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In the deep waters of the Nordic Seas and adjacent areas, several benthic habitats

such as cold-water coral reefs, coral gardens, and deep-sea sponge aggregations have

been classified as vulnerable marine ecosystems (VMEs), due to their uniqueness, limited

spatial extent, physical fragility, and slow recovery rate. In the last decade observations

carried out by habitat mapping programmes in Norway, Iceland, and more recently in

the Faroe Islands have substantially increased knowledge on the distribution of VMEs

in the Nordic Seas. Nevertheless, large areas have not been explored due to the cost

and logistics of obtaining observations in the deep-sea. Species distribution models

can be used to predict the distribution of VMEs and their indicator species. Here we

present the predicted distribution of 44 VME indicator taxa including 20 sponges, 17

cold-water corals, and 7 seapens in the Nordic Seas based on data compiled andmodels

developed by the NovasArc project (2016–2018). Models for 44 VME indicator species

were developed using the maximum entropy algorithm MaxEnt, using an extensive

database compiled from habitat mapping surveys, by-catch data from bottom fish

surveys, and records from reports and peer reviewed publications. Modeled distributions

showed good agreement with observations. Niche overlap measures were used to

identify seven groups and four subgroups of VME indicator taxa that co-occur. These

were consistent with the species composition of known biotopes in the study area. A

VME Index that combine the predictions for all VME indicator species was computed to

identify particularly valuable and vulnerable ecosystems that should be targets of further

exploration and conservation efforts. Such areas were identified at shelf break and slope

off Iceland, the Faroe Islands, and central Norway, and the continental shelf off southern

Greenland. The predicted distribution of VMEs in Arctic and sub-Arctic waters allows

for the evaluation of interactions with fisheries and other anthropogenic activities and

provides an important input for managers.
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1. INTRODUCTION

In the deep sea, bottom trawling is the main source of
anthropogenic impacts (Benn et al., 2010; Ramirez-Llodra et al.,
2011). Of particular concern are the effects of bottom trawling on
Vulnerable Marine Ecosytems (VMEs), ecosystems dominated
by large epibenthic organisms (e.g., corals or sponges) which are
likely to experience substantial alterations, and where recovery
occurs very slowly (Wheeler et al., 2005; Clark et al., 2010;
Williams et al., 2010; Buhl-Mortensen et al., 2013). In addition,
VMEs are increasingly being threatened by pollution (Fisher
et al., 2014) and by the effects of climate change including
increasing water temperatures and ocean acidification (Guinotte
et al., 2006; Levin and Le Bris, 2015).

The recognition that some deep-sea ecosystems are
particularly susceptible to bottom trawling led the United
Nations General Assembly (UNGA) to adopt resolutions 59/25,
61/105, and 64/72, calling for member states and regional
fisheries management organisations (RFMOs) to identify areas
beyond national jurisdiction (ABNJ) where VMEs occur, or
are likely to occur, and to prevent significant negative impacts
from damaging fishing practices. The Food and Agriculture
Organisation of the United Nations (FAO) defined a set
of criteria to identify VMEs, including their uniqueness or
rarity, the functional significance of the habitat they form,
structural complexity, fragility, and life history traits that
make recovery difficult (e.g., slow growth, limited mobility;
FAO, 2009). In general VMEs are identified by the presence
of indicator taxa (e.g., stony corals, sponges), although merely
detecting the presence of a VME element (species, habitats
or features) is not sufficient to identify a VME (FAO, 2009).
In the north-east Atlantic several benthic habitats have been
classified by the Convention for the Protection of the Marine
Environment of the North East Atlantic (OSPAR) and by
the North East Atlantic Fisheries Commission (NEAFC) as
vulnerable to human impacts (VMEs). In the sub-Arctic
waters of the Nordic seas these habitats include seapen fields,
cold-water coral reefs, coral gardens, and deep-sea sponge
aggregations.

Vulnerable marine ecosystems are by definition susceptible
to low levels of fishing pressure, and some types of spatial
management have been shown to be effective to protect VMEs
in the deep-sea (Clark and Dunn, 2012; Schlacher et al., 2014).
These include confining the bottom trawling effort to already
established footprints and establishing spatial closures to protect
vulnerable species and habitats (Hourigan, 2014; Clark et al.,
2015). In the North East Atlantic several closures have been
established by NEAFC and OSPAR in areas beyond national
jurisdiction (NEAFC, 2014). In addition, spatial closures to
protect VMEs from fishery impacts have been established within
the territorial waters of Norway (Fossåand Skjoldal, 2010),
Iceland (Ólafsdóttir and Burgos, 2012), and the Faroe Islands
(Anonymous, 2014).

A fundamental requirement for spatial management is
detailed information on the distribution of VMEs. The optimal
and non-destructive methodology to identify the occurrence
of VMEs is through the use of underwater imagery, which

allows an accurate description of the species composition and
the abundance or density of organisms (e.g., Fabri et al., 2014;
Anderson et al., 2016a; Beisiegel et al., 2017; Buhl-Mortensen
et al., 2017). Nevertheless, the collection of underwater images
in deep-sea environments is an expensive and complex endeavor,
and therefore in most areas only a limited proportion of the
seabed has been mapped visually. Often, the only available
information is from the occurrence of VME indicator species in
by-catch from fishery surveys and commercial trawls (Murillo
et al., 2011; Durán Muñoz et al., 2012; Jørgensen et al., 2014).
The lack of information on the distribution of VMEs in the deep
sea is hampering the development and application of measures
to protect these habitats from impacts of anthropogenic activities
(Weaver et al., 2011).

Given the lack of extensive biological data on VMEs
in most offshore environments and their presumed wide
distribution, species distribution models (SDMs), also known as
habitat suitability models or environmental niche models, are
increasingly recognized as an effective way to obtain knowledge
on the likely distribution of VMEs (Hourigan, 2014; Vierod
et al., 2014; Clark et al., 2015). SDMs are models that predict
the potential distribution of a species or a group of species in a
given area using environmental variables as suitability predictors.
Several studies have used SDMs to predict the distribution of
VMEs (Howell et al., 2011, 2016) and of VME indicator species
(e.g., Rengstorf et al., 2013; Ross and Howell, 2013; Guinotte and
Davies, 2014; Anderson et al., 2016b). The use of thesemodels has
been recommended for designing management plans to protect
VMEs from fishing impacts (Ardron et al., 2014; Vierod et al.,
2014). This includes the evaluation of the risk of fishing impacts
(Penney and Guinotte, 2013) and the selection of areas for spatial
closures (Lagasse et al., 2015; Rowden et al., 2019).

Within the Nordic Seas, the presence of VMEs has been
documented by visual habitat mapping programmes in Norway
and Iceland (Ólafsdóttir and Burgos, 2012; Buhl-Mortensen et al.,
2015b), and records of VME indicator taxa have been obtained
from commercial fisheries and scientific surveys. But predictive
models of the distribution of VMEs and VME indicator taxa have
not been developed in this area, except for Howell et al. (2016),
who modeled the distribution of deep-sea sponge aggregations,
and the predicted distribution of biotopes produced by the
MAREANO programme in several regions in Norwegian waters
(Elvenes et al., 2014; Buhl-Mortensen et al., 2015b; Gonzalez-
Mirelis and Buhl-Mortensen, 2015). Here we present predictive
models for a suite of indicator taxa of the most important VMEs
in the Nordic Seas and adjacent areas.

2. MATERIALS AND METHODS

2.1. Study Area
The study area ranged between 56◦N and 80◦N and was
centered in the Nordic Seas, including the Norway Sea, the
Greenland Sea, and the Icelandic Sea, and a portion of the
Barents Sea west of 38◦E (Figure 1). The area includes the
Exclusive Economic Zone (EEZ) of Iceland and Norway, most
of Svalbard’s Fisheries Protection Zone, part of the EEZ of
Greenland, the United Kingdom, and Ireland, and the Exclusive
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FIGURE 1 | Map of the study area, indicated by the red line. Black dots indicate the location of records of VME indicator taxa. Gray lines are the 100, 500, 1,000, and

2,500 m depth contours.

Fisheries Zone of the Faroe Islands. The study area also
includes the entire NEAFC’s Regulatory Area 2 (known as
the “Banana Hole”) and part of Regulatory Area 1. The study
area is encompassed mostly in region I of OSPAR (e.g., the
Arctic), but includes also small proportions of regions II,
III, and V.

This area can be divided into three main basins separated
by the northern extension of the mid Atlantic Ridge and the
Greenland-Iceland-Scotland Ridge (GISR). The oceanography
of the area is characterized by relatively warm surface water
supplied from the south by the North Atlantic Drift, an extension
of the Gulf Stream, overlying colder water masses (Norwegian
Sea DeepWater, Arctic IntermediateWater) supplied from deep-
water formation in Arctic areas (Buhl-Mortensen et al., 2015c).
In coastal areas, the water is influenced by run-off from land.
The seasonal variation is much less in the deeper waters than
in the upper layers. Current velocities are controlled by the
flow of the water masses and the tide, modified by the seabed
topography. The GISR has a major impact on the distribution
of water masses. The main pathway of water crossing this
ridge is through the Wyville-Thomson Ridge between the Faroe
Islands and Scotland. Here, the warm NAD passes into the
Norwegian Sea above a sill of approximately 500 m. South of
the Wyville-Thomson Ridge, the NAD water extends deeper
and overlies a watermass characterized by water from the
Mediterranean Ocean (the Mediterranean Outflow Water). The
ridge system from Greenland to Scotland represents a major
geographic barrier with great implications for distribution of
marine species (Brix and Svavarsson, 2010; Dauvin et al., 2012;
Omarsdottir et al., 2013).

2.2. Biological Data
Records of VME indicator species in the Nordic Seas were
compiled from an extensive set of sources. Data were extracted
from several databases in Norway, Iceland, and the Faroe Islands,
including data from the Benthic Invertebrates of Icelandic waters
(BIOICE) and the Marine Benthic Fauna of the Faroe Islands
(BIOFAR) projects, and the Institute of Marine Research (IMR)
coral database. In addition we used unpublished data from
habitat mapping surveys by the Marine and Freshwater Research
Institute (MFRI) in Iceland (Ólafsdóttir and Burgos, 2012) and
the MAREANO project in Norway (Buhl-Mortensen et al.,
2015b), and recent video observations carried out in the Faroe
Islands (Buhl-Mortensen et al., 2019). We included by-catch data
from the Joint Annual Norwegian-Russian Ecosystem Surveys
in the Barents Sea (Jørgensen et al., 2015), and from the MFRI
autumn surveys. We also extracted data from the ICES VME
database (Morato et al., 2018), and the Ocean Biogeographic
Information System (OBIS, Grassle, 2000). Finally, records were
extracted from the literature including published data from the
early expeditions, and the more recent work by Copley et al.
(1996), Klitgaard and Tendal (2004), Mortensen et al. (1995,
2001), Cárdenas and Rapp (2015), and Hestetun et al. (2017). A
complete list of the publications used to obtain records of VME
indicator species can be found in Buhl-Mortensen et al. (2015b)
and as an appendix in Buhl-Mortensen et al. (2019).

2.3. Selection of VMEs and Indicator
Species
For the selection of the relevant vulnerable marine ecosystems
and their indicator species for the Arctic and sub-Arctic area of
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this study, we considered: the VME classifications made by the
Convention for the Protection of the Marine Environment of the
North East Atlantic (OSPAR, 2010b); the list of VMEs compiled
by the North East Atlantic Fisheries Commission (NEAFC,
2014) and the Northwest Atlantic Fisheries Organization (NAFO,
Fuller et al., 2008); and the revised list of deep-water VMEs with
characteristic taxa for ICES/NAFOwaters by the ICESWorkshop
on Vulnerable Marine Ecosystem Database (WKVME, ICES,
2016). In addition we used recent experience gathered by national
mapping projects in the study region. We selected 44 indicator
taxa of 11 VME types and sub-types in the study area (Table 1).
In total, 21 models were at the species level (e.g., Acanella
arbusculla). The remaining 23 models were fitted at the genus
level, either because most of the compiled record originated
from video observations and the species could not be identified
(e.g., Stryphnus sp.), or because there were several species of the
same genus and the number of records was too low to allow
modeling of individual species (e.g., Cladorhiza sp.). The VME
types included in this study are the following:

2.3.1. Soft Bottom Sponge Aggregationse
In the Nordic Seas, demosponges of the order Tetractinellida
form dense aggregations commonly known as “ostur” or “cheese
bottom.” These species can occur at depths between 150 and
1,700 m, on gravel and coarse-sand bottoms (Klitgaard and
Tendal, 2004; Murillo et al., 2012; Maldonado et al., 2015).
Two main types of ostur assemblages were recognized by
Klitgaard and Tendal (2004) : the boreal “ostur” and the cold
water “ostur.” The boreal “ostur” is, according to Klitgaard and
Tendal (2004), characterized by Geodia barretti, G. macandrewii,
G. phlegraei, G. atlantica, Stelletta normaini, and Strypnhus
ponderosus, although more recently it has been suggested that
the latter species correspond to Strypnhus fortis (Cárdenas and
Rapp, 2015; Maldonado et al., 2015). Boreal “ostur” assemblages
were observed on some areas of the western Barents Sea, the
Norwegian shelf (Kutti et al., 2013; Gonzalez-Mirelis and Buhl-
Mortensen, 2015) and Faroese shelf (Klitgaard et al., 1997;
Davison et al., 2019), and off southern Iceland (Klitgaard and
Tendal, 2004). The cold water “ostur” is characterized by G.
hentscheli, G. parva, and Stelletta raphidiophora, and it is found
off northern Iceland, the Denmark Strait, off East Greenland,
and north of Spitzbergen (Klitgaard and Tendal, 2004). The
models of the distribution of species of the genus Geodia in the
North Atlantic made by Howell et al. (2016) agreed with the
observed distribution patterns. We fitted eight models of sponges
considered indicators of soft bottom sponge aggregations: six
models based on the Geodia species, and two models for sponges
of the genera Stryphnus and Stelletta.

2.3.2. Hard Bottom Sponge Aggregations
A range of medium- to large-sized sponges occur on hard
substrates including bedrock, lithified crust, and rocks. In the
study area these include various axinellid sponges from the
genera Axinella and Phakellia, and the demosponges Antho
dichotoma andMycale lingua. Off northern Norway, hard bottom
demospongiae represents a single community (Gonzalez-Mirelis

TABLE 1 | List of the 44 VME indicator taxa selected for modeling using SDMs.

VME type and subtype Indicator taxa Number

of records

Soft bottom sponge Geodia atlantica 527

aggregations Geodia barretti 3,265

Geodia macandrewi 432

Geodia phlegraei 92

Geodia hentscheli 79

Geodia parva 50

Strypnhus sp., S. fortis, S. ponderosus 601

Stelletta sp., S. normani, S. rhaphidiophora 889

Hard bottom sponge Axinella sp., A. infundibuliformis 1,755

aggregations Phakelia sp., P. robusta, P. ventilabrum 3,997

Anto (Antho) dichotoma 793

Tethya sp., T. aurantium, T. cintrina 480

Mycale (Mycale) lingua 2,133

Polymastia sp., Polymastia cf. uberrima 841

Craniella sp., C. cranium,

C. zetlandia, Tetilla sp. 646

Deep arctic sponge Caulophacus (Caulophacus) arcticus 119

aggregations Cladorhiza sp., C. abyssicola, C.
corticocancellata,

C. gelida, C. oxeata 88

Chondrocladia (Chondrocladia) grandis 205

Asconema sp. 237

Lycopodina sp., L. tendali, L.pressiformis 45

Scleractinean reefs and Lophelia pertusa 6,725

colonies Madrepora oculata 364

Solenosmilia variabilis 47

Soft bottom gorgonian Radicipes sp., R. gracilis 707

gardens Acanella arbuscula 339

Isidella lofotensis 162

Cup coral fields Flabellum sp., F. (Ulocyathus) alabastrum,

F. (Ulocyathus) angulare, F. (Ulocyathus)
macadrewi

281

Caryophylla (Caryophyllia) smithii 2,849

Hard bottom gorgonian Paragorgia arborea 1,169

gardens Paramuricea sp., P. placomus 420

Primnoa resedaeformis 682

Anthomastus sp., A. grandiflorus, A.
purpureus

149

Anthothela grandiflora 59

Stylasterid corals on Stylasteridae, Stylaster sp., S. norvegicus,

hard bottom S. gemmascens 398

Cauliflower coral fields Drifa glomerata 1,418

Duva florida 300

Gersemia sp., G. fruticosa, G. rubiformis 1,085

Shallow sea pen Funiculina sp., Funiculina quadrangularis 976

communities Virgularia sp., V. glacialis, V. mirabilis,

V. tuberculata 2,543

Kophobelemnon sp., Kophobelemnon
stelliferum

2,580

Pennatula sp., P. phosphorea 2,259

Halipteris sp. 315

Deep-sea sea pen Anthoptilum sp., A. murrayi, A. grandiflorum 66

communities Umbellula sp., U. ecrinus 516
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and Buhl-Mortensen, 2015). In addition to these four taxa, the
ICES WGDEC (ICES, 2016) considered the family Tetillidae
(genera Crainella and Tetilla), as well as sponges of the genera
Polymastia and Tethya also to be indicators of hard bottom
sponge aggregations, and these are frequently recorded in the
Nordic seas (Buhl-Mortensen et al., 2012, 2015b). Models were
fitted to seven indicator taxa of this VME.

2.3.3. Deep Arctic Sponge Aggregations
Several species of hexactinellid sponges are found in relatively
high densities in deep cold (<0 ◦C) waters. One of the most
common species in the Norwegian Sea is Caulophacus arcticus,
which is generally found on hard bottoms at the lower part of
the continental slope (Tendal and Barthel, 1993; Buhl-Mortensen
et al., 2015b), and has been observed on the base of the Schultz
Massif Seamount, at depths below 1,400 m (Roberts et al., 2018).
Hexactinellid sponges of the genus Asconema can also constitute
sponge grounds, although in restricted geographical settings
(ICES, 2008). Asconema foliata has been observed on seamounts
(Roberts et al., 2018), and is considered as a main habitat
builder associated to cold water “ostur” habitats (Maldonado
et al., 2015). In addition, poecilosclerid demosponges of the
family Cladorhizidae become numerous at depths below 400
m, and at greater depths they constitute a large fraction of the
sponge fauna (Hestetun et al., 2017). Several species of these
carnivorous sponges of the genera Chrondocladia, Cladorhiza,
and Lycopodina have been reported in the Nordic Seas (Hestetun
et al., 2017). They are usually found in low densities, although
aggregations of Chondrocladia grandis and Cladorhiza sp. have
been observed off northern Iceland. Models were fitted to five
indicator taxa of this VME.

2.3.4. Soft Bottom Coral Gardens
The term “coral garden” refers to relatively dense aggregations of
colonies or individuals of one or several coral species (OSPAR,
2010a). They can be classified by substrate type (soft and hard
bottoms) and the main representative taxa (ICES, 2016). Soft
bottom coral gardens can be comprised by gorgonians of the
families Isididae and Chrysogorgiidae, which can form dense
aggregations on sandy mud (Buhl-Mortensen et al., 2015d).
Among these, Isidella lofotensis is found almost exclusively off
Norway (Buhl-Mortensen et al., 2015c), although it has been
reported off east Greenland (Mayer and Piepenburg, 1996).
Radicipes sp. aggregations have been observed off Norway only
on the area known as the Bjørnøya slide, but it seems to be
more widely distributed south of Iceland (Buhl-Mortensen et al.,
2015c). In the warmer waters off southern Iceland the bamboo
coral Acanella arbuscula is also relatively common. Soft-bottom
coral gardens can also be comprised of solitary scleractinean
corals of the genus Caryophyllia and Flabellum aggregated in
relatively high densities forming what is known as “cup coral
fields” (Baker et al., 2012; Buhl-Mortensen et al., 2015d). Models
were produced for six indicator taxa of this VME.

2.3.5. Hard Bottom Coral Gardens
Hard-bottom coral gardens often occur in locations with strong
currents. In the study area three of the subtypes from the

ICES VME classification (ICES, 2016) are relevant: hard bottom
gorgonian gardens, stylasterid corals on hard bottom, and
cauliflower coral fields. In the Nordic Seas, the main indicator
taxa of gorgonian gardens are Paragorgia arborea, Paramuricea
sp., and Primnoa resedaeformis. In addition, Anthomastus sp.
is also frequent south of Iceland. Hydrocorals from the family
Stylasteridae are not commonly observed in large aggregations
but form part of mixed coral communities. Cauliflower corals
of the family Nephtheidae (Duva florida, Drifa glomerata, and
Gersemia sp.) are widely distributed and dense aggregations have
been observed in video surveys off NW and SE of Iceland at 500–
600 m (Buhl-Mortensen et al., 2019), and off northern Norway
(ICES, 2011).

2.3.6. Reef-Forming Scleractineans
In Nordic waters only three species of scleractinean corals
are reef building: Lophelia pertussa, Madrepora oculata, and
Solenosmilia variabilis. Among them, L. pertusa is the most
common and has been recorded frequently on the Norwegian
shelf, around the Faroe Islands and off southern Iceland. M.
oculata is less abundant, has a more limited framework-building
capacity, and it often co-occurs with L. pertusa (Roberts et al.,
2009). In our study area, S. variabilis has been observed deep
on the Reykjanes Ridge south of Iceland (Copley et al., 1996).
Reef forming scleractineans do not always form reefs. For
example, on vertical solid substrates coral debris cannot aggregate
and reefs do not develop (Buhl-Mortensen et al., 2015d). In
the North Atlantic reef-forming scleractineans can also form
densely-packed “thickets,” as part of hard bottom coral gardens,
or as isolated colonies (Mortensen and Buhl-Mortensen, 2004,
2005; Davies et al., 2017). These growth forms are usually
considered to represent different habitats. For example, the ICES
VME classification distinguishes between cold-water coral reefs,
non-reefal scleractineans, and colonial scleractineans on rocky
outcrops (ICES, 2016). Because the growth form is seldom known
or reported all observations of each taxon were grouped under a
single VME type. Three models were fitted using presence data of
each of the three reef-forming scleractineans.

2.3.7. Shallow Sea Pen Communities
Sea pen communities are usually defined as areas of bioturbated
fine sediments with relatively high densities of sea pens. In
OSPAR’s list of threatened and/or declining habitats, this biotope
is termed “sea-pens and burrowing megafauna communities”
(Curd, 2010). This biotope is found in the relatively warm
Atlantic water shallower than 700 m. The most common sea
pen species are Funiculina quadrangularis, Virgularia mirabilis,
Pennatula phosphorea, and Kophobelemnon stelliferum. Here we
fitted four models based on records of these four species.

2.3.8. Deep-Sea Sea Pen Communities
The sea pen species Umbellula spp. and Anthoptilum spp. occur
in deep waters (below 700 m) in an environment with colder
temperatures and less anthropogenic activities than shallowwater
sea pens, and therefore should be regarded as a separate sea pen
VME or at least a distinct sub-type (Buhl-Mortensen et al., 2019).
High densities of Umbellula encrinus are found in deep waters
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north of Iceland and on the Norwegian slope, at depths below
800m in theNorwegian Sea-Arctic Intermediate water. This large
sea pen can reach a height of three meters. Off southern Iceland,
sea pens of the genus Anthoptilum are also found in deep, albeit
warmer waters. Models were fitted for both species.

2.4. Environmental Predictors
Bathymetry data for the study area was obtained from the
General Bathymetric Chart of the Oceans (GEBCO version
20150318, Weatherall et al., 2015), a global relief model with
a resolution of 30 arc-seconds. The data was projected using a
Lamberts Equal Area projection centered at 69◦N and 4◦W and
bilinearly interpolated to obtain a grid with a resolution of 500
m. All other environmental data sets were adjusted to match the
same projection and resolution using bilinear interpolation.

The seabed morphology was characterized following Lecours
et al. (2017), using the following parameters derived from the
500 m bathymetry grid: local mean depth, slope, aspect (divided
into northness and eastness), bathymetric position index (BPI),
and vector roughness. The BPI indicates if a particular pixel
forms part of a positive or negative feature of the surrounding
terrain (Wilson et al., 2007). Vector roughness on the other
hand measures the topographic surface roughness by quantifying
the local variability in slope and aspect (McKean and Roering,
2004). Terrain analysis variables were calculated using a moving
window of 3 cells, corresponding to a scale of 1,500 m, by
fitting a bivariate quadratic polynomial to each window size using
least squares. In addition BPI and vector roughness were also
calculated using a moving window of 21 cells, corresponding to a
scale of 10,500 m.

Temperature and salinity profiles for the study area were
obtained from the NISE project (Norwegian Iceland Seas
Experiment; Nilsen, 2008). Near-bottom temperature and
salinity gridded fields were estimated following the methodology
described in Jochumsen et al. (2016). The data going into the
gridding corresponded to the deepest observation point. To avoid
including shallow profiles, we only used observations obtained
deeper than 80 % and within 80 m of the bottom depth. The
gridding was then performed on a spatial resolution of 0.2◦

longitudinal by 0.1◦ latitudinal using an objective analysis and
with an influence radius of 50 km. Minimum and maximum
temperature, temperature difference (the difference between the
lowest and highest temperature values), and mean salinity were
calculated by interpolating along topography following Davis
(1998) using a topography length scale of 300 km (Voet et al.,
2010; Skagseth and Mork, 2012).

The aragonite saturation state for the study area was obtained
from data provided by Jiang et al. (2015), and interpolated using
a similar methodology to the temperature and salinity. Since the
aragonite data is much more limited, the criteria for data to
be included in the gridding was relaxed. We only required the
observation depth to be within 80% of the bottom depth, and
further we increased the influence radius to 200 km.

Monthly averages of mean net primary productivity (mg
C m−2 day−1, NPP) estimated from MODIS data using the
carbon-based Production Model (CbPM) (Behrenfeld et al.,
2005; Westberry et al., 2008) were obtained from the Ocean

Productivity site1. Data was downloaded for the period 2006-
2015 with a resolution of 5 arc min. Particulate organic carbon
flux to the sea bottom (POC flux; g C m−2 year−1) was estimated
from the bottom depth and the seasonal variation in NPP, defined
as the ratio between the standard deviation and the mean of
monthly NPP values (Lutz et al., 2002, 2007).

Data on near-bottom average current speed and
concentrations of nitrate, phosphate, and silicate were
obtained from the Bio-ORACLE v2.0 database using the
package “sdmpredictors” (Assis et al., 2018) in the R statistical
environment (R Core Team, 2019), which provides layers
of near-bottom physical and chemical parameters. Current
velocity data (m.s−1) was produced by the Global Ocean
Physics Reanalysis (ECMWF) using the OCEAN5 system at a
native resolution of 0.25◦ in the horizontal and 75 levels in the
vertical, with the separation between vertical levels increasing
with depth. Nutrient concentrations (mmol.m−3) were derived
from the Global Ocean Biogeochemistry Non-assimilative
Hindcast (PISCES). In both cases, data was obtained from the
E.U. Copernicus Marine Service Information2, and statistically
downscaled to a resolution of 5 arcmin using a kriging model
(Assis et al., 2018).

Collinearity among environmental layers was explored by
computing the Variance Inflation Factor (VIF) (Dormann et al.,
2013). Variables with high collinearity were eliminated through
a stepwise procedure in which the VIF was calculated for
all variables, the variable with highest VIF was removed,
and VIFs were recalculated until all variables had a VIF
value lower than 10 (Naimi et al., 2014). This procedure
selected maximum temperature, nitrate and phosphate as
variables causing collinearity, therefore these parameters were
not included as predictors. The correlation among remaining
variables is shown in Figure 2. In the case of MaxEnt, it has been
suggested that variables should be selected based on previous
knowledge on the biology and ecology of the modeled species,
but that stricter selection of variables is unlikely to improve
models (Elith and Graham, 2009; Elith et al., 2011). Therefore we
did not attempted to select particular sets of predictor variables
for individual taxa, and all models were constructed using all
available variables.

2.5. Modeling Approach
In this study, rather than modeling the distribution of a VME
by using the combined records of all indicator taxa (as done
e.g., by Buhl-Mortensen et al., 2019), we opted to model each
taxon individually. The rationale for this approach is that some
of the VMEs include indicator taxa with different environmental
requirements. For example, the corals Isidella lofotensis and
Radicipes sp. are both considered indicators of soft-bottom coral
gardens, but I. lofotensis is almost exclusively found on the
Norwegian shelf, while Raicipes sp. is much more common off
southern Iceland (Buhl-Mortensen et al., 2015c). A single model
with records of both taxa will overestimate their distribution
because a wider range of environmental settings would be

1http://www.science.oregonstate.edu/ocean.productivity/index.php
2http://marine.copernicus.eu
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FIGURE 2 | Correlation matrix among the environmental variables used as predictor for the species distribution models: Aragonite saturation state (Arag), broad-scale

bathimetric position index (BPI BS), small-scale bathimetric position index (BPI SS), bottom depth (Depth), eastness (East), northness (North), mean net primary

productivity (NPP), particulate organic carbon (POC), mean salinity (Sal), silica concentration (Si), bottom slope (Slope), near-bottom current speed (Speed),

temperature difference (Tdiff), minimum temperature (Tmin), broad-scale vector roughness, and small-scale vector roughness. Colors and size of circles indicate

correlation values, from 1 (blue) to –1 (red).

considered suitable. To avoid this, we choose to (a) model
individually each of the 44 taxon, (b) measure the similarity
among the predicted distributions using the “I” similarity statistic
(Warren et al., 2008), (c) use cluster analysis to identify groups
of taxa with similar predicted distributions, and (d) combine the
predictions of the taxa of each group using a stacked species
distribution approach in order to obtain a predictive map of the
distribution of each group. Finally, a VME index was computed
to map the distribution and relative vulnerability of VMEs in the
Nordic Seas.

2.6. Models of Individual Taxa
The distribution of VME indicator taxa was predicted
using species distribution models (SDMs), which predict
the geographic distribution of a species by identifying

the combinations of environmental variables where they
are observed to be more prevalent and then mapping that
combination of variables into geographic space. We predicted
the distribution of suitable habitats for VME indicator taxa
using the maximum entropy algorithm MaxEnt (version 3.4.1).
MaxEnt is a machine learning model that uses a presence-only
approach to quantify the relationship between environmental
variables at locations where a species has been observed vs.
background locations in the study region (Phillips et al., 2006).
MaxEnt uses transformations of the original environmental
variables named “feature classes” (FC), namely the linear,
product, quadratic, hinge, threshold, and categorical feature
classes (Elith et al., 2011). Different combinations of feature
classes allow the construction of very flexible models. By default,
MaxEnt selects the number of feature classes based on the
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number of presence observations, increasing the number of
feature classes with the number of records. To avoid overfitting,
MaxEnt uses regularization, which penalizes the inclusion of
parameters that produce small improvements in the model
(Merow et al., 2013). Regularization is controlled by a parameter
termed regularization multiplier (RM, default value = 1). Higher
RM values reduce the flexibility in the relationships between
species presence and environmental predictor variables. The
performance of SDM models is sensible to model specifications
(Elith et al., 2011; Merow et al., 2013; Warren et al., 2014).
Recent studies have shown that the default MaxEnt options (i.e.,
the RM value and feature classes used) can produce models
that perform poorly (Radosavljevic and Anderson, 2014). To
select model settings that approximate optimal levels of model
complexity, models were fitted to each VME indicator taxon
using different combinations of feature classes and regularization
multiplier values using the “ENMeval” (Muscarella et al., 2014)
and “dismo” (Hijmans et al., 2017) packages in the R statistical
environment (R Core Team, 2019). Each model was fitted using
k-fold validation with five bins. To predict the distribution of
each VME indicator taxon we selected the model with the highest
average test AUC (area under the curve of the receiver operating
characteristic plot), averaged across the 5-folds. This was the
model with the best capability to successfully discriminate
occurrence from background localities (Muscarella et al., 2014).
In addition, we evaluated the Symmetric Extremal Dependence
Index (SEDI, Wunderlich et al., 2019). SEDI is analogous to the
widely used True Skill Statistic (TSS, Allouche et al., 2006) but
better behaved in presence-background models because its error
weighting reflects the low confidence in the pseudo-absence data,
in particular in models with low prevalence and a high number
of background points as the models in this study (Wunderlich
et al., 2019). The SEDI for each model was estimated using a
confusion matrix obtained after converting the model prediction
into a binary presence-absence raster using the threshold that
maximizes the sum of sensitivity and specificity (maxSSS),
minimizing commission and omission errors (Liu et al., 2016).
This threshold is commonly used to transform the output of
SDMs into a binary output (Liu et al., 2005; Elith et al., 2006).

To evaluate if the models were overfitting we examined
two metrics. The first is the difference between training and
testing AUC, averaged across the 5 random folds (Warren and
Seifert, 2011). This metric is expected to be high if models
are overfitting the data (Muscarella et al., 2014). The second is
the values of the 10% training omission rate (OR10). This is a
threshold-dependent metric equivalent to the proportion of test
localities with predicted suitability values lower than excluding
the 10% of training localities with the lowest predicted suitability.
Omission rates higher that the expected value of 10% typically
indicate model overfitting (Muscarella et al., 2014; Radosavljevic
and Anderson, 2014). Higher values are sometimes used to
distinguish between degrees of overfitting. Here we followed
Kivlin et al. (2017) by considering values below 0.2 as indicators
of models with relatively low degrees of overfitting.

The model selected was used to indicate the distribution of
VME indicator taxa in the study area based on the predicted
occurrence of suitable habitat. Predictions were obtained for each

cell in the same 500m grid used for the environmental predictors.
Model predictions were exported in the cloglog scale, which
under specific conditions can be approximated to a probability
of presence (Phillips et al., 2017). In each model we computed
the permutation importance of each predictor variable, which is
the drop in AUC resulting from randomly permuting the values
of the predictor variable on the training and background data sets
and reevaluating the model (Phillips et al., 2006). Finally, models
were examined visually to evaluate that high suitability areas
corresponded to the locations of the majority of observations
(Radosavljevic and Anderson, 2014).

2.7. Target Group Background
The spatial distribution of the available records of VME indicator
species showed a strong sampling bias within the study area. In
some areas the sampling intensity was high, in particular on areas
of the Norwegian shelf and in the Barents Sea that have been
mapped by the MAREANO programme (Buhl-Mortensen et al.,
2015b), but also to some degree the Icelandic and Faroese shelves.
In other areas like the eastern Greenland shelf and the deep
basins the sampling effort has been very low or non-existent, or
existing data is unavailable. Sampling bias can strongly influence
the reliability of predictions of presence-background modeling.
One way to reduce the effect of sampling bias in presence-only
models is to use a set of background points with the same bias
as the sampling effort (Phillips et al., 2009; Fourcade et al., 2014).
To do this we modeled the sampling effort in the study area by
fitting a kernel density estimate (KDE) to the locations of all
indicator taxa compiled in the database, an approach known as
target-group sampling (Elith et al., 2011; Merow et al., 2013). The
KDE produced an estimation of the density of samples in each cell
of the 500 m grid. These estimates were normalized so the sum of
all cells was equal to one. These values were used to select 50,000
background points using the normalized kernel density values as
a probability grid.

2.8. Niche Similarity
Niche overlap among all VME indicator taxa was estimated
using the “I” similarity statistic (Warren et al., 2008), which
ranges between 0 (no overlap) and 1 (niches are identical).
To verify if VME classes currently used (e.g., ICES, 2016)
consisted of indicator taxa with similar predicted distribution
we carried out a cluster analysis using the Ward method, which
defines groups by minimizing the within-group sum of squares
(Legendre and Legendre, 1998). As a measure of dissimilarity
between predicted distributions we used the complement of the
“I” similarity statistic (1 - I). Groups of VME indicator taxa with
similar distributions were identified from a dendrogram using
a dissimilarity cutoff value of 0.4. This value was selected to
produce groups roughly similar to known VME classifications.

2.9. Stacked Species Distribution Models
To map patterns of environmental suitability for VMEs, we
merged the predicted distribution of VME indicator taxa to
form stacked species distribution models (S-SDMs, Ferrier
and Guisan, 2006; D’Amen et al., 2017; Wiltshire et al.,
2018). S-SDMs is an approach that follows the “predict first,
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assemble latter” strategy in which the distribution of each
individual taxon is modeled first, and then the predictions are
combined (or “stacked") to produce a community prediction
(D’Amen et al., 2017). This approach allows for the use of
presence-only data where the presence records originated from
different sources and where records of species of the same
community or habitat are not usually collected at the same
location. This is important when modeling deep-sea benthic
megafauna in areas where the majority of records originated
from fisheries by-catch and from scientific surveys using gear
with relatively low sampling efficiency like dredges or bottom
trawls (as opposed to underwater video surveys, which provide
a more complete description of the benthic megafauna in a
particular location). The S-SDMs approach also provides the
flexibility of letting different environmental variables influence
the distribution of individual species with distinct species-
environment relationships (Ferrier and Guisan, 2006).

Here we produced S-SDMs for groups of VME indicator
taxa with similar predicted habitat suitability, as defined by the
cluster analysis of the “I” similarity statistic. SDMswere produced
by averaging the predictions of individual VME indicator taxa
(Calabrese et al., 2014; D’Amen et al., 2015;Wiltshire et al., 2018),
and scaling the resulting average to a range of values between 0
and 1.

In the absence of knowledge on species prevalence, the
output of presence-only models like MaxEnt is monotonically,
but not proportionally, related to the relative probability of
presence (Elith et al., 2011; Wiltshire et al., 2018), and cannot
be interpreted as a measure of abundance or compared between
species (Elith et al., 2011; Merow et al., 2013). As a result,
the average suitability in each cell is likely to be related to
the relative species richness in that location, although the
relationship is not necessarily directly proportional (Aranda
and Lobo, 2011; Guillera-Arroita et al., 2015; Wiltshire et al.,
2018). Therefore, rather than attempting to predict species
richness or community composition, we considered the average
suitability as a tool to examine patterns of habitat suitability
in each VME and to highlight areas of high average suitability
that should be examined more closely and targeted for
conservation measurements.

2.10. VME Index
To obtain a general overview of the distribution and relative
vulnerability of the VMEs in the Nordic Seas, we computed a
SDM-based VME Index analogous to the VME index developed
for the ICES VME database (Morato et al., 2018). This index
is a combination of a set of indicator scores, which quantifies
in very broad terms the vulnerability of a taxa or group of
taxa to anthropogenic impacts, and abundance scores based on
abundance data of each taxon usually obtained from by-catch.

The indicator scores in Morato et al. (2018) were based on
the vulnerability criteria defined by FAO (2009): uniqueness
or rareness, functional significance, fragility, life-history that
makes recovery difficult, and structural complexity. The degree
to which each group fit each of the five criteria were scored
using a scale between 1 (low) and 5 (high) by a group of experts
(Morato et al., 2018). As the five indicators are considered to

TABLE 2 | Indicator scores for VME taxa groups, based on the degree to which

each group fits the FAO VME criteria (FAO, 2009): uniqueness or rareness,

functional significance, fragility, life-history that makes recovery difficult, and

structural complexity.

VME Indicator

group

Unique. Funct. Fragility Life

history

Structural Indicator

score

Stony coral 3 4 5 5 5 4.47

Large sponge 2 5 4 4 3 3.74

Generic sponges 2 3 3 3 2 2.65

Gorgonian 4 3 3 5 2.5 3.61

Stylasterid 4 1 4 2.5 2 2.94

Cup coral 2 1 2 4 1 2.28

Soft coral 1 1 2 2 2 1.67

Adapted from Morato et al. (2018).

be approximately orthogonal, an indicator score was computed
for each group using the quadratic mean (Morato et al., 2018).
We used the indicator scores of the seven VME indicator
groups present in our study area (Table 2). Each of the 44
VME indicator taxon in our study were assigned to one of the
seven VME indicator groups. Following Morato et al. (2018),
sponges of the genera Asconema, Craniella, Geodia, Polymastia,
Strypnhus, Tetilla, and Thenea were included in the “large
sponges” group, while the remaining genera were considered as
“generic sponges.”

The ICES VME index combines the indicator scores with an
abundance score where by-catch weights are classified into a 1-5
scale based on current encounter threshold for live corals and live
sponges established byNEAFC and the EuropeanUnion (Morato
et al., 2018). In an analogous manner, we scaled the predicted
habitat suitability of each VME indicator taxon to a scale of 1-5
by computing the maxSSS threshold (Liu et al., 2016). Cells with
values below this threshold received an abundance score of zero.
Suitability values above the threshold were linearly scaled into a
1-5 scale, where 1 corresponds to the presence threshold and 5
corresponds to 1 (the maximum possible suitability value). The
final SMD-based VME index was calculated by thresholding and
scaling each of the predicted suitability for the 44 SDMs into a
1-5 scale, and multiplying by the corresponding VME indicator
score. As opposed to Morato et al. (2018) we opted to average the
VME index among the 44 indicator taxa, in order to highlight
areas suitable for multiple VME indicator taxa.

3. RESULTS

3.1. Model Performance
All models had average test AUC values above 0.85, with
30 models having AUC values above 0.9, which indicates
good model performances and capacity to distinguish between
observation and background points (Table 3). In addition,
all models had relatively high SEDI values which indicate
good model performance and a balance of omission and
comission errors. In most cases (n = 33) the model with the
highest AUC included all four feature classes (linear, quadratic,
hinge, and product). This is the default behavior of MaxEnt,
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TABLE 3 | Performance of the models selected for the 44 VME indicator taxa.

Indicator taxa AUC SEDI FC RM AUC diff OR10

Geodia atlantica 0.8935 0.911 LQHP 1 0.046 0.146

Geodia barretti 0.8818 0.893 LQHP 1 0.016 0.12

Geodia macandrewi 0.8723 0.88 LQHP 1.5 0.036 0.15

Geodia phlegraei 0.8787 0.834 H 1 0.122 0.252

Geodia parva 0.9719 0.94 LQHP 3 0.026 0.202

Geodia hentscheli 0.9734 0.864 H 3 0.025 0.2

Stryphnus sp. 0.8991 0.921 LQHP 1 0.036 0.159

Stelletta sp. 0.8784 0.845 LQHP 2.5 0.026 0.143

Axinellida sp. 0.8876 0.934 LQHP 1 0.014 0.121

Phakellia sp. 0.858 0.906 LQHP 1 0.012 0.112

Anto (A.) dichotoma 0.9046 0.953 LQHP 1 0.02 0.137

Thetya sp. 0.9152 0.911 LQHP 1 0.028 0.135

Mycale (M.) lingua 0.8729 0.906 LQHP 1 0.017 0.125

Polymastia sp. 0.8595 0.822 LQHP 1 0.026 0.146

Tetillidae 0.8647 0.873 LQHP 1 0.037 0.152

Caulophacus (C.) arcticus 0.9676 0.772 LQH 4.5 0.011 0.119

Cladorrhiza sp. 0.8935 0.647 LQHP 4 0.037 0.145

Chrondocladia (C.) grandis 0.9638 0.952 H 2.5 0.01 0.128

Asconema sp. 0.9128 0.903 LQHP 1.5 0.041 0.163

Lycopodina sp. 0.9631 0.848 LQHP 2 0.043 0.3

Lophelia pertussa 0.9123 0.926 LQHP 1 0.006 0.107

Madrepora oculata 0.9644 0.958 LQHP 2.5 0.011 0.127

Solenosmilia variabilis 0.9772 0.826 H 5 0.019 0.15

Isidella lophotensis 0.9625 0.965 LQH 1 0.043 0.25

Radicipes sp. 0.9801 0.972 H 2.5 0.009 0.12

Acanella arbuscula 0.9879 0.948 LQHP 1 0.012 0.266

Flabellum sp. 0.9146 0.755 LQHP 1 0.047 0.2

Caryopyllia (C.) smithii 0.9799 0.974 LQH 1.5 0.005 0.133

Paragorgia arborea 0.945 0.964 LQHP 3 0.011 0.131

Paramuricea sp. 0.9181 0.918 LQHP 1 0.032 0.113

Primnoa resedaeformis 0.9186 0.928 LQHP 1 0.024 0.148

Anthomastus sp. 0.9673 0.863 LQHP 1 0.031 0.231

Anthotella grandiflora 0.9691 0.987 H 2.5 0.032 0.5

Stylasteridae 0.934 0.944 LQHP 1 0.031 0.17

Gersemia sp. 0.9294 0.851 LQHP 1 0.015 0.141

Drifa glomerata 0.9184 0.892 LQHP 1 0.025 0.168

Duva florida 0.9109 0.867 LQHP 1.5 0.049 0.189

Anthoptylum sp. 0.9868 0.936 LQHP 1 0.02 0.198

Umbellula sp. 0.958 0.938 LQHP 1 0.017 0.178

Funiculina sp. 0.8939 0.862 LQH 1 0.022 0.149

Vigularia sp. 0.8537 0.779 LQHP 1 0.028 0.124

Kophobelemnon sp. 0.919 0.854 LQHP 1 0.018 0.15

Pennatula sp. 0.9215 0.829 LQH 2 0.013 0.12

Halipteris sp. 0.9571 0.887 LQHP 1 0.074 0.265

AUC indicates the average test AUC (area under the curve of the receiver operating characteristic plot). SEDI is the Symmetric Extremal Dependence Index computed using a maxSSS
threshold. FC indicates the feature classes selected (L, Linear; Q, quadratic; H, hinge; P, product). RM is the value of the regularization multplier parameter. AUC diff is the difference
between training and testing AUC, averaged across 5 random folds. OR10 is the value that excludes the 10% of training localities with the lowest value (i.e., the values of the 10%
training omission rate), averaged across 5 random folds.

which selects the number of feature classes depending on the
number of presence records. A total of 17 models had a
regularization parameter (RM) of more than 1, which is the
default in MaxEnt.

In general, models had a relatively low degree of overfitting,
with an average OR10 (10% training omission rate) of 0.17. Only
six models had OR10 values equal or above 0.25, which we took
as indicator of high overfitting. The models with higher levels of
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overfitting were Anthothela grandiflora (OR10=0.50, Figure S6),
Lycopodina sp. (OR10= 0.30, Figure S7),Halipteris sp. (OR10=
0.27, Figure S5) Radicipes sp. (OR10 = 0.26, Figure S6), Geodia
phlegraei (OR10 = 0.25, Figure S2), and Isidella lophotensis
(OR10 = 0.25, Figure S10). In addition to these, the models
of Geodia atlantica (Figure S2), Asconema sp. (Figure S9), and
Duva florida (Figure S9) produced relatively high values of AUC
diff (the mean difference between training and testing AUC) also
suggesting overfitting.

3.2. Importance of Environmental Variables
There was high variability in the explanatory power of the
16 predictor variables, as measured by their permutation
importance, on the 44 MaxEnt models (Table 4). Minimum
temperature was the most important predictor across all models,
with an average permutation importance of 27.4% and explaining
more than 10% of the variability in 40 of the 44 models. In
individual models the importance of temperature reached up
to 78.7% and it was particularly high for cold-water sponges
(Caulophacus, Cladorrhiza, Chrondocladia Geodia phlegraei), but
also for some cold-water corals (Lophelia pertusa, Madrepora
oculata, Flabellum Gersemia), and gorgonians (Paragorgia
arborea, Paramuricea, Primnoa resedaeformis, andAnthomastus).
In addition, temperature difference had an average importance
of 4.8%.

Depth was the second most important predictor, with an
average importance of 20.2% and reaching up to 67.4%. Variables
describing the morphology of the seafloor (small and large scale
BPI and roughness, slope, northness, eastness) did not have
high average importance by themselves (0.13–3.6%), but their
averaged combined contribution was relatively large (11.86%)
and reached up to 26.3%.

The combined effect of variables related to seawater chemistry
(salinity, aragonite saturation state and silica concentration)
was also relatively large (average importance 21.9%). Aragonite
saturation state had an average importance of 6.5%, but had
higher importance on some taxa including Caryophyllia (52.0%),
Geodia phlegraei (20.21%), Stylasterids (32.9%), Drifa glomerata
(14.6%), and Madrepora oculata (12.5%). In general salinity had
a low explanatory power, with an average importance of 4.4%. For
two Geodia species, G. parva and G. hentschelli salinity explained
a large proportion of the variance.

3.3. Predicted Distributions and Niche
Similarity
Predicted distributions of individual taxa are shown in
Figures S1–S10. Pairwise niche similarity, measured by the “I”
similarity statistic, ranged between 0.03 and 0.95, indicating a
wide range of similarities among the predicted distribution of
the VME indicator taxa. The cluster dendrogram shows seven
groups (1–7) of VME indicator taxa at a dissimilarity level
of 0.4 (Figure 3). Three of the groups can be divided into
two subgroups each based on their dissimilarity value and the
similarity of the spatial patterns of the predicted distribution.
These groups represents VME indicator taxa with similar habitat
suitability as predicted by the models. The following groups
were identified:

3.3.1. Group 1
The first group includes the reef-forming corals Lophelia pertusa
and Madrepora oculata, the gorgonians Parmuricea sp., Primnoa
resedaeformis, and Pargorgia arborea, as well as corals of the
family Stylasteridae. These species are often found in close
proximity (Buhl-Mortensen et al., 2015c). Depending on local
conditions, L. pertusa and M. oculata may be the dominant
species and form coral reefs or coral thickets, or they can be
found as isolated colonies forming part of hard-bottom coral
gardens together with the other species in this group. This group
of VME taxa is predicted to be distributed in narrow areas on the
southern and western Icelandic shelf, around the Faroe Islands,
off southern Greenland, and broadly on the central Norwegian
shelf (Figure 4A).

3.3.2. Group 2
The second group includes three Geodia species (G. atlantica,
G. macandrewi, and G. phlegraei) considered characteristic
of the boreal “ostur” community (Klitgaard and Tendal,
2004), as well as the sponges Stelletta sp. and Strypnhus sp.
Klitgaard and Tendal (2004) included Stelletta normani and
Strypnhus ponderosus as part of the boreal “ostur,” while Stelletta
raphidiophora was considered associated to the cold “ostur”
community. Although we modeled Stelletta sp. and Strypnhus
sp. at the genus level, given the geographic distribution of our
samples it is likely that the majority of our records correspond to
the species associated boreal “ostur” (Figure S2). High suitability
for this group was observed off western Iceland, the Denmark
strait, and the southern Greenlandic shelf, off the Faroe Islands,
and in broad areas of the central and northern Norway shelf
(Figure 4B).

3.3.3. Group 3
The next group includes a number of sponge taxa usually
associated to hard bottoms. Two subgroups can be recognized
here. Subgroup 3A included Axinella sp., Phakellia sp., Antho
(Antho) dichotoma, and Mycale (Mycale) lingua. Areas of high
suitability for this group includes the central Norwegian shelf, the
western and southern Icelandic shelf, and off the Faroe Islands
(Figure 4C). Subgroup 3B included Thetya sp., Polymastia sp.
and Tetillidae, and also Geodia baretti, which is one of the
Geodia species usually considered as part of the boreal “ostur”
community (Klitgaard and Tendal, 2004). This group was
associated to the colder waters of the Barents Sea, the Greenlandic
shelf and off north Iceland, and to the shelf break off Norway
(Figure 4D).

3.3.4. Group 4
This group includes four indicator taxa of the shallow sea pen
VME: Funiculina sp., Pennatula sp., Kophobelemnon sp., and
Halipteris sp. Individual models for these taxa suggest that the
four taxa have areas of high suitability south of the GISR, on
the Skagerrak and in the North Sea, while only Funiculina sp.
and Kophobelemnon sp. have relatively high suitability on the
Norwegian shelf. The SSDM of these four taxa indicate some
areas of high combined suitability on the southern Icelandic shelf
and on the Skagerrak strait (Figure 5A).
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TABLE 4 | Permutation importance of environmental predictors: Minimum temperature (Tmin), temperature difference (Tdiff), bottom depth (depth), combined importance

of terrain parameters (Terr), aragonite saturation state (Arag), mean net primary productivity (NPP), particulate organic carbon (POC), salinity (Sal), silica concentration (Si),

and near-bottom current speed (Speed).

Indicator taxa Tmin Tdiff Depth Terr Arag NPP POC Sal Si Speed

Geodia atlantica 14.04 1.28 23.03 26.3 7.38 9.59 0.96 4.02 5.95 7.46

Geodia barretti 23.62 4.75 15.79 13.83 5.09 1.98 6.73 5.59 15.93 6.68

Geodia macandrewi 16.67 10.31 18.41 7.56 3.62 3.22 23.2 10.03 0.57 6.4

Geodia phlegraei 6.68 0 17.78 15.42 20.21 16.1 13.57 0.54 8.28 1.44

Geodia parva 39.57 17.72 4.14 3.92 0 0.49 0.48 30.56 0 3.11

Geodia hentscheli 8.57 6.74 2.65 4.08 0.06 3.36 0 52.37 16.4 5.77

Stryphnus sp. 20.25 6.85 14.39 17.59 1.04 0.34 4.88 7.26 18.61 8.79

Stelletta sp. 22.72 4.64 24.6 6.95 2.17 8.72 0 1.17 17.99 11.04

Axinellida sp. 18.08 4.44 11.96 14.76 1.92 0.79 12.21 5.55 24.67 5.62

Phakellia sp. 16.86 2.2 12.28 12.54 5.03 1.32 13.74 8.62 21.95 5.49

Anto (A.) dichotoma 16.17 0.73 10.17 10.28 6.43 4.9 13.75 3.94 30.77 2.85

Thetya sp. 15.47 2.99 34.44 7.33 5.01 1.05 3.22 1.74 21.48 7.27

Mycale (M.) lingua 3.39 3.34 33.13 15.5 4.36 2.19 5.86 5.43 22.11 4.68

Polymastia sp. 20.81 2.73 27.08 5.5 4.13 4.27 6.66 8.48 16.4 3.96

Tetillidae 19.01 4.2 11.15 14.47 5.9 2.32 19.41 3.48 17.9 2.16

Caulophacus (C.) arcticus 59.17 0 23.8 12.45 0 3.36 1.21 0 0 0

Cladorrhiza sp. 73.74 0 17.43 6.57 0 0 0.08 0 2.01 0.17

Chrondocladia (C.) grandis 68.27 0 18.12 2.25 1.67 0.02 2.47 4.08 0 3.12

Asconema sp. 24.68 7.69 31.67 14.66 1.66 1.12 7.35 1.29 7.57 2.34

Lycopodina sp. 26.78 10.02 8.91 11.52 3.5 1.39 5.47 0 31.13 1.27

Lophelia pertussa 38.58 1.34 17.41 15.1 4.08 5.66 13.1 2.32 0.33 2.07

Madrepora oculata 44.76 0.24 11.99 16.63 12.5 0.75 0.92 3.02 7.91 1.27

Solenosmilia variabilis 21.04 0.33 63.27 3.8 0 0 0 0 4.1 7.45

Isidella lophotensis 28.22 0.4 21.89 10.07 2.1 8.29 0 0.84 26.46 1.72

Radicipes sp. 22.7 0 66.97 1.27 0.45 8.61 0 0 0 0

Acanella arbuscula 18.1 31.72 6.3 6.41 2.8 0.32 9.62 1.48 15.99 7.26

Flabellum sp. 40.76 4.3 25.04 12.74 2.24 0.92 1.25 4.66 5.06 3.01

Caryopyllia (C.) smithii 10.98 7.72 9.86 7.2 52.03 0.78 0.99 6.96 0.1 3.37

Paragorgia arborea 24.59 0.99 28.36 19 1.65 3.31 1.38 4.19 16.54 0

Paramuricea sp. 30.82 3.11 6.6 22.87 20.3 0.98 3.3 5.05 4.08 2.89

Primnoa resedaeformis 27.58 2.55 18.96 15.65 6.44 1.49 24.65 0.71 1.75 0.21

Anthomastus sp. 41.03 0.11 3.96 12.56 11.75 3.54 0.32 0.11 22.96 3.66

Anthotella grandiflora 7.11 0 67.43 21.68 0 0 0 0 0 3.78

Stylasteridae 20.1 5.73 4.01 17.97 32.9 3.89 9.65 0.13 0.86 4.76

Gersemia sp. 78.71 1.85 1.88 5.21 1.62 4.45 2.31 0.81 0.13 3.05

Drifa glomerata 23.82 1.37 17.72 10.12 14.58 9.37 10.72 0.3 9.91 2.09

Duva florida 19.36 5.82 35.68 20.36 8.37 0.8 1.58 0 2.77 5.27

Anthoptylum sp. 38.5 18.24 5.02 21.89 1.06 0.69 0 0 13.33 1.27

Umbellula sp. 27.46 4.83 15.54 11.97 1.72 3.62 1.62 3.7 23.82 5.72

Funiculina sp. 32.44 12.26 12.8 11.95 7.79 6.99 7.17 0 5.54 3.05

Vigularia sp. 18.64 3.3 33.78 10.52 10.71 1.05 4.69 0.59 6.79 9.95

Kophobelemnon sp. 25.22 3.79 21.4 8.66 6.2 7.47 13.9 3.95 1.53 7.88

Pennatula sp. 35.33 7.04 6.27 4.62 6.23 4.32 1.83 0.2 20.69 13.47

Halipteris sp. 19.08 4.64 25.08 9.92 0 14.36 1.75 0.01 15.31 9.85

Only predictors with permutation importance >5 in at least one model were included.

3.3.5. Group 5
This group incorporates a mixture of taxa with predicted
suitability mostly south of the GISR including the gorgonians
Radicipes sp., Anthotella grandiflora, and Anthomastus sp., the
deep-water sea pen Anthoptilum sp., the cup coral Flabellum sp.,
and the reef-forming coral Solenosmilia variabilis (Figure 5B).

3.3.6. Group 6
This group consists of two subgroups of sponge taxa associated
to cold waters. Subgroup 6A included Geodia parva and
G. hentschelli, two species characteristic of the cold “ostur”
assemblage (Klitgaard and Tendal, 2004). This group showed
high suitability on the Greenlandic shelf (Figure 5C). Subgroup
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FIGURE 3 | Dendrogram of the predicted distribution of 44 VME indicator taxa, based on a cluster analysis (Ward method) of the complement of the “I” similarity

statistic computed among all predicted distributions. Red labels indicate the seven groups identified at the 0.4 dissimilarity value, and the six sub-groups identified by

examining the distribution patterns of taxa in each group.

6B included three taxa of carnivorous sponges Caulophacus (C.)
arcticus, Chladorhiza sp., and Lycopodina sp., and is predicted
to be present mostly on the deep basins on the Norway and
Greenland seas (Figure 5D).

3.3.7. Group 7
This group incorporates VME indicator species mostly associated
to the continental slopes north of the GISR. Two subgroups can
be identified in this group. Subgroup 7A included the deep-water

sea penUmbellula sp. and the carnivorous sponge Chrondocladia
(C.) grandis, with predicted distribution mainly restricted to the
deep continental slopes (Figure 6A). Subgroup 7B consisted of
the VME cauliflower coral fields indicator species Duva florida,
Drifa glomerata, and Gersemia sp., together with the sea pen
Virgularia sp. and the carnivorous sponge Asconema sp. Its
predicted distribution included the continental slope but also on
broader areas of the shelves off Greenland, northern Iceland and
the Faroe Islands, and on the Barents Sea (Figure 6B).
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FIGURE 4 | Predicted distribution of VMEs based on stacked species distribution model (SSMD) of (A) the reef-forming corals Lophelia pertusa and Madrepora
oculata, the gorgonians Paragorgia arborea, Primnoa resedaeformis, and Paramuricea sp., and Stylasterid corals, (B) ssponges of the taxa Geodia atlantica, G.
macandrewi, G. phlegraei, Stryphnus sp., and Stelletta sp., (C) sponges of the taxa Mycale sp., Axinellidae, Phakellia, and Antho (Antho) dichotoma, and (D) sponges

of the taxa Thethya sp., Geodia baretti, Polymastia sp., and Tetillidae.

The two VME indicator taxa Isidella lofotensis and
Caryophylla smithii had predicted distributions distinctly
different from the others and were not part of any cluster.
The gorgonian I. lofotensis is mainly restricted to Norwegian
waters, but has been reported off northern Greenland (Mayer
and Piepenburg, 1996; Buhl-Mortensen et al., 2015c), with a
predicted distribution also including some areas around the Jan
Mayen archipelago (Figure S10). The observed and predicted
distributions of the cup coral C. (C.) smithii was restricted to
some areas between the Shetland Islands and Norway, and within
the North Sea.

3.4. VME Index
Values for the computed VME index ranged between 0 and 8.4
(Figure 7). Areas with high VME index values indicate locations
where multiple VMEs are expected to be present, and/or where
the VMEs present had high values in the indicator scores
quantifying the vulnerability criteria defined by FAO (2009). The

VME index suggest that even though some VME indicator taxa
are predicted to have broad distributions, areas with high VME
index values are more restricted. These areas include most of the
Norwegian continental slope between 62◦N and 71◦N, coastal
areas in the Barents Sea, the shelf break off the Faroe Islands and
on the Faroe Bank, the southern and western Icelandic shelves,
areas in the Reykjanes Ridge and the Kolbeinseyn Ridge, and
some areas in the southern Greenlandic shelf and slope.

4. DISCUSSION

Here we presented the first comprehensive broad-scale modeling
effort for VME indicator taxa on the Nordic Seas, including
Icelandic and Faroese waters. Models of VME indicator taxa
have been produced at more local scales within this area, in
particular off Norway (Gonzalez-Mirelis and Buhl-Mortensen,
2015; Sundahl, 2017). Previous efforts in broad-scale models for
cold-water corals (e.g., Davies and Guinotte, 2011; Yesson et al.,
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FIGURE 5 | Predicted distribution of VMEs based on stacked species distribution model (SSMD) of (A) the sea pens Funiculina sp., Pennatula sp., Kophobelemnon
sp., and Halipteris sp., (B) the gorgonians Anthotella grandiflora,/Radicipes/ sp. and Anthomastus sp., the deep-water sea pen Anthoptilum sp., the cup coral

Flabellum sp., and the reef-forming coral Solenosmilia variabilis, (C) the sponges Geodia parva and G. hentschelli, and (D) the sponges Caulophacus (C.) arcticus,
Chladorhiza sp., and Lycopodina sp.

2012) did not include our study area, and with the exception
of Howell et al. (2016), who focused on Geodia sp., no broad
scale models have been produced for VME indicator taxa for this
area. The models presented in this study significantly expand the
knowledge on the potential distribution of VME indicator taxa
in Arctic and sub-Arctic waters, and provide a baseline for the
evaluation of the presence of VMEs in the Nordic Seas.

4.1. Limitations of the Modeling Approach
SDMs are subjected to an array of sources of uncertainty (Vierod
et al., 2014). Some degree of uncertainty is introduced by
the observations of the taxa modeled. Positional uncertainty
(Moudrý and Šímová, 2012; Naimi et al., 2014) and imperfect
detection (Monk, 2014) are issues when using historical records,
and data from fisheries by-catch and bottom trawl surveys.
Sampling bias (Beck et al., 2014; Fourcade et al., 2014) is an
important factor in our study, given that in some areas the
number of observations is high (i.e., the Norwegian shelf, and to

a lesser degree the Icelandic and Faroese shelves), while much
lower in other locations (the Greenlandic shelf and the deep
basins). Methods like the target group background approach
used in this study can reduce the effects of sampling bias in the
model prediction but cannot eliminate it completely. Additional
sources of uncertainty arise from the environmental predictors.
Oceanographic parameters are derived from databases like the
World Ocean Atlas (Locarnini et al., 2013) or from physical
ocean models (e.g., Logemann et al., 2013), often at relatively
coarse resolutions. Estimates from both sources have their
own uncertainty, but modeling approaches like MaxEnt do
not incorporate this uncertainty in the predictions. Finally, the
selection of the modeling approach itself can introduce biases
in the prediction (Piechaud et al., 2015). In our study we
utilized a single modeling framework, although some authors
have suggested the use of ensemble models, averaging predictions
from different models (Georgian et al., 2019). Given all the
potential sources of the uncertainty, we echo Piechaud et al.
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FIGURE 6 | Predicted distribution of VMEs based on a stacked species distribution model (SSMD) of (A) the deep-water sea pen Umbellula sp. and the carnivorous

sponge Chrondocladia (C.) grandis, and (B) the cauliflower corals Duva florida, Drifa glomerata, and Gersemia sp., the sea pen Virgularia sp. and the carnivorous

sponge Asconema sp.

FIGURE 7 | VME index combining indicator scores by Morato et al. (2018), and abundance scores from the species distribution models of 44 indicator taxa.

(2015) and urge caution when using the output of these models
for management purposes. Modeled distributions should be used
not as evidence of the presence of VMEs, but rather as a data-
driven approach to identify areas where the presence of these
habitats is likely (Hourigan, 2014).

In this study we have not produced uncertainty estimates
for the predicted distribution of VMEs. Before predicted VME
distributions can be used for management applications, it is
necessary to quantify their uncertainty and to develop methods
to incorporate the uncertainty in management decisions (Guisan
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et al., 2013). Although the internal uncertainty of MaxEnt
models is difficult to quantify, bootstrap methods have been
used to quantify some aspects of the uncertainty of MaxEnt
predictions (Anderson et al., 2016b). For example, if planning
tools like Zonation (Lehtomäki and Moilanen, 2013) or Marxan
(Watts et al., 2017) would be used to prioritize areas for
protection, it would be possible to prioritize locations with high
conservation value (i.e., with high VME suitability and low
uncertainty, Anderson et al., 2016b). Locations with confirmed
VME presence, for example from underwater video surveys,
would have no uncertainty and receive the highest priority for
conservation. Uncertainty maps could also inform which areas
should be targeted by future surveys, by highlighting locations
where VMEs are predicted to occur and where the predictions
are uncertain because of the lack of samples. An analysis of this
type should follow this study.

We need to perform independent validation of the models
(Elith et al., 2006; Davies and Guinotte, 2011) which can confirm
model predictions (e.g., Rooper et al., 2018) or can highlight
limitations of the predicted distributions. One form of validation
is to compare model predictions with new observations. For
example, recent observations in the Schultz Massif Seamount
indicated the presence of Geodia parva, G. hentscheli, Stelleta
sp., Caulophacus articus (Roberts et al., 2018), in agreement
with our predicted suitability for these taxa. A comparison
between predicted distributions and independent observations
can provide useful information about the performance of the
models. In an illustrative example, Anderson et al. (2016a)
validated models for four reef-forming corals in the South
Pacific Ocean using data from photographic surveys collected
independently from the data used to fit the model. They
found that the observed frequency of corals was much lower
than predicted and that the correlation between observed and
predicted coral distribution was not particularly high. The poor
performance of the models was attributed to the low precision
of the global bathymetry data, and to the lack of data on
geomorphology and substrate data at the scale appropriate to
the taxa modeled (Anderson et al., 2016a). These factors may be
also relevant for the models in our study. An inspection of high-
resolution bathymetry derived from multibeam data available
for the Norwegian shelf and some regions on the Icelandic
shelf indicates that the GEBCO global bathymetry models are
much less detailed and do not resolve small geomorphic features
that may be important for the distribution of VMEs (Davies
et al., 2009; Henry et al., 2010; Rengstorf et al., 2012). The lack
of information describing substrates is also likely to affect the
results of our models, as sediment composition is highly variable
and is known to influence the distribution of epibenthic sessile
organisms (Davies and Guinotte, 2011; Tracey et al., 2011). The
effect of the lack of substrate data in our models can be illustrated
by the fact that the cold-water coral model predicts high
suitability in regions of the Skagerrak known to be dominated
by soft sediments and where cold-water corals are usually not
observed. The effect of the lack of sediment data is accentuated
by the low resolution of the bathymetry model, because terrain
variables derived from high-resolution bathymetry can play a
better role serving as proxy variables for sediment composition

(Dunn and Halpin, 2009). Given these factors, there is a need
to produce SDMs at finer scales, incorporating high resolution
bathymetry and sediment distribution data, if available.

When estimating the present distribution of VMEs and VME
indicator taxa, depending on the goal of a study, it can be argued
that the effect of historical fishing should be included (Ross et al.,
2012). Some areas may have high predicted VME suitability,
but if these areas are continuously being trawled, they may not
have high concentrations of VME indicator species because of
the cumulative effect of fishing-induced mortality. Penney and
Guinotte (2013) suggested computing a “discounted suitability”,
where the suitability of each cell is reduced proportionally to
the swept-area ratio. This method assumes that VME indicator
species do not survive the impact of a single trawling event, and
therefore in cells that are fished more than once per year the
suitability is reduced to zero. This assumption can be adjusted
to incorporate differences in the vulnerability of each VME to
bottom trawling. An analysis of historical fishing patterns may
highlight relatively pristine areas with high suitability for VME
indicator taxa. These areas should be targeted for exploration
and conservation.

4.2. Environmental Factors Influencing the
Distribution of VME Indicator Species
Temperature is an important factor determining the distribution
of cold-water corals (Davies and Guinotte, 2011; Yesson et al.,
2012; Buhl-Mortensen et al., 2015c) and sponges (Klitgaard
and Tendal, 2004; Howell et al., 2016). Given the strong
bottom temperature gradients in the study area, it is no
surprise that this parameter explained a large proportion of
the predicted distribution patterns of the VME indicator taxa.
In our study, minimum temperature was the most important
factor with a permutation importance higher than 10% in 42
of the 44 taxa modeled. It was particularly high for species
associated with cold waters including the sponges Geodia parva,
Caulophacus (C.) arcticus, Cladorrhiza sp., Chrondocladia (C.)
grandis, and the Neptheidae coral Gersemia sp. Temperature was
also an important predictor for the scleractinean corals Lophelia
pertusa, Madrepora oculata, and for taxa with predominantly
southern distributions like Flabellum sp., Anthomastus sp., and
Anthoptylum sp.

Next to temperature, depth was the next most predominant
factor predicting the distribution of the VME indicator taxa
in this study. Depth had a permutation importance higher
than 10% in 33 of the 44 models. Similar to temperature,
our study area included a wide depth range (Buhl-Mortensen
et al., 2015c). Depth is not considered a direct explanatory
variable, as hydrostatic pressure does not limit the distribution
of VME indicator species. Instead it acts as a surrogate for other
environmental parameters that are usually correlated with depth
(Thresher et al., 2014; Howell et al., 2016). In our study there was
some correlation between bottom depth and aragonite saturation
state, particulate organic carbon and silica concentration. In
addition, the environmental data sets used in this study had
relatively low spatial resolution. In these conditions depth can
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act as a proxy explaining some proportion of the spatial patterns
controlled by more direct explanatory variables.

Although the permutation importance of individual variables
describing the morphology (i.e., terrain variables) of the seafloor
was relatively low, their combined contribution was considerable
in most of the models. This is consistent with previous modeling
efforts for cold-water corals and sponges in which terrain
variables have been important predictors (e.g., Rengstorf et al.,
2013; Gullage et al., 2017; Rowden et al., 2017). It is well-known
that the topography of the seafloor has a strong influence on the
distribution patterns of filter feeders like cold-water corals and
sponges, which are often associated with complex and elevated
topographic features where locally accelerated currents increase
the provision of food particles (Thiem et al., 2006; Duineveld
et al., 2007; Navas et al., 2014) and influence the transport
of larvae (Piepenburg and Müller, 2004; Dullo et al., 2008).
The permutation importance of near-bottom current speed as a
predictor variable was higher than 5% in 17 of the 44 models.
These include four of the six models of sponges of the genus
Geodia, and in the models of Stryphnus sp. and Steletta sp,
taxa considered indicators of soft bottom sponge aggregations.
Current speed had also an importance >5% in five of the seven
models of sea pens (Pennatulacea). On the other hand, the
importance of current speed was below 5% for most other
taxa including reef-forming scleractinean corals, gorgonians, and
sponges associated to hard bottoms. This is likely the result of
the relatively low resolution of the near-bottom current speed
data, which helped to predict the distribution of species with
relatively broad distributions associated to soft sediments, but
could not resolvemore localized effects to predict the distribution
of species associated with more complex terrain features. In the
later cases, and similar to previous models for VME indicator
taxa, the terrain descriptor variables act as proxies of near-
bottom current speed. When the output of high-resolution
oceanographic models is used as a predictor of the distribution of
scleractinean corals like Lophelia pertussa or Madrepora oculata,
near-bottom current speed do explain much of the observed
patterns (Mohn et al., 2014; Bargain et al., 2018). In addition to
acting as proxies of near-bottom current speed, terrain variables
can also explain some of the spatial patterns associated to
substrate type, which is another factor that strongly influence the
distribution of benthic megafauna including corals and sponges
(Gass and Roberts, 2006; Greathead et al., 2014; Baker et al.,
2019). For example, hard bottom habitats are associated with
complex topographies (Dunn andHalpin, 2009) where sediments
are less likely to accumulate.

As expected, silicate was an important variable explaining the
distribution of several sponge taxa. The permutation importance
of silicate was higher than 10% in 12 of the 20models for sponges.
It was particularly high in the models of sponges associated to
hard bottoms, including Axinellida sp., Phakellia sp., Antho (A.)
dichotoma, andMycale (M.) lingua. Silicate is required by sponges
that form siliceous spicules, and its concentration may be a factor
limiting the spatial distribution of sponge habitats (Leys et al.,
2004; Howell et al., 2016). Silicate was also an important predictor
for the distribution of some corals and sea pens, i.e., Isidella
lophotensis, Anthomastus sp., Umbellula sp., and Pennatula sp. It

is likely that for these taxa the concentration of silicate is not a
direct limiting factor but rather is acting as an indicator of water
masses. In the case of corals and sea pens, aragonite saturation
had a lower importance than expected with only seven of 24
models having a permutation importance above 10%.

Geodia parva and G. hentscheli are the only two species
for which salinity was an important predictor (permutation
importances of 30.6 and 52.8% respectively). Both species are
considered indicators of the cold “ostur” assemblage, with their
distribution restricted to the Greenland shelf and Denmark strait.
Here it is likely that salinity is a proxy for water masses (Yesson
et al., 2012) rather than being a direct physiological constraint,
acting as an indicator of the waters on the Greenland shelf
characterized by the low temperatures and low salinity due to
the input of glacial meltwater. This is supported by the fact that
for G. hentscheli the permutation importance of temperature is
lower, and the permutation importance of salinity is higher than
for G. parva, but the combined importance of both parameters is
similar for both species (70.1 and 60.9%, respectively).

4.3. Spatial Distribution of Predicted Taxa
and Taxa Groups
As expected, there was a good agreement between the observed
locations of VME indicator species and the areas of predicted
high suitability, in particular for taxa distributed along a narrow
range of environmental variables like Lophelia pertusa and the
other taxa in cluster group 1 (Figure S1), Umbellula sp., and for
taxa with rather limited geographic distributions like Isidella sp.
andCaryophila. For other taxa the prediction appears less precise,
the models tended to predict broad areas of high suitability.
Some examples are the models for Geodia phlegraei, Anthothela
gradiflora, Anthomastus sp., Flabellum sp., and Lycopodina sp.
This could be because the taxa modeled are generalist species
with a broad distribution, or could be an artifact due to low
sample sizes or the lack of environmental predictors that limit
their distribution.

Our predicted distributions for Lophelia pertusa, Paragorgia
arborea, and Primnoa resedaeformis are very similar to
those obtained by Sundahl (2017) in Norwegian waters
using mostly data from the MAREANO programme
(Buhl-Mortensen et al., 2015a,b). This is reassuring, given
that Sundahl (2017) produced models at a higher spatial
resolution (176 m) and included environmental predictors
that were not available for our models, including sediment
type and the output of a high-resolution ocean model. In
addition, our areas of predicted high suitability for Lophelia
pertusa in the territorial waters of the United Kingdom
and Ireland are similar to the areas identified by Ross and
Howell (2013) as having medium and high probability of
reef presence.

In general, the predicted distributions for sponges of
the genus Geodia were comparable to those predicted by
Howell et al. (2016) in our study area. In particular, the
predicted presence of G. mandrewi were very similar to
the areas of high suitability predicted by our model. Our
predictions for G. parva and G. hentschelli were also similar,
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TABLE 5 | Biotopes identified in the Norwegian shelf by Elvenes et al. (2014) and

Gonzalez-Mirelis and Buhl-Mortensen (2015) with associated VME indicator taxa,

and the cluster dendrogram groups in which those taxa were assigned in our

study.

Habitat name or biotope

number

Associated VME indicator taxa Cluster

group

Umbellula stands Umbellula ecrinus 7A

Radicipes meadow Radicipes cf. gracialis 5

Hard bottom demosponges Axinella, Phakellia, Antho dichotoma, 3A, 3B

Tethya spp., Mycale

Soft bottom demosponges Geodia spp.,/Stryphnus/, Steletta 2

Deep sea sponges Caulophacus articus,/Cladorhizidae/
spp.,

6B, 7B

Hexactinellida spp.

Sea Pens and burrowing

megafauna

Funiculina quadrangularis, 4, 7B

Kophobelemnon stelliferum,

Pennatula sp.. Virgularia spp.

Hard bottom coral gardens Paragorgia arborea, Paramuricea
placomus,

1

Primnoa resedaformis

Biotope class 2 Caulophacus 6B

Biotope class 3 Chrondocladia, Umbellula 7A

Biotope class 4 Funiculina, Flabellum 4, 5

Biotope class 6 Phakelia, Craniella, Geodia spp., 2, 3A, 3B

Stryphnus, Mycale

Biotope class 8 Paragorgia, Gersemia, Drifa 1, 7B

Biotope class 9 Kophobelemnon, Virgularia, Stelletta 2, 4, 7B

Biotope class 10 Lophelia, Axinella, Primnoa 1, 3A

with the caveat that Howell et al. (2016) did not predicted
distributions at depths <200 m, with includes most of the
eastern Greenland shelf north of 66◦N where our models predict
high suitability. On the other hand, our predictions for G.
phlegraei, G. atlantica, and G. baretti were more restricted
than those in Howell et al. (2016), whose predicted areas
with presence included the deep basins of the Norwegian
Sea and off southern Iceland where our models predicted
low suitability.

The cluster analysis of the “I” similarity statistic computed
among the predicted distributions of VME indicator taxa
produced 7 groups and 6 subgroups. These groups are not
biotopes or communities in the strict sense, as they are not
the result of direct observations of species living in close
proximity, but rather are groups of taxa with similar predicted
distributions. Predictions from the broad-scale models in our
study are not expected to agree with the species composition
and distribution of biotopes identified from high-resolution
local predictions, but reveal similarities at large scales relevant
for the management of large marine ecosystems. Nevertheless,
in several instances the groups identified were analogous
to known VMEs in the study area, and in some cases to
biotopes identified on the Norwegian shelf by the MAREANO
programme (Table 5).

Group 1 included the gorgonians Paramuricea sp., Paragorgia
arborea, and Primnoa resadaeformis, which are indicators of
hard-bottom coral gardens (ICES, 2016) and were identified
as an homogeneous community in the Norwegian shelf
(Gonzalez-Mirelis and Buhl-Mortensen, 2015). Group 1 also
included the scleractinean corals Lophelia pertusa andMadrepora
oculata, which are the most important reef-forming corals
in the study area. These two species are indicator taxa of
cold-water coral reefs, but also of two types of hard-bottom
coral gardens: colonial scleractineans on rocky outcrops, and
non-reefal scleractinean aggregations (ICES, 2016). In our
study we could not distinguish between L. pertusa and M.
oculata records originating from different VMEs, and therefore
we consider them indicators of a single VME termed reef-
forming scleractineans. In addition, in the study area the
taxa in this group are often found in close proximity (Buhl-
Mortensen et al., 2015c), and therefore their predicted broad-
scale distribution was similar. At local scales, it is likely that
there are differences in the distribution patterns among the taxa
in the groups identified in this study. For example, Elvenes
et al. (2014) identified ten biotopes on the Norwegian shelf
off the Lofoten and Vesterålen archipelagos (Elvenes et al.,
2014), seven of which included VME indicator taxa. Lophelia
and Primnoa were assigned to the same biotope (biotope class
10, Table 5), while Paragorgia was included in biotope class
8. These differences are expected when comparing predicted
distributions at relatively large scales with biotopes identified at
more local scales.

Five of the groups identified in our analysis were dominated
by sponges and corresponded well to sponge VMEs within the
study area. Our groups 2 and 6A include indicator species of soft-
bottom sponge aggregations (ICES, 2016) and are analogous to
the boreal and cold “ostur” assemblages described by Klitgaard
and Tendal (2004), respectively. The stacked distribution models
for groups 2 and 6a suggest that “ostur” habitats are widely
distributed on the continental shelves and slopes of eastern
Greenland, Denmark Strait, Iceland, the Faroe Islands, the
Norwegian shelf, and the Bartents Sea. This agrees with previous
studies by Klitgaard and Tendal (2004), Christiansen (2010),
Howell et al. (2016). Geodia aggregations have been observed
at depths between 150 and 1,700 m (Maldonado et al., 2015),
which correspond well to the depth ranges of predicted high
suitability for group 2 (boreal “ostur"). Areas of predicted high
suitability for group 6a (cold “ostur”) includes areas in the
Norwegian and Greenland seas at depths below 1,500 m. The
sampling effort at these depths is very low and no Geodia
aggregations have been previously reported. Group 3 included
indicator taxa for hard-bottom sponge aggregations (ICES,
2016). The fact that these taxa form a distinct group from sponges
associated to soft-bottoms supports the notion that deep-sea
sponge aggregations form distinct habitats depending on their
bottom type preferences as proposed by Gonzalez-Mirelis and
Buhl-Mortensen (2015).

The list of indicator taxa for ICES/NAFO waters (ICES, 2016)
also includes Caulophacus articus as an indicator for soft-sponge
aggregations. In an analysis of community structure, Gonzalez-
Mirelis and Buhl-Mortensen (2015) concluded that Hexactinellid
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and other sponges associated to deep, cold waters constitute
a distinct habitat separated from soft-bottom and hard-bottom
sponge aggregations. Our analysis placed C. articus, together
with Cladorrhiza sp. and Lycopodina sp. into group 6B, which
can be considered analogous to the deep sea sponges habitat
defined by Gonzalez-Mirelis and Buhl-Mortensen (2015). This
supports the need to define a distinct VME type for taxa in
deep, cold waters, as suggested by Buhl-Mortensen et al. (2019).
Caulophacus was associated to a distinct biotope (biotope class
2) by Elvenes et al. (2014), and our predicted distribution for
Caulophacus sp. shows high suitability at depths below 1,500 m,
which agrees with the predicted distribution of biotope 2 (Elvenes
et al., 2014).

Group 4 included four sea pens considered indicators of
the VME type “sea-pen fields” in the list of indicator taxa for
ICES/NAFO waters (ICES, 2016): Funiculina sp., Pennatula sp.,
Kophobelemnon sp. and Haliperis sp., and it is analogous to
the biotope “sea pen and burrowing megafauna communities”
identified by Gonzalez-Mirelis and Buhl-Mortensen (2015) on
the Norwegian shelf. The ICES/NAFO list also includes deep-
sea sea pens Umbellula sp. and Anthoptilum sp., which our
analysis did not included in group 4 given the differences in
their predicted distributions. Similarly, Gonzalez-Mirelis and
Buhl-Mortensen (2015) concluded that the sea pens Funiculina
cuadrangularis, Kophobelemnon stelliferum, Pennatula sp., and
Virgularia spp. formed an homogeneous community on the
Norwegian shelf distinct from the Umbellula stands (e.g., areas
with high densities of Umbellula sp). This supports the definition
of two separate VME types which include shallow and deep-
sea sea pen species (Buhl-Mortensen et al., 2019). Gonzalez-
Mirelis and Buhl-Mortensen (2015) predicted the distribution
of Umbellula sp. stands in two regions in the continental slope
at depths below 500m roughly off the Lofoten and Vesterålen
archipelagos, and in the Eggakanten north of 71◦N. Our model
for this taxa predicts very high suitability values in similar
locations (Figure S8). In our analysis Umbellula spp. clustered
together with the sponge Chrondocladia (C.) grandis, as both
species have a distinct predicted distribution in the slopes north
of the GISR. A biotope comprised by both species was also
identified on the slopes of the Norwegian shelf (biotope class
3, Elvenes et al., 2014). Our models for both species and our
stacked model for group 7a predicted high suitability along the
continental slope between 800 and 1,500 m, which agrees well
with the predicted distribution biotope class 3.

As opposed to most other groups, groups 5 is formed by
taxa indicators of different VMEs characterized by a predicted
distribution mostly in the deep basins south of the GISR.
Among the taxa in this group are indicators of soft bottom
coral gardens, including the gorgonians Radicipes sp., Acanella
arbuscula, and the cup coral Flabellum, and indicators of hard
bottom coral gardens including the gorgonians Anthomastus
sp., Anthotella grandiflora. A. arbuscula has been reported
to co-occur with Flabellum alabastrum (Buhl-Mortensen and
Buhl-Mortensen, 2018). Our model for Radicipes sp. correctly
predicted high suitability in the Bjørnøya slide area, which is the
only area in Norwegian waters where Radicipes meadows have

been observed (Buhl-Mortensen et al., 2015c; Gonzalez-Mirelis
and Buhl-Mortensen, 2015, Figure S6). The group also includes
Solenosmilia variabilis, a reef-forming scleractinean coral than in
our study area was recorded south of the GISR, and the deep-sea
sea pen Anthoptilum sp. This group includes taxa reported in the
Mid-Atlantic ridge at a relatively wide depth range (800–2,400 m,
Mortensen et al., 2008).

Group 7B includes mostly corals of the family Nephtheidae
family that are indicator taxa of the VME subtype cauliflower
coral fields (ICES, 2016; Buhl-Mortensen et al., 2019). These
corals are found over a wide range of substrates including
semiconsolidated mudstone (Buhl-Mortensen and Buhl-
Mortensen, 2018), sometimes in relatively high densities as
observed off the Westfjords in Iceland. On the Norwegian shelf,
Elvenes et al. (2014) identified a biotope (biotope 8) that included
Gersemia and Drifa, but also Paragorgia (Table 5).

Our VME Index provides a summary of the distribution of
all 44 taxa, giving more weight to taxa that are considered to
more closely fulfill the FAO criteria for VME identification (FAO,
2009). Areas with high VME Index include much of the shelf
break and slope off Norway and the Barent Sea, Iceland, and the
Faroe Islands, the shelf off southern Greenland, and the areas
in the Reykjanes Ridge and the Kolbeinseyn Ridge. Several of
these areas are being targeted by the MAREANO programme
in Norway, and by the habitat mapping efforts by the Marine
and Freshwater Research Institute (MFRI) in Iceland. Recent
video observations carried out in the Faroe Islands are providing
new information on the distribution of VME indicator species
(Buhl-Mortensen et al., 2019). Nevertheless, there are vast areas
where the number of observations is very low and should be
the target of new research efforts. The continental shelf off
southern Greenland is of particular interest because the predicted
suitability of several VME indicator taxa is high in this region,
and the area has not been subjected to intense fishing effort
which increases the probability of finding pristine VMEs. Recent
mapping efforts have been producing information off the west
coast off Greenland (Yesson et al., 2016), but little is know off the
eastern coast. Also there is a lack of data on the fauna on the deep
basins of the Norwegian and Greenland sea.
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