

The Effect of Altering Routine Husbandry Factors on Sleep Duration and Memory Consolidation in the Horse Downing, J.T.¹ Amiouny, D.¹ Lekang, L.¹ Greening, L.² McBride, S.D.¹ ¹ IBERS, Penglais Campus, Aberystwyth SY23 3DA, ² Hartpury University and Hartpury College, Gloucester, GL19 3BE

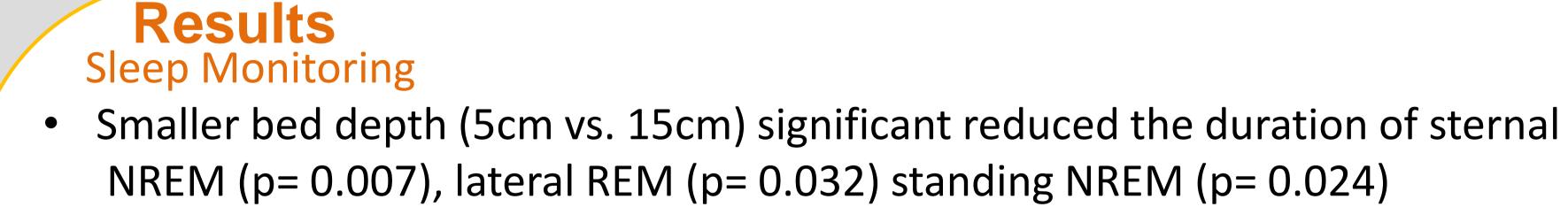
Introduction

- Whilst mammals sleep, the brain cycles through different stages of non rapid eye movement (NREM) and rapid eye movement (REM) sleep.¹ Sleep can be characterised by a decrease in motor activity and the presence of recumbent postures (Fig. 1 & 2).²
- The role sleep plays is not completely understood, however, it is recognised how vital this function is for memory and learning.³
- Several studies have demonstrated that the domestic environment of the horse can impact the duration of different sleep states.^{4,5}

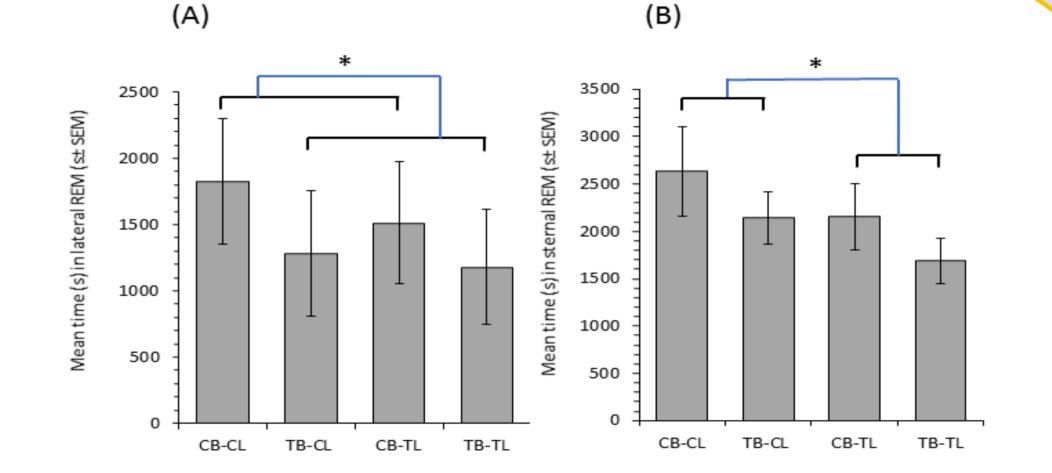
The aims of this study were to determine whether altering routine husbandry practices involving lighting and bedding would affect 1. the type/quantity of equine sleep, and 2. memory consolidation.

Figure 1 : A horse displaying lateral REM

Figure 2. Display of sternal NREM


Study Design

Sleep Monitoring


- 10 horses (mixed gender/breed, average age = 14.9 years) were selected at random and split into two groups of 5; continuous focal observations of nocturnal behaviours were achieved with Reolink infrared security cameras.
- A two factor experimental design assessed the effect of straw bedding depth (15cm or 5cm) and overnight light (lights on [lux125] lights off [lux0]) on duration of lateral REM, sternal REM, sternal NREM and standing NREM.
- Each of the four treatment combinations (bedding 15cm-lights on, bedding 5cm-lights off, bedding-15cm lights off and bedding 5cm-light on) lasted for six days and each group received the treatments in reverse order.

Spatial Memory Testing

- Memory consolidation was tested during two of the four treatments (optimal = lights off with 15cm beds and sub-optimal = lights on with 5cm beds) using a spatial memory test.
- Three buckets of the same colour and one bucket of a different colour which contained food (the correct bucket) were randomly moved to different positions (1-4) between trials (Fig.3).
- For both the training (18) and probe (6) trials, horses were randomly released from different starting points (a-e) and the number of correct responses and difference in latency between training and testing phases to locate food placed in the correct bucket were recorded.
- Between the memory tests, a washout exercise was conducted to maximise the treatment effect for the second memory study, during which food was placed in all buckets, with unlimited location time.

Lights off at night significantly increased duration of sternal REM (p= 0.031) Figure 4 (B).

60 m

Figure 3: The diagram shows the testing area, labelled with release points and bucket placement points

30 m

Α

Spatial Memory Testing

(Fig 4. A,C,D).

None of the variables within the spatial memory testing were significantly different between treatments. However, difference in latency approached significance (p=0.07) with lights on-5cm bedding showing the greater difference between the training and testing phases.

Conclusion

Both bedding and light significantly affected equine sleep behaviour across all sleep states. These results show that changes to husbandry techniques may have a positive impact on equine welfare via sleep.

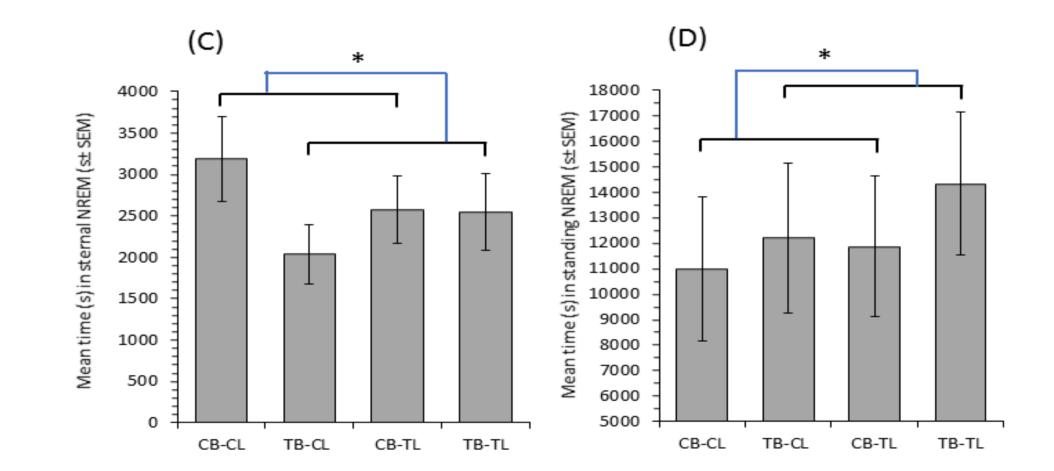


Figure 4: Mean (±SEM) (n=10) time spent expressing the 4 different sleep behaviours, (A) lateral REM, (B) sternal REM, (C) sternal NREM and (D) standing NREM. Treatment: CB-CL (15cm bedding, lights off), TB-CL (5cm bedding, lights off), CB-TL (15cm bedding, lights on) and TB-TL (5cm bedding, lights on). Significant differences between treatments are indicated, *p<0.05

Increasing the sensitivity of the spatial memory test, coupled with a larger sample group may have yielded different results.

References

1. Weber, F. (2017). Modelling the mammalian sleep cycle. Current opinion in neurobiology, 46, 68-75.; 2. Datta, S. (2010). Cellular and chemical neuroscience of mammalian sleep. Sleep medicine, 11(5), 431-440.; 3. Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437(7063), 1264-1271. 4. Hartman, N., & Greening, L. M. (2019). A Preliminary Study Investigating the Influence of Auditory Stimulation on the Occurrence of Nocturnal Equine Sleep-Related Behaviour in Stabled Horses. Journal of equine veterinary science, 82, 102782. 5. Raabymagle, P., & Ladewig, J. (2006). Lying behaviour in horses in relation to box size. Journal of Equine Veterinary Science, 26(1), 11-17.