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Abstract: The quantization of the Brink-Schwarz superparticle is performed by canonical
phase-space path integral.The supersymmetric particle is treated as a constrained system using
the Hamilton-Jacobi approach. Since the equations of motion are obtained as total differential
equations in many variables, we obtained the canonical phase space coordinates and the phase
space Hamiltonian with out introducing Lagrange multipliers and with out any additional gauge
fixing condition.
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1. Introduction

Systems described by singular Lagrangians are called singular systems and this kind of

systems contain inherent constraints [1, 2]. In a lot of physical domains, there extensively

exist different singular systems, such as gauge field theories, gravitational field theory,

supersymmetric theory, supergravity, superstring theory. A standard consistent way of

dealing with singular systems was first formulated by Dirac [3]. In Dirac’s method, when

a singular Lagrangian in configuration space is transformed into a singular Lagrangian

in phase space, the set of constraints would be generated, which are called primary con-

straints [4, 5]. Through the consistency conditions, using these primary constraints may

generate more new constraints, which are called secondary constraints. Following Dirac,

one classifies the constraints as being first or second class constraints. According to

Dirac’s conjecture each first class constraint generates a corresponding gauge symmetry,
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while second class constraints require for their implementation the replacement of Poisson

brackets by Dirac brackets [6, 7, 8]. The quantization scheme for constrained systems is

the path integral quantization. It is important because it serves as a basis to develop

perturbation theory and to find out the Feynman rules. The path integral quantization

of singular theories with first class constrains in canonical gauge was given by Faddeev

and Popov [9, 10]. The generalization of the method to theories with second class con-

straints is given by Senjanovic [11]. Moreover, Fradkin and Vilkovisky [12, 13] considered

quantization to bosonic theories with first class constraints and it is extension to include

fermions in the canonical gauge. When the constrained dynamical systems possesses

some second class constraints there exists another method given by Batalain and Frad-

kin [14]: the BFV- BRST operator quantization method. Which implies to extend the

initial phase space by auxiliary variables to convert the original second class constraints

into effective first class ones in the extended manifold. Recently, a new scheme of path

integral quantization [19]-[22], depend on the Hamilton-Jacobi treatment of constrained

systems [17]-[24]. According to Hamilton-Jacobi formalism the equations of motion are

obtained as total differential equations in many variables which require to investigate the

integrability conditions. The canonical path integral quantization is obtained directly

as an integration over the canonical phase-space coordinates without any need to en-

large the initial phase-space by introducing extra-unphysical variables. The advantage

of the Hamilton-Jacobi formalism is that we have no difference between first and second

class constraints and we do not need gauge-fixing term to reduce or enlarge the physical

phase-space. The better understanding of this features aries by applying the Hamilton-

Jacobi formalism for supersymmetric constraint systems[25], which are subject to mixed

fermionic first and second class constraints in an arbitrary space-time dimension. The

main aim of this paper is to apply the Hamilton-Jacobi technique to discuss the classical

dynamics of the Brink-Schwarz superparticle, then we try to quantize it by using the

canonical path integral method.

The material presented in this paper is divided as follows: In the next section the

Hamilton-Jacobi formulation is presented. Section 3, is devoted to analyze the mas-

sive Brink-Schwarz superparticle model [26] by using Hamilton-Jacobi formalism. The

conclusion is given in section 4.

2. Hamilton-Jacobi Formalism Of Constrained Systems

The system that is described by singular Lagrangian L(qi, q̇i, t) with i = 1, ..., N , has a

rank of Hess matrix

Aij =
∂2L

∂q̇i∂q̇j

, i, j = 1, . . . , N, (1)

equal to (N − p) , p < N . In this case we have p momenta which are dependent on each

other. The generalized momenta Pi corresponding to the generalized coordinates qi are
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defined as,

Pa =
∂L

∂q̇a

, a = 1, . . . , N − p, (2)

Pμ =
∂L

∂q̇μ

, μ = N − p + 1, . . . , N. (3)

Since, the rank of the Hess matrix is (N − p), one may solve (2) for q̇a as

q̇a = q̇a (qi, q̇μ, Pb) ≡ ωa. (4)

Substituting (4) into (3), we obtain relations in qi, Pa, q̇ν and t in the form

Pμ =
∂L

∂q̇μ

∣∣∣∣
q̇a=ωa

≡ −Hμ(qi, q̇ν , q̇a = ωa, Pa, t), ν = N − p + 1, . . . , N. (5)

By mean of (4) and (5) the canonical Hamiltonian H0 is defined as

H0 = −L
(
qi, q̇μ, q̇a = ωa, t

)
+ Paωa + q̇μPμ

∣∣
Pν=−Hν

. (6)

The set of Hamilton-Jacobi partial differential equations (HJPDE) is expressed as

H ′
α

(
qβ; qa; Pa =

∂S

∂qa

; Pμ =
∂S

∂qμ

)
= 0, α, β = 0, 1, . . . , p. (7)

where

H ′
0 = P0 + H0; (8)

and

H ′
μ = Pμ + Hμ. (9)

with q0 ≡ t and S being the action. The equations of motion are obtained as total

differential equations in many variables such as,

dqa =
∂H ′

α

∂Pa

dtα, (10)

dPr = −(−1)nrnα
∂H ′

α

∂qr

dtα, r = 0, 1, . . . , N, (11)

dZ =

(
−Hα + Pa

∂H ′
α

∂Pa

)
dtα, (12)

where ni = 0 , 1, (i = r , α) define the Grassmann parity of the corresponding quantity,

and Z = S (tα, qa). These equations are integrable if and only if [27, 28]

dH ′
0 = 0, (13)

and

dH ′
μ = 0, μ = N − p + 1, . . . , N. (14)

If the conditions (13) and (14) are not satisfied identically, we consider them as new

constraints and we examine their variations. Thus repeating this procedure, one may
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obtain a set of constraints such that all the variations vanish, then we may solve the

equations of motion (10) and (11) to get the canonical phase-space coordinates as

qa ≡ qa(t, tμ), pa ≡ pa(t, tμ), μ = 1, . . . , p. (15)

In this case the path integral representation may be written as

〈Out | S | In〉 =

∫ n−r∏
a=1

dqadpa exp

[
i

∫ t′α

tα

(
−Hα + pa

∂H ′
α

∂pa

)
dtα

]
, (16)

a = 1, . . . , n − p, α = 0, n − p + 1, . . . , n.

We should notice that the integral (16) is an integration over the canonical phase space

coordinates (qa, pa).

3. Hamilton-Jacobi Formulation of Brink-Schwarz Superparti-

cle

One may write an action for a particle moving in a superspace; which is an extension

of ordinary 4 D spacetime to include extra anticommuting coordinates in the form of N

two-components Weyl spinors θ, θ̄ , where θ̄ is the conjugate of θ. Such action, firstly is

written by Brink-Schwarz with simple supersymmetry N = 1 [26] by the Lagrangian

L =
1

2
[e−1(ẋμ − iθ̄γμθ̇)2 + em2]. (17)

The singularity of the the Lagrangian follows from the fact that the rank of the Hessian

matrix Aij is one.

The canonical momenta defined in (2) and (3) read as

Pμ =
∂L

∂ẋμ
= e−1

(
ẋμ − iθ̄γμθ̇

)
, (18)

πθ =
∂rL

∂θ̇
= −iθ̄Pμγ

μ = −Hθ, (19)

π̄θ̄ =
∂rL

∂ ˙̄θ
= 0 = −Hθ̄, (20)

Pe =
∂L

∂ė
= 0 = −He. (21)

Since the rank of the Hessian matrix is one, we can solve (18) for ẋμ in terms of Pμ and

other coordinates, in the form

ẋμ = ePμ + iθ̄γμθ̇. (22)

The canonical Hamiltonian H0 is

H0 =
1

2
e[P 2 − m2]. (23)
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The set of HJPDE’s are

H ′
0 = P0 +

1

2
e[P 2 − m2], (24)

H ′
θ = Pθ + iθ̄Pμγ

μ, (25)

H ′̄
θ = Pθ̄, (26)

H ′
e = Pe. (27)

Therefore, the total differential equations for the characteristics read as

dxμ = ePμdτ + iθ̄γμdθ, , (28)

dPμ = 0, (29)

dPθ = 0, (30)

dPθ̄ = (−iPμγ
μ)dθ, (31)

dPe = −1

2
[P 2 − m2]dt. (32)

To check whether the set of (28) to (32) are integrable or not, let us consider the total

variations of the set of (HJPDE)’s. The variation of

dH ′
0 = 0, (33)

dH ′
θ = 0, (34)

dH ′̄
θ = 0, (35)

are identically zero, whereas

dH ′
e = −(

1

2
[P 2 − m2])dt = H ′′

e dt. (36)

where

H ′′
e =

1

2
[P 2 − m2] = 0. (37)

is a new constraint. We notice that the total differential of H ′′
e vanish identically, i.e.

dH ′′
e = 0. (38)

Thus the set of equations (28)-(32) with (41) are integrable.According to (12) the action

can be written as

dZ = −H0dτ − Hθdθ − Hθ̄dθ̄ − Hede + Pμdxμ

=

{
−1

2
e

(
P 2 − m2

)
+ Pμ

(
ẋ − iθ̄γμθ̇

)}
dτ,

(39)

and the canonical action integral becomes

S =

∫ {
1

2
e

(
P 2 + m2

)}
dτ. (40)
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By using (40) and (16) the canonical path integral quantization of Brink-Schwarz super-

particle is expressed as

〈
xμ, τ ; x′

μ, τ
′〉 =

∫
dxμ dpμexp

[
i

∫ {
1

2
e
(
P 2 + m2

)}
dτ

]
(41)

This path integral representation as an integration over the canonical phase-space with

no need to introduce any gauge fixing to reduce or enlarge the phase-space as in covariant

quantization of Brink-Schwarz superparticle described in references [29, 30, 31].

Conclusion

In this work we presented Brink-Schwarz Superparticle as a singular system, and its

Hamiltonian treatment contains all kinds of constraints (primary and secondary, first

and second class ones). This model is very illustrative, since it allows a comparison

between all features of Diracs and Hamilton-Jacobi formalisms. In Dirac’s formalism,

we must reduce any constrained singular system to one with first-class constraints only,

we must call attention to the presence of arbitrary variables in some of the Hamiltonian

equations of motion due to the fact that we have gauge dependent variables and we have

made a gauge fixing. This does not occur in Hamilton-Jacobi formalism since it provides a

gauge-independent description of the systems evolution due to the fact that the Hamilton-

Jacobi function S contains all the solutions that are related by gauge transformations.

The canonical path integral quantization of Brink-Schwarz Superparticle is done, since

the system is integrable, and the integration is taken over the canonical phase space.
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