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1  | INTRODUC TION

There is growing evidence of spatial shifts of species distribution 
correlated with climate change (Chen, Hill, Ohlemüller, Roy, & 
Thomas,  2011; Hickling, Roy, Hill, Fox, & Thomas,  2006; Lenoir 
et al., 2020; Parmesan & Yohe, 2003; Thomas, 2010). The Arctic 
is warming fast (IPCC, 2014), and could experience higher species 

turnover rates due to invasion and local extinction than anywhere 
on the globe (Cheung et al., 2009). The Barents Sea is a subarctic, 
shelf sea under the influence of two water masses flowing from 
the warm, saline Atlantic in the southwest and the cold, less sa-
line Arctic in the northeast (Loeng, 1991). Communities associated 
with those two water masses differ in terms of fish species com-
position (e.g., Fossheim et al., 2015; Johannesen, Høines, Dolgov, 
& Fossheim,  2012), traits (Certain, Dormann, & Planque,  2014; 
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Abstract
Many marine species exhibit poleward migrations following climate change. The 
Barents Sea, a doorstep to the fast-warming Arctic, is experiencing large scale 
changes in its environment and its communities. Tracking and anticipating changes 
for management and conservation purposes at the scale of the ecosystem neces-
sitate quantitative knowledge on individual species distribution drivers. This paper 
aims at identifying the factors controlling demersal habitats in the Barents Sea, in-
vestigating for which species we can predict current and future habitats and inferring 
those most likely to respond to climate change. We used non-linear quantile regres-
sions (QGAM) to model the upper quantile of the biomass response of 33 fish species 
to 10 environmental gradients and revealed three environmental niche typologies. 
Four main predictors seem to be limiting species habitat: bottom and surface tem-
perature, salinity, and depth. We highlighted three cases of present and future habi-
tat predictability: (a) Habitats of widespread species are not likely to be limited by the 
existing conditions within the Barents Sea. (b) Habitats limited by a single factor are 
predictable and could shift if impacted by climate change. If the factor is depth, the 
habitat may stagnate or shrink if the environment becomes unsuitable. (c) Habitats 
limited by several factors are also predictable but need to be predicted from QGAM 
applied on projected environmental maps. These modeled suitable habitats can serve 
as input to species distribution forecasts and end-to-end models, and inform fisheries 
and conservation management.
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Frainer et  al.,  2017), and trophic structure (Kortsch, Primicerio, 
Fossheim, Dolgov, & Aschan,  2015). During past decades, the 
Barents Sea has been experiencing an increase in Atlantic water 
inflow and coinciding heat content in the water column, as well 
as loss of sea ice in the northeast (Årthun, Eldevik, Smedsrud, 
Skagseth, & Ingvaldsen,  2012; Dalpadado et  al.,  2012; Lind, 
Ingvaldsen, & Furevik,  2018). In the meantime, the distribution 
of demersal fish has been altered with a general displacement of 
boreal communities and retraction of arctic communities toward 
the northeast (Fossheim et al., 2015). Many of those are import-
ant commercial species (e.g., Atlantic cod, Gadus morhua, Atlanto-
scandic herring, Clupea harengus, and capelin, Mallotus villosus). In 
the current context of increasing efforts toward the implementa-
tion of an ecosystem approach to fisheries management, knowl-
edge about species distribution patterns and their main drivers is 
of crucial importance to anticipate species range shifts and the 
associated changes in key ecosystem processes and services.

Unfortunately, studies in Arctic and subarctic waters have 
sometimes suffered from a lack of appropriate data to provide ro-
bust conclusions about changes in individual species biogeography 
(Ingvaldsen et al., 2015). Several studies have investigated the past 
responses of some commercial fish to climatic signals (Hamre, 1994; 
Matishov et al., 2012), and few have focused on the non-commercial 
species of the Barents Sea (e.g., Chambault et al., 2018). Regarding 
climate-induced shift range, only expert-based predictions are avail-
able (Hollowed, Planque, & Loeng,  2013). Hence, extending the 
number of species for which such information is quantitatively avail-
able is a pressing need for the Barents Sea.

Most species distribution models (SDM) aim at reproducing the 
expected average probability of presence or abundance of a species 
according to observed environmental conditions. An alternative ap-
proach is to explicitly focus on how those conditions may limit spe-
cies habitats by predicting the maximum (or at least a high quantile) 
of the species response instead of the mean. Quantile regressions 
(QR) are specifically designed to predict quantiles of a response 
variable from a set of covariates (Cade & Noon, 2003; Cade, Terrell, 
& Schroeder,  1999). When applied to a high quantile of observed 
species density (e.g., >0.9), for a set of environment conditions, it is 
possible to determine the most limiting factor by considering succes-
sively several single-covariate models and identifying the one that 
predicts the lowest response (Austin, 2007). This approach inherits 
from the Sprengel–Liebig law of the minimum (van der Ploeg, Böhm, 
& Kirkham, 1999), which considers that a response variable can only 
be as high as allowed by the most limiting factor.

Quantile regression originated in economics (Koenker & 
Bassett, 1978) but has also been used in ecology for various applica-
tions (e.g., Bethea, Buckel, & Carlson, 2004; Knight & Ackerly, 2002; 
Planque & Buffaz,  2008). Review papers have highlighted its util-
ity for the prediction of suitable habitats (Austin,  2007; Elith & 
Leathwick, 2009; Hegel, Cushman, Evans, & Huettmann, 2010), as 
it would describe an approximation of the potential niche (Cade, 
Noon, & Flather, 2005; Jiménez-Valverde et al., 2008). It has already 
several applications for terrestrial (e.g., Cade et al., 1999; Carrascal, 

Villén-Pérez, & Palomino,  2016) and aquatic (e.g., Ateweberhan, 
McClanahan, Maina, & Sheppard, 2018; Lancaster & Belyea, 2006; 
Vaz et  al.,  2008) species linear response to environmental gradi-
ent. However, based on theoretical considerations, the species re-
sponse to an environmental factor is expected to be bell-shaped 
(Hutchinson, 1957; Whittaker, 1967), so other studies have accord-
ingly applied non-linear quantile regression models (e.g., Cozzoli 
et al., 2013; Dunham, Cade, & Terrell, 2002; Schröder, Andersen, & 
Kiehl, 2005).

The aim of the present work is to (a) quantify the limiting effect 
of the environmental factors that impact the spatial distribution of 
a large number of fish species in the Barents Sea, (b) assess the pre-
dictability of future geographical distributions based on currently 
available information, and (c) identify which species are most likely 
to respond to future environmental changes and which do not have 
predictable habitats at the scale of the Barents Sea. For this pur-
pose, we developed QR non-linear models for all combinations of 33 
species and 10 environmental factors from the autumn ecosystem 
survey in the Barents Sea.

2  | MATERIAL AND METHODS

2.1 | Data

2.1.1 | Fish biomass by species

Fishes were caught by a Campelen 1,800 bottom trawl during the 
autumn IMR-PINRO joint ecosystem survey between 2004 and 
2017 (Eriksen et  al.,  2018). The spatial extent of the study area 
(~1.6 million km2) has been covered by 278 stations per year in av-
erage, depending on the sea ice extent in the northeastern part of 
the sea. The sampling scheme consists of a regular grid with knots 
separated by 35 nautical miles. The same stations are visited each 
year, with a few exceptions due to technical, time, or climatic dif-
ficulties. The bulk of the catch is composed of demersal species, 
together with some bathy-pelagic and pelagic species which were 
also kept in the analyses. Estimated species biomasses were stand-
ardized by trawling distance. Only the trawls towed between 50 and 
500 m depth in 15 to 60 min were kept. Towing speed was about 3 
knots. In total, data comprised 3,827 stations and 78 species over 
the 14 years. Taxa that were absent in more than 95% of the stations 
were removed, reducing the number of studied species to 33.

2.1.2 | Environmental predictors

Eleven variables reflecting the environmental conditions of fish 
habitat were included in the analysis. During the ecosystem survey, 
CTD were deployed at each station to measure surface (10 m) and 
bottom temperature (°C, T.surf and T.bottom) and salinity (S.surf 
and S.bottom). Two stratification variables were calculated from 
the temperature and salinity profiles following Planque, Lazure, and 
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Jegou (2006). The surface mixed layer depth (SML, m) was calcu-
lated from a double layer model, and the potential energy anomaly 
(PotEnAno, kg.m-1.s-1, Simpson & Bowers,  1981) was estimated as 
the energy required to mix vertically the entire water column.

Bathymetry (m) and slope (degrees) were extracted from NOAA 
raster for the Barents Sea (Jakobsson et al., 2012). Sediment type 
was defined by extraction of seafloor description by Norway's geo-
logical survey (NGU) (Contains data under the Norwegian license for 
public data NLOD). Among the 16 sediment classes described for the 
Barents Sea, many were only present in a tiny portion of our study 
area. Hence, they were aggregated in seven coarser classes follow-
ing the EUNIS sediment hierarchical classification (Davies et al., 
2004). Chlorophyll a (Chla, mg/m3) average concentrations between 
March and July of each year were extracted, as estimated by the 
NASA from ocean color (NASA OBPG, 2018). A number of days with 
ice cover (daysofice) were counted from daily sea ice extent maps 
from the NOAA (Cavalieri, Parkinson, Gloersen, & Zwally, 1996). For 
all those variables, values were extracted at each bottom trawl sta-
tion location.

Correlation analysis (described in Appendix S1-1) showed a high 
correlation of potential energy anomaly with depth, but as depth is a 
well-known strong structuring factor of demersal habitats, the for-
mer was removed from the analysis. Therefore, 10 environmental 
variables were kept for the study, 3 being static through time (ba-
thymetry, slope, and sediment).

2.2 | Analysis

2.2.1 | Species response to 
environmental predictors

Prior to the regression analysis, species biomass data were log + d-
transformed, where d is half the lowest biomass of the species and 
is added to avoid 0s before applying the log. It is then removed from 
the predictions to avoid an overestimation of the biomass. All quan-
titative environmental parameters were discretized in 20 categories 
of equal frequency to facilitate the model fitting process, except for 
days of ice which was 0-inflated and for which the first category 
comprised all the 0s while the 19 others were spread equiprobably 
over the rest of the distribution.

One quantile generalized additive model (QGAM) was fitted 
for each pair of species-predictor (330 models) using the qgam 
package in R (Fasiolo, Goude, Nedellec, & Wood, 2017) and set-
ting the quantile level at 99%. QGAMs allows for non-linear rela-
tionship between the predictor and the species response and as 
such is able to capture bell-shaped responses, or responses that 
reach a plateau for high or low levels of the predictor. Further con-
siderations about the strengths and weaknesses of the method 
are briefly described in Appendix S1-2. To avoid regressions with 
complex and ecologically meaningless shapes, the number of de-
grees of freedom in the QGAMs was limited to 3. For the qual-
itative variable (sediment), linear QR was applied to fit the 99th 

quantile within each sediment category. The quantreg package in 
R (Koenker, 2018) was used.

For each species-predictor model, we calculated two descrip-
tors: the mode is the maximum of the modeled response to the pre-
dictor; the range is calculated as the ratio of the difference between 
the range (max–min) of predictor values where the species has been 
found to the range of the same predictor over all the sampled stations 
of the Barents Sea. To identify niche typologies among the species, 
we used the R packages FactoMineR (Le, Josse, & Husson, 2008) and 
factoextra (Kassambara & Mundt, 2020) to perform a hierarchical 
clustering analysis based on the principal component analysis (PCA) 
of the two categories of niche descriptors. The number of clusters 
selected is based on the maximum relative loss of inertia.

To test the predictive power of each model, all were fitted using 
observations for years 2004 to 2013. They were then evaluated on 
observations for years 2014–2017. The evaluation was based on 
two metrics. The first metric is the proportion of observations in 
the evaluation dataset that were below the predicted 99th quantile. 
It is expected that 99% of the observations should fall below model 
predictions. If the observed proportion is higher, this means that the 
model is overestimating the maximum biomass (i.e., underestimating 
the limiting effect of the predictor). If the observed proportion is 
lower, too many observations in the evaluation dataset are higher 
than the expected maximum value, so the model is underestimat-
ing the maximum biomass (i.e., overestimating the limiting effect of 
the predictor). We categorized the variation from the 99th quantile 
into a “slight” (98.5% to 99.5% of data below the predictions) and a 
“strong” (less than 98.5% or more 99.5%) over/underestimation of 
the maximum biomass. We estimated that a model had a good pre-
dictive power if the predictions showed a slight deviation from the 
99th quantile.

The second metric, termed “contrast,” is measured for each 
model on the predicted values, by the difference between minimum 
and maximum relative to the maximum. High (close to one) contrast 
occurs when the expected response of the species varies greatly 
across the environmental gradient. The predictor influences the 
species biomass, and has a limiting effect when biomasses are low. 
Low (close to zero) contrast occurs when there are little variations 
in the predicted species biomass along the environmental gradient. 
The predictor has a low effect on the species and is not limiting in the 
range of the Barents Sea. In the case of the sediment type, three of 
the seven classes (“Compacted sediments or sedimentary bedrock,” 
“Sand, gravel and pebbles,” and “Thin or discontinuous sediment 
on bedrock”) were associated with less than 1% of all the samples 
(Appendix  S1-3). Those sediment types are ignored for the calcu-
lation of the contrast to ensure that the metric is built on sediment 
categories that carry enough information.

2.2.2 | Spatial prediction of suitable habitats

For each year, it is possible to construct maps of habitat suitability 
for each species. Each station is associated with a set of predictor 
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values. For a given species, each model predicts a 99th quantile 
of biomass in response to that set of predictor values. The most 
limiting factor is the one leading to the lowest 99% quantile. From 
here on, we use the term “most limiting” factor as defined by this 
criterion, whether the predictors can have a direct (like bottom 
temperature and depth) or indirect limiting effect (like chlorophyll 
a, which is not in direct link with the species habitat, but is an 
indicator of primary production that can indirectly affect bottom 
species). The maximum (99th quantile) biomass predicted based 
on the local environmental conditions is a local measure of habitat 
suitability. We applied this process to every location sampled each 
year.

This process results in two maps per year and per species: a habitat 
suitability map and a limiting factor map. The habitat suitability map 
displays the spatial distribution of the expected maximum biomass. 
The limiting factor map simply shows the most limiting factor at each 
location. However, when the biomasses are high, no factor can be con-
sidered limiting. In the limiting factor maps, wherever the maximum 
biomass predicted by the model of the most limiting factor is superior 
to 25% of the species-predictor model maximum, we estimated the 
factor to have a “weak limiting effect” on the species at the station. We 
thus used three categories to describe the limiting factors: fixed, dy-
namic, and weakly limiting (which can be a dynamic or fixed predictor).

2.2.3 | Predictability of future suitable habitats

To be able to identify and predict a species suitable habitats in the 
Barents Sea using QGAMs, it is necessary that (a) at least one selected 
predictor, dynamic or fixed, has an impact on the taxon response, that 
is, the species-predictor model has a high contrast, (b) the value of the 
predictor(s) for which the species biomass is strongly limited occurs 
within the study area and at the temporal scale of the study. Once 
those two conditions are met, the quality of the prediction depends 
on the robustness of the model to new conditions (i.e., predicted maxi-
mum quantile on the evaluation dataset should be close to the 99th).

To identify typologies of suitable habitat predictability, we per-
formed a second hierarchical clustering analysis of habitat predict-
ability indicators produced in the previous analyses.

3  | RESULTS

3.1 | Limits to the distribution of three species of 
the Barents Sea

Three species with contrasting suitable habitat, the Norway pout 
(Trisopterus esmarkii), the Thorny skate (Amblyraja radiata), and the 
Atlantic poacher (Leptagonus decagonus), are used to illustrate the 
detailed results of the quantile regressions of their biomass to three 
predictors: two that are associated with a high and a low contrast 
in the species response and one qualitative predictor. Habitat suit-
ability maps are shown only for 2013, which was the year with the 

widest spatial coverage. To avoid repetitions, we present results re-
garding the niche typologies and the predictability of suitable habi-
tats in the second part of the results.

3.1.1 | Species responses to 
environmental predictors

Convergence and predicted quantiles: Modeled responses to depth, 
slope, and sediment converged successfully for the three species 
(Figure  1). For Trisopterus esmarkii and Leptagonus decagonus, be-
tween 99.0% and 99.2% of the observations were below the mod-
eled response to depth, slope, and sediment, which is close to the 
desired 99th quantile. Amblyraja radiata models weakly fitted to the 
data as both depth and slope models were above more than 99.5% 
of the data. When the same models were applied to the testing data-
set, depth, and slope models slightly overestimated the maximum 
biomass of Trisopterus esmarkii and Leptagonus decagonus (testing 
percentile between 99.0% and 99.5%) while Amblyraja radiata bio-
masses were strongly overestimated. This means the model is likely 
to be less precise when applied to new conditions. For sediment, 
on the contrary, the model strongly overestimated the maximum 
biomass for Trisopterus esmarkii, and slightly overestimated and 
underestimated it for Leptagonus decagonus and Amblyraja radiata, 
respectively.

Model contrast: The contrast in the response was the highest 
for the Trisopterus esmarkii—depth model (contrast 0.997) and tied 
second highest for Trisopterus esmarkii and Leptagonus decagonus—
sediment model (contrast: 0.897). Such high values indicate that the 
sampling includes environmental conditions that are very limiting for 
the species. The response of Leptagonus decagonus to slope showed 
the lowest contrast (0.131).

3.1.2 | Habitat suitability mapping

When applying the models to the environmental conditions of 2013, 
predictions were rather low (i.e., some factors were very limiting) in 
most of the Barents Sea for Trisopterus esmarkii (Figure 2). Bottom 
temperature was most limiting in the majority (60.9%) of the sta-
tions. Depth and surface temperature were the most limiting in 
12.8% and 9.0% of the stations in 2013, respectively. Only 2.5% of 
the stations were associated with weakly limiting conditions. For 
Leptagonus decagonus, there was not a single most limiting predictor 
in the majority of the stations, but several predictors that limited an 
equivalent portion of the samples: bottom and surface temperature 
(24% and 15% of the stations, respectively), depth (14%), bottom sa-
linity (12%), sediment (11%), and days of ice (10%). All other predic-
tors were limiting in less than 10% of the stations. For this species, 
55% of the stations were weakly limiting. For Amblyraja radiata, sedi-
ment, bottom temperature, and days of ice were the most frequent 
most limiting factor, but only ice and bottom temperature predicted 
strong limitation of the biomass in 3.3% of the stations. The 96.7% 
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other stations were weakly limited (i.e., the predicted biomasses 
were above 25% of the model's predictions maximum).

3.2 | Limits to the distribution of 33 fish species

Individual species-predictor models are provided for all 33 species 
in Appendix  S1-4. Tables summarizing and clustering the species 
models descriptors (i.e., niches typologies) are in Appendix  S1-5. 
Some figures use abbreviated species names. The correspondence 

between abbreviated and full names is provided in Appendix S1-5. 
Maps for all the species are presented in Appendix S1-6.

3.2.1 | Species responses to 
environmental predictors

Convergence and predicted quantiles: All models successfully con-
verged. The training and testing sets performed quite differently on 
predicting the 99th quantile (Figure 3). When fitted on the training 

F I G U R E  1   Modeled log10 responses of three Barents Sea species to three environmental predictors: depth, slope, and sediment type. 
Depth and slope: black dotted scatterplot of the log of non-null biomasses observed in response to the predictor. Gray dots indicate sampled 
environmental conditions where the species biomass is null. Red dots indicate modeled log of maximum biomass predictions. The “stair” 
pattern in the model predictions results from the discretization of the predictors prior to fitting. On top of the scatterplot, the marginal 
density shows the distribution of samples conditional to the predictor values. Sediment: boxplot of response to the sediment. The model 
prediction is the 99th quantile for each sediment class: 1 = coarse sediment; 2 = compacted sediment or sedimentary bedrock; 3 = mixed 
sediment; 4 = mud, clay, and sandy mud; 5 = sand and muddy sand; 6 = sand, gravel, and pebbles; and 7 = thin or discontinuous sediment 
on bedrock. All panels: blue dashed lines indicate references for the calculation of the contrast: a: max predicted maximum biomass, b: min 
predicted maximum biomass. Contrast = (a-b)/a [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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set, most of the models (94%) were above between 98.5% and 99.5% 
of the data. Only 6% strongly overestimated the maximum biomass 
(i.e., were above more than 99.5% of the data). None of them strongly 
underestimated the maximum biomass.

The models performed less well at predicting the 99th quantile 
when applied to the testing dataset, as only 50% of the models 
were above between 98.5% and 99.5% of the data; 38% strongly 
overestimated the maximum biomass, and 11% strongly underes-
timated it. One model is an outlier, performing very poorly in the 
testing set: Arctozenus risso response to sediment. This may be be-
cause this species biomass peaked in 2016, at levels absent from 
the training set.

Model contrast: Most of the models showed relatively high level 
of contrast: 45% had high contrast (>0.90), and 37% had an inter-
mediate contrast (0.50 to 0.90). Slope has the lowest mean contrast 
(0.44) across the 33 species, followed by surface mixed layer depth 
(0.58). Surface salinity and chlorophyll a are associated with similar 
contrast in the species response (~0.75). Following predictors display 
high average contrasts: sediment (0.83), ice cover (0.85), bottom sa-
linity (0.86), and bottom temperature (0.87). Depth and surface tem-
perature models are the most contrasted with an average of 0.90.

Among temporally fixed predictors, the most contrasted re-
sponses were to depth (24 of the 33 species), sediment (8 species), 
and slope (1 species). Bottom and surface temperature caused the 

highest contrast among dynamic predictors for 12 and 13 species, 
respectively, ice cover for 5 and bottom salinity for 3.

Niche shapes: The shape of the model approximates the poten-
tial niche of the species. Most model shapes can be interpreted as a 
complete or a partial bell, with large differences in amplitude, from 
very contrasted to very flat models. Occasionally, species response 
models to surface or bottom salinity or ice coverage would take a 
v shape.

The PCA using the niche descriptors (Table A5.1 and A5.2 in 
Appendix S1) described 55% of the variability of niche profiles among 
the species. The first axis (37.7% of the variability) opposed the species 
according to the ranges of all their models, except that to bottom tem-
perature and bottom salinity. The second axis (17.3%) opposed species 
with high mode values for bottom salinity, depth, days of ice, and slope 
to those with high values of chlorophyll a concentrations, surface tem-
perature, and large ranges of bottom temperature.

The hierarchical clustering distinguished 3 clusters (Figure 4). 
The first cluster is mainly characterized by short ranges for all 
predictors (v test from −1.9 to −4.4, with p values from 4.6.10–

2 to 1.2.10–5), low mode value of days of ice (v test=−2.8; p 
value  =  5.7.10–3), and high mode values of surface tempera-
tures, surface salinity, SML and bottom temperature and salinity 
(v test  =  2.4 to 3.4; p value  =  1.5.10–2 to 7.0.10–4). The second 
cluster includes species with larger ranges of bottom and surface 

F I G U R E  2   Spatial predictions in 2013 of Trisopterus esmarkii, Leptagonus decagonus, and Amblyraja radiata. Top: suitable habitat (maximum 
biomass); bottom: most limiting predictor. Color indicates the predictor's category: fixed (sediment, depth, and slope), dynamic (all the 
others) or not weakly limiting (predicted biomass >25% of the model maximum). [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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temperature and SML (v test  =  2.0 to 2.45; p value  =  4.2 to1.4. 
10–2), and lower mode values of SML, slope, depth, and bottom sa-
linity (v test=−2.1 to −5.2, p value = 3.2.10–2 to 2.0.10–7). The third 
cluster is characterized by low mode values of bottom tempera-
ture, surface salinity and temperature and chlorophyll concentra-
tions (v test from −2.5 to −3.9; p value from 1.4.10–2 to 9.3.10–5), 
high mode values of bottom salinity, depth, slope, and days of ice 
(v test from 2.0 to 4.2; p values from 4.2.10–2 to 2.8.10–5), and 
large range of surface temperature, slope, days of ice, SML, depth, 
surface salinity, and chlorophyll a concentrations (v test from 2.0 
to 3.3, p value from 4.5.10–2 to 1.1.103).

3.2.2 | Habitat suitability mapping

Species can be categorized in five groups according to their most 
frequent most limiting factor over the years: bottom temperature 
(13 species, such as Trisopterus esmarkii, Figure  5), depth (10 spe-
cies, such as Arctozenus risso), surface temperature (4 species, like 
Triglops nybelini), sediment (5 species, like Triglops murrayi), and 

bottom salinity (only one species: Amblyraja hyperborea). Slope (most 
limiting factor in 2% of the samples over the whole time period), 
surface mixed layer depth (2%), surface salinity (4%), chlorophyll a 
(5%), and ice cover (8%) never were the most frequent most limiting 
factor. However, environmental conditions only weakly limited the 
biomass in about 50% or more of the sampled locations for 18 spe-
cies (Figure 5, right panel, in red). Species most frequently limited by 
sediment were all weakly limited by the environment in more than 
50% of the stations they were sampled in.

3.2.3 | Predictability of suitable habitats

For 21 of the 33 species, the maximum contrast to dynamic predic-
tors was higher than that of the fixed ones (Figure 6). This maximum 
predictor was bottom salinity for 1 species, ice for 3, bottom tem-
perature for 8, and surface temperature for 9. The 12 other species 
had higher contrast in fixed predictors. The maximum predictor was 
depth for all them. It should be noted that for 14 species, the factor 
causing the most contrasted response (Figure 6) was different from 
the species most frequent most limiting factor (Figure 5).

Synthesis: The PCA was performed on (a) the average propor-
tion of stations limited by the most frequent most limiting factor 
(Figure 5, left panel), (b) the average proportion of stations where 
the biomass is weakly limited by the environment (Figure  5, right 
panel), (c) the value of the highest contrast among dynamic, and (d) 
fixed predictors (Figure 6). The PCA explained 84% of the variability 
among the data. The first axis was driven by the opposition between 
species that are weakly limited by the selected predictors and those 
that show a contrasted response and/or are often limited by a sin-
gle factor (Figure 7). The second axis was mainly driven by the pro-
portion of stations where the species are limited by a single, most 
frequent, most limiting factor. This axis was also driven in a lesser 
extent by the maximum contrast among fixed predictors.

The cluster analysis highlights three clusters (Figure 7). The first 
cluster is characterized by species with a high proportion of stations 
where their biomass is weakly limited (v = 4.1, p. value = 3.8.10–5) and 
low maximum contrasts (v = −3.8 and −5.0, p = 4.6.10–4 and 4.4.10–7 for 
fixed and dynamic predictors, respectively). These are typically species 
which niche could not be modeled properly. Anarhichas minor is a par-
agon (i.e., it is the closest to the center of the cluster) while Zoarcidae 
and Amblyraja radiata are typical species of this cluster (i.e., they are 
the more distant from the other two clusters). The second cluster is 
characterized by species limited by several most limiting factors (low 
values of “% most frequent most limiting factor”: v = −3.1, p = .002). 
Anarhichas lupus is a paragon, and Boreogadus saida, Leptagonus decago-
nus, or Mallotus villosus are typical species of this cluster. The third 
cluster is associated with high frequency of limitation by a single most 
limiting factor (v = 4.3, p = 1.3.10–5), high maximum contrast in both 
dynamic and fixed predictors (v = 2.5 and 2.0, p = 1.3.10–2 and 4.1.10–2, 
respectively), and low proportion of weak limiting conditions (v = −3.9, 
p = 1.0.10–4). Gadiculus argenteus is a paragon, and Trisopterus esmarkii 
and Triglops nybelini are typical species of this cluster.

F I G U R E  3   Scatterplot of the predicted percentile of the 
observation by the models in the training and testing set. 
The dotted rectangle indicates models that slightly under or 
overestimate the maximum biomass. Outside of that rectangle 
are the models that strongly under or overestimate the maximum 
biomass.
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F I G U R E  4   Principal component 
analysis and hierarchical clustering 
of species niche descriptors. Only 
variables with a high contribution 
to the construction of both axes are 
shown [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  5   Frequency of the limiting 
effect across space and years. Right 
panel: for each species, mean proportion 
of samples weakly limited (the predicted 
biomass is >25% of the model maximum). 
Left panel: for each species, mean 
proportion of samples limited by each 
factor. Black rectangles identify for each 
species the most frequent most limiting 
predictor, but only if its predictive power 
is acceptable (predicted quantile of the 
testing dataset ranging from 98.5 to 
99.5) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  6   Scatterplot of species maximum contrasts in response to fixed versus dynamic variables. The shape of the point indicates 
which parameter is the one with the maximum contrast. The 1:1 line is grey and dashed. (b) is a zoom in the grey area of (a)

F I G U R E  7   Species hierarchical 
clustering projected on a principal 
component analysis of the descriptors of 
habitat suitability predictability [Colour 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
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4  | DISCUSSION

4.1 | Environmental conditions limiting fish 
distribution in the Barents Sea

Among the six predictors causing in average the most contrasted 
responses in the biomass of the species, five were also most limiting 
of species habitat in the Barents Sea: bottom temperature, depth, 
surface temperature, sediment, and bottom salinity.

Depth has frequently been reported to be one of the most im-
portant predictor of demersal fish distribution (e.g., Chatfield, Niel, 
Kendrick, & Harvey, 2010; Moore, Harvey, & Van Niel, 2010; Moore, 
Van Niel, & Harvey,  2011). In this study, depth was often limiting 
either on the shelf for species living in deep areas (e.g., polar scul-
pin, Cottinculus microps, or spotted barracudina Arctozenus risso), or 
on the deepest and shallowest areas for species preferring shallow 
waters (e.g., snakeblenny, Lumpenus lampretaeformis, or wolfish 
Anarhichas lupus).

Bottom temperatures were slightly more often limiting for 
the Barents Sea species, especially for species that are distrib-
uted in the southwestern part of the Barents Sea (e.g., Norway 
pout Trisopterus esmarkii, greater argentine Argentinus silus, saithe 
Pollachius virens, and silvery pout Gadiculus argenteus). Their spa-
tial distribution appears to be limited by the low bottom tempera-
tures currently occurring in the rest of the Barents Sea. Byrkjedal 
and Høines (2007) obtained similar results in a study focusing on 
the southwestern part of the Barents Sea and explained the strong 
influence of the temperature by the conjunction of the cold, sub-
zero, Artic and warm Atlantic water at the polar front, creating 
strong latitudinal gradients of temperature. The other species 
most limited by bottom temperatures are arctic ones (e.g., cap-
elin Mallotus villosus, liparids, or the Atlantic poacher Leptagonus 
decagonus). For those species, bottom temperature is less fre-
quently limiting, and surface temperatures are often second in 
limiting their habitat.

Surface temperatures cause high contrast in the species re-
sponses and are frequently the most limiting either (a) northeast of 
the polar front, for the Atlantic herring Clupea harengus, or (b) in the 
south for species considered as arctic (e.g., polar cod Boreagadus 
saida and bigeye sculpin Triglops nybellini). Those species have been 
shown to follow yearly variations in sea ice extent in other subarctic 
areas (Wyllie-Echeverria & Wooster, 1998). In our samples, surface 
temperature and ice cover are often limiting in the same area, in the 
north, so the limitation of the species responses by low surface tem-
perature might also be a proxy of the limitation by cold, ice-covered 
water masses north of the polar front.

The emergence of bottom salinity as a major limiting fac-
tor of Amblyraja hyperborea is surprising. This species is a typical 
polar species that prefers cold temperatures and deeper waters 
than those of the Barents Sea (Dolgov, Grekov, Shestopal, & 
Sokolov, 2005; Peklova, Hussey, Hedges, Treble, & Fisk, 2014). Its 
response to bottom salinity is indeed very contrasted with a very 
narrow range and a preference for high salinities, but it should be 

noted that its highest contrast and second most limiting predictor 
are bottom temperature. There might thus be a confusion between 
these two factors, and possibly with other factors such as depth. 
For example, in 2013, the stations where bottom salinity was the 
most limiting factor were the shallow banks around Murmansk 
and Svalbard as well as the north and eastern slopes of the Bear 
Island Trough. In the first case, the ice and river outflows cause low 
salinities on the banks, but this effect might be confounded with 
that of depth as these areas are too shallow for the skate. Bear 
Island Trough, however, is the deepest point of the Barents Sea. 
An alternative explanation might be the large variations of current 
velocities of the area (Ingvaldsen, Asplin, & Loeng, 2004) and the 
potentially associated turbidity that might constraint this species 
movement or predation.

Lastly, five species are limited by the type of sediment in the 
Barents Sea and have low contrast in response to most of the pre-
dictors. All of them are frequently only weakly limited and are quite 
widespread in the region. Because of the differences in the sampling 
of the various types of sediment, and although there are few differ-
ences in biomasses among samples, sediment causes a high contrast 
for all of them. It is thus more often picked as the most limiting fac-
tor when comparing with the other factors. Therefore, sediment is 
probably not a strong limiting factor of fish habitat in the Barents 
Sea. Identifying their suitable habitats might necessitate other un-
available environmental predictors.

Another variable that could be considered in future studies is light 
availability. Light constrains numerous processes like primary produc-
tion, visual predation (Langbehn & Varpe, 2017), or zooplankton depth 
in the Barents Sea (Aarflot, Aksnes, Opdal, Skjoldal, & Fiksen, 2019). 
It might change the limiting factors for boreal species entering the 
Barents Sea, as light conditions might be a particularly strong tradeoff 
at those latitudes (Poloczanska et al., 2016). However, a proxy of pri-
mary production was already included in the selected variables with 
the chlorophyll a, and it is probable that the effect would have been 
confounding with variables with strong latitudinal gradient-like sea ice 
cover. Also, most of the stations sampled are below 150 m (the average 
depth of the Barents Sea is 230 m), where most of the light spectrum 
does not reach and visual predation is reduced.

4.2 | Assessing our capacity to identify and predict 
species suitable habitats

Not all the species used in this study fulfill the three requirements 
for the predictability of their suitable habitat mentioned in the intro-
duction. A recent study (Smith, Godsoe, Rodríguez-Sánchez, Wang, 
& Warren, 2019) showed that grouping related taxa that are likely 
to share environmental tolerances, or splitting species in smaller 
population units that have adapted independently can improve 
niche estimates. In the present study, widespread spatial distribu-
tions and environmental tolerance can partially reflect the variety 
of habitats used by different age groups (e.g., cod Gadus morhua) or 
species (eel pouts Zoarcidae). In our case, length or age information 
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was not available in the aggregated dataset that we had. Modeling 
habitat suitability at a finer biological scale (e.g., by age or popula-
tion units) might be required to improve habitat suitability models 
for these groups (McPherson & Jetz, 2007; Morán-Ordóñez et al., 
2017; Porfirio et al., 2014; Thuiller, Lavorel, & Araújo, 2005).

A high contrast to at least one predictor is needed to be able 
to identify limiting factors of the species habitat, and the limiting 
conditions should occur within the Barents Sea. Group 1 of the sec-
ond clustering analysis (Figure 7) gathers species that do not meet 
those two criteria. Those are the species similar to Amblyraja radiata, 
with low maximum contrast and high proportion of weakly limited 
samples, which tend to thrive in all ranges of depth and tempera-
tures over the Barents Sea (Dolgov et al., 2005). The dataset used in 
the current study included sufficient information on environmental 
conditions in which these species are found, but little on what con-
ditions limit their abundance. To increase our chances of properly 
capture the niche of these species, the spatial scale of the study 
needs to be expanded to the limits of distribution of those species, 
for example by aggregating data from all subarctic seas.

For the two other groups, it is possible to identify and predict 
their suitable habitats. Modeling and predicting suitable habitats 
for species from group 3 are quite straightforward and these are 
the species for which we can anticipate niche change with most 
confidence. In the case of group 2, the niche model must be com-
plex, multivariate, and may require the examination of interac-
tions between limiting factors. Indeed, group 3 is characterized 
by species which habitat is mostly limited by a single factor. This is 
the case of all the southwestern species entering the Barents Sea 
whose niche is only partially known as their distribution lies mainly 
in the North Atlantic, like the mesopelagic Gadiculus argenteus. For 
example, blue whiting (Micromesistius poutassou) and adult saithe 
(Pollachius virens) expand into the Barents Sea when their stock is 
large in the Norwegian sea (for blue whiting: Heino, Engelhard, & 
Godø, 2008) or as a seasonal migration during the second quar-
ter and third quarter (for saithe: Olsen et  al.,  2010). Inside this 
group, species with habitats mainly limited by dynamic variables 
like bottom or surface temperatures are the most susceptible to 
shift poleward in response to climate change, in the limits of their 
depth, sediment, and slope preferences (like Gadiculus argenteus, 
Figure 8). It has already been observed for some: Perry, Low, Ellis, 
and Reynolds (2005) noticed that Micromesistius poutassou and 
Trisopterus esmarkii distribution boundaries have shifted north-
ward in relation to the warming between 1977 and 2001 in the 
North Sea, and in the Barents Sea, both species and Argentina silus 
are part of the boreal or intermediate communities that also have 
shifted between 2004 and 2012 (Fossheim et al., 2015). The habi-
tat shift of the species in this group is also supported by ecological 
niche models predictions, which have shown a gain in suitable hab-
itat in the Barents Sea for saithe and haddock (Melanogrammus ae-
glefinus) in the middle of the Barents Sea between 1960 and 2090 
(Lenoir, Beaugrand, & Lecuyer, 2011). Hollowed et al. (2013) also 
hypothesized a northward shift of Clupea harengus. Also belonging 
to group 3, species that are less susceptible to follow their thermal 

niche are those most limited by static predictors like depth (e.g., 
beaked redfish (Sebastes mentella) in deep waters, Figure  8, or 
snakeblenny (Lampenus lampretaeformis) in shallow waters). This 
supports a recent study projecting that depth will strongly limit 
the availability of new suitable habitats for fish impacted by cli-
mate change (Rutterford et al., 2015). This effect might be com-
pensated if deep or shallow corridors exist to connect past and 
current suitable areas.

Group 2 is the largest, with half of the studied species. It in-
cludes mainly arctic species like the Atlantic poacher (Leptagonus 
decagonus, Figure 8), but also widespread, like cod (Gadus morhua) 
or species from the central Barents Sea, like the mustache sculpin 
(Triglops murrayi). Those species are limited equally by several pre-
dictors and being able to predict their future habitat necessitates 
to apply the QGAM models to maps of projected environmental 
conditions. As an illustration, Figure 8 shows predicted maximum 
biomasses for year 2017 and a coarse scenario of increased sur-
face and bottom temperature of + 2°C. Such procedure can also 
be applied on more exhaustive and realistic scenarios from ocean-
ographic projections.

Models used for predictions should be robust when applied to 
new conditions. Although it is not possible to quantitatively assess 
model's performance in future climate, the recent rapid warming 
in the Barents Sea provides suitable conditions to test the perfor-
mance of the habitat models in two periods with contrasting ocean 
climate, corresponding to the two periods used for our training and 
testing datasets. Half of the models performed well when applied 
to the testing dataset and can make reliable predictions on species 
future habitats. The poorer model performances of the other models 
may reflect that the training dataset did not include enough of the 
variability in the species response to the predictor, that is, that the 
conditions that occurred between 2015 and 2017 were outside of 
the range of the previous years. For those models, prediction can 
still be done, but the resulting habitat suitability might be over/un-
derestimated and distribution maps should be interpreted in a more 
qualitative sense.

4.3 | Possible uses of individual species 
QGAM models

The shapes of QGAM models could provide an approximation of the 
potential niche (Cade et al., 2005; Jiménez-Valverde et al., 2008). In 
this study, QGAMs were fitted with a maximum degree of freedom of 
3, so that the resulting models display simple shapes that can be in-
terpreted in the context of the niche theory. Most frequently, models 
display bell shapes that can sometimes be asymmetrical, skewed, and/
or incomplete (i.e., only one side of the bell is visible). V shapes occur 
occasionally (in response to salinity or ice cover) and are more difficult 
to interpret. Causes for these v shapes could include the existence of 
two population within the Barents Sea with different habitat prefer-
ences, or strong non-linear links to other variables with strong spatial 
structure (proximity to coast, river outflow, depth, etc.).
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When clustering descriptors of those shapes (range, mode), we 
reached three typologies of niche that coincide more or less with 
three communities previously defined (Fossheim et  al.,  2015): (a) 
Atlantic warm and salty water-associated species that appear to have 
a partial niche with narrow breadth because the Barents Sea is a 
northern border of their distribution, (b) mainly arctic and intermedi-
ate water masses species preferring colder and fresher waters, and (c) 
widespread or intermediate water species that can cope with a large 
range of bottom temperatures and thrive in most of the Barents Sea.

By using species-specific models, the broad patterns observed at 
the scale of the community can be precised at the species level, not 
only on the main commercial species but also on the less studied but 
frequently sampled fish. Maps of habitat suitability and description 
of the niche can be used in fisheries management and conservation 
to infer potential distributions. For some of the species, however, the 
niche is only partially described, and larger scale studies with precise 
metadata are needed.

Beyond environmental responses, species spatial distribution can 
be explained by a numerous collection of other processes, such as 
density-dependent habitat selection, spatial dependency (linked to 
schooling behavior, for example, or predator avoidance), interspecific 
and intraspecific interactions, memory processes like homing and de-
mographic structure (Planque, Loots, Petitgas, Lindstrøm, & Vaz, 2011). 
Thus, the habitat suitability is only the background process of several 
other controls on species distribution. Approaches like quantile regres-
sion, that give space for other controls to operate, can be an input to 
a number of other processes such as density-dependence, homing, 
biotic interactions, and others. QGAM models allow to group species 
that share the same niche and are thus more likely to interact ecolog-
ically. Combined with local co-occurrence studies, they could be used 
to highlight intense predation or competition hotspots. In end-to-end 
models, these QGAMs outputs can be used to constrain specie's hab-
itats. Taking into account, the biotic interactions and human activities 
may then further constrain the species’ abundances, possibly leading to 
better approximations of species actual distributions.

5  | CONCLUSIONS

The use of QGAM allowed to quantify the potential environmental 
niche of 33 fish species in the Barents Sea. The models showed a 
wide variety of responses to environmental stressors. The appli-
cation of the Liebig's law on the mapped conditions of the region 
highlighted the importance of depth, temperatures, and salinity as 
limiting factors for many species, some of which responding to a 
single predictor, others being locally limited by a great variety of 
factors, and finally some for which no niche could be drawn. While 
species responding more strongly to dynamic variables should be 
the most responsive to changes in their habitats, static limiting 
factors might act as a barrier to range shift. An advantage of the 
QGAM methods is that the models can easily be used as input for 

F I G U R E  8   Suitable habitat predictions for 2017 (blue circles) 
and for a climatic scenario of + 2°C in surface and bottom waters 
(red circles). Size of the dot indicates the estimated maximum (99th 
quantile) of the biomass (kg/km2) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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habitat preferences within end-to-end models. This would allow 
to predict suitable habitats maps on top of which other processes 
would refine the species distribution. This empirical knowledge 
should greatly benefit to any complex modeling attempt in the 
Barents Sea.
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