute davg , Ө

2. Compute nbrlist[i] for every point i in S

3. for i := 1 to n do {

4. N := nbrlist[i]

5. if(N<Ө)

6. cluster[i]= -1

7. }

end

The eliminated objects will not be involved in any part of our

algorithm, they will not be selected as centroids, and they will

not be used in the process of calculating the new location for a

centroid.

3.2 Initializing K-means
In the beginning we have selected k random points as centroids,

where k is the number of clusters, but in this case we have to run

our application for many times till we have the right clustering,

to avoid this problem –without involving ourselves in this field-

we modified our application to select R points for each cluster

randomly, and calculate the average of the selected points as our

centroid, we can repeat that for the number of clusters.

For example if we have to select two clusters k=2 and the

number of attributes p=2, then to calculate the first centroid we

have to select two random points (when R=2):

P1={ 5, 8}

P2={ 7, 10}

The first centroid M1 is the average of the selected points:

M1 = { (5+7)/2 , (8+10)/2 } = {6, 9}

The second centroid will be calculated by selecting other two

random points, and calculating their average.

If we changed R to be 3, then we have to select three random

points and calculate their average.

In our Java application we found that selecting two random

points is enough, we implemented that and it showed good

results, now we can get the perfect solution without running the

application more than once or twice at most.

Selecting more than one point will give us more chances that the

centroid is located in the middle of our map, then when we start

the K-means algorithm, each centroid will rush toward its right

cluster.

3.3 Modifying K-means distance

measurement
In this part we will involve the ROCK links concept in our

work, but we will depend also on the traditional K-means

similarity in measuring the distance between two points, we can

use the Euclidian distance:

In ROCK, links are the number of shared neighbors between

two objects, so if object A has the set of neighbors { d, e, f, g}

while object B has the neighbors { f, g, h, i, j} then link{A, B} =

|{f, g}| = 2.

To implement this part we have to build two matrices with sizek

* n, the first matrix will be for the Euclidian distance between

each point and each centroid, the second matrix will be for the

number of common neighbors between each object and each

centroid.

After preparing these matrices we have to normalize them by

changing the values in the two sets to a value between 0 and 1,

this can be done by dividing the whole matrix by the maximum

value in it.

Note that the first matrix is distance while the second matrix is

similarity, so we have to change the first matrix to a similarity

matrix, this can be done simply by subtracting each value from

one.

After preparing the two matrices we can sum them and divide

them by 2, that will give us a new similarity value depends on

the distance between any two points and the number of the

common neighbors between them.

The following formula describes the summation of the two

normalized matrices, the result is our final similarity matrix.

Final_sim[][]=((Norm(links[][])+Norm(similarity[][]))/2

Now we can use the final similarity to assign objects to the

nearest centroid.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

15

The following code illustrates this process:

Code 2 – Calculate similarity and links

procedurecompute shared_links(S) between nodes and each

centroid

begin

1. findNnbrlist[i] for every point i in S

2. findCnbrlist[j] for every centroid j in C

3. Set shared_link[i; j] to be zero for all i; j

4. Set similarity[i; j] to be zero for all i; j

5. for i := 1 to C do {

6. for i := 1 to S do

7. calculate shared_neighbors[i][j]

8. }

9. for i := 1 to C do {

10. for i := 1 to S do

11. calculate similarity[i][j]

12. }

13. Normalize(similarity) // All values from 0 to 1

14. Normalize(shared_links)

15. final_sim =(shared_links + similarity) / 2

16. assign nodes according to final_sim

end

3.4 Fixing eliminated objects
At the end of our operation we measure the similarity between

each object in cluster -1 and each centroid, then we can assign

each object to its nearest centroid.

4. SIMULATION AND RESULTS
We have implemented a Java code to test our algorithm, our

code receives the data in csv files, each line is an object and

each column is an attribute, though our application accepts

multi-dimensional data, we used only two dimensional artificial

datasets that can be shown in 2D shapes.

We also brought two real datasets for testing, the first one is the

Iris and the second is the glass identification dataset.

4.1 Artificial Datasets
To test our algorithm we used four artificial datasets, we began

our tests with two simple datasets to see if our algorithm is

working as we planned or not, the results of the first data set is

shown in Figure2.

Figure 2, Simple Artificial dataset

In the above dataset we tried to make an object closer to the

above cluster and more connected to the lower cluster, according

to the results in Figure 2, our algorithm was able to take number

of shared neighbors into account in addition to the distance.

In the second test, we tried to make a dataset that contains an

object closer in distance to cluster A, but more connected by

links –neighbors- to cluster B, the results are shown in Figure 3.

Figure 3, Simple dataset for testing the proposed Algorithm

In the dataset in Figure 3, we tried to add more objects and more

complexity to our dataset, we can see here –also- that some

objects are closer in distance to centroid A, but they are

connected to centroid B because of the stronger connectivity.

In Figure 4 we can see a dataset distributed as two different-

sized clusters, the first cluster is large while the other one is

small, in this case K-means cannot catch the large cluster

without including some objects from the small one.

Our algorithm in Figure 4 worked as well as we planned, it was

able to detect two clusters with different sizes, as we see in the

figure there are two clusters one is large while the other is small

with some noise between them, the two clusters were separated

successfully.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

16

Figure 4, dataset with two clusters, small and large

The fourth dataset is divided in 3 clusters, with different sizes,

our algorithm could detect the intended clusters.

Figure 5, dataset divided in 3 clusters

In the fourth dataset we can see that some objects are not

connected to the true clusters, this problem occurred because we

still depend on the K-means traditional distance in addition to

the ROCK links distance, that will make such errors occur.

In all the above cases we added some isolated objects to watch

its effect on our algorithm, we found that the added objects were

not involved in the calculations because of our proposed

algorithm (section 2.1), which eliminates the outliers.

4.2 Real Datasets
We also applied our algorithm for two real datasets, the first is

the common Iris dataset, and the second is the Glass

Identification dataset.

The datasets are brought in different values and orders, to begin

we normalized all the attributes values to be in the range zero to

1, then we entered the data to be processed by our algorithm.

Table 3 is composed of five columns, the first three columns

describe the dataset, the number of attributes, the number of

objects, and the intended clusters, the fourth column presents the

number of objects that was not classified in the right sector, and

the fifth column shows the error ratio which is the number of

errors divided by the number of objects.

The Iris dataset is composed of 4 attributes, 150 objects, the

objects have to be distributed in 3 clusters.

In this test we got 17 errors in objects classification, they were

not clustered as the UCI website suggests them, and the error

ratio is calculated as 11.3%.

The Glass Identification dataset is composed of 10 attributes,

and 214 objects distributed in 6 clusters.

In the second test we got an error ratio of 16.8%, for 36 objects

out of 214 were not clustered right.

The following table shows the results after running the

clustering application for 3 times for the Iris and the Glass

identification datasets.

Table 3. Real Datasets Results

 attrib
u

tes

o
b

jects

clu
sters

erro
rs

E
rro

r R
atio

Iris 4 150 3

19 12.6%

21 14%

17 11.3%

Glass

Identification
10 214 6

41 19.1%

39 18.2%

36 16.8%

Table 4 shows the results for the traditional K-means algorithm,

the results showed that the number of errors for the Iris dataset

32 is more than it for our algorithm which was 19; the second

row shows the results for the Glass identification dataset, which

has 95 errors out of 214 objects.

Table 4. K-means Results

 attrib
u

tes

o
b

jects

clu
sters

erro
rs

E
rro

r R
atio

Iris 4 150 3 32 21.6%

Glass

Identification
10 214 6 95 44.8%

The results showed that our proposed algorithm optimized the

K-means detection for the intended clusters in the above

datasets, the optimization ratio in the Iris dataset was 33.3%, and

more than 50% in the glass identification dataset case.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

17

5. CONCLUSION
In this paper we have introduced a new technique to optimize

the K-means measurement for distance, we added the ROCK

links concept to the traditional K-means distance, the optimized

K-means will take into account the connectivity between the

centroid and each node, that has been applied by counting the

number of shared neighbors between them, that helped the K-

means to detect shapes that can not be detected by the traditional

K-means.

We also introduced a new function to decide if the object is an

outlier or not, if it was considered as an outlier, it will not take a

part in the K-means process.

In our experiments we added outlier objects to see if it will

affect the work of our algorithm or not, the final results showed

that our proposed algorithm is more robust for outliers compared

with the K-means traditional algorithm.

The results showed that our proposed technique detected the

intended clusters in the Iris and the glass identification datasets,

and the error ratio was less than the traditional K-means ratio.

6. REFERENCES
[1] J. Hartigan and M. Wang. A K-means clustering algorithm.

Applied Statistics, 28:100{108, 1979.

[2] S. P. Lloyd. Least squares quantization in pcm. Technical

note, Bell Laboratories, 1957. Pub- lished in 1982 in IEEE

Transactions on Information Theory 28, 128-137.

[3] J. MacQueen. Some methods for classification and analysis

of multivariate observations. Proceedings of the fifth

Berkeley symposium on mathematical statistics and

probability 1967.

[4] D. Arthur and S. Vassilvitskii. K-means++: The advantages

of careful seeding. In Bay Area Theory Symposium, BATS

06, 2006.

[5] Hautamaki, V., Karkkainen, I., Franti, Outlier detection

using k-nearest neighbour graph. In: 17th International

Conference on Pattern Recognition (ICPR 2004),

Cambridge, United Kingdom (2004) 430–433.

[6] Sudipto Guha, Rajeev Rastogi, Kyuseok Shim, ROCK: A

Robust Clustering Algorithm for Categorical Attributes.

[7] Ville Hautam¨aki, Svetlana Cherednichenko, Ismo

Karkkainen, Tomi Kinnunen, and Pasi Franti, Improving

K-means by Outlier Removal.

[8] Mu-Chun Su and Chien-Hsing Chou, A K-means

Algorithm with a Novel Non-Metric Distance.

[9] Wesam Barbakh, Similarity Graphs.

[10] A. Likas, N. Vlassis and J. J. Verbeek, The Global K-

means Clustering Algorithm. Pattern Recognition, vol. 2,

pp. 451-461, 2002.

[11] Xiaoping Qing, Shijue Zheng, A new method for

initialising the K-means clustering algorithm, 2009 Second

International Symposium on Knowledge Acquisition and

Modeling.

[12] G. H. Ball and D.I. Hall, “Some Fundamental Concepts and

Synthesis Procedures for Pattern Recognition

Preprocessors,” in Proc. of Int. Conf. Microwaves, Circuit

Theory, and Information Theory, Tokyo, Japan, pp. 281-

297, Sep. 1964.

[13] Mu-Chun Su and Chien-Hsing Chou, A K-means

Algorithm with a Novel Non-Metric Distance.

[14] D. Reisfeld, H. Wolfsow, and Y. Yeshurun Context-Free

Attentional Operators: the Generalized Symmetry

Transform,” international Journal of Computer Vision, vol.

14, pp. 119 -130, 1995

[15] Xiaochuan Wu and Colin Fyfe, On initializing prototypes

for clustering.

[16] L. Breiman. Bagging predictors. Machine Learning,

24(2):123-140, 1996.

[17] W. Barbakh, M. Crowe, and C. Fyfe. A family of novel

clustering algorithms. In 7th international conference on

intelligent data engineering and automated learning,

IDEAL2006, pages 283–290, September 2006. ISSN 0302-

9743 ISBN-13 978-3-540-45485-4.

[18] M. Khalilian, N. Mustapha, M. N. Sulaiman, and F. Z.

Boroujeni, "K-Means Divide and Conquer Clustering," in

ICCAE, Thiland, Bangkok, 2009, pp. 306-309.

[19] Girolami, M. (2002). Mercer kernel based clustering in

feature space. IEEE Transactionson Neural Networks

(13(3)), 780-784.

[20] Kaufman, L., & Rousseuw, P. J. (1990). Finding Groups in

Data. An Introduction to Cluster Analysis. John Wiley &

Sons, Inc.

