
PAWS: A Performance
Evaluation Tool for

Parallel Computing Systems

Daniel Pease, Arif Ghafoor, Ishfaq Ahmad,
David L. Andrews, Kamal Foudil-Bey, Thomas E. Karpinski,

Mohammad A. Mikki, and Mohamed Zerrouki
Syracuse University

ifteen years ago, most large-scale
scientific and engineering computa-
tions were performed on sequential

von Neumann machines. Comparisons
among these machines focused on running
sets of common benchmarks and on rank-

PAWS (Parallel
F

Assessment Window
System) provides an

interactive user-
ing the machines based on the number of
instructions executed per second.

systems increased, so did the diversity of
their architectural design. As each new ar-

However, as the number of commercial

environment
chitecture diverged from the classical von
Neumann model, new languages and anno-

for analysis of existing,
tated versions of older sequential languag- prototype, and

conceptual machine es were developed for execution on these
new machines. This made i t difficult to run
a standard benchmark. Not only did each
benchmark require translation into each
language, but the translation process and
newer optimizing compilers obscured the
relative merit of the results.

T o date, no formal methods allow com-
parisons among different machines run-
ning a single common application. Further-
more, code is generally not portable among
different parallel processing machines. This
forces applications to be recoded for each
language and each machine.

PAWS (Parallel Assessment Window
System) is an experimental system for per-

architectures running a
common application.

forming machine evaluation and compari-
sons. As shown in Figure 1, PAWS pro-
vides a user-friendly X window-based en-
vironment that allows comparisons among
vastly different machines running com-
mon applications.

Figure 2 shows the PAWS block dia-
gram, which consists of four tools: the

application tool, the architectural charac-
terization tool, the performance assessment
tool, and the interactive graphical display
tool. Through the application characteriza-
tion tool, PAWS translates applications
written in a high-level source language
into a single data dependence graph. This
allows users to view their applications’
attributes. The dataflow graph is a machine-
independent intermediate representation
that can map onto different architectures.

The architecture characterization tool
allows users to create, store, and retrieve
descriptions of machines in a database.
This approach permits users to evaluate
conceptual machines before building any
hardware.

The performance assessment tool (PAT)
generates profile plots through the interac-
tive graphical display tool (IGDT). It shows
both the ideal parallelism inherent in the
machine-independent dataflow graph and
the predicted parallelism of the partitioned
dataflow graph on the target machine.

Using dataflow graphical languages on
dataflow machines is not new,’.’.’but using
them for parallel computer assessment
through PAWS is original. A powerful
PAWS feature is its ability to associate a
graph’s visual display during assessment.

18 001 8-9 l62/Y 1/0100-0018$0 I .OO 0 199 I IEEE COMPUTER

High-level language Data dependence graph

For i=l ,N

end For
A[i]=B+A[i] ;

\ Architecture characterization

U

10 20 30 40 50 60 \

Parallelism profile
100 I I
90
80
70
60
50
40
30
20
10
0

10 20 30 40

Figure 1. Parallel Assessment Window System (PAWS) environment.

Applications
in high-level
languages

Application characterization tool
I

Parser P
I Parser C,

I I
Characterize

Architecture
selection

Architecture characterization tool

Graphical
representa- U tion Performance

assessment tool

Interactive
graphical
display tool

Display

Figure 2. PAWS block diagram.

Through the windows environment, multi-
ple windows can be opened to show the
data dependence graph created from the
original program, the evaluation machine’s
characteristics, and the application’s per-
formance metrics machine.

The application
characterization

and degree of an application’s parallelism.
Application characterization consists of a
data dependency analysis to determine the
order of program statements execution. It
also identifies operations that may be exe-
cuted in parallel. Parallelism within a pro-

The application characterization tool
provides the facility to evaluate the level

January 199 1 19

Procedure Example
A,B,C,D : integer;

begin

end Example;
D:= (A+B) * (C-1);

I I
Figure 3. Example of a simple Ada program and IF1 representation, (a) and (b).

gram may exist at different “granularity”
levels. For example, arithmetic operations
within a program may be independent, us-
ing different data values or variables in
each expression. This parallelism level is
called fine-grained parallelism. Converse-
ly, if multiple functions, subroutines, or
procedures are independent, then they can
be executed concurrently. This parallelism
level is called course-grained parallelism.
The application characterization tool trans-
forms programs written in high-level lan-
guages (currently Ada) into an intermedi-
a t e graphical fo rm that exposes the
program’s data dependencies and parallel-
ism levels. Analysis is first performed on
the intermediate form, providing insight
into the program’s structure and organiza-
tion. The information produced during this
analysis is then graphically displayed to the
user for characterizing the application and
mapping the application onto a machine.

The intermediate form defined to repre-
sent the program’s data dependencies and
parallelism must support parallelism at all
granularity levels. Also, because the inter-
mediate form is the target for mapping the
application onto any machine, it should not
be biased by a specific machine’s limita-
tions. Translation of applications written in
a high-level language to an intermediate
form with these attributes offers the fol-
lowing PAWS advantages:

Provides acommon target for any high-
level language;

Allows a single application to be ana-
lyzed on each machine characterized by
the PAWS architecture characterization
tool;

Allows users to perform a machine-
independent application analysis.

The intermediate formchosen for PAWS
is Intermediate Form 1 (IFI),4 a dataflow
graphical language.

Dataflow graphs as intermediate
forms. Dataflow graphs present the pro-

gram’s data dependencies and parallelism
as graphs, clearly showing the program
operations to the user. Figure 3 shows a
simple Ada program and its equivalent IF1
PAWS-generated graph. The assignment
to the variable D in Figure 3a is expressed
in IF1 by labeling the output edge of the
“times” node D. Further references to the
variable D in Ada are translated in IF1 by
connecting the edge labeled D to the corre-
sponding node that uses D as an input.
Figure 3 shows that Ada operations (A+B)
and (C-I) can execute in parallel. The data
dependency of the times operation on both
the plus and minus operations is also ex-
posed.

Description of IFl. IF1 is an acyclic
graphical language developed as a target
for SISAL (Streams and Iteration in a Sin-
gle Assignment Language), a high-level
functional programming language. IF1 hi-
erarchical structure is well suited for
graphical display. The IF1 language con-
sists of nodes, edges, types, and graph
boundaries. IF1 supports simple nodes and
compound nodes. Simple nodes represent
elementary operations such as addition,
subtraction, and equality, while compound

nodes represent complex constructs such
as conditionals, loops, and the parallel
construct Forall. As shown in Figure 3a,
edges represents data values. The literal
edges describe constants. Graph bound-
aries define functions, procedures, and
compound nodes by encapsulating sets of
nodes and edges.

Translation of Ada to IF1 in PAWS.
PAWS translates Ada’s regular grammar
expressions into IF1 by decomposing them
into IF1 operation nodes. Operands, data
values, and intermediate results are trans-
formed into IF1 edges. Table 1 shows fun-
damental Ada constructs mapping to their
corresponding IF1 constructs . Whi l e
translation of most constructs from Ada to
IF1 is straightforward, issues arise in the
translation due to fundamental language
differences. Three main issues are compile
time initializations, handling of global
variables, and the single assignment rule
imposed by dataflow computation. The
PAWS techniques that handle these three
issues are briefly described below.

While single variable initialization can
be accomplished by substituting the desired
initialization value into the first occur-
rence of the variable in the IF1 graph dur-
ing runtime, compound data objects de-
clared at compile time in Ada (arrays,
records, etc.) cannot always be initialized
using this approach. Instead, compound-
data types are initialized with user-supplied
input data during program execution. This
eliminates the execution overhead caused
by the compound data object’s initialization
during runtime.

Dataflow programs do not employ glo-
bal memory. Instead, data values reside
“locally” on edges between nodes. In
PAWS, global variables in Ada programs

Table 1. Translation of some Ada contructs to IF1 constructs.

Arithmetic operations
Logical operations
Array operations

If-then-else statement
Case statement
For loop statement
While loop statement
Functions & procedures

~~

Arithmetic nodes
Logical nodes
AElement
Node
AReplace node
ABuild node
AFill node
Select compound node
Select compound node
LoopA & forall nodes
LoopB & forall nodes
Subgraphs

20 COMPUTER

are explicitly passed as parameters to each
function using the global variables. This
has the added benefit of transforming im-
plied dependencies to explicit data depen-
dencies.

Dataflow languages adhere to the single
assignment rule, allowing variables to be
written only once. PAWS solves this prob-
lem for Ada by introducing temporary
variables. Once a variable is assigned a
value, the value remains fixed for the re-
mainder of the program. If reassignment is
required, a temporary variable is created.
After this reassignment, any read referenc-
es to the original value is replaced with a
reference to the temporary variable.

-

-

Machine
name

-

i

The architecture
characterization tool

Input/output -
timing module

Computation
timing module

Timing Timingstruct
data format -

Data movement
timing module

Waitingkynch.

timing module
(control) -

Traditionally, machines have been clas-
sified as multiple instruction, multiple data
(MIMD), single instruction, multiple data
(SIMD), multiple instruction, single data
(MISD), and single instruction, single
data (SISD). These classifications differ-
entiate among architectures based on in-
struction flow and dataflow. Also, at these
classification levels, significant architec-
tural diversity exists within each class. For
example, within the MIMD class, both
tightly coupled and loosely coupled sys-
tems exist. Although both are classified as
MIMD, significant differences appear be-
tween the two system types. This affects
how a program is written or partitioned

+ cation --
Data
sizes

modes - Communi-
cation --+ --+

distances -

Actual
timing

Figure 4. The top level of the parametric data structure.

onto the machine. The PAWS architecture
characterization tool differentiates be-
tween machines within each of the classes
defined above by a characterization
based on

the number and flexibility of different

the number of processors;
memory bandwidths and memory hi-

the types of interprocessor communi-

functional units;

erarchies; and

cation mechanisms.

Our characterization method functionally
partitions an architecture into computa-
tion, data movement and communication,
I/O, and control.

An hierarchical organization of ar-
chitectural parameters. Each category is
continuously partitioned into subsystems
until a subsystem is fine enough to be
characterized by raw timing information.
PAWS organizes this information in a tree
data structure with the raw timing informa-
tion in the leaf nodes. For timing informa-
tion, we use an integrated approach based
on low-level benchmarking that determines
the machine's operation and behavior for
each subsystem and application-dependent
analytical models. Figure 4 shows the top
level of this structure. As an example, the
data movement subsystem shown i n Fig-
ure 5 is partitioned into processor-to-pro-
cessor, processor-to-memory, processor-
to-peripherals, and memory-to-memory

Number of networks

- r

Physical
network
topology

etc. 1
I .

Data
movement

timing
module

4 Processor to processor I-'

Peripheral to memory

Virtual
network

Type of network topology
Physical description
Virtual description
Network parameters 1-w Network I
Timing information parameters

Figure 5. The data movement submodules.

January 1991 21

8K processors

Sequencer 1

;-z> subsystem

11-t; subsystem
I

8K processors>-4
Graphic U terminal

I

Figure 6. The architecture of CM-2 and its functional subsystems.

Dual processors with
floating-point accelerator I

16 processors (NS 32532)

Cache medory I
l e

128 Megabyte RAM

I
I

Ethernet and mass
storage interfaces

Figure 7. The architecture of Encore Multimax and its functional subsystems.

99

COMPUTER

data movement subsystems. The data
movement a m o n g processors c a n be
achieved through various communication
architectures such as multistage intercon-
nection networks, bus systems, and link-
oriented connections. The network sub-
system describes the network’s physical
characteristics, such as topology. A partial
decomposition of the data movement sub-
system is shown in Figure 5 .

The characterization of a particular ma-
chine may not need the whole data struc-
ture. Instead, the information necessary to
fully characterize the machine may only
require a few subtrees of the main data
structure. Currently, PAWS characterizes
a SIMD architecture, Thinking Machine’s
CM-2, and a MIMD architecture, the En-
core Multimax. The CM-2, shown in Fig-
ure 6, is configured as a 32K processor
machine. This figure shows the CM-2 log-
ical partitioning into the top-level PAWS
parametric data structure. The architecture
of the Encore Multimax model 520’ is
shown in Figure 7, along with its various
subsystems.

The block diagram of these machine’s
architectural characterization tool is shown
in Figure 8. Users interact with this tool via
the user-interactive interface module for
selecting, synthesizing, or modifying the
machine specification. The complete spec-
ification of any existing, conceptual, or
prototype machine can be captured and
stored in the PAWS architectural data
structure.

Benchmarking and analytical models.
T o use the parametric data structure, the
user interactively enters both static and
dynamic timing values. Static timing val-
ues, such as arithmetic operations, are for
operations that are uneffected by the run-
time environment. These values are gener-
ally obtained through benchmarking. Sev-
eral benchmark studies for the Connection
Machine have been r e p ~ r t e d ~ . ~ , ~ and used
for CM-2 characterization in PAWS. Dy-
namic timing values are effected by the
runtime environment and are determined
by analytical modeling. Levit proposed an
analytical model for grid communications
in the CM-2.6 This model takes into ac-
count the geometry of physical and virtual
processors,‘ the dimension of communica-
tion, and the data size. The user must pro-
vide such information to the architecture
characterization tool to generate the dy-
namic timing values for the specified grid
geometry. Similar techniques have been
used to obtain the timing values for the
Multimax.

January 1991

Machine
list

Machine
selection 4
process

User-
interactive
interface

Selection of Parametric
appropriate

data structure structure
Interface to

performance
analyzer tool

Benchmark
Generation of timing results
timing tables analytical

models I

Figure 8. The architectural tool and its subfunctions.

Interface between the architecture
characterization tool and the PAT. The
performance assessment tool obtains in-
formation from the architecture character-
ization tool by generating queries. Four
query types correspond to the data struc-
ture’s four functions. The Plus operation
on the Multimax has the following format:
(AMAX, computation, arithmetic, binary,
plus, 32, float). The first parameter speci-
fies the machine as Multimax. The second
and the third parameters specify the type of
function as arithmetic and binary. The
fourth, fifth, and sixth parameters specify
the name of the operation, the data size,
and the data type, respectively. As a result
of this query, a single timing value is re-
turned.

A complete timing information table can
also be generated instead of a single value.
For example , the query (CM-2,
data-movement, proc-proc, net, router, all,
4, all, I) generates a full table of timing
values for data communications using the
router network on the CM-2 with Ham-
ming distance 4, and I - to 64-bit data size.
The first parameter in the query specifies
CM-2 as the target machine, the second
specifies the data movement function, and
the third specifies the data movement type
as processor to processor. The fourth pa-
rameter specifies the network type and the
fifth specifies the network name. The next
two parameters describe the communica-
tion mode as “all” with a Hamming dis-
tance of 4 and data sizes of 1, 2, 4, 8, 32,
and 6 4 bits. The last parameter defines the
virtual-to-physical processor ratio.

The PAWS data structure can character-
ize any machine. However, query attributes
are only valid if the user initializes the
corresponding subdata structure for that
particular machine.

Interactive graphical
display tool

The interactive graphical display tool
provides the user interface for accessing all
PAWS tools. The IGDT has been imple-
mented as a hierarchical menu-driven sys-
tem, allowing multiple windows to be
opened in a single session. The main menu
shown in Figure 9 allows the user to select
the three remaining PAWS tools: the appli-
cation characterization tool (applications),
the architecture characterization tool (ar-
chitecture), and the performance assess-
ment tool (performance). Users may simul-
taneously open windows conta in ing
information for each of these tools. Figure
9 shows a series of open menus, along with
the IF1 graph description of the selected
program “matrix 1 .a.” The displayed graph
shows nodes organized by levels. All nodes
at the same level can execute in parallel. An
“optimizations” window lists the user’s
different optimization choices during com-
pilation.

For large applications, the number of
nodes within a graph may be too large to
easily display in a single window. IGDT
displays graphs hierarchically, allowing
users to select any compound node by plac-
ing the cursor on the node and selecting
expand or collapse from the menu. Ex-
panding a compound node takes the user
into the next hierarchy level, showing sim-
ple and compound nodes of the selected
compound node. Collapse reverses the pro-
cess of combining nodes within the selected
node. Using this approach, users can dis-
play as many or as few nodes as required.

Figure I O shows the menus for interact-
ing with the architecture characterization
tool. The user is guided through the differ-

23

-
Matrix

8 Matrix

621 Matrix

0 FUYTIONS

m OATA "1

0 INpulmVTwl

Figure 9. PAWS menus for application characterization.

1 console I

0.00 50.00 100.00 150.00 200.00 250.00
0

Figure 10. PAWS menus for architecture characterization.

ent levels of the parametric data structure by
IGDT-generated prompts. This figure also
shows the data structure's top level with the assessment
prompt for creating dynamic timing infor-
mation on the CM-2 router communications
network. The created timing values are
passed to the performance assessment tool
and displayed as graphs, as shown.

Performance system (using the application character-
ization tool) by generating a set of perfor-
mance metrics. These performance met-
rics include speedup (the average amount
of computation performed in one step with
unlimited processors) curves, parallelism
profilecurves, andexecution profiles. These
performance metrics are generated for both

The PAWS performance assessment tool
(PAT) allows users to evaluate the perfor-
mance of any application entered in the

24 COMPUTER

converter analysis

I I

Figure 11. The performance assessment tool block diagram.

Actual

the ideal case, which represents the appli-
cation’s theoretical upper bounds of per-
formance, and a set ofperformance metrics
for the application after i t has been parti-
tioned and mapped onto a machine. An
analysis of the two performance metrics

sets shows the effects of mapping the ap-
plication onto the machine.

Figure I 1 shows PAT’S overall block
diagram. The block labeled “theoretical
model” generates an application’s ideal
parallelism and speedup information. The

blocks labeled “actual machine 1” and “ac-
tual machine 2” compute the predicted
parallelism and speedup performance of
the applications running on the specified
machines after the application has been
mapped onto each machine.

V
Change

Computer Architecture:
A Quantitative Approach
John L. Hennessy and David A. Patterson
1990; 784 pages; cloth; ISBN 1-55860-069-8; $59.95
“[This book] is a thorough and extraordinarily wide-ranging
education in that magical interface between the programmer’s
intentions and the electron’s actions. It should be read by
every software craftsman who cares about wringing the last
drop of performance from his machine.” Dr. Dobb’s Journal

Introduction to Parallel Algorithms 81
Architectures:
Arrays, Trees and Hypercubes
F. Thomson Leighton
SprinX 1991: approx500 ~ R S ; clorh, ISBN 1-55860-117-1, $49.95
Features communication networks that form the architectural
basis of almost all parallel computing; the author describes
their capabilities, limitations and use in solving specific algo-
rithmic problems.

Synthesis of Parallel Algorithms
Edited by John H. Reif
Spring 1991: uppr0.v 900 paRes; cloth; ISBN I-55x60-135-X; $54.95
Each of the 25 original chapters in this book presents a specific
parallel algorithm and contains a description of the fundamen-
tal problem, its solution, and analysis with complete examples.

VLSl and Parallel Computation
Edited by Robert Suaya and Graham Birtwistle
1990, 474 Dupes: cloth; ISBN 0-934613-99-0: $39.95

machine 2

Cache and Memory Hierarchy Design:
A Performance-Directed Amroach

performance

. .
Steven A. Przybylski
1990, 223 pages; duth; lSBN 1-55860-136-8, $39.95

AVAILABLE FROM TECHNICAL BOOKSTORES, OR,

Or send a US$ check or money order to Morgan Kaufmann,
2929 Campus Dr., Ste. 260, Dept. 91, San Mateo, CA 94403.
Include shipping and handling (US/Canada: $3.50 1st volume,
$2.50 each additional; Int’l.: $6.50 1st volume, $3.50 each addl.).
CA residents add sales tax. Fax orders: 415-578-0672.

CALL TOLL FREE 800-745-7323 (US & CANADA)

Reader Service Number 4

~ -~

Reader Service Number 3

Mapping. The program execution time
on any parallel machine is dependent on
both the program operations and the users’
ability to express the parallelism at the
machine’s correct granular i ty level .
Therefore, to fairly compare two machines
running a common application, two differ-
ent mappings of the application will be
required, one for each machine. In PAWS,
applications are first transformed into dat-
aflow graphs and then mapped onto a ma-
chine based on its attributes. However,
guaranteeing optimal dataflow graph map-
ping is a nontrivial problem. Currently,
PAWS uses the mapping techniques to run
IF1 on MIMD machines. Research is un-
derway for PAWS to develop new heuris-
tic algorithms for mapping on both MIMD
and SIMD machines.’

AFill

Generating performance parameters.
Both parallelism and execution profiles

Plus Plus Plus

Begin
for i in 1 ..5 loop

for j in 1 ..5 loop
for k in 1 ..5 loop

end loop;
c(i,j):=c(i,j)+a(i, k)*b(k,j)

end loop;
end loop;

end

(4

Figure 12. Matrix multiplication pro-
gram.

lLessEqual] 1 LoopA’ I
1 I

J.
Finalvalue Finalvalue Finalvalue

I

r‘ I
444 .1

are generated by performing a graph walk
of an application‘s dataflow graph. The
graph walk routine traverses the dataflow
graph computing and recording each node’s
performance and statistical information.
To handle compound nodes, the graph walk
routine is implemented recursively. This

recursive nature allows statistics and tim-
ing information to be recorded for individual
functions, procedures, etc. Therefore,
parallelism profiles and other performance
parameters may be generated for a pro-
gram’s function, procedure, etc.

An application’s recursive function calls
are modeled as linear loops with a prede-
termined number of iterations. The num-
ber of iterations can be input interactively
or estimated, based on a frequency count
derived from an actual program run.

Examples. Two examples illustrate
PAT’S flexibility, The Ada source pro-
gram for the first example, a 5 x 5 matrix
multiplication, is shown in Figure 12. Fig-
ures 13a through d show the whole pro-
gram, the three compound nodes (three For
loops), and several simple nodes that make
up the program. Figures 14a through d
show the parallelism profiles for the whole

e AFill

Finalvalue Finalvalue FinalValu Finalvalue

2
i a b k c j

b a j i c k

I

I I I

el Replace

%d FinalValu FinalValu

t t

Figure 13. Matrix multiplication IF1
graph (a) and expansions of Loop A,
(b), (c), and (d).

26 COMPUTER

Maximum number
of operations

4.00

3.60

3.20

2.80

2.40

2.00

(a) o 200 400 600 801

,

Maximum number
of operations

6

5

4

3

2

1

(C)

Steps

0 50 100 150 Steps

Maximum number
of operations

7

6

5

4

3

2

1

(b)
I

0 200 400 600 800 Steps

Maximum number
of operations

I n I

30 Steps (d) b 10 20

Figure 14. Profile.matrixgraph.5 (a), Profile.LoopA (h) , Profile.LoopA’(c), and Profile.LoopA” (d).

program and the three compound nodes
(LoopA, LoopA’, and LoopA”, respec-
tively). The speedup corresponding to the
complete program shown in Figure 15 ap-
proaches two. the average number ofoper-
ations performed at each execution step.

Figures 13(a) through (d) exhibit regular
fine-grain parallelism patterns throughout
the program. By identifying these patterns.
a user can synthes ix a machine while
proceeding with investigations into this
part of the code to enhance performance.
Furthermore, a user performing algorithm
analysis can be prompted to substitute a
parallel Forall-type construct for the ne\t-
ed iterative constructs to obtain faster exe-
cution times and increased system effi-
ciency. The ability to change programs and
machine parameters in the PAWS archi-

tectural data 5tructure and quickly observe
the modifications’ results i s a powerful
design tool, since modifications to existing
hardware can be time consuming and cost
prohibitive.

As a second example, we use B program’
that performs binary integration of the
function F as shown in Figure 16. An inter-
esting characteristic of this program is its
inclusion of recursive and function calls.
Thi5 program’s parallelism profile and
speedup plot are shown in Figures I7 and
18. In Bohm, Curd, and Kallstrong,? a
similar plot was generated using a graph
interpreter originally designed for IF1 pro-
grams translated from SISAL.”’ The fig-
ures show that the number of operations

Speed-up

0 200 400 600 800

available for parallel execution increases
geometrically during execution because the

Figure 15. Speedup for matrix multi-
plication.

January 1991 21

number of recursive calls doubles every
time anew call is performed in the function
area.

he PAWS project’s objective is to
provide a unified environment for T users to assess various existing,

conceptual, and prototype machines that
execute a common application. PAWS
provides a framework for users to compare
various architectures for a given applica-
tion and help to identify the best machine.

PAWS is a unique tool because i t com-
bines characterizations of both applica-
tions and architectures and generates for
assessment various performance metrics,
including parallelism profiles and speed-
up information. The effects of architec-
tural changes can be investigated through
PAWS’ ability to modify and store ma-
chine descriptions.

Research is underway for PAWS t o
develop new heuristic algorithms for
mapping on both MIMD and SlMD ma-
c h i n e ~ . ~

Procedure main(A,BInit:in float;r:out float)is
function F(X:float) return float is
Begin

return 3.0*X*X*X+2.O*X*X+5.0;
end F;
function TRAP(le,Ri:float)return float is

begin
return(Ri-Le)*(F(Le)+F(Ri)/2.0;

end TRAP
function AREA(L,R,Est,Tol:float)return float is Mid,A 1 ,A2,News,a:float;

begin
Mid:=(L=R)/2.0;A 1 :=TRAP(I,Mid);A2:TRAP(mid,R);News;=A 12+A2

if(abs(Est-News)<Tol)then
a:=News;
else

A:=AREA(L,Mid,AI ,Tol/2.0)+AREA(Mid,R,A2,To1/2.0);
endif
return a;

end AREA;
begin
r:AREA(A,B,TRAP(A,B),Init);
end main;

Figure 16. Binary integration program.

~ ~~~~

Maximum number of
operations x1000

0 50 100 150 Steps

Figure 17. Parallelism profile for binary integration.

28

Acknowledgment
This project was funded through a grant from
the Rome Air Development Center under con-
tract F306020-88-C-0136

References
1. Arvind, D.E Culler, G.K Maa, “Assessing

the Benefits of Fine-Grain Parallelism in
Dataflow Programs,” IEEE Computer So-
ciety Press, Los Alamitos, Calif. order no.
882, pp. 60-69. ’

2. A.P.W. Bohm, J.R. Gurd, and M.C. Kall-
strom, Monitoring Experimental Parallel
Machines, Tech. Report, Dept. of Comput-
er Science, Univ. of Manchester, 1988.

3. D.E. Culler, Effective Data Flow Execu-
tion of Scientific Applications, doctoral
dissertation, Computational Science Labo-
ratory, MIT, Cambridge, Mass., 1989.

4. “An Intermediate Form Language IF1 ,”
Lawrence Livermore National Laboratory
reference manual, 1985.

5. Mul r imm Technical Summary, Tech. Re-
port, Encore Computer Corp., Marlboro,
Mass., 1987.

6. C. Levit, “Grid Communication on the
Connection Machine: Analysis, Perfor-
mance, and Improvements,” Tech. Report
88.19, Research Inst. for Advanced Com-
puter Science, NASA Ames Research Cen-
ter. 1988.

7. D.W. Myers and G.B. Adams 11, “Bench-
marking and Performance Analysis of the
CM-2,” Tech. Report 88.19, Research In-
stitute for Advanced Computer Science,
NASA Ames Research Center, 1988.

R. Pozo and A.E MacDonald, “Performance
Characteristics of Scientific Computations

8.

Speed-up

280

240

200

160

120

80

50 100 150 Steps 0

Tigure 18. Speedup plot for binary integration.

COMPUTER

on the Connection Machine,” Tech. Report
CU-CS-440-89, Center for Applied Parallel
Processing, Dept. of Computer Science, Univ.
of Colorado at Boulder, 1989.

9. V. Sarkar, Partitioning and Scheduling
Parallel Programs forktultiprocessing, MIT
Press, 1989.

10. “DI: An Interactive Debugging Interpreter
for Applicative Languages,” Lawrence Liv-
ermore National Laboratory reference
manual. 1987.

Ishfaq Ahmad has been a research assistant at
the Northeast Parallel Architecture Center since
January 1989. His research interests include
parallel and distributed architectures, schedul-
ing and load balancing, and performance evalu-
ation. Ahmad won the best student paper award
in systems at Supercomputing ’90. Ahmad is a
PhD candidate in the School of Computer and
Information Science, Syracuse University. He
received his BSc in electrical engineering from
the University of Engineering and Technology,
Lahore, Pakistan, in 1984, and MS in computer
engineering from Syracuse University in 1987.
He is a student member of the IEEE Computer
Society and ACM.

Thomas E. Karpinski has been a research as-
sistant in the Department of Electrical and Com-
puter Engineering in the Northeast Parallel Ar-
chitecture Center at Syracuse University since
July 1989. His research interests include paral-
lel and distributed languages, compiler design,
and real-time systems. Currently, he is pursuing
his MS in computer engineering at Syracuse
University. He received his BS in computer
science from the Rochester Institute of Technol-
ogy, Rochester, New York, in 1986.

Daniel Pease joined the Syracuse University
faculty in 1979 and is currently an associate
professor. Pease is involved in a number of
research projects related to parallel processing
and assessment of parallel systems. The projects
are sponsored by DARPA, RADC, IBM, and
DEC. He received his BSc in 1968, and MS and
PhD degrees in 1973 and 1983, respectively, all
from Syracuse University. Pease is a member of
IEEE.

Arif Ghafoor joined the Syracuse University
Department of Electrical and Computer Engi-
neering in September 1984 and is currently an
associate professor. He is a consultant to such
companies as Bell Laboratories and General
Electric in the areas of telecommunications and
distributed systems. His research interests in-
clude design and analysis of parallel and distrib-
uted systems and telecommunication. He re-
ceived his BS degree in electrical engineering
from the University of Engineering and Tech-
nology, Lahore, Pakistan, in 1976, and his MS,
Mphil, and PhD degrees from Columbia Univer-
sity in 1977, 1980, and 1985, respectively. He is
a senior member of IEEE and a member of Eta
Kappa Nu.

Readers may contact Arif Ghafoor at Syra-
cuse University, Department of Electrical and
Computer Engineering, Syracuse, NY 13244.
Electronic mail can be sent to
ghafoor@ top.cis.syr.edu.

David L. Andrews is employed by the Ocean
Systems Division of General Electric where he
works on distributed operating systems and dis-
tributed networks. His research interests include
parallel and distributed architectures. Andrews
is pursuing his PhD in computer science at
Syracuse University. He received his BSEE in
1983 and MSEE in 1984 from the University of
Missouri at Columbia. He is a member of IEEE.

Kamal Foudil-Bey is a research assistant in the
Northeast Parallel Architecture Center at Syra-
cuse University. His primary research interests
are in parallel computing, performance evalua-
tion, and dataflow representation of algorithms
on parallel computers. He is pursuing his PhD
degree in performance evaluation and assess-
ment of parallel computers at Syracuse Univer-
sity. He received the degree of Ingenieur D’etat
in Electronique from the Ecole Nationale Poly-
technique in Algiers in 1984 and the MS degree
in computer engineering from Syracuse Univer-
sity. He is a student member of IEEE Computer
Society.

Mohammad A. Mikki has been a research as-
sistant in the Department of Electrical and Com-
puter Engineering since 1989. He is currently
developing tools for displays of IF1 graphs us-
ing the X window system. His primary area of
research is in parallel processing. He is a candi-
date for a PhD in computer engineering at Syr-
acuse University. He received his BSc degree in
general electrical engineering from Bir Zeit
University in West Bank in August 1984 and his
MS degree in computer engineering from Syr-
acuse University in 1989.

Mohamed Zerrouki has been a research assis-
tant in the Department of Computer and Electri-
cal Engineering at Syracuse since January 1989.
He is currently developing the Ada-to-IF1 con-
verter. His primary research interests are in
parallel processing and compiler design. He is a
PhD candidate in computer engineering at Syr-
acuse University. He received the Ingenieur
d’Etat degree in electronics from Ecole Nation-
ale Polytechnique d’ Alger, Algiers, Algeria, in
1985, and the MS degree in computer engineer-
ing from Syracuse University in 1988.

January 199 1 29

http://top.cis.syr.edu

