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Preface

The present dissertation concerns some theoretical and computational aspects of multispin dynamics,
mainly, in relation to magnetic resonance.

From the theoretical side, a general approach to quantum dynamics is taken where we slightly
revisit some concepts developed in the theory of open quantum systems [22] – which stem mainly from
the seminal works of Gorini, Kossakowski, Sudarshan [58] and Lindlad [97]. Here, it was necessary
to refine concepts like what it means, in general, for a quantum map to be completely positive. The
papers of Tong et al. [155] and Salgado et al. [138] proved pivotal in this regard. In this very process,
the distinction between universal dynamical maps (a concept borrowed from [132]) and non-universal
dynamical maps (introduced here by the author) is paramount.

Furthermore, the quantization of both the system of interest and its environment has been the
hallmark of the theory of open quantum systems (as developed from the ideas of Kraus, Gorini,
Kossakowski, Lindblad, Davies, Spohn, and other pioneers). In this work, we propose a way to extend
the application of the theory to those problems (for example, quantum dynamics of select systems in
condensed phases) in which it suffices to treat the environment at the classical level.

A perturbation scheme, which we have termed affine commutation perturbation (ACP), is also
introduced in this work. Unlike standard perturbation theory (where one has to go to at least the
first-order of the approximation in order to find some effects of the perturbation), the ACP scheme
makes it possible for some effects of the perturbation to be manifest even at the zeroth-order. Magnetic
resonance of multispin systems (with isotropic Hamiltonians1) discussed in the work is used as proof
of concept for all the above theoretical endeavors.

Regarding the computational side, we have been mainly concerned with – what one could call –
‘counting problems’ usually encountered in multispin dynamics. One simple example is the problem of
determining the Clebsch-Gordan series (i.e. the distinct total spin quantum numbers and correspond-
ing multiplicities) arising from the coupling of an arbitrary collection of spins. Limit cases of these sort
of problems have been discussed in the literature [68, 108, 121, 169] from diverse perspectives. It is
shown here that the Holstein-Primakoff (HP) transformation [13, 70] offers an easy way to treat such
problems in the most general terms. In this dissertation, we give an introduction to the HP transfor-
mation which greatly differs from what is commonly offered in the literature. The connection between
this transformation (on one side) and the quantum harmonic oscillator and discrete mathematics in
general (on the other side), is greatly emphasized. We also show how the HP transformation may
be easily used to generate simple stick-plot magnetic resonance spectra of certain multispin systems

1In this work, we only consider isotropic multispin Hamiltonians.
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under certain conditions.
The present dissertation is divided into five parts. Part I provides a quick overview of some fun-

damental concepts in quantum mechanics. The HP transformation is extensively discussed in Part II.
Concepts from the theory of open quantum systems like completely positive maps, universal dynamical
maps, quantum dynamical semigroups and quantum Markovian master equations are discussed in Part
III. This is where we also refine, to some degree, many of these fundamental concepts. Part IV brings
together concepts developed in Parts II and III. There, we introduce our proposal on how to still apply
many of the ideas and concepts from open quantum system theory (the Gorini-Kossakowski-Sudarshan-
Lindblad approach) even when the environment is treated at the classical level. In particular, we discuss
semiclassical quantum Markovian master equations and apply it to describe continuous wave magnetic
resonance of multispin spin systems. The ACP scheme is also introduced in Part IV. Conclusion and
perspectives on the work are given in Part V.

The author hereby declares that this thesis was composed by himself and the work explicitly stated
herein to be his are truly his own.

Verona, June 2020. Jerryman A. Gyamfi.



We live in a world of refinement not in a
world of invention.

That’s the way I see it.

A recipe is one thing but method is another.
It’s about understanding and questioning

what you are trying to do.
I’ve always done that. I can’t help it, it’s in

my nature.

Marco Pierre Whitea

aM. P. White White Slave: the godfather of modern
cooking, Orion Publishing Group Ltd, London, 2006.
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Part I

Overview of Quantum Mechanics

1





3

This part of the work briefly revises the fundamentals of quantum theory.

The material presented here is taken from the author’s preprint:

[63] J.A. Gyamfi, Fundamentals of Quantum Mechanics in Liouville Space, arXiv:2003.11472,
2020.

https://arxiv.org/abs/2003.11472
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Chapter 1

Postulate I: State space and state

vector

The postulates of quantum mechanics are listed and formulated differently from author to author,
even though the contents fundamentally do not disagree. The presentation offered here follows closely
Ref. [114]. The first postulate defines the complex linear space in which one can describe isolated
(or closed) quantum systems – i.e. systems not participating in any kind of interaction with other
systems. (Some authors, for example [22], make a distinction between closed and isolated systems. We
shall use the two terms interchangeably.)

Postulate I: Let S be an arbitrary isolated physical system. Associated to S is a
Hilbert space referred to as its state space. The state of S can be completely described by
a unit vector |ψ〉 of its state space. |ψ〉 is called a state vector.

It is worth noting that, in the literature, the term ‘Hilbert space’ is often taken as synonymous with
(or used as a shorthand for) ‘state space’. This can sometimes be misleading because the notion of
Hilbert space is a very broad one. In fact, any linear space which is complete and endowed with a
norm is a Hilbert space [31, 39, 80, 110, 131, 152]. For the sake of clarity, we shall keep this distinction
in our discussion.

Let us focus now on the state space. We shall be concerned with only finite-dimensional state
spaces. So, let Hd be a finite-dimensional state space of dimension d. Let |x〉 be a vector in Hd. |x〉
is, thus, a (d× 1) column vector. In linear algebra, we would have indicated such a (d× 1) vector with
the bold symbol xxx or −→x . But in quantum mechanics, we use what is called the Dirac bra-ket notation
[42], and indicate such a column vector with the symbol ‘|x〉’, called a ket. The advantage of Dirac’s
bra-ket notation is that it works fine even for infinite dimensional Hilbert spaces and allows us to do
many interesting manipulations without much effort, as we shall soon see.

Associated with Hd is an adjoint space (or dual space), indicated as H∗d. There is a one-to-one
correspondence between the elements of Hd and H∗d: if |x〉 ∈ Hd, then there exists its corresponding
element, denoted as ‘〈x|’ (called bra) in H∗d. The relation between the two is

〈x| = |x〉† (1.1)

5



6 Chapter 1. Postulate I: State space and state vector

where, for any matrix (vector or operator) A, ‘A†’ indicates the conjugate transpose of A. We therefore
see that 〈x| must be a row vector of dimension (1× d). 〈x| is also said to be the dual vector of |x〉.

For 〈y| ∈ H∗d and |x〉 ∈ Hd, 〈y| maps |x〉 to a scalar through the matrix product(
〈y|
)(
|x〉
)
≡ 〈y| x〉 . (1.2)

Equation (1.2) also defines an inner product (or scalar product) for Hd [31, 80, 131]. That is, given
two vectors |y〉 , |x〉 ∈ Hd, we can choose their inner product to be defined as〈

|y〉 , |x〉
〉

:= 〈y| x〉 . (1.3)

For separable Hilbert spaces, (1.3) is the commonly used inner product, and so shall we in the following.
Note that for |x〉 to be a state vector, according to Postulate I of quantum mechanics, |x〉 must be a
unit vector – meaning 〈x| x〉 = 1. The null vector of Hd, which we may indicate as |∅〉, is the vector
whose inner product with any given element of Hd is zero, i.e. 〈∅| x〉 = 〈x| ∅〉 = 0 ,∀ |x〉 ∈ Hd. |∅〉 is
simply the (d× 1) column vector whose entries are all zero.

The vector |x〉 can be expanded in any orthonormal basis {|φn〉} (n = 1, . . . , d) of the Hilbert space
Hd. That is,

|x〉 =

d∑
n=1

cn |φn〉 , 〈φn| φn′〉 = δn,n′ (1.4)

where the coefficients {cn} are complex scalars. Multiplying |x〉 in (1.4) from the left by 〈φm|, we get

〈φm| x〉 =

d∑
n=1

cn 〈φm| φn〉 =

d∑
n=1

cn δn,m = cm . (1.5)

Equation (1.5) therefore gives a prescription on how to determine the coefficients {cn} given the generic
vector |x〉 and an orthonormal basis {|φn〉}. For any given Hd, there is an infinite number of possible
orthornormal basis {|φn〉} – which means there is also an infinite number of ways of expressing the
same vector |x〉 of Hd.

If |x〉 is a unit vector, then (1.4) represents the state of an isolated system expressed as the linear
combination of other state vectors {|φn〉} (remember each |φn〉 is a unit vector, thus a potential state
vector). In this case,

∑d
n=1 |cn|

2
= 1 (normalization condition). Furthermore, it must be empha-

sized that for a state vector expressed by the sum in (1.4), the state of the system is simultaneously
|φ1〉 , . . . , |φd〉, each to some degree; for each |φn〉, this degree is quantified by the respective coefficient
cn and we say there is quantum coherence between the components {|φn〉} [79, 140]. And |x〉 in (1.4) is
said to be a coherent superposition of the state vectors |φ1〉 , . . . , |φd〉. We observe that the phenomenon
of quantum superposition is a basis-dependent one. This basis dependency plays an important role in
ongoing research aimed at explaining how the classical world we are used to emerges from the quantum
world [79, 139, 140].

1.1 The Hilbert space of linear operators Od and the extended

Hilbert-Schmidt inner product.

A vector |x〉 of Hd may be transformed into another vector |x′〉 of the same Hilbert space by means
of what is called a linear operator A, i.e. |x′〉 = A |x〉. A linear operator A on Hd is such that if
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|x〉 , |y〉 ∈ Hd, and c is a scalar, then

A(|x〉+ |y〉) = A |x〉+A |y〉 (1.6a)

A
(
c |x〉

)
= cA |x〉 . (1.6b)

One important operator we shall often deal with is the identity operator on Hd, denoted as Id. When
applied to an arbitrary vector |x〉 ∈ Hd, Id leaves the vector unchanged: i.e. |x〉 = Id |x〉 , ∀ |x〉 ∈ Hd.
If we go back to (1.4), use the result in (1.5) – and the fact that as a scalar, cn commutes with the
vector |φn〉, i.e. cn |φn〉 = |φn〉 cn–, we see that

|x〉 =

d∑
n=1

|φn〉 cn =

d∑
n=1

|φn〉 〈φn| x〉 . (1.7)

Based on (1.2), we may rewrite (1.7) as

|x〉 =

(
d∑

n=1

|φn〉〈φn|

)
|x〉 . (1.8)

Since |x〉 is an arbitrary vector of Hd, it follows that

Id =

d∑
n=1

|φn〉〈φn| . (1.9)

This identity is commonly referred to as the closure (or completeness) relation. Equation (1.9) is valid
for any arbitrary orthonormal basis of Hd.

Certainly, for a given Hd there is an infinite number of linear operators one can define on it. These
operators also form a finite-dimensional complex linear space. Let it be denoted as Od. In reality,
there is a one-to-one correspondence between elements of Od and (d × d) square matrices [80], so we
shall speak of the elements of Od as operators or square matrices, interchangeably.

Just as we could expand any vector |x〉 ∈ Hd in any basis of of the same linear space, we can also
expand any operator X ∈ Od in any given basis of Hd. What makes it easy to do so is the closure
relation in (1.9) and the fact that for any X ∈ Od and integers n,m, the relation: Imd XInd = X always
holds. For example, say we want to expand the operator X ∈ Od in the basis {|φn〉}. Then, the
following identities follows:

X = IdXId =

(
d∑

n=1

|φn〉〈φn|

)
X

(
d∑

n′=1

|φn′〉〈φn′ |

)

=

d∑
n=1

d∑
n′=1

|φn〉〈φn|X |φn′〉 〈φn′ |

(1.10)

where 〈φn|X |φn′〉 is a shorthand for the matrix product
(
〈φn|

)(
X
)(
|φn′〉

)
. Since 〈φn| is a (1 × d)

matrix, X is a (d×d) matrix and |φn′〉 is a (d× 1) matrix, we note that the product 〈φn|X |φn′〉 must
therefore be a scalar, and hence, commutes with both |φn〉 and 〈φn′ |. Thus,

X =

d∑
n=1

d∑
n′=1

〈φn|X |φn′〉 |φn〉〈φn′ | =
d∑

n=1

d∑
n′=1

Xnn′ |φn〉〈φn′ | (1.11)



8 Chapter 1. Postulate I: State space and state vector

where Xnn′ ≡ 〈φn|X |φn′〉. The matrix product |φn〉〈φn′ | is between a (d×1) matrix (on the left) and
a (1× d) matrix (on the right), so |φn〉〈φn′ | is actually a (d× d) matrix just like X. In fact, |φn〉〈φn′ |
is an element of Od. If we should write down X as a (d× d) matrix in the basis {|φn〉}, we note that
Xnn′ corresponds to the matrix element at the intersection between the n−th row and n′−th column.
The sum of all the diagonal elements of X in the basis {|φn〉} is called its trace with respect to {|φn〉},
denoted Trφ[X]:

Trφ[X] =

d∑
n=1

〈φn|X |φn〉 . (1.12)

One important property of the trace is that it is independent of the basis. That is, if {|φn〉} and {|ϑn〉}
are two independent basis of Hd, the trace of X ∈ Od remains the same with respect to both bases.
In fact, from (1.12) we have

Trφ[X] =

d∑
n=1

〈φn|X |φn〉 =

d∑
n=1

〈φn| IdX |φn〉 =

d∑
n=1

〈φn|

(
d∑

n′=1

|ϑn′〉〈ϑn′ |

)
X |φn〉

=

d∑
n=1

d∑
n′=1

〈φn| ϑn′〉〈ϑn′ |X |φn〉 =

d∑
n=1

d∑
n′=1

〈ϑn′ |X |φn〉 〈φn| ϑn′〉

(1.13)

where in the last step we have used that fact that 〈φn| ϑn′〉 and 〈ϑn′ |X |φn〉 are scalars and therefore
commute. Proceeding, we have

Trφ[X] =

d∑
n′=1

〈ϑn′ |X

(
d∑

n=1

|φn〉 〈φn|

)
|ϑn′〉 =

d∑
n′=1

〈ϑn′ |XId |ϑn′〉 =

d∑
n′=1

〈ϑn′ |X |ϑn′〉

= Trϑ[X] .

(1.14)

Given that the trace of X is independent of the basis, it is commonly indicated as Tr[X], without
specifying the basis.

The linear space Od also has its corresponding adjoint space, which we denote as O∗d. As usual,
there is a one-to-one correspondence between the elements of Od and O∗d: if A ∈ Od, then its dual is
A† (∈ O∗d). Also, since it is a linear space, we would expect to be able to define an inner product on
Od. The commonly used one here is the Hilbert-Schmidt inner product. If A and B are two elements
of Od, then their Hilbert-Schmidt inner product is〈

A,B
〉

= Tr
[
BA†

]
. (1.15)

A and B are square matrices so
〈
A,B

〉
= Tr

[
A†B

]
, due to a property of the trace functional which can

easily be proved. But on close examination, one observes that if we define an ordered inner product
(meaning, the position of the elements A,B are to be strictly maintained) as given in (1.15) (which
we may call ‘extended Hilbert-Schmidt’ to differentiate it from the conventional one), then the inner
product we defined for Hd, (1.3), is also of the same kind. Indeed, from (1.3) and (1.9), and the fact
that |x〉 = Id |x〉, it follows that

〈
|y〉 , |x〉

〉
= 〈y| x〉 = 〈y| Id |x〉 =

d∑
n=1

〈y| φn〉〈φn| x〉 =

d∑
n=1

〈φn| x〉〈y| φn〉 = Tr
[
|x〉〈y|

]
. (1.16)

Thus, for both Hd and Od, we have the extended Hilbert-Schmidt inner product, (1.15), as the chosen
inner product. Moreover, if {|φn〉} is an orthonormal basis for Hd, then the set of operators {|φn〉〈φn′ |}
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— where n, n′ = 1, 2, . . . , d — constitute an orthonormal basis for Od: That is, any element of Od can
be expressed as linear combination of the elements of the set {|φn〉〈φn′ |}. This is what we achieved, for
example, in (1.11). The orthonormality of the elements of {|φn〉〈φn′ |} can be verified with the extended
Hilbert-Schmidt inner product, (1.15). The linear space Od is therefore complete and normed, which
makes it a (complex) Hilbert space. The dimension of the set {|φn〉〈φn′ |} — and, therefore, of Od —
is easily seen to be d2.

An important class of elements of Od are the so-called Hermitian operators. An operator A ∈ Od is
said to be Hermitian if it coincides with its conjugate transpose, i.e. A = A†. It turns out that physical
dynamical variables of a system (like its total energy, magnetization vector, etc.) are represented by
Hermitian operators. The spectral decomposition theorem [39, 80, 110, 114] of quantum mechanics
asserts that given a Hermitian operator A ∈ Od there exists an orthonormal basis {|an〉〈an′ |} of Od
such that

A =
d∑

n=1

λn |an〉〈an| 〈an| an′〉 = δn,n′ (1.17)

where the scalars {λn} are real. The expansion in (1.17) is said to be the diagonal representation of the
operator A. The vectors {|an〉} are the eigenvectors of A and {λn} are the corresponding eigenvalues;
indeed, if we multiply (1.17) from the right by |am〉, we get A |am〉 = λm |am〉 – which is a normal
eigenvalue/eigenvector equation.
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Chapter 2

Postulate II

The second postulate asserts how the state vector of a closed quantum system evolves in time.

Postulate II The state vector |ψ〉 of a closed quantum system evolves in time according
to the Schrödinger equation:

d

dt
|ψ〉 = − i

~
H |ψ〉 (2.1)

– where ~ is the reduced Planck constant; H is a linear operator called the Hamiltonian of
the quantum system and it represents the total energy of the system.

Because |ψ〉 in (2.1) clearly depends on time, it is customary to indicate its time-dependence by writing
|ψ〉 as |ψ(t)〉. Suppose |ψ(t)〉 is a vector of Hd. If we choose to expand |ψ(t)〉 in the basis {|φn〉}, then

|ψ(t)〉 = Id |ψ(t)〉 =

d∑
n=1

|φn〉 〈φn| ψ(t)〉 =

d∑
n=1

cn(t) |φn〉 (2.2)

where the coefficients cn(t) ≡ 〈φn| ψ(t)〉 are now time-dependent.
At first glance, this postulate may seem very limiting because no system in the universe can be

truly closed. In one way or the other, every system interacts with another system. Nonetheless,
Postulate II is the basis on which open quantum systems (i.e. quantum systems engaged in some
form of interaction with other systems) are effectively described. In fact, many approaches have been
devised for describing how open quantum systems evolve in time and they all start with Postulate II
by assuming the relevant system we wish to describe and the other systems with which it interacts
(collectively called the environment or reservoir) form a closed system. These approaches collectively
go under what is called theory of open quantum systems [162].

11
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Chapter 3

Postulate III

To determine properties like energy or spin magnetic moment of a quantum system, we need to perform
some measurements on the system. These actions ultimately constitute some form of interaction with
the quantum system. In this sense, interaction and measurement are almost synonymous. It is thus
no wonder this third postulate is important to the theory of open quantum systems. Postulate III of
quantum mechanics is the quantum outlook on the process of measurements, and also introduces the
concept of ‘quantum measurement operators’.

Postulate III Let the outcomes of a (quantum) measurement be a countable set in-
dexed m, i.e. {rm}. To each outcome rm is associated an operatorMm called measurement
operator. Let |ψ〉 be the state of the quantum system at the instant immediately prior to
the measurement. Then, the probability p(m) that the outcome is rm is

p(m) =
〈
ψ
∣∣M†mMm

∣∣ψ〉 (3.1)

and the new state |ψ′〉 of the system immediately after the measurement is

|ψ′〉 =
Mm |ψ〉√
p(m)

. (3.2)

If |ψ〉 ∈ Hd, then the measurement operators {Mm} are such that∑
m

M†mMm = Id . (3.3)

Equation (3.3) is the completeness equation for the measurement operators {Mm}. It is important
because it indirectly instills the requirement that the probabilities p(m) summed over all m adds up
to the value 1. In fact, from (3.1), we have

∑
m p(m) =

∑
m

〈
ψ
∣∣M†mMm

∣∣ψ〉 =
〈
ψ
∣∣∑

mM
†
mMm

∣∣ψ〉 =

〈ψ| ψ〉 = 1. It should be quite clear that the observable being measured and the nature of the quantum
system being probed determine the set {Mm}.

Another concept central to quantum mechanics is that of expectation value (or mean value) of
a measurement. The expectation value of a measurement (related to an observable) is the average
outcome of the measurements. If the outcomes of the observable represented by the operator B are

13



14 Chapter 3. Postulate III

{λm} with corresponding probabilities {p(m)}, it is clear that the expectation value of the observable,
indicated as

〈
B
〉
, is the weighted sum〈

B
〉

=
∑
m

λm p(m) =
∑
m

λm
〈
ψ
∣∣M†mMm

∣∣ψ〉 = 〈ψ|B |ψ〉 (3.4)

where we have made use of (3.1), and have defined the operator B as

B =
∑
m

λmM
†
mMm , with

∑
m

M†mMm = Id . (3.5)

Equation (3.5) is a more general operator representation of an observable in quantum mechanics (for
finite-dimensional state space). It is evident from (3.4) that the value

〈
B
〉
is always real. Note

that the measurement operators Mm may be Hermitian or not. As an example, consider the spin
angular momentum operator Sz of an electron. We know the spin state space of the electron is a
two-dimensional Hilbert space and

Sz = ~

(
1
2 0

0 − 1
2 .

)
(3.6)

which is a Hermitian operator. Note that we if we take {|0〉 , |1〉} as the basis of the electron’s spin
state space, where

|1〉 =

(
1

0

)
|0〉 =

(
0

1

)
. (3.7)

we may rewrite Sz as
Sz =

~
2
|1〉〈1| − ~

2
|0〉〈0| . (3.8)

From (3.8), we can infer the outcomes {λm} of the measurement of Sz, and their corresponding
measurement operators {Mm}. Indeed, we notice that (3.8) may be rewritten as

Sz = λ0 M
†
0M0 + λ1 M

†
1M1 (3.9)

where

λ0 = −~
2
, M0 = |0〉〈0| (3.10a)

λ1 = +
~
2
, M1 = |1〉〈1| (3.10b)

and the completeness relation M†0M0 + M†1M1 = I2 is satisfied. For these particular measurement
operators, it is observed that MmMm′ = δm,m′Mm. Such measurement operators give rise to what is
called projective measurements [114]. Also, note that M0 and M1 may be expanded in any basis of
our choice, but the fundamental structure of (3.9) remain unchanged. With the help of (3.10), one
can determine, for example, through (3.2) the probability of the outcomes λ0, λ1 given any initial spin
state |ψ〉 of the electron.

As another example, consider an observable F of the electron spin given by the outcomes {λ±}
and their corresponding measurement operators {σ±}, i.e.

F = λ+σ
†
+σ+ + λ−σ

†
−σ− (3.11)

– where σ+ = |1〉〈0| and σ− = |0〉〈1|. We note that in this case the measurement operators are not
Hermitian (i.e. σ± 6= σ†±) but, nonetheless, they satisfy the completeness relation for measurement
operators, (3.3), i.e. σ†+σ+ + σ†−σ− = I2.



Chapter 4

Pure states, mixed states and density

matrices

The state of a quantum system (closed or open) may be pure or mixed. It is pure when we have
complete information on it [19, 98, 140]. ‘Complete information’ in the sense that there is no classical
uncertainty as to what the quantum state is [98], so we can assign a single state vector |ψ〉 to the
system. A classic way of illustrating this concept is through the Stern-Gerlach experiment, where a
beam of silver atoms is passed through an inhomogeneous magnetic field. The spin quantum number
of a normal silver atom is 1

2 , so in traversing the inhomogeneous magnetic field the beam is split into
two: one in which each silver atom has a spin magnetic moment of + 1

2~ (let us call it Beam 1) and
another in which each atom has a spin magnetic moment of − 1

2~ (Beam 2). Beam 1 can be collected.
The spin state of all the silver atoms in Beam 1 is completely known so the beam is in a pure (spin)
state. And we can assign a single spin state vector |ψ〉 to Beam 1. The same applies to Beam 2.

When we cannot assign a single state vector |ψ〉 to the system because there is classical uncertainty
on the system’s quantum state, we resort to (classical) statistics to describe the state. The result is
what we call a mixed state [19, 98, 140]. This is a collection of positive real numbers 0 ≤ Pk ≤ 1

and their corresponding vectors |ψk〉 ∈ Hd, where Pk is the probability that the state of the quantum
system is given by the state vector |ψk〉. Mixed states are therefore typically expressed in the form
of the collection {Pk, |ψk〉} and they are symptom of the observer’s lack of complete information on
the quantum state of the system under study. Either Pk or |ψk〉 (or both) may depend on time.
Nonetheless, the condition

∑
k Pk = 1 always holds.

Given the mixed state {Pk, |ψk〉}, where the state vectors |ψk〉 form an orthonormal basis of Hd,
we may introduce an operator ρ ∈ Od, the density matrix (or density operator), defined on Hd such
that

〈ψk| ρ |ψk〉 = Pk , ∀k . (4.1)

It is not difficult to realize that the operator ρ must be of the form

ρ =

d∑
k=1

Pk |ψk〉〈ψk| . (4.2)

Unlike the sum in (1.4), state of the quantum system as expressed in (4.2) is not one which is si-
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16 Chapter 4. Pure states, mixed states and density matrices

multaneously the {|ψk〉}. Rather, (4.2) expresses a classical mixture of states. Equation (4.2) is also
reminiscent of (1.17). Indeed, ρ is Hermitian and (4.2) is its diagonal representation. If we choose to
represent ρ in a different orthonormal basis — say {|φn〉} — , then, from (4.2) and (1.9), we have

ρ =

d∑
k=1

Pk Id |ψk〉〈ψk| Id =

d∑
k=1

Pk

d∑
n=1

d∑
n′=1

|φn〉 〈φn| ψk〉 〈ψk| φn′〉 〈φn′ |

=

d∑
n=1

d∑
n′=1

( d∑
k=1

Pk 〈φn| ψk〉 〈ψk| φn′〉
)
|φn〉〈φn′ |

=

d∑
n=1

d∑
n′=1

ρnn′ |φn〉〈φn′ | .

(4.3)

where we can see ρnn′ ≡ 〈φn| ρ |φn′〉. Thus, in a different orthonormal basis, ρ ceases to be diagonal
even though the statistics of measurement outcomes remain the same. Such different representations
of the same density matrix ρ are related to each other through a unitary transformation. If the system
is isolated, with Hamiltonian H, and we take the time derivative of ρ(t), then, from (2.1) and (4.2),
we obtain

d

dt
ρ(t) = − i

~
[H, ρ(t)] (4.4)

where ρ is now written as ρ(t) to show its time-dependence and |ψk〉〈ψk| → |ψk(t)〉〈ψk(t)| in (4.2).
(For any pair of operators A,B ∈ Od, their commutator [A,B] is defined as [A,B] ≡ AB −BA. And
their anti-commutator, [A,B]+, is defined as [A,B]+ ≡ AB+BA. We note that [A,B] = −[B,A] and
[A,B]+ = [B,A]+.) Equation (4.4) is referred to as the Liouville-von Neumann equation.

Note that a pure state may also be expressed in the form of a density matrix. If the quantum
system is in the pure state |ψ(t)〉, then {Pk, |ψk〉} → {1, |ψ(t)〉}, and so from (4.2), it follows that

ρ(t) = |ψ(t)〉〈ψ(t)| . (4.5)

If we express this pure state density matrix in the basis {|φn〉}, for example, we get

ρ(t) = Id |ψ(t)〉 〈ψ(t)| Id =

d∑
n=1

d∑
n′=1

|φn〉 〈φn| ψ(t)〉 〈ψ(t)| φn′〉 〈φn′ |

=

d∑
n=1

d∑
n′=1

cnn′(t) |φn〉〈φn′ |

(4.6)

with cnn′(t) ≡ 〈φn| ψ(t)〉〈ψ(t)| φn′〉 = 〈φn| ρ(t) |φn′〉. We recognize the similarity between the final
forms of ρ in (4.3) and (4.6). This tells us that the fact that a density matrix ρ has nonzero off-diagonal
elements (i.e. coherence) in a basis, does not necessarily mean it represents a mixed state. To check
whether a density matrix represents a mixed or pure state, one has to put it in its diagonal form,
(4.2): if there are more than one nonzero Pk, then the state is mixed, otherwise it is pure. Put more
elegantly, ρ represents a pure state if its rank (i.e. the number of nonzero eigenvalues) is 1; if the rank
is greater than 1 then the state is mixed. Consider, for example, the following qubit density matrices:

ρ1 =

(
1
2 − e

iθ

2

− e
−iθ

2
1
2

)
ρ2 =

(
1
2 −i

√
2

3 sin θ

i
√

2
3 sin θ 1

2

)
. (4.7)

where θ is some parameter of the system. Note that both density matrices have the same populations
(i.e. diagonal elements), but ρ1 is a pure state and ρ2 is a mixed state.
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The fact that the rank of a pure state’s density matrix is 1 also leads to the assertion that Tr[ρ2] = 1

if ρ represents a pure state; while for a mixed state, Tr[ρ2] < 1. For ρ1 and ρ2 in (4.7), for example,
one can easily verify that Tr[ρ2

1] = 1 and Tr[ρ2
2] = 1

2 + 4
9 sin2 θ < 1.

The final problem we wish to attend to before moving on to the Liouville space formalism is
how Postulate III turns out when dealing with a mixed state {Pk, |ψk〉} instead of a state vector
|ψ〉. Suppose we have an observable B – described by a set of quantum measurement operators
{Mm |

∑
mM

†
mMm = Id} and their corresponding outcome values {λm}. We want to determine the

probability p(m) that the outcome of measuring B is λm, given that the state of the quantum system
immediately prior to the measurement is given by the mixed state ρ = {Pk, |ψk〉} – where the state
vectors {|ψk〉} are assumed orthogonal to each other. Naturally, we have to apply Postulate III. The
only complication is that, contrary to what Postulate III originally describes, we are dealing here
with a collection of states {Pk, |ψk〉}. But this is no complication because if immediately prior to the
measurement, the state of the quantum system is {Pk, |ψk〉}, then the probability p(m) that we get
λm as the outcome is

p(m) =
∑
k

p(m|k) Pk (4.8)

where p(m|k) is the probability that the outcome λm is a consequence of the quantum system being
in the state |ψk〉 immediately prior to the measurement. That is, following (3.1),

p(m|k) =
〈
ψk
∣∣M†mMm

∣∣ψk〉 . (4.9)

Note, however, that

〈
ψk
∣∣M†mMm

∣∣ψk〉 =
〈
ψk
∣∣ IdM†mMm

∣∣ψk〉 =

d∑
n=1

〈ψk| φn〉
〈
φn
∣∣M†mMm

∣∣ψk〉
=

d∑
n=1

〈
φn
∣∣M†mMm

∣∣ψk〉〈ψk| φn〉 = Tr
[
M†mMm |ψk〉〈ψk|

]
.

(4.10)

Thus, p(m|k) = Tr
[
M†mMm |ψk〉〈ψk|

]
and (4.8) may be written as

p(m) =
∑
k

Tr
[
M†mMm |ψk〉〈ψk|

]
Pk = Tr

[
M†mMm

(∑
k

|ψk〉〈ψk|Pk

)]
=Tr

[
M†mMm ρ

]
.

(4.11)

The expectation value
〈
B
〉
is still given by the weighted sum

〈
B
〉

=
∑
m λmp(m), (3.4), as we saw

above. But now, introducing the expression for p(m), (4.11), we get

〈
B
〉

=
∑
m

λm p(m) =
∑
m

λmTr
[
M†mMm ρ

]
= Tr

[(∑
m

λmM
†
mMm

)
ρ

]
=Tr

[
B ρ

]
.

(4.12)

Furthermore, we may be interested in what the mixed state ρ = {Pk, |ψk〉} transforms into, immediately
after the outcome of the measurement of B, if the outcome is recorded to be λm. Let us indicate this
new mixed state as ρm. It can be shown that [114]

ρm =
MmρM

†
m

p(m)
(4.13)
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where p(m) is given by (4.11). (This may be verified by taking ρ to be a pure state, ρ = |ψ〉〈ψ|, and
using (3.2).) Suppose we do not record the outcome, so that we are ignorant of what the state of the
quantum system is immediately after the measurement. Then, it is easy to see that an effective way
to describe the new mixed state ρ′ is as a mixture of the states {ρm} with probabilities {p(m)}. That
is,

ρ′ =
∑
m

p(m) ρm =
∑
m

MmρM
†
m . (4.14)

This is called non-selective measurement [69, 96].



Part II

The Holstein-Primakoff

Transformation
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We introduce here the Holstein-Primakoff transformation and some of its applications in magnetic
resonance. Most of the materials presented here are original contributions of the author, and are taken
from the following publications/preprints of his:

[62] J.A. Gyamfi, An Introduction to the Holstein-Primakoff Transformation, with Ap-
plications in Magnetic Resonance, arXiv:1907.07122, 2019.

[65] J.A. Gyamfi, V. Barone, Magnetic Resonance, Index Compression Maps and the
Holstein - Primakoff Bosons: Towards a Polynomially Scaling Exact Diagonalization of
Isotropic Multispin Hamiltonians, arXiv:1803.10461, 2018.

[66] J.A. Gyamfi, V. Barone, On the composition of an arbitrary collection of SU(2)
spins: An Enumerative Combinatoric Approach, J. Phys. A: Mathematical and Theoretical

51(10):105205, 2018.

Notations and definitions

To make the concepts we will discuss later on more intelligible, it is important we get our terminologies
and notations in order now. For example, we shall often speak of multisets [148]. Unlike ordinary
sets where each distinct element must appear only once, in a multiset distinct elements can repeat
any number of times. A set therefore can only tell us how many distinct elements we have and
their identities. For instance, say P4 the set of the first four prime numbers; then, P4 = {2, 3, 5, 7}.
Consider all the possible three digit (positive) integers we can create from the elements of P4. The
number "537" for example is a valid one. By representing the digits composing these numbers as
elements of a collection, we may write "537" as "{5, 3, 7}", using the set notation. In the same spirit,
{2, 2, 2}, {3, 7, 7} and {5, 7, 5} are all valid. While {5, 3, 7} is a set, {2, 2, 2}, {3, 7, 7} and {5, 7, 5} are
not, but are multisets. According to the criterion chosen to represent all possible three digit numbers
from the set P4, it is clear that the multiset {5, 3, 7} is different from {3, 7, 5}. Order is therefore
important here. Like a set, a multiset can also be ordered. If we are only interested in the number of
times a number repeats as a digit, then order is no longer important and so we may indicate "377"
and "737" as {3, 7, 7} or {7, 3, 7} or {7, 7, 3}, or – even more succinctly, using a customary notation in
multiset theory – {3, 72}, the exponent (or multiplicity) here indicates the number of times an element
repeats itself.

https://arxiv.org/abs/1907.07122
https://arxiv.org/abs/1803.10461
https://iopscience.iop.org/article/10.1088/1751-8121/aaa8fa/meta
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Consider now a multiset A = {j1, j2, . . . , ji, . . . , jN} of N spins, where ji is the spin quantum
number of the i−th spin. In the following, we shall reserve the Latin letter i to lower index A’s
elements when the latter is expressed in this laborious manner. A more efficient way to indicate the
same multiset (if we are not interested in order as we are now) is to specify all the distinct elements and
their multiplicities. We shall use the Greek letter α to index distinct elements of the multiset. Thus, if
the spin multiset A has σ distinct elements, then we can express A also as A = {jNαα }, α = 1, 2, . . . , σ,
where Nα is the multiplicity of the α−th distinct spin quantum number. Naturally, N =

∑σ
α=1Nα. It

is crucial to point out that two elements ji and ji′ of A are distinct only if they correspond to different
spin quantum numbers – other characteristics of the spins (like charge, magnetic moment etc.) are
not of any merit whatsoever here. For example, the multiset A = { 1

2

9
, 13} indicates any aggregate of

nine spin-1/2 and three spin-1; the actual composition could consist of, for instance, 1) nine electrons
and three protons, or 2) five 15

7N8 plus four muons – both spin-1/2s – and three 14
7N7 nuclei (which

are spin-1) [51], etc.
A very important distinction is due here. A system of N spins whereby j1 = j2 = . . . = jN = j

is termed as univariate spin system (USS) [66]. The multiset representation of the system is then
A = {jN}. In a USS, the N spins could be mutually different in regards to mass, charge, magnetic
moment, etc. On the other hand, a system of identical spins (IS) [66] is a univariate spin system
whereby all the N spins share exactly the same intrinsic fundamental properties like mass and charge,
and are indistinguishable from one another when placed under the same external conditions. Thus, an
identical spin system is also necessarily USS, but a USS is in general not an IS.

In addition to the concept of univariate and identical spin systems, we also have equivalent spins
(ES). Consider a given multiset A = {j1, j2, . . . , jN} of spins. Say A ′ a submultiset of A, i.e. every
element of A ′ is also an element of A. A ′ is said to be a system of equivalent spins if every element of A ′

couples to all other elements of A and any external field in the same manner. Specifically, the elements
of A ′ are said to be equivalent if one cannot distinguish between them on the basis of their coupling
tensors with other spins and external fields. It mostly happens that equivalent spins are also identical,
but in principle they do not need to be. The concept of equivalent nuclei in NMR, for example, is just
a limit case of equivalent spins. If we take the methyl radical ·CH3 for example (assuming all three
hydrogen nuclei are 1H and the carbon atom is 12C), the spin system A = {j1, j2, j3, j4} = { 1

2

4} is
clearly univariate; the three hydrogen nuclei are identical spins. The same trio of spins also constitute
a collection of equivalent spins when the system’s Hamiltonian is invariant under the operation of the
point group C3.

Operators in Part II will be indicated with their usual hats while their matrix representations will
bear none: for example, the matrix representation of the operator Â will be simply indicated as A .

If ji is the spin quantum number of the i−th spin, therefore a scalar (ji = 1
2 , 1,

3
2 , 2,

5
2 , . . .), then

its corresponding spin vector operator will be indicated as Ĵ̂ĴJ i, which, as we saw above, corresponds
to the sum: Ĵ̂ĴJ i = Ĵ xi ex + Ĵ yi ey + Ĵ zi ez, where Ĵ xi , Ĵ

y
i , Ĵ zi are the spin angular operators along

the respective axis and defined on the spin Hilbert space of spin i. In this article, we will not try to
indicate spin vector operators of electrons and nuclei with different symbols: they will all be indicated
simply as Ĵ̂ĴJ i, and the index i will serve the purpose of recording the specific identity of the spins based
on our chosen choice of integer-labelling of the latter.



Chapter 5

The quantum harmonic oscillator

The harmonic oscillator is perhaps the most important model in quantum mechanics. We are not
going to belabor it here as it is extensively treated in almost every textbook on quantum mechanics.
We only recall here that the Hamiltonian of a body of mass m tied to a spring able to move only in
one direction (let us call it the x axis) is [11]:

Ĥ =
P̂2
x

2m
+

1

2
kX̂ 2 (5.1)

where P̂x is the linear momentum operator along the x−axis, X̂ is the spatial displacement operator
from the equilibrium position, and k is the force constant.

Since we shall be working in the position space, it is important to recall that the position eigenkets
{|x〉} are such that [137]:

X̂ |x〉 = x |x〉 (5.2)

and they obey the orthogonality condition:

〈x′| x〉 = δ(x′ − x) (5.3)

where δ(•) is the Dirac delta function. If we multiply (5.3) by |x′〉 and integrate over the entire range
of x′ we get: ∫

dx′ |x′〉 〈x′| x〉 =

∫
dx′ |x′〉 δ(x′ − x) = |x〉 (5.4)

from which we deduce that: ∫
dx′ |x′〉 〈x′| = Î (5.5)

where Î is the identity operator. (5.5) is the completeness relation for the position eigenkets.
To study the behavior of the body quantum mechanically, what we can do is to solve the time-

independent Schrödinger’s equation for the body’s energy eigenkets, {|E〉}:

Ĥ |E〉 = E |E〉(
P̂2
x

2m
+

1

2
kX̂ 2

)
|E〉 = E |E〉

(5.6)

where E is the energy of the body. Note that we may expand |E〉 in terms of the position eigenkets:

|E〉 =

∫
dx |x〉 〈x| E〉 (5.7)

23
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where (‖〈x| E〉‖2 dx) can be interpreted as the probability to find the body in any of the points between
x and x + dx given that its energy is E. The coefficient 〈x| E〉 =: ψE(x) is therefore the probability
amplitude, or wavefunction, in position space.

If we multiply both sides of (5.6) from the left by the identity operator
∫
dx |x〉 〈x|, we obtain:∫

dx |x〉
(

1

2m

〈
x
∣∣∣ P̂2

x

∣∣∣E〉+
1

2
kx2 〈x| E〉

)
=

∫
dx |x〉E 〈x| E〉 . (5.8)

Making use of the fact that
〈
x
∣∣∣ P̂2

x

∣∣∣E〉 = −~2 d2

dx2 〈x| E〉 [137], (5.8) becomes:∫
dx |x〉

(
−~2

2m

d2

dx2
+

1

2
kx2

)
ψE(x) =

∫
dx |x〉E ψE(x) (5.9)

that is, (
−~2

2m

d2

dx2
+

1

2
kx2

)
ψE(x) = E ψE(x) . (5.10)

The solution to this eigenspectrum problem is well known. The energy eigenvalues are found to be
parameterized by n [11, 93]:

En =

(
n+

1

2

)
~ω , n = 0, 1, 2, 3, . . . (5.11)

Thus, ψE(x) = ψ(n+ 1
2 )~ω(x), which may be simply written as ψn(x). Since there is a one-to-one

correspondence between E and n (for fixed mass and force constant), we may henceforth simply
indicate |E〉 as |n〉. Moreover, it is found that [11, 93]:

ψn(x) =
1√

2nn!

(mω
π~

)1/4

Hn (ζ) e−ζ
2/2 (5.12)

where ω ≡
√
k/m, ζ ≡ x

√
mω/~ and Hn(z) is the Hermite polynomial of order n in z.

At this point we may rewrite (5.7) as:

|n〉 =

∫
dx |x〉ψn(x) (5.13)

where we have effected the substitutions |E〉 → |n〉 and 〈x| E〉 → ψn(x). It is evident from (5.13)
that the wavefunction ψn(x) is just the expansion coefficient when we expand |n〉 in terms of position
eigenstates. Naturally, (5.13) is not the only possible expansion we could think of. We could have
equally expanded |n〉 in terms of the momentum eigenstates (along the x− axis), i.e. {|px〉}, where:

P̂x |px〉 = px |px〉 (5.14)

and,
〈p′x| px〉 = δ(p′x − px) (5.15)

from which follows the completeness relation:∫
dp′x |p′x〉 〈p′x| = Î . (5.16)

In fact, introducing the momentum space completeness relation into (5.13) we get:

|n〉 =

∫
dpx |px〉

(∫
dx 〈px| x〉ψn(x)

)
=

∫
dpx |px〉φn(px) (5.17)
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where φn(px) is the wavefunction in momentum space. In complete analogy to ψn(x),
(
‖φn(px)‖2dpx

)
gives the probability of measuring the body’s momentum to be between px and px + dpx if its energy
is fixed at En. We briefly mention that because 〈px| x〉 = 1√

2π~ exp
(
− ipxx~

)
[137], it follows that

φn(px) =
1√
2π~

∫
dx exp

(
− ipxx

~

)
ψn(x) (5.18)

which means φn(px) and ψn(x) are related through the Fourier transform, as one would expect.
The gist of the above arguments is that depending on the basis in which we expand |n〉, we get

different wavefunctions. The appropriate wavefunction to talk about depends on how we intend to
probe the quantum system: for example, if we intend to measure position given a fixed energy of the
system, then {ψn(x)} are the wavefunctions to go with; if, instead, we want to measure momentum
then we need the {φn(px)}. But in all these discussions, the nature of the ket |n〉 remains the same
independent of whether we work in momentum or position space. As a matter of course, one might
then ask why don’t we just deal solely with the energy eigenkets |n〉 without resorting to wavefunctions
– and that is precisely the quintessence of the so-called second quantization scheme (also known as the
occupation number representation). When we expand |n〉 in some basis and then solve for the related
coefficients, or wavefunctions, as we did above, (5.10), we speak then of first quantization. Thus, in
first quantization, it is important to specify in which basis the expansion of the ket |n〉 is being done,
normally in position or momentum space (but, in general, in the space of either one of a canonically
conjugated pair of operators).

How then do we go about doing quantum mechanics without explicitly talking of wavefunctions?
In other words, how does second quantization work? To see how it works, let us go back to (5.6),
which at this point, we may conveniently write as:

Ĥ |n〉 = En |n〉 . (5.19)

Instead of trying to find an expression for |n〉, we take it as it is – viz. {|n〉} are eigenstates of Ĥ ,
period. What we rather do is to rewrite the Hamiltonian Ĥ in terms of a set of mutually commuting
operators which have {|n〉} as their eigenstates. It is worth noting that the eigenenergy En, (5.11),
depends only on n and not on neither the position (x) nor the momentum (px) of the body. Indeed,
the mathematical expression for En in terms of n gives important clues on how we may rewrite Ĥ in
such a way that the new operators in the latter do really have {|n〉} as their eigenkets. If we combine
(5.19) and (5.11), we find that,

Ĥ |n〉 =

(
n+

1

2

)
~ω |n〉 (5.20)

which means that,

Ĥ =

(
Â +

1

2

)
~ω (5.21)

where Â is, for now, an unknown operator with the following property:

Â |n〉 = n |n〉 . (5.22)

Comparing (5.6) with (5.21), we find that:

Â =
ωm

2~

(
X̂ 2 +

P̂2

ω2m2
− ~
ωm

)
. (5.23)



26 Chapter 5. The quantum harmonic oscillator

Traditionally, this form of Â is less preferred because it obscures some interesting insights. Rather, it
is the factorized form:

Â = â†â (5.24)

where [11],

â† =

√
mω

2~

(
X̂ − i

mω
P̂x

)
(5.25a)

â =

√
mω

2~

(
X̂ +

i

mω
P̂x

)
(5.25b)

that we prefer and use. The reason is that, despite the fact that the operators â† and â are not
Hermitian, they allow for transition between the eigenstates – so they are extremely useful when
discussing emission and absorption processes. As a matter of fact, one can derive that:

â |n〉 =
√
n |n− 1〉 , â† |n〉 =

√
n+ 1 |n+ 1〉 . (5.26)

It is truly remarkable that the form Ĥ assumes in light of the operators â and â†, namely,

Ĥ =

(
â†â+

1

2

)
~ω (5.27)

appears in many problems in quantum mechanics. Perhaps the most important is the quantization
of the electromagnetic field, which was first done in the early years of quantum theory. There, one
sees that the Hamiltonian of the field becomes a sum over an infinite number of harmonic oscillators,
each representing a specific mode of the field. And the operators â† and â are tasked with increasing
and decreasing by a quanta of energy their respective modes. Einstein had already discovered the
photoelectric effect and the notion of the electromagnetic field as being composed of particles called
photons was well established by then, so interpreting the operators â† and â as creating and annihilating
photons of certain momentum was leapt at very easily – thus their eponymous current names. Soon
after, the language introduced by the quantization of the electromagnetic field crept into all physical
problems where the Hamiltonian could be recast into the likeness of (5.27). In every instance (with the
exception of the harmonic oscillator), the particles which the creation and annihilation operators were
meant to create or annihilate were given a specific name. In the case of lattice vibrations, for example,
the particles are called phonons [93, 137]. In this narrative, the operator â†â is interpreted as counting
the number of particles occupying a certain state, hence its name occupation number operator, usually
indicated as n̂. In this view, the state |n = 0〉 contains no particle, so we call it the vacuum state. The
absence of particles in the vacuum state, though, does not necessarily imply a state of zero energy.
As it mostly happens, it is characterized by a specific energy. For the harmonic oscillator, (5.11), this
vacuum energy corresponds to E0 = 1

2~ω. And anytime a particle is added to the system, the energy
of the latter increases by ∆E = ~ω – which is commonly referred to as a quanta of energy. In addition,
we can imagine creating any state |n〉 from the vacuum state |0〉. It is easy to prove from (5.26) that:

|n〉 =

(
â†
)n

√
n!
|0〉 . (5.28)

The vacuum state of the harmonic oscillator can thus accommodate any finite number of particles,
hence the particles must be bosons. The normalization factor 1√

n!
can be interpreted as accounting for
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the indistinguishability of these bosons. (It is interesting to note the analogy here with the solution to
the Gibbs paradox.). The particle states {|n〉} are the orthonormal basis elements of a vector space
called the Fock space [82, 93, 137]. In this space, two basis states |n〉 and |n′〉 are orthogonal to each
other if they differ in their occupation numbers. The Fock space for the harmonic oscillator is bosonic
because, as stated above, we can fill the vacuum state with any number of bosons. There are Fock
spaces where one cannot fill the vacuum state with more than one particle. These are called fermionic
Fock spaces, and the particles in question are fermions. Finally, we mention that from the properties
of the operators â† and â, (5.26), one derives the commutation relation:

[
â, â†

]
= Î (5.29)

which can also be easily derived applying the definition of â† and â given at (5.25).

In discussing the harmonic oscillator above, we made a very deep conceptual leap when we transi-
tioned from first to second quantization. This has to do with the interpretation of the integer n. Under
the first quantization scheme, n just indexed eigenfunctions like ψn(x) and their respective energies
( (5.12)). But according to the second quantization scheme, we came to see the same integer n as
being an eigenvalue of the operator â†â and also indicates the number of bosons occupying a Fock
space ket. Both interpretations are correct and can be used interchangeably. However, some caution is
needed in how far we drag the meaning of n together with the creation and annihilation operators in
second quantization. In general, the particles created or annihilated according to second quantization
represent excitations in the system under study. This is quite clear from the relation between n and
the quantum harmonic oscillator’s eigenenergy, (5.11): n indicates how energetically excited the state
of the oscillator is. And the notion of â† and â creating and annihilating some bosons, respectively,
according to the second quantization scheme, is just a mathematical construct which provide an alter-
native way of talking about these same harmonic excitations. The same applies to lattice vibrations:
phonons, like the bosons for the harmonic oscillator, are just mathematically constructed particles
which occupation numbers represent excitations in lattice vibrations.

However, there are also many instances whereby these particles one get from second quantizing a
system are not just the fruits of some mathetmatical trickery, but are real particles to reckon with
in Nature. For example, photons represent the excitations in the electromagnetic field according to
second quantization, and are real. The Higgs boson represent excitations in the Higgs field, and it has
recently been detected experimentally. The electromagnetic field and the Higgs field are examples of
what we call quantum fields. In fact, all the elementary particles in physics (including the electron)
are excitations of a particular quantum field. The study of quantum fields and their excitations is the
subject of quantum field theory (QFT) [93]. We are not going to need QFT in the discussions that
follow, but it is important we bear in mind the episteme related to these particles which transpire
through second quantization.

To conclude this brief discussion on the harmonic oscillator and second quantization, we consider a
collection of noninteracting harmonic oscillators, say N in total. If we work in the occupation number
representation, the Hamiltonian here is a direct generalization of (5.21):

Ĥ =

N∑
i=1

(
â†i âi +

1

2

)
~ωi (5.30)
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It is then very easy to see that a generic state of the system can be expressed as |n1, n2, . . . , nN 〉 where
ni indicates the number of bosons present in the i−th harmonic oscillator. The (overall) vacuum state
of the system is the state in which ni = 0 for any given oscillator i, i.e. |0, 0, . . . , 0〉, which we shall
simply indicate as |0〉. The eigenenergies are also easily found to be:

En1,n2,...,nN =

N∑
i=1

(
ni +

1

2

)
~ωi . (5.31)

The operators â†i and âi operate only on the Fock space of the i−th oscillator, therefore such operators
with different indexes commute:

[âi, âi′ ] =
[
â†i , â

†
i′

]
= 0̂ ,

[
âi, â

†
i′

]
= δi,i′ Î . (5.32)

As in the case of a single harmonic oscillator, the generic state |n1, n2, . . . , nN 〉 can be generated from
the vacuum state |0〉:

|n1, n2, . . . , nN 〉 =

N∏
i=1

(â†i )
ni

√
ni!
|0〉 . (5.33)

The generic multi-harmonic oscillator state |n1, n2, . . . , nN 〉 is simply the direct product |n1〉 ⊗ |n2〉 ⊗
. . .⊗ |nN 〉. The Fock space for this collection of oscillators is thus the vector space tensor product of
the Fock spaces of the separated oscillators. The collection of integers {n1, n2, . . . , nN} is an ordered
multiset: the first element denotes the number of bosons in the first oscillator, the second element is
the number of bosons in the second oscillator and so on. Each individual oscillator has its own vacuum
state, and each of these has its own energy content. The energy (E0) of the overall vacuum state, |0〉,
is the sum of the energy of the various local vacuum states: E0 = 1

2

∑N
i=1 ~ωi.



Chapter 6

The Holstein-Primakoff

transformation

Having discussed the harmonic oscillator, we are now ready to discuss the Holstein-Primakoff (HP)
transformation.

Given an arbitrary particle of spin-j (j = 1
2 , 1,

3
2 , 2,

5
2 , . . .), we commonly represent its spin quantum

states through a set of orthonormal states {|j,m〉} which are each a simultaneous eigenstate of the
operators Ĵ̂ĴJ 2 and Ĵ z:

Ĵ̂ĴJ 2 |j,m〉 = j(j + 1)~2 |j,m〉 (6.1a)

Ĵ z |j,m〉 = m~ |j,m〉 . (6.1b)

As we know, the possible values of the magnetic spin quantum number, m, depends on j and the
nature of j. If j is an integral integer, then m = ±j,±(j − 1), . . . , 0, while for half-integral j, m =

±j,±(j−1), . . . ,±1/2. The fact that the values ofm can be either: 1) all integral or, 2) all half-integral
integers, creates some discomfort when writing algorithms for doing computations on systems which
may potentially involve spin quantum numbers of different types. The ideal way to go about this
would be to have a simple way of representing the possible m values as function of some parameter
which is independent of whether j is integral or half-integral. In fact, for a given j, it is easy to verify
that the possible values of m can be simply expressed as:

m = j − n , where n = 0, 1, 2, . . . , 2j . (6.2)

Note that, alternatively, we could also have chosen the form:

m = j + n′ , where n′ = 0,−1,−2, . . . ,−2j . (6.3)

However, the form given in (6.2) is preferred because the parameter n admits only nonnegative integers.
But another reason why we choose n ( 6.2) over n′ ( 6.3) is that the former allows a very natural
transition to the second quantization scheme, and, as we shall see shortly, this is what leads to the
Holstein-Primakoff transformation.

Indeed, the relation (6.2) implies that there is one-to-one correspondence between m and n for
fixed j. So instead of the eigenstates {|j,m〉}, we can equally make use of the states {|j, n〉} – which

29
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are also simultaneous eigenstates of Ĵ̂ĴJ 2 and Ĵ z. Just as the states {|j,m〉} are often simply indicated
as {|m〉}, we will often indicate the states {|j, n〉} as {|n〉}. For example, for a spin-1/2, the states
|m = +1/2〉 and |m = −1/2〉 in the |m〉 representation become |n = 0〉 and |n = 1〉 in the |n〉 repre-
sentation, respectively. If the new states {|n〉} bring to mind the simple quantum harmonic oscillator,
then you already get where this is going. In particular, if we combine (6.1) and (6.2), we get:

Ĵ z |n〉 = ~(j − n) |n〉 (6.4)

where we have effected the transformation |j,m〉 → |n〉. Repeating the reasoning which led to (5.21),
we see that we may express Ĵ z as

Ĵ z = ~
(
j − b̂†b̂

)
(6.5)

where
b̂†b̂ |n〉 = n |n〉 . (6.6)

In the language of occupation number representation, the operator b̂†b̂ is the occupation number
operator for some particles. The vacuum state of these particles, i.e. |n = 0〉, is seen to correspond to
the state |j, j〉; and as we increase n, m decreases by the same degree.

To delineate further the parallelism between this way of talking about spin states and the harmonic
oscillator, let us consider a single spin−j interacting with a static magnetic field Bo = Boez. The spin
Hamiltonian, as we know, is:

Ĥ = −γBoĴ z (6.7)

where γ is the spin’s gyromagnetic ratio. According to (6.5), we can rewrite this Hamiltonian also as:

Ĥ =
(
j − b̂†b̂

)
~ω (6.8)

where ω := −γBo is the Larmor frequency. And the eigenvalues of Ĥ are easily seen to be:

En = (j − n)~ω . (6.9)

The quanta of energy is still ~ω and the vacuum energy here is thus E0 = j~ω. We also observe from
(6.9) that the occupation number for the particles which b̂†b̂ counts indicates excitations in the spin,
just as we saw for the quantum harmonic oscillator (5.11). It is worthwhile to point out that while
the vacuum state of the harmonic oscillator is a true ground state (that is, the state with the lowest
energy), in the present case, the vacuum state |0〉 is not always the ground state. Here, |0〉 is the
ground state only when γ > 0, while for γ < 0 the |0〉 corresponds to the highest excited state.

Equations (6.9) and (6.8) rightly reminds us of (5.27) and (5.11) from the harmonic oscillator
problem, respectively. In addition, the operators b̂† and b̂ have the same properties as the â† and â

encountered when we discussed the harmonic oscillator, respectively, (5.26); namely:

b̂ |n〉 =
√
n |n− 1〉 , 1 ≤ n ≤ 2j (6.10a)

b̂† |n〉 =
√
n+ 1 |n+ 1〉 , 0 ≤ n ≤ 2j − 1 (6.10b)

where the ranges on n have been set so as to remain consistent with (6.2). The above bounds imposed
on n mark a very important difference between the new states {|n〉} for the spin and those for the
quantum harmonic oscillator. We shall come back to this point very soon.
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Equation (6.5) gives a second quantization representation of the spin operator Ĵ z, but this is not
enough to allow us to fully do spin dynamics in second quantization. We also need to express the
operators Ĵ x and Ĵ y in terms of the operators b̂† and b̂. To achieve this, it is rather convenient to
deal with their linear combinations Ĵ± = Ĵ x± iĴ y. From the theory of angular momentum, we know
that, for example [137, 170],

Ĵ + |m〉 = ~
√

(j −m)(j +m+ 1) |m+ 1〉 . (6.11)

From (6.2), we have that if |m〉 → |n〉, then |m+ 1〉 → |n− 1〉, therefore (6.11) in the occupation
number representation becomes:

Ĵ + |n〉 ≡ f+(b̂†, b̂) |n〉 = ~
√

2j − (n− 1)
√
n |n− 1〉 (6.12)

where f+(b̂†, b̂) is simply the operator Ĵ + written in terms of b̂† and b̂. Our objective is to find
f+(b̂†, b̂). From the first equation of (6.10a), we note that:

f+(b̂†, b̂) |n〉 = ~
√

2j − (n− 1) b̂ |n〉 . (6.13)

Given that b̂ |n〉 ∝ |n− 1〉, and the final state must remain |n− 1〉, the operator which generates the
coefficient

√
2j − (n− 1) must be in function of the occupation number operator, b̂†b̂, (6.6). We are

then lead to the conclusion that:

Ĵ + = ~
√

2j − b̂†b̂ b̂ . (6.14)

Since Ĵ− and Ĵ + are Hermitian conjugate of each other, it follows immediately from (6.14) that:

Ĵ− = ~ b̂†
√

2j − b̂†b̂ . (6.15)

Equations (6.5), (6.14) and (6.15) constitute the Holstein-Primakoff transformation. In the HP trans-
formation the usual spin operators Ĵ x, Ĵ y, Ĵ z are all written in function of a single operator b̂† and
its Hermitian conjugate, b̂. The particles which b̂† (b̂) creates (annihilates) are called the Holstein-
Primakoff bosons. We emphasize that the HP bosons simply represent spin excitations, and we should
not go beyond this interpretation. Interestingly, while Ĵ + |m〉 ∝ |m+ 1〉 and Ĵ− |m〉 ∝ |m− 1〉, we
observe from (6.14) and (6.15) that Ĵ + |n〉 ∝ |n− 1〉 and Ĵ− |n〉 ∝ |n+ 1〉, which is consistent with
the fact that an increase in m implies a decrease in n and vice versa (because the sum m + n is con-
served, (6.2)). Therefore, the operator Ĵ + (unlike b̂†) annihilates HP bosons, but Ĵ− creates them.
In complete analogy to the m−representation where we know Ĵ + cannot increase the magnetic spin
quantum number m of the state |m〉 indefinitely, in the occupation number representation Ĵ + cannot
annihilate the HP bosons indefinitely but ends when n = 0, which corresponds to the HP vacuum state.
Analogously, Ĵ− can fill the vacuum state with a maximum number of HP bosons, namely, n = 2j.

This limit is set by the operator
√

2j − b̂†b̂ in the definition of Ĵ−, (6.15). This is all consistent with
(6.2) where it was evident that n is a nonnegative integer, and whose range is bounded by the spin
quantum number j: 0 ≤ n ≤ 2j.
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From (6.5), (6.14) and (6.15) we also derive the following:

Ĵ x = ~

√
2j − b̂†b̂ b̂+ b̂†

√
2j − b̂†b̂

2
(6.16a)

Ĵ y = ~

√
2j − b̂†b̂ b̂− b̂†

√
2j − b̂†b̂

2i
(6.16b)

Ĵ̂ĴJ 2 = ~2j(j + 1)̂I . (6.16c)

Most importantly, one can verify that the Holstein-Primakoff transformation preserves the commuta-
tion relations: [

Ĵ α, Ĵ β
]

= i~εαβγĴ γ (6.17)

or their equivalent: [
Ĵ z, Ĵ±

]
= ±~Ĵ± (6.18a)[

Ĵ +, Ĵ−
]

= 2~Ĵ z (6.18b)

where α, β and γ represent any of the three directions x, y, z and εαβγ is the three-dimensional Levi-
Civita symbol. Hence, working in the HP representation is just the same as in the m−representation,
in the sense that the physics does not change.

In analogy to the quantum harmonic oscillator, the HP spin states {|n〉} can all be generated from
the vacuum state |0〉:

|n〉 =
(b̂†)n√
n!
|0〉 , 0 ≤ n ≤ 2j . (6.19)

We could also obtain |n〉 from |0〉 by applying repeatedly Ĵ−. This has the advantage of incorporating
inevitably the bound on n. Certainly,

|n〉 ∝

(
Ĵ−

~

)n
|0〉 . (6.20)

Indeed, the following identities can be easily proved:

|n〉 =

(
Ĵ−
~

)n
n!
√(

2j
n

) |0〉 (6.21)

|n〉 =

∏n
k=1(2j + k − b̂†b̂)1/2

n!
√(

2j
n

) (b̂†)n |0〉 (6.22)

|n〉 = Λ̂(j, n)
(b̂†)n√
n!
|0〉 (6.23)

where, the operator Λ̂(j, n) is defined as:

Λ̂(j, n) :=

√((
2j+1−b̂†b̂

n

))
√(

2j
n

) (6.24)
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and where
((
x
n

))
is defined as: ((x

n

))
:=

x(x+ 1)(x+ 2) . . . (x+ n− 1)

n!
. (6.25)

x in (6.25) can be a number or an operator. For a nonnegatve integer x,
((
x
n

))
is what we call the

multiset coefficient (read as "x multichoose n") [148], and it gives the number of combinations of length
n we can get from a set of x elements, if we allow repetition of elements and disregard order [148].
For example, the multisets of cardinality 2 we can get from a set of cardinality 3 like {i, j, k} are:
{i, i}, {i, j}, {i, k}, {j, j}, {j, k}, {k, k}; so

((
3
2

))
= 6, which can be checked from (6.25). By definition,((

x
n

))
= 1 when n = 0 and x is a scalar; while

((
x
n

))
= Î when n = 0 and x is an operator. To prove

(6.22) and (6.23) from (6.21) the following identity is very useful:

(b̂†)k
√

2j − b̂†b̂ =

√
2j + k − b̂†b̂ (b̂†)k (6.26)

for nonnegative integer k. The identity can be easily proved using the properties of the operators b̂†

and b̂, (6.10a).
The operator Λ̂(j, n) defined in (6.24) is a very interesting one. It can be easily shown that:

Λ̂(j, n) |n〉 =

|n〉 , if 0 ≤ n ≤ 2j

nonexistent , otherwise
. (6.27)

Equation (6.23) is very telling: (b̂†)n√
n!
|0〉 certainly yields the quantum harmonic oscillator state |n〉 –

(5.28). So, for now, n can be any nonnegative integer, just like with the quantum harmonic oscillator.
But by multiplying (b̂†)n√

n!
|0〉 from the left by the operator Λ̂(j, n), we restrict the range of values for n

to 0 ≤ n ≤ 2j. Evidently, Λ̂(j, n) plays the role of a "cut-off" operator: while it forbids n from being
outside the range 0 ≤ n ≤ 2j, it reduces to the identity operator when n is within the same range.
Interestingly, this observation on the properties of Λ̂(j, n) entails a very peculiar implication. It begins
with the observation that,

lim
j→∞

Λ̂(j, n) = Î (6.28)

according to (6.24). But if Λ̂(j, n) becomes the identity operator for any occupation number n, then
there is a one-to-one correspondence between the states {|n〉} in (6.23) and the quantum harmonic
oscillator states {|n〉} we saw in (5.28). This means that the eigenvectors of the quantum harmonic
oscillator are the same as those of a spin-∞ particle in Fock space [66]. Conversely, we can interpret the
Fock space in which the spin states {|n〉} are defined as a truncated version of the quantum harmonic’s
Fock space by means of the the operator Λ̂(j, n).

The next chapters of Part II dedicated to multispin systems notwithstanding, we briefly introduce
the topic here. Given an arbitrary finite collection of spins, their spin quantum numbers form a
multiset, which we shall indicate as A, i.e. A = {j1, j2, . . . , jN}. Multispin states are normally
indicated in the m−representation either using the coupled or uncoupled representations [170]. In the
latter, the states, {|j1m1, j2m2, . . . , jNmN 〉}, are simultaneous eigenstates of the individual Ĵ̂ĴJ 2

i and Ĵ zi
operators. In the HP occupation number representation, |j1m1, j2m2, . . . , jNmN 〉 7→ |n1, n2, . . . , nN 〉,
where ni, 0 ≤ ni ≤ 2ji, is the number of HP bosons introduced into the HP vacuum state of the
i−th spin, and N is the total number of spins. Each possible combination of occupation numbers
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{n1, n2, . . . , nN} also forms an ordered multiset and corresponds to a specific multispin state. The
overall HP vacuum state is obviously the |n1, n2, . . . , nN 〉 state with ni = 0 for every i. If we indicate
such state as |0〉, it trivially follows from (6.23) that:

|n1, n2, . . . , nN 〉 = Λ̂(j1, n1; . . . ; jN , nN )

N∏
i=1

(b̂†i )
ni

√
ni!
|0〉 (6.29)

where,

Λ̂(j1, n1; . . . ; jN , nN ) :=

N∏
i=1

√((
2ji+1−b̂†i b̂i

ni

))
√(

2ji
ni

) . (6.30)

If we consider a multiset of noninteracting spins A = {j1, j2, . . . , jN} placed in a region with static
magnetic field Bo = Boez, the multispin Hamiltonian of the system is a facile generalization of (6.8):

Ĥ =

N∑
i=1

(
ji − b̂†i b̂i

)
~ωi (6.31)

and the eigenenergies are simply:

En1,n2,...,nN =

N∑
i=1

(ji − ni) ~ωi . (6.32)

and the total vacuum energy is E0 =
∑
i ji~ωi. Like the single spin HP vacuum state, the multispin

analogue is not necessarily the ground state. To get the ground state from |0〉, one needs to fill all
localized vacuum states characterized by nonnegative ωi (i.e. negative γi) with HP bosons to their
maximum capacity and leave those with negative ωi empty.



Chapter 7

Index compression maps

7.1 Introduction

We have seen that the uncoupled representation of the multispin states associated with A = {j1, j2, . . . , jN}
are {|n1, n2, . . . , nN 〉} in the HP occupation number representation, and the possible occupation num-
bers (n1, n2, . . . , nN ) are multisets of integers. To effectively discuss multispin dynamics, it is con-
venient to have a reasonable shorthand for indicating a generic state |n1, n2, . . . , nN 〉. The so-called
index compression maps are devised just for this purpose and they will be our first order of business
in this section. In the second part, we will analyze the eigendecomposition problem for some general
forms of isotropic multispin Hamiltonians using the HP representation.

7.2 Index compression maps

A detailed discussion on index compression maps is beyond the scope of this article, so we are going to
keep the mathematical details to the minimum. We will concern ourselves here with only one special
kind of index compression maps, denoted η0. For more on index compression maps see [65]. Given a
spin multiset A = {j1, j2, . . . , jN}, the index compression map, η0, maps each possible combination of
occupation numbers (n1, n2, . . . , nN ) to a unique integer of the set {n}. The mapping is one-to-one.
η0 is simply a function which has the HP occupation numbers n1, n2, . . . , nN as variables. To be more
specific:

n = η0(n1, n2, . . . , nN ) =

N∑
i=1

WR,i · ni . (7.1)

where,

WR,i := δN,i + (1− δN,i)
N−i∏
k=1

di+k (7.2)

where δi,i′ is the Kronecker delta and di is the dimension of the spin-i’s spin Hilbert space, i.e. di =

2ji + 1. In more comprehensible terms, for i 6= N , WR,i is the product of all the di′ with i′ > i; while
for i = N , WR,i = 1. For instance, WR,2 = d3 · d4 · · · dN . In the same spirit, WR,0 then corresponds
to the dimension DH of the entire spin Hilbert space of the multispin system. We thus infer from
(7.1) that the possible values of n are: 0, 1, 2, . . . , (DH − 1)[65]. Note that since each of the states
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|n1, n2, . . . , nN 〉 constitute a basis for the multispin Hilbert space, the dimension of the latter must
coincide with the number of all possible combinations of the HP occupation numbers {n1, n2, . . . , nN},
which is precisely DH. These combinations are ordered and restricted: restricted in the sense that for
each ni, 0 ≤ ni ≤ 2ji, as we mentioned above. The range of n is thus consistent with the dimension of
the multispin Hilbert space.

We adopt the following notation: if n is related to the multiset {n1, n2, . . . , nN} through the index
compression map η0, (7.1), then we shall write the ket |n1, n2, . . . , nN 〉 as |n〉. The integers n will be
indicated with the font O,1,2,3, . . . to differentiate them from the single spin states. The complete HP
vacuum state of the system always has n = 0, and so |0, 0, . . . , 0〉 7→ |0〉, consistent with our previous
notation for this particular state.

Consider the deuterated hydroxymethyl radical (·CH2OD), for example. There are only four
nonzero spins we need to take into consideration for the simulation of its ESR spectrum: 1) the
radical electron, 2) the first hydrogen nuclear, 3) the second hydrogen nuclear, and 4) the deuterium
nuclear. If we number the spins according to the same order, then the spin multiset in this case is
A = {j1, j2, j3, j4} = { 1

2 ,
1
2 ,

1
2 , 1}. And from (7.1) we can write:

n = 12n1 + 6n2 + 3n3 + n4 . (7.3)

In table 7.1 the elements of ·CH2OD’s spin Hilbert space basis in the uncoupled representation
(|m1,m2,m3,m4〉) are translated into the HP occupation number representation (|n1, n2, n3, n4〉), and
their respective shorthand notation |n〉 according to the index compression map η0 is also given. As one
can easily observe, the relationship between the integers n and the occupation numbers (n1, n2, n3, n4)

according to the mapping η0 strictly depends on how we label the spins.

It is interesting to note that once we know the labels on the spins from the multiset A = {j1, j2, . . . , jN},
we can determine the corresponding HP occupation numbers n1, n2, . . . , nN for any given n. This is
because the map η0 is invertible and has a unique inverse: η−1

0 (n) = {n1, n2, . . . , nN}. In this sense,
(7.1) can be viewed as a linear multivariable Diophantine equation in the variables n1, n2, . . . , nN . The
problem is somehow complicated by the fact that each variable ni is restricted to a specific range. In
any event, there is a simple algorithm one can follow to solve (7.1) for n1, n2, . . . , nN when n is fixed. It
goes as follows: Find the integer n1, 0 ≤ n1 ≤ 2j1, which maximizes the productWR,1n1 but still keeps
the latter less or equal to the given n; find then n2 in the range 0 ≤ n2 ≤ 2j2 which maximizes the sum
WR,1 ·n1 +WR,2 ·n2, still keeping the sum less or equal to n. Continue with the procedure till you get
to nN . In the particular case where along the way you get to a certain occupation number nk, where
n1 ≤ nk < nN , such that n =WR,1 ·n1 +WR,2 ·n2 + . . .+WR,k ·nk, then nk+1 = nk+2 = . . . = nN = 0.

For instance, say we want to find the HP occupation numbers n1, n2, n3, n4 corresponding to n = 11

for the ·CH2OD radical (assuming we maintain the same choice of spin labelling as done above). This
amounts to solving the Diophantine equation:

11 = 12n1 + 6n2 + 3n3 + n4 (7.4)

in accordance with (7.3), knowing that n1, n2, n3 can be or 0 or 1, while n4 can be any nonnegative
integer not greater than 2. According to the algorithm discussed above, we see that n1 must necessarily
be 0, n2 and n3 must be 1 and, finally, n4 = 2. Thus, |11〉 = |0, 1, 1, 2〉, which is in agreement with
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|m1,m2,m3,m4〉 |n1, n2, n3, n4〉 |n〉∣∣+ 1
2 ,+

1
2 ,+

1
2 ,+1

〉
|0, 0, 0, 0〉 |0〉∣∣+ 1

2 ,+
1
2 ,+

1
2 , 0
〉

|0, 0, 0, 1〉 |1〉∣∣+ 1
2 ,+

1
2 ,+

1
2 ,−1

〉
|0, 0, 0, 2〉 |2〉∣∣+ 1

2 ,+
1
2 ,−

1
2 ,+1

〉
|0, 0, 1, 0〉 |3〉∣∣+ 1

2 ,+
1
2 ,−

1
2 , 0
〉

|0, 0, 1, 1〉 |4〉∣∣+ 1
2 ,+

1
2 ,−

1
2 ,−1

〉
|0, 0, 1, 2〉 |5〉∣∣+ 1

2 ,−
1
2 ,+

1
2 ,+1

〉
|0, 1, 0, 0〉 |6〉∣∣+ 1

2 ,−
1
2 ,+

1
2 , 0
〉

|0, 1, 0, 1〉 |7〉∣∣+ 1
2 ,−

1
2 ,+

1
2 ,−1

〉
|0, 1, 0, 2〉 |8〉∣∣+ 1

2 ,−
1
2 ,−

1
2 ,+1

〉
|0, 1, 1, 0〉 |9〉∣∣+ 1

2 ,−
1
2 ,−

1
2 , 0
〉

|0, 1, 1, 1〉 |10〉∣∣+ 1
2 ,−

1
2 ,−

1
2 ,−1

〉
|0, 1, 1, 2〉 |11〉∣∣− 1

2 ,+
1
2 ,+

1
2 ,+1

〉
|1, 0, 0, 0〉 |12〉∣∣− 1

2 ,+
1
2 ,+

1
2 , 0
〉

|1, 0, 0, 1〉 |13〉∣∣− 1
2 ,+

1
2 ,+

1
2 ,−1

〉
|1, 0, 0, 2〉 |14〉∣∣− 1

2 ,+
1
2 ,−

1
2 ,+1

〉
|1, 0, 1, 0〉 |15〉∣∣− 1

2 ,+
1
2 ,−

1
2 , 0
〉

|1, 0, 1, 1〉 |16〉∣∣− 1
2 ,+

1
2 ,−

1
2 ,−1

〉
|1, 0, 1, 2〉 |17〉∣∣− 1

2 ,−
1
2 ,+

1
2 ,+1

〉
|1, 1, 0, 0〉 |18〉∣∣− 1

2 ,−
1
2 ,+

1
2 , 0
〉

|1, 1, 0, 1〉 |19〉∣∣− 1
2 ,−

1
2 ,+

1
2 ,−1

〉
|1, 1, 0, 2〉 |20〉∣∣− 1

2 ,−
1
2 ,−

1
2 ,+1

〉
|1, 1, 1, 0〉 |21〉∣∣− 1

2 ,−
1
2 ,−

1
2 , 0
〉

|1, 1, 1, 1〉 |22〉∣∣− 1
2 ,−

1
2 ,−

1
2 ,−1

〉
|1, 1, 1, 2〉 |23〉

Table 7.1: Basis kets of ·CH2OD’s spin Hilbert space in the uncoupled representation
(|m1,m2,m3,m4〉), the HP representation (|n1, n2, n3, n4〉) and their shorthand notation |n〉 according
to the index compression map η0.

Table (7.1). It therefore goes without saying that by means of the map η0, we can easily encode
multispin states in the form of integers, and the decoding process is as easy as that of encoding.

Before moving on, we point out that, unlike the multispin HP boson Fock states, the map η0 cannot
be applied to the boson Fock states for a finite collection of quantum harmonic oscillators (not even
for a single oscillator). This is because the single spin HP boson Fock spaces we encounter in Nature
are always finite in dimension (due to the action of the operator Λ̂(j, n), (6.27)) – this is in stark
contrast to the boson Fock space related to a single quantum harmonic oscillator, which is of infinite
dimension.
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Chapter 8

Eigendecomposition of isotropic

multispin Hamiltonians in the absence

of an external magnetic field

8.1 Introduction

We discuss here how the HP transformation and the index compression map η0 can be deployed to
solve the eigendecomposition problem for isotropic multispin Hamiltonians. One of the advantages of
the HP transformation is that it has the tendency of making it possible to find analytical solutions to
seemingly intractable problems. This analytical element can be very useful when writing algorithms
for multispin systems.

Symmetry arguments cannot be ignored in problems like the one we are about to discuss, and we
will greatly make use of them. But it is important to note that symmetry arguments can get us to
confidently reach certain conclusions without sharing light on how to effectively carry on the needed
calculations. This is where the HP transformation and the index compression map η0 come to our aid.
To make the symmetry arguments more intelligible we are not going to consider the general isotropic
multispin Hamiltonian in the presence of a static magnetic field straightaway; we will leave it till the
next chapter. But along the way, we will discuss various symmetries and analyze the spin Hamiltonians
we encounter with the help of the HP transformation and η0.

Without loss of generality, we have set ~ = 1 in the following.
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8.2 The isotropic multispin Hamiltonian in the absence of an

external magnetic field

The isotropic spin Hamiltonian Ĥspin−spin of an arbitrary collection of spins A = {j1, j2, . . . , jN} in
the absence of an external magnetic field takes the form [32, 61]:

Ĥspin−spin =
∑
i>i′

Ti,i′Ĵ̂ĴJ i · Ĵ̂ĴJ i′ =
∑
i>i′

Ti,i′

[
Ĵ zi Ĵ zi′ +

1

2

(
Ĵ +
i Ĵ

−
i′ + Ĵ−i Ĵ

+
i′

)]
. (8.1)

Hspin−spin manifestly remains the same in all directions (rotationally invariant). Not surprisingly, it
is a zero rank spherical tensor operator. Another way of proving this is by recalling the definition of
spherical tensor operators. A spherical tensor operator of rank k can be defined as an operator with
(2k + 1) irreducible components which obey the following commutation relations [137]:[

Ĵ z, T̂ (k)
q

]
= ~qT̂ (k)

q (8.2a)[
Ĵ±, T̂ (k)

q

]
= ~

√
(k ∓ q)(k ± q + 1)T̂

(k)
q±1 (8.2b)

with k = 0, 1, 2, . . . and −k ≤ q ≤ +k. (Spherical tensor operators are often defined according to
how they behave under rotation [170]. This involves the use of Wigner matrices and we would like to
avoid them for now. We therefore stick to the definition above, which is much simpler to handle.) For
example, if we compare the commutation relations in (6.18) with (8.2), we note that the trio Ĵ z, Ĵ±

must be proportional to the components of a rank k = 1 spherical tensor. Indeed, if we set:

T̂
(1)
0 = Ĵ z T̂

(1)
±1 = ∓ 1√

2
Ĵ± (8.3)

we see that the relations in (8.2) are perfectly observed.
Going back to Ĥspin−spin, it can easily be verified that:[

Ĵ ztot, Ĥspin−spin

]
= 0̂ (8.4a)[

Ĵ±tot, Ĥspin−spin

]
= 0̂ (8.4b)

where, Ĵ ztot =
∑N
i=1 Ĵ zi and Ĵ±tot =

∑N
i=1 Ĵ

±
i . In line with (8.2), we observe that since Ĥspin−spin is

not a null operator, (8.4) hold only if Ĥspin−spin is proportional to a zero rank tensor (k = 0). From
(8.4b), we also derive that: [

Ĵ xtot, Ĥspin−spin

]
= 0̂ (8.5a)[

Ĵ ytot, Ĥspin−spin

]
= 0̂ . (8.5b)

The conclusion we draw from the commutation relations stated in (8.4a), (8.5a) and (8.5b) is that the
total spin angular momentum must be conserved along the three axes, just as one would expect from
a rotationally invariant operator like Ĥspin−spin. The operators Ĵ xtot, Ĵ

y
tot, Ĵ ztot are thus constants of

motion for an isolated spin system whose spin Hamiltonian is given by Ĥspin−spin. Note that any
linear combination of these three operators is also a constant of motion. Thus, the total spin angular
momentum vector operator Ĵ̂ĴJ tot, for example, is also a constant of motion. Not only that: any
operator of the form X̂r, where r = 1, 2, 3, . . . and X̂ is any of the operators Ĵ̂ĴJ tot, Ĵ xtot, Ĵ

y
tot, Ĵ ztot, is
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also a constant of motion. The same applies to any linear combination of such powers of operators.
However, not all pairs of operators of this vast family of constants of motions commute with each
other. For example, Ĵ xtot does not commute with Ĵ ytot. This is crucial because the easiest way to
determine the energy spectrum of Ĥspin−spin, for example, is to express it as a function of a subset
of mutually commuting operators which belong to this infinitely numerable family of constants of
motion. Unfortunately, as far as we know at the moment, Ĥspin−spin as given in (8.1) fails to succumb
to this mathematical contrivance due to the arbitrary difference between the coupling constants {Ti,i′}.
Numerical diagonalization of Hspin−spin, therefore, seems the most reasonable route to the eigenvalues
and eigenvectors of Ĥspin−spin, especially when dealing with multispin systems.

To find the eigenvalues and eigenvectors of Hspin−spin, we can choose to simply take the whole
Hspin−spin and diagonalize it using some standard software or algorithm (we may call this the ‘tout
court’ approach). For very large Hspin−spin, this route is hardly taken. The other approach is to
first divide Hspin−spin into independent sub-units and then proceed with the diagonalization of each
sub-unit. The HP transformation and the index compression map ηo discussed in Chap. 6 and Sec.
7.2, respectively, enables us to break Hspin−spin into sub-units in a computationally efficient manner.

First of all, consider two arbitrary multispin states |n〉 (= |n1, . . . , nN 〉) and |n′〉 (= |n′1, . . . , n′N 〉).
From (8.4a), we have that: 〈

n
∣∣∣ [Ĵ ztot, Ĥspin−spin

] ∣∣∣n′〉 = 0 . (8.6)

Given that,

Ĵ ztot =

N∑
i=1

(
ji − b̂†i b̂i

)
= J0 − N̂ (8.7)

(where J0 ≡
∑N
i=1 ji is the total spin of the system, and N̂ ≡

∑N
i=1 b̂

†
i b̂i the total HP bosons occupation

number operator), we note that – as one would expect – the kets {|n〉} are eigenvectors of Ĵ ztot:

Ĵ ztot |n1, . . . , nN 〉 = Ĵ ztot |n〉 = (J0 − n) |n〉 (8.8)

where n =
∑N
i=1 ni is the total number of HP bosons contained in |n〉. In light of (8.8), (8.6) reduces

to the form:

(n− n′)
〈

n
∣∣∣ Ĥspin−spin

∣∣∣n′〉 = 0 (8.9)

where it becomes evident that
〈

n
∣∣∣ Ĥspin−spin

∣∣∣n′〉 = 0 when n 6= n′. In other words, a necessary

but not sufficient condition for the matrix element
〈

n
∣∣∣ Ĥspin−spin

∣∣∣n′〉 to be nonzero is that the two
multispin states |n〉 and |n′〉 are represented by the same total number of HP bosons. The total
number of HP bosons is thus conserved for a spin system with Hamiltonian Ĥspin−spin, (8.1); i.e.[
N̂ , Ĥspin−spin

]
= 0 (this commutation relation easily follows from (8.4a) and (8.8)).

The importance of the relation in (8.9) even goes further than what we have concluded so far.
Indeed, if

〈
n
∣∣∣ Ĥspin−spin

∣∣∣n′〉 is identically zero for any pair of states |n〉 and |n′〉 with different

number of total HP bosons, it implies that in the matrix representation of Ĥspin−spin according to the
basis {|n〉}, the matrix elements between states with the same total number n of HP bosons constitute
a block which is orthogonal to all other possible blocks characterized by a different total number of
HP bosons. In other words, if we decompose the Hamiltonian Ĥspin−spin in the basis {|n〉}, all the
multispin states |n〉 occupied by the same total number n of HP bosons compose a subspace Bn of the



42 Chapter 8. Eigendecomposition of isotropic multispin Hamiltonians in the absence of an external magnetic field

HP bosons Fock space, and subspaces characterized by different n will be orthogonal to each other, i.e.
Bn ⊥ Bn′ if n 6= n′. But since there is a one-to-one correspondence between the states {|n〉} and the
normal multispin states {|j1m1, . . . , jNmN 〉}, it means that the normal multispin Hilbert space of the
system is also decomposed into orthogonal subspaces in similar fashion. In more concise mathematical
terms, the subspace Bn is simply the set of kets defined as:

Bn := {|n〉 | N̂ |n〉 = n |n〉 , 0 ≤ n ≤ (DH − 1)} (8.10)

(recall DH is the dimension of the Hilbert space).
It is only natural at this point to ask ourselves to determine the range of n for a given multiset

A of spins. Since n =
∑N
i=1 ni, and 0 ≤ ni ≤ 2ji, it is clear that 0 ≤ n ≤ 2J0. Consequently, for a

given collection of spins whose Hamiltonian operator is the q = 0-th component of a rank k spherical
tensor (see (8.2)) like Ĥspin−spin, the system’s Hilbert space can always be decomposed into (2J0 + 1)

orthogonal subspaces. This particular observation is far from new: as a matter of fact, it is well
known that whenever an operator commutes with Ĵ ztot, the total spin magnetic quantum number Mz

is conserved – which leads to the creation of orthogonal subspaces each characterized by a particular
Mz. Since the total spin is J0, the range of Mz is −J0 ≤ Mz ≤ J0, which means there are (2J0 + 1)

distinct possible values of Mz, hence (2J0 + 1) orthogonal subspaces. Indeed, as it follows from (8.8),
the connection between Mz and n is very simple: Mz = J0 − n. Nonetheless, the use of n is far more
convenient computationally than Mz because, unlike Mz whose values can be either all integers or all
half-integers, the possible values of n are always nonnegative integers, independent of the collection of
spins at hand. This is not the only advantage of using the HP transformation, and we shall discuss
others shortly.

The realization of the orthogonal subspaces {Bn} also implies that the matrix representation of
Ĥspin−spin, Hspin−spin, is block-diagonalized in the basis {|n〉}. In fact, the relation

Hspin−spin =

2J0⊕
n=0

Bn = diag (B0,B1, . . . ,B2J0) =



B0

. . .

B2J0


(8.11)

holds true. The block matrix Bn collects the matrix elements of Ĥspin−spin between kets belonging
to the subspace Bn, i.e.

Bn :=
{〈

n
∣∣∣ Ĥspin−spin

∣∣∣n′〉 ∣∣∣ ∀n,n′ ∈ Bn} . (8.12)

Given a multiset A of spins, we shall indicate the dimension of the block matrix Bn as ΩA,n, which is
also the dimension of the orthogonal subspace Bn. Thus, for consistency,

DH =

2J0∑
n=0

ΩA,n . (8.13)

The very crucial implication of (8.11) is that the eigendecomposition of Hspin−spin can be equally
achieved by eigendecomposing each Bn independently, with the benefit of reducing the computational
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cost (in both computing time and memory). If the computational cost of the eigendecomposition of
a square matrix of dimension M is O(Mp) (in most cases p ≈ 3), we see that the computational
cost of eigendecomposing Hspin−spin tout court is O(Dp

H). In contrast, if we choose to determine
the eigenvalues and eigenvectors of Hspin−spin by eigendecomposing the block matrices Bn, then the
computational cost turns out to be: O(ΩpA,0)+O(ΩpA,1)+ . . .+O(ΩpA,2J0

). Due to the relation in (8.13),
it is patently obvious that for p > 1,

O(Dp
H) > O(ΩpA,0) +O(ΩpA,1) + . . .+O(ΩpA,2J0

) (8.14)

which confirms our assertion that eigendecomposing the block matrices Bn costs less than the tout
court eigendecomposition of Hspin−spin. (In this analysis, we have tacitly assumed that the computa-
tional cost of generating the Hspin−spin matrix is the same as the total cost of generating the block
matrices {Bn}.)

8.2.1 Integer partitions. Dimension of the submatrices Bn. Density and
sparseness of Hspin−spin

Another significant feature of the HP transformation is that it allows us to easily determine the
dimension ΩA,n of the various submatrices Bn, analytically. This is a feat hardly achievable using the
normal spin representation.

The analytical determination of the value of ΩA,n has been extensively covered in [66] so we shall
just limit ourselves to some key points in the following. The interested Reader may see [66] for a more
elaborate exposition of the problem.

Recall that |n〉 = |n1, n2, . . . , nN 〉, and n = ηo(n1, n2, . . . , nN ) (see (7.1)). As already seen above,
if N̂ |n〉 = n |n〉, then n =

∑N
i=1 ni (see (8.7) and (8.8)). We also need to bear in mind that each

ni is restricted to the range 0 ≤ ni ≤ 2ji. Since ΩA,n is the number of kets |n〉 which contain the
same total number of HP bosons ( (8.10) and (8.12)), the problem at hand is equivalent to asking: in
how many distinct ways can we distribute n indistinguishable objects among N sites, knowing that
the i−th site can contain at most 2ji objects? The number of ways this can be done is exactly ΩA,n.
Counting problems like this is the subject of a branch of discrete mathematics called Enumerative
Combinatorics [148], which fundamentally deals with how to count the elements of a finite set. Several
ways of computing ΩA,n are illustrated in [66] but we shall focus here on just one of these, namely the
generating function approach. Generating functions in Enumerative Combinatorics are formal power
series (in one or multiple variables) whose coefficients are proportional to the solutions to a counting
problem.

Consider for example the partition of integers. The partition of a positive integer n is a way one
can obtain n through the sum of positive integers, order being irrelevant. For example, take the integer
4, since:

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

(8.15)
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the sums on the RHS are all partitions of 4. Each summand in a given partition is referred to as a
part. Thus, the partitions 3 + 1 and 2 + 2 have both two parts, while the partition 2 + 1 + 1 has three
parts. Say p(n) the total number of partitions of the integer n. p(n) is known as the partition function.
We see that p(n = 4) = 5, for example, since the integer 4 can be partitioned in five different ways
as illustrated above. We may then pose the following problem: given an arbitrary (positive) integer
n, in how many ways can we partition it? Or, in other words, what is the value of its p(n)? Variant
forms of this problem have been proposed throughout centuries. According to known records, it seems
Gottfried Wilhelm von Leibniz (1646-1716) was the first to pose a variant of this problem in a letter
to Johann Bernoulli (1667-1748) [40]. Leibniz was interested in how many ways an integer could be
partitioned into two, three, etc., parts. In Leibniz’s problem, we clearly see there is a constrain on
the number of parts. This falls under what we call today restricted partitions. For example, there is
only one way to partition 4 into three parts, and that is 2 + 1 + 1. In a letter to the great Leonhard
Euler, one Naudé wanted to know how many ways the integer 50 can be obtained from the sum of
seven parts which are unequal to each other [1, 9, 47]. Here, the restriction is both on the nature
of the parts (i.e. each part cannot appear more than once) and the total number of parts. It is not
far fetched to assume that Naudé’s letter is what led the great Euler to his memorable Observationes
analyticae variae de combinationibus [Various analytical observations about combinations] presented
to the St. Petersburg Academy in 1741 but published in 1751 [1]. This is where Euler introduced for
the first time the concept of generating function (though he did not coin the name) in the theory of
partitions (and by extension, number theory). For example, he showed that p(n) is the coefficient of
qn when

∏∞
i=1

1
1−qi is expanded in powers of q. Namely [9, 47],

∞∏
i=1

1

1− qi
=

∞∑
n=0

p(n)qn

= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 15q7 + 22q8 + . . .

(8.16)

The function
∏∞
i=1

1
1−qi is thus said to be the generating function for p(n). Recall at the beginning

of this section we defined generating functions as being formal power series. This is so because their
variables have no intrinsic meaning. In the case of (8.16), q is the variable but though its exponents
and coefficients have definite interpretations in relation to our counting problem, q is devoid of any.
Perhaps, the most famous generating function in Number theory and Combinatorics is the one reported
in (8.16). In response to Naudé’s problem, Euler showed that if we denote with p̃k(n) the number of
ways n can be partitioned into k mutually unequal parts, then [1, 47]:

qk(k+1)/2
k∏
i=1

1

1− qi
=

∞∑
n=0

p̃k(n)qn . (8.17)

Thus, qk(k+1)/2
∏k
i=1

1
1−qi is the generating function for p̃k(n). To solve Naudé’s original problem, we

set n = 50 and k = 7; so from (8.17) it follows that p̃7(50) = 522, which is obtained by expanding
q28
∏7
i=1

1
1−qi and taking the coefficient of the term q50. Hence, there are 522 ways one can write

the integer 50 as the sum of exactly seven mutually unequal positive integers. Euler’s original paper,
now translated into English by Jordan Bell [47], is an excellent and easy-to-read introduction to
generating functions and it is accessible to anyone with a high school knowledge of algebra. We
strongly recommend it to Readers who are new to the concept.
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Instead of determining the solution to counting problems by means of generating functions, we
may seek explicit formulae for the desired quantities. For instance, we may ask ourselves if there is an
explicit formula for p(n). It is a problem which quite a number of generations of mathematicians had to
wrestle with. The first significant breakthrough came in Godfrey H. Hardy (1877-1947) and Srinivasa
Ramanujan’s (1887-1920) celebrated 1918 paper entitled Asymptotic formulae in combinatory analysis
[67]. In that paper, Hardy and Ramanujan presented an asymptotic series for p(n) but whose main
defect was that it failed to converge. A couple of decades had to pass before Hans Rademacher (1892-
1969) derived an improved version of Hardy and Ramanujan’s result which, finally, had no convergence
problem [126].

The Reader might be wondering why we have dedicated so many lines to integer partitions. The
reason is very simple: the determination of the value of ΩA,n may be reinterpreted as an integer
partition problem. This is how the close relation between multispin dynamics, on one hand, and
Number theory and Enumerative Combinatorics (specifically in this case, the theory of partitions)
elegantly emerges from the HP transformation. Indeed, if, as noted earlier, ΩA,n is the number of ways
the integer n can be obtained through the sum n =

∑N
i=1 ni, where 0 ≤ ni ≤ 2ji, it is clear that:

ΩA,n is the number of partitions of the integer n into N parts, with the i−th part restricted
to the range 0 ≤ ni ≤ 2ji.

Certainly, just like p̃k(n), ΩA,n is restricted to a fixed number of parts. But unlike p(n) and p̃k(n),
ΩA,n has the following properties:

1. the minimum value of a part in any of its partitions is 0, not 1;

2. the partitions of interest here are all ordered (so for example, 2 + 1 + 1 must be considered
different from 1 + 2 + 1); this is because each part ni refers to a distinct spin.

Consider for example the deuterated hydroxymethyl radical (·CH2OD), which corresponds to the
multiset of spins A = {j1, j2, j3, j4} = { 1

2 ,
1
2 ,

1
2 , 1} (see Chap. 7.2). Therefore, according to the

conventions discussed in Sec. 7.2, we know that since j1 = j2 = j3 = 1
2 and 0 ≤ ni ≤ 2ji, then

0 ≤ n1, n2, n3 ≤ 1, while 0 ≤ n4 ≤ 2. ΩA,n is then the number of ordered partitions of n into exactly
N = 4 parts, such that the first three parts are at most 1 and the fourth part is at most 2 (with 0

being an admissible value of a part). We also need to bear in mind that ΩA,n is also equivalent to the
number of states |n〉 which contain exactly n HP bosons. For example, with n = 2, we find from table
7.1 that the states |n〉 which contain in total two HP bosons are:

|2〉 = |0, 0, 0, 2〉 |4〉 = |0, 0, 1, 1〉 |7〉 = |0, 1, 0, 1〉

|9〉 = |0, 1, 1, 0〉 |13〉 = |1, 0, 0, 1〉 |15〉 = |1, 0, 1, 0〉

|18〉 = |1, 1, 0, 0〉

Thus, for the radical ·CH2OD, ΩA,2 = 7. That is, there are seven ways of partitioning the integer
2 into four parts, with the restriction that the first three parts cannot exceed the value of 1 and
the fourth part cannot be greater than 2. Thus, the subspace Bn=2 for ·CH2OD is of dimension
ΩA,2 = 7. In the particular case of ·CH2OD, n = 2 corresponds to the total spin magnetic number
Mz = J0 − n = 5

2 − 2 = + 1
2 . Note that these results actually still hold for any multispin system with

three spin- 1
2 and one spin-1.
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How can we determine the value of ΩA,n without having to explicitly write down all the kets |n〉
(and how the HP bosons are disposed in them)? This problem has been solved and discussed in [66].
We discuss here only the generating function for ΩA,n without going into much details. The interested
Reader may see [66] for further discussions, explicit formulae for ΩA,n and proofs.

Before we present the generating function for ΩA,n it is advisable we briefly see what is meant
by the q-analogue of a nonnegative integer n. The q−analogue of the integer n, indicated as [n]q, is
defined as [66, 81]:

[n]q :=
1− qn

1− q
= 1 + q + q2 + . . .+ qn−1 . (8.18)

Note that limq→1[n]q = n.

It can be shown that the generating function for ΩA,n, GA,Ω(q), is [66]:

GA,Ω(q) =
∏
α

(
[2jα + 1]q

)Nα
(8.19)

where the index α runs over distinct values of the spin multiset A and Nα is the multiplicity of the
α−th distinct element in A. Hence,

∏
α

(
[2jα + 1]q

)Nα
=

2J0∑
n=0

ΩA,nq
n . (8.20)

It is worth noting that if we take the limit q → 1 of (8.20) we get (8.13). To illustrate the use of
(8.20), let us consider once again ·CH2OD. We know that for this radical, A = { 1

2 ,
1
2 ,

1
2 , 1}. A has

thus only two distinct elements: jα=1 = 1
2 and jα=2 = 1. The multiplicity of jα=1 is 3 while that

of jα=2 is 1. Therefore, Nα=1 = 3 and Nα=2 = 1. Moreover, [2jα=1 + 1]q = [2]q = (1 + q) and
[2jα=2 + 1]q = [3]q = (1 + q + q2). Thus, in the case of the radical ·CH2OD, (8.20) becomes:

(1 + q)3(1 + q + q2) =

5∑
n=0

ΩA,nq
n . (8.21)

Since,

(1 + q)3(1 + q + q2) = 1 + 4q + 7q2 + 7q3 + 4q4 + q5 (8.22)

we conclude that:

ΩA,0 = ΩA,5 = 1 ΩA,1 = ΩA,4 = 4 ΩA,2 = ΩA,3 = 7 (8.23)

which is in agreement with the previous value we found for ΩA,2. In regards to ·CH2OD, its subspaces
Bn, their respective dimension and basis elements are reported in table 8.1. While the correspondence
between the first two columns will always remain the same, the basis kets |n〉 spanning each subspace
depends on the order chosen when labelling the spins. The kets in table 8.1 are the same kets in table
7.1, therefore they correspond to the same ordered multiset of spins A = {j1, j2, j3, j4} = { 1

2 ,
1
2 ,

1
2 , 1}.

What immediately catches our attention looking at the RHS of (8.22) (or the second column of
table 8.1) is the "palindromic" distribution of ΩA,n’s values. This is not an exception but the rule.
Indeed, one can prove that the generating function GA,Ω(q) is a reciprocal polynomial. Namely [66]:

ΩA,n = ΩA,2J0−n . (8.24)
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Subspace Bn Dimension of subspace, ΩA,n Basis elements, |n〉

B0 1 |0〉
B1 4 |1〉, |3〉, |6〉, |12〉
B2 7 |2〉, |4〉, |7〉, |9〉, |13〉, |15〉, |18〉
B3 7 |5〉, |8〉, |10〉, |14〉, |16〉, |19〉, |21〉
B4 4 |11〉, |17〉, |20〉, |22〉
B5 1 |23〉

Table 8.1: Orthogonal subspaces Bn, their respective dimension and basis kets for the radical ·CH2OD
in the case whereby the system’s spin Hamiltonian is proportional to the q = 0−th component of a
spherical tensor of rank k – Ĥspin−spin, (8.1), being an example.

A polynomial P (x) = a0 + a1x + a2x
2 + . . . + asx

s with real coefficients is said to be reciprocal (or
palindromic) if its coefficients are such that ai = as−i for all i = 0, 1, . . . , s [10]. An equally equivalent
definition is that P (x) is reciprocal if xsP

(
1
x

)
= P (x) [10]. The implication of (8.24) is that the

subspaces Bn and B2J0−n have the same dimension. We shall give a simple proof of (8.24) later when
we discuss time-reversal symmetry. For now, we also point out that GA,Ω(q) is also unimodal [10],
namely, there exists an integer n′ such that:

ΩA,0 ≤ ΩA,1 ≤ ΩA,2 ≤ . . . ≤ ΩA,n′ ≥ ΩA,n′+1 ≥ ΩA,n′+2 ≥ . . . ≥ ΩA,2J0 . (8.25)

This n′ is found to be n′ = bJ0c[66], where b•c is the floor function. Clearly, ΩA,bJ0c is the maximum
value the {ΩA,n} may assume. Note that ΩA,bJ0c may not be the only ΩA,n with this maximum value
(afterall, GA,Ω(q) is reciprocal). For example, in the case of ·CH2OD, whose A = { 1

2

3
, 1}, J0 = 5/2;

hence, bJ0c = b 5
2c = 2. Therefore, we expect ΩA,2 to have the maximum value any ΩA,n here can

possibly have. In fact, that is the case but ΩA,2 is not the only ΩA,n with this maximum value since
ΩA,3 also has the same value as ΩA,2 ( (8.23)). For more on the properties of GA,Ω(q) see [66].

In the limit case whereby all the spins are spin- 1
2 , i.e. the spin system is univariate (see §II) with

j = 1
2 , A =

{
1
2

N
}
, the generating function GA,Ω(q) takes the simple form:

GA,Ω(q) = (1 + q)N

=

N∑
n=0

ΩA,nq
n

(8.26)

Consequently, the dimension of the subspace Bn, ΩA,n = Ω{ 1
2
N},n, in this limit case is given by a

binomial coefficient:

Ω{ 1
2
N},n =

(
N

n

)
. (8.27)

Let us consider for instance a spin system which consists of N = 10 spin- 1
2 s, i.e. A =

{
1
2

10
}
. We

are dealing here with a univariate spin system. If the spin Hamiltonian of the system commutes with
Ĵ ztot (so the Hamiltonian is proportional to a spherical tensor of rank k but q = 0, see (8.2)), the tout
court approach will have us diagonalize a matrix of dimension 210 = 1024. But with the creation of
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the subspaces Bn, we know that

GA,Ω(q) = (1 + q)10

= 1 + 10q + 45q2 + 120q3 + 210q4 + 252q5 + 210q6 + 120q7 + 45q8 + 10q9 + q10 .
(8.28)

Thus, instead of eigendecomposing a matrix of dimension 1024 to determine the eigenvectors and
eigenvalues of the spin Hamiltonian, we can equally obtain the same results by eigendecomposing
smaller matrices of dimension 1, 10, 45, 120, 210 and 252.

The distribution of the values of ΩA,n does not only inform us about the dimension of the subspaces
Bn, but they also help us to quantify how sparse the matrix Hspin−spin is. Let us define the density
ζ(A) of an arbitrary matrix A as the ratio between the number of its nonzero elements and the
dimension of A. Analogously, we define the sparseness χ(A) of the matrix A as the fraction of the
elements of the latter which are identically zero. Naturally, for any given matrix A:

ζ(A) + χ(A) = 1 . (8.29)

It is easy to prove that ζ(Hspin−spin) is subject to the tight upper bound:

ζ(Hspin−spin) ≤
∑2J0

n=0 Ω2
A,n

D2
H

(8.30)

independent of the specific values of the coupling constants Ti,i′ . If we go back to the radical ·CH2OD,
for example, ζ(Hspin−spin) ≤ 132

242 ∼ 0.23. This means no matter what the values of the constants
Ti,i′ are, the matrix representation of the Hamiltonian Ĥspin−spin cannot have more than 23% of its
elements being nonzero. This is not only true for ·CH2OD, but also for all multiset of spins A =

{
1
2

3
, 1
}
.

Indeed, (8.30) holds for any arbitrary multiset of spins whose spin Hamiltonian is proportional to the
zero-th component of a spherical tensor of rank k, where k = 0, 1, 2, . . .

For a univariate spin system of N spin- 1
2 , i.e. A =

{
1
2

N
}
, it follows from (8.27) and (8.30) that:

ζ(Hspin−spin) ≤
∑N
n=0

(
N
n

)2
22N

=

(
2N
N

)
4N

(8.31)

from which one derives that for very large N ,

ζ(Hspin−spin) .
1√
πN

. (8.32)

Equation (8.32) shows in unambiguous terms that for a system like A =
{

1
2

N
}
, ζ(Hspin−spin) tends

to zero as N becomes very large. For instance, if we consider the spin system A =
{

1
2

1000
}
, i.e. a

collection of 1000 spins, all of spin- 1
2 , then ζ(Hspin−spin) . 1√

π1000
≈ 0.018; which means the elements

of Hspin−spin which are identically zero will never drop below 98% of the total entries.
Interestingly, we note that if we begin with a spin system A =

{
1
2

N
}
, and substitute one of the

spins with a particle whose spin quantum number is greater than 1/2, the new Hspin−spin is less
denser than the original. We can thus imagine creating any collection of N spins from the multiset
A =

{
1
2

N
}

by substitution. Given that anytime we substitute a spin-1/2 with a greater spin the

density ζ(Hspin−spin) reduces, it implies that for any imaginable multiset A 6=
{

1
2

N
}

of spins,

ζ(Hspin−spin) <

(
2N
N

)
4N

(8.33)
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and in the limit of a large number of spins,

ζ(Hspin−spin) < N−δ , δ =
1

2
(1 + logN π) . (8.34)

8.3 Eigenenergies of a system of equivalent spins in the absence

of an external field.

We illustrate here another powerful application of the HP transformation. In the limit case whereby
the multiset A = {j1, j2, . . . , jN} consists of solely N interacting equivalent spins (§II), Ĥspin−spin (
(8.1)) reduces to the form:

Ĥspin−spin = T
∑
i>i′

Ĵ̂ĴJ i · Ĵ̂ĴJ i′ = T
∑
i>i′

[
Ĵ zi Ĵ zi′ +

1

2

(
Ĵ +
i Ĵ

−
i′ + Ĵ−i Ĵ

+
i′

)]
. (8.35)

Since,
Ĵ̂ĴJ 2
tot =

∑
i

Ĵ̂ĴJ 2
i + 2

∑
i>i′

Ĵ̂ĴJ i · Ĵ̂ĴJ i′ , (8.36)

Ĥspin−spin in (8.35) may be written as:

Ĥspin−spin =
T

2

(
Ĵ̂ĴJ 2
tot −

∑
i

Ĵ̂ĴJ 2
i

)
. (8.37)

Given that Ĵ̂ĴJ tot commutes with Ĵ̂ĴJ i, we can easily determine the eigenvalues of Ĥspin−spin if we know
those of Ĵ̂ĴJ 2

tot and Ĵ̂ĴJ 2
i . Fortunately, the expression for the eigenvalues of this set of commuting operators

is well known. From (6.16c), for example, we have that:

Ĥspin−spin =
T

2

[
Jtot (Jtot + 1)−

∑
i

ji(ji + 1)

]
Î . (8.38)

As simple as (8.38) may seem, the actual computation of the eigenenergies is not an easy task for a
generic A with N > 2. The difficulty here lies in computing the various total spin angular momentum
Jtot and their multiplicities. But the Jtot and their respective multiplicities are the Clebsch-Gordan
series, which is the multiset of all the possible total (spin) angular momenta one can get by coupling
the N elements of A. For example, if N = 2 (in which case (8.35) and (8.38) hold irrespective of
whether the two spins are equivalent or not), we well know that |j1 − j2| ≤ Jtot ≤ j1 + j2. Certainly,
when N > 2 one could determine the Clebsch-Gordan series by coupling j1 and j2, and then couple
the resulting angular momenta with j3, followed by the coupling of the new set of resulting angular
momenta with j4, and one repeats the scheme till one gets to jN . Needless to say, this is truly
cumbersome. It is understandable that if one has an easy and computationally efficient method of
computing the Clebsch-Gordan series for a generic collection of spins, one also reduces dramatically
the computational cost of determining the eigenvalues of Ĥspin−spin in (8.35). Here again, the HP
transformation is invaluable.

The problem of determining analytically the Clebsch-Gordan series for an arbitrary collection of
spins A has been solved in [66]. We will therefore limit ourselves here to citing some salient results
from [66] without providing any proof.
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Consider an arbitrary collection of spins A = {j1, j2, . . . , jN}. The addition of the spin angular
momentum of the elements of A will result in a collection (or multiset) of total spin angular momenta
{Jtot}. Let us indicate the distinct elements of {Jtot} as J0, J1, J2, . . . , Jm, with J0 being the maximum,
J1 the second highest and so forth. Consecutive distinct Jtot differ by 1, hence:

Jκ = J0 − κ , where κ = 0, 1, 2, . . . ,m . (8.39)

Clearly, J0 = j1 + j2 + . . . + jN . The first big challenge we encounter here is computing the value of
Jm. It has been proved that [66]:

Jm = υA ·H(υA) + (1−H(υA)) · (2J0 mod 2)

2
(8.40)

where,

υA := 2 ·max A − J0 (8.41)

and where H (x) is the Heaviside step function, defined here to be

H (x) :=

0, if x < 0

1, if x ≥ 0 .
(8.42)

Say NJ the total number of distinct elements in {Jtot}. Evidently, NJ = J0 − Jm + 1. At this point,
we may represent the multiset {Jtot} as: {Jtot} =

{
Jλ0

0 , Jλ1
1 , . . . , Jλmm

}
, where λκ is the multiplicity

of Jκ.

Having determined all the distinct elements of {Jtot} thanks to (8.39) and (8.40), we are half-way
through in getting to the Clebsch-Gordan series. All we need to do now is to determine the multiplicities
{λκ}. Once again, we can easily solve the problem by making use of the HP transformation. One can
show that the generating function for λκ, GA,λ(q), is related to GA,Ω(q) – (8.19) – through the relation
[66]:

GA,λ(q) = (1− q)GA,Ω(q) =

2J0+1∑
κ=0

λκq
κ . (8.43)

The polynomial GA,λ(q) is antipalindromic since,

λκ = −λ2J0+1−κ . (8.44)

Moreover, it can be easily proved that:

m∑
κ=0

λκ = ΩA,m (8.45)

i.e. the cardinality of the Clebsch-Gordan series is exactly ΩA,m.

In our current quest to determine the eigenvalues of the Hamiltonian Ĥspin−spin of (8.35), we see
that since the multiset A is fixed, the eigenvalues of Ĥspin−spin can be distinguished on the basis of
Jtot. We may thus indicate these eigenenergies as EJtot , or Eκ on the basis of (8.39). We shall employ
the latter in the following. It then follows from (8.38) and (8.39) that:

Eκ = E0 −
T

2
κ (2J0 + 1− κ) (8.46)
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where κ = 0, 1, 2, . . . ,m = (J0 − Jm), and

E0 :=
T

2

(
J2

0 −
∑
i

j2
i

)
. (8.47)

The following observations on the system readily follows from (8.46):

1. if T > 0, then Em is the ground state (Jtot = Jm) energy and E0 is the energy of the highest
excited state;

2. if T < 0, then E0 is the energy of the ground state (Jtot = J0), and Em is the energy of the
highest excited state;

3. Eκ+1 − Eκ = −TJκ . This means that the energy of multispin states with consecutive Jtot at
the lower end of {Jtot} (i.e. as Jκ approaches Jm) are relatively less spaced compared to their
counterparts at the higher end.

Furthermore, given that the degeneracy of Jκ is (2Jκ + 1), the total degeneracy of the energy level Eκ
will thus be given by the product: λκ(2Jκ + 1). The sum total of the degeneracy of the energy levels
must return the dimension of the system’s spin Hilbert space, DH. This leads us to the relation:

DH =

m∑
κ=0

λκ(2Jκ + 1) (8.48)

which is a simple sum rule one can deploy to spot flaws in the calculations. Other sum rules can be
derived from (8.48) by combining it with (8.39) and (8.45).

To illustrate the usefulness and potential of the relations and techniques discussed above, let us
consider the multiset of spins A =

{
1
2

7
, 13
}
. Assuming A is a multiset of equivalent spins whose

Hamiltonian is given by (8.38), we ask: what are the energy levels of the system and their respective
degeneracy? As simple as this problem may appear, it is rather difficult – if not computationally time
consuming – to solve using the conventional spin representation. The dimension of the spin Hilbert
space alone is DH = 3456, though less than 0.96% of the matrix elements of the spin Hamiltonian
is nonzero. It would be a waste of resources to construct such a matrix and then eigendecompose it
to find the energy levels. It is even more computationally challenging to directly employ (8.38) to
compute the energy levels because – to the best of my knowledge – there is not, hitherto, a generally
valid efficient algorithm to compute the Clebsch-Gordan series for arbitrary multispin systems. In the
framework of the HP transformation, such a problem can be effortlessly solved without the need to
eigendecompose Hspin−spin.

Naturally, the eigenenergies {Eκ} of the system is given by (8.46). Concerning the distinct values
of the multiset {Jtot}, we easily determine its maximum to be J0 = 13

2 . From (8.40), the minimum
Jtot is found to be Jm = 1

2 . Thus, there are NJ = J0 − Jm + 1 = 7 distinct values of Jtot, and
m = J0 − Jm = 6. The distinct Jtot are: {J0, J1, J2, J3, J4, J5, J6} =

{
13
2 ,

11
2 ,

9
2 ,

7
2 ,

5
2 ,

3
2 ,

1
2

}
. We now

determine the multiplicity of each Jtot by employing the generating function GA,λ(q), (8.43). First of
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all, from (8.19), we have that GA,Ω(q) = (1 + q)7(1 + q + q2)3. Therefore,

GA,λ(q) = (1− q)(1 + q)7(1 + q + q2)3

= 1 + 9q + 38q2 + 99q3 + 174q4 + 207q5 + 145q6 + . . .− q14

=

14∑
κ=0

λκq
κ .

(8.49)

We therefore conclude that the Clebsch-Gordan series for A =
{

1
2

7
, 13
}

is given by the multiset

{Jtot} =
{

13
2 ,

11
2

9
, 9

2

38
, 7

2

99
, 5

2

174
, 3

2

207
, 1

2

145
}
. With these values, we can now easily compute all the

eigenenergies Eκ of the system from (8.46). The results are reported in table 8.2, where we have also
calculated the degeneracy of each energy level. As expected on the basis of (8.48), the sum of these
degeneracies gives exactly 3456 – which we recall is the dimension of the spin Hilbert space of the
system.

κ Jκ λκ Eκ − E0 Degeneracy of Eκ

0 13
2 1 0 14

1 11
2 9 − 13

2 T 108

2 9
2 38 −12T 380

3 7
2 99 − 33

2 T 792

4 5
2 174 −20T 1044

5 3
2 207 − 45

2 T 828

6 1
2 145 −24T 290∑

= 3456

Table 8.2: Energy levels and their respective degeneracy for a system of equivalent spins composed of
seven spin-1/2 and three spin-1, A =

{
1
2

7
, 13
}
, whose Hamiltonian is given by (8.35).

It is worth considering the same problem but this time with A =
{

1
2

N
}
. Surely, J0 = N/2, and

from (8.40), we derive that,

Jm =


(2J0 mod 2)

2 if N > 2

0 if N = 2 .

For N > 2, we observe that Jm = 0 if N is even, while Jm = 1/2 if N is odd. Thus, the number of
distinct Jtot to expect is NJ = dN−1

2 e+1, andm = dN−1
2 e, where d•e is the ceiling function. Therefore,

the distinct Jtot we get from the Clebsch-Gordan series for A =
{

1
2

N
}

are: {J0, J1, . . . , JdN−1
2 e
} =

{N/2, N/2− 1, . . . , N/2− dN−1
2 e}. Here, the multiplicity λκ of Jκ obeys the simple relation:

λκ =

(
N

κ

)
−
(

N

κ− 1

)
=
N + 1− 2κ

N + 1− κ

(
N

κ

)
, κ = 0, 1, 2, . . . ,m . (8.50)

(8.50) readily follows from (8.26), (8.27) and (8.43).

8.4 Time-reversal symmetry. Creation of submatrices Bn.

To the best of my knowledge, in the general context of (8.1), it is not in general possible to easily
determine the eigenvalues of Ĥspin−spin like we just did for an arbitrary collection of equivalent spins
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in the last section. In general, the eigendecomposition of Ĥspin−spin requires, first of all, creating
the submatrices {Bn} and then eigendecomposing each separately, (8.11). To create the submatrix
Bn in the HP representation, we need a general formula for Ĥspin−spin’s matrix elements in terms
of the HP bosons occupation numbers. Indeed, given any two basis kets |n′〉 = |n′1, n′2, . . . , n′N 〉 and
|n〉 = |n1, n2, . . . , nN 〉, we derive from (8.1) that:

〈
n′
∣∣∣ Ĥspin−spin

∣∣∣n〉 =
〈
n′1, n

′
2, . . . , n

′
N

∣∣∣ Ĥspin−spin

∣∣∣n1, n2, . . . , nN

〉
= δn′,n

∑
i>k

Ti,k(ji − ni)(jk − nk)

+
1

2

∑
i>k

Ti,k

√(
ni +

1± 1

2

)(
2ji − ni +

1∓ 1

2

)(
2jk − nk +

1± 1

2

)(
nk +

1∓ 1

2

)
× ∆i,k δn′i,ni±1 δn′k,nk∓1 (8.51)

where,

∆i,k :=
∏
l 6=i,k

〈n′l| nl〉 . (8.52)

In deriving (8.51), we have made use of (6.14), (6.15) and (6.10a). (8.51) confirms once again that〈
n′
∣∣∣ Ĥspin−spin

∣∣∣n〉 is identically zero when |n′〉 and |n〉 differ in the total number of HP bosons they
contain.

It is worth noting that the creation of the submatrices Bn can be greatly simplified and done in
an efficient manner if we make use of the time-reversal symmetry (or T−symmetry).

In the field of magnetic resonance (and in quantum chemistry, in general), we are accustomed to
space symmetries like rotational and translational invariances, but we seldomly speak of time-reversal
symmetry. One of the reasons for this, I suppose, can be attributed to the fact that unlike other sym-
metry operations like rotations and translations which are represented by unitary operators in quantum
mechanics, T− symmetry is represented by an antiunitary operator (see below) – whose properties
depart considerably from the known unitary operators. In certain areas of quantum chemistry like
vibrational spectroscopy, T−symmetry can be of no enlightening use, but in magnetic resonance it
is often of vital importance as we shall shortly see. For more on T−symmetry, interested Readers
may see (in this order): [136, 137, 171]. For an in-depth introduction embedded in some interesting
philosophical discussions, see [133].

Let Θ̂ be the time-reversal operator. That is,

Θ̂ t Θ̂−1 = −t (8.53)

where t is the real parameter which indicates time. Like any operator representing a symmetry trans-
formation, Θ̂Θ̂−1 = Θ̂−1Θ̂ = 1̂. As already remarked above, unlike space rotation or translation
operators which are unitary, the time-reversal operator Θ̂ is antiunitary. The major difference between
these two types of symmetry operators is how they operate on complex scalars: unitary operators leave
complex scalars intact, while antiunitary operators change complex scalars into their corresponding
complex conjugate. For example, Θ̂eiαΘ̂−1 = e−iα

∗
, where α is a complex number whose complex

conjugate is α∗.
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There are many interesting properties of the time-reversal operator, but for our purposes, it suffices
to know that all angular momentum operators (orbital and spin) are odd under the operation of time-
reversal. Namely [133, 136, 137, 164],

Θ̂Ĵ̂ĴJ Θ̂−1 = −Ĵ̂ĴJ . (8.54)

This simple relation has many profound consequences which will unfold before us shortly. To begin,
it follows from (8.54) that Θ̂Ĵ zΘ̂−1 = −Ĵ z. Combining this with (6.5), we find that:

Θ̂ b̂†b̂ Θ̂−1 = 2j − b̂†b̂ . (8.55)

Till now, we have always seen spin kets of a spin-j as being represented by a number of HP bosons
occupying a certain vacuum space which can accommodate at most 2j bosons. Another way of seeing
it is to imagine this vacuum state as comprised of 2j holes (called HP holes), where each hole can be
filled with no more than one HP boson at a time. In this picture, the sum of the number of HP bosons
and holes is always 2j. Therefore, if b̂†b̂ counts the number of HP bosons, then (2j − b̂†b̂) counts the
number of holes. In other words, (2j− b̂†b̂) is the number operator for the holes. Going back to (8.55),
the effect of the time-reversal operator now becomes perspicuous: it transforms the HP occupation
number operator into a hole number operator. Put in another way, Θ instantly converts HP bosons
into holes, and vice versa.

Before we proceed, let us see how Θ̂ transforms the single spin ket |n〉 and the multispin ket |n〉.
First of all, we note that (8.55) may be rewritten as:[

Θ̂, b̂†b̂
]

+
= 2jΘ̂ (8.56)

where
[
Â, B̂

]
+

(:= ÂB̂ + B̂Â) denotes the anticommutation between Â and B̂. Say |n〉 a state ket of
a particle of spin-j according to the HP representation, where, as usual, n represents the number of
HP bosons. We define the state Θ |n〉 ≡ |n〉 as the time-reversed or hole complement of |n〉. The state
|n〉 must necessarily be an admissible spin state, else the symmetry operation enacted by Θ would
not be reversible. The reversibility of the time-reversal symmetry operation is guaranteed by the fact
that Θ̂Θ̂−1 = Θ̂−1Θ̂ = Î. After multiplying (8.56) from the right by |n〉, followed by an appropriate
rearrangement of the terms, we get:

b̂†b̂ |n〉 = (2j − n) |n〉 (8.57)

where we have made use of (6.6). Comparing (8.57) with (6.6), it becomes immediately clear that:

Θ̂ |n〉 ≡ |n〉 = |2j − n〉 (8.58)

which is, once again, in line with the interpretation that Θ̂ converts HP bosons into holes, and holes
into HP bosons. The dual ket relative to Θ̂ |n〉 is 〈n| Θ̂−1 ≡ 〈n|.

Let us now turn our attention to how Θ̂ operates on a multispin ket |n〉. Consider the spin multiset
A = {j1, j2, . . . , jN}. From (8.7) and (8.55), it follows that:[

Θ̂, N̂
]

+
= 2J0Θ̂ (8.59)

which is the analogous of (8.56) for multispin systems. Say Θ̂ |n〉 ≡ |n〉 the hole complement of |n〉 (=
|n1, n2, . . . , nN 〉). We remind the Reader that the HP bosons occupation numbers ni in |n1, n2, . . . , nN 〉
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are related to the integer |n〉 through the index compression map η0, (7.1). If we now multiply (8.59)
from the right by |n〉, we end up with the relation:

N̂ |n〉 = (2J0 − n) |n〉 (8.60)

which implies that if |n〉 belongs to the subspace Bn, then its hole complement |n〉 is an element of
the subspace B2J0−n. Indeed, since there is a one-to-one correspondence between |n〉 and |n〉, we also
conclude that the hole complements of the basis kets in Bn constitute the basis kets of the subspace
B2J0−n. In other words, the two subspaces Bn and B2J0−n are related by time-reversal symmetry, and
this holds independent of the nature of the spin Hamiltonian. The one-to-one correspondence we just
mentioned, implies that the dimension of the subspaces Bn and B2J0−n must coincide, and indeed,
that is something we already know from (8.24).

Note that,

Θ̂ |n〉 = Θ̂ |n1, n2, . . . , nN 〉 = |n1, n2, . . . , nN 〉

= |2j1 − n1, 2j2 − n2, . . . , 2jN − nN 〉 .
(8.61)

Thus,
|n〉 = |2j1 − n1, 2j2 − n2, . . . , 2jN − nN 〉 . (8.62)

Hence, by virtue of the index compression map η0, it follows from (7.1) that:

n =

N∑
i=1

WR,i · (2ji − ni) =

N∑
i=1

WR,i · (2ji)− n . (8.63)

The term
∑N
i=1WR,i ·(2ji) corresponds to the multispin state whereby all the single HP vacuum states

are filled with the maximum number of HP bosons they can accommodate. But we know the index
compression map η0 always assigns to this state the integer (DH − 1). Thus,

n = DH − 1− n (8.64)

which leads us to conclude that:
Θ̂ |n〉 ≡ |n〉 = |DH − 1− n〉 (8.65)

where we recall once again that DH is the dimension of the multispin Hilbert space. If we take the
·CH2OD radical, for example, DH = 24, so |n〉 = |23− n〉. This means that, for example, the multispin
kets |9〉 and |14〉 (= |9̄〉) are related by time-reversal symmetry. In fact, from table 7.1, one observes
that if one converts all the HP bosons in |9〉 into holes, and vice-versa, one obtains |14〉. It is worth
noting that for a given collection of spins A, (8.65) is always valid, independent of how we choose to
number-label the spins in A. The corresponding dual ket of Θ̂ |n〉 is 〈n| Θ̂−1 ≡ 〈n| = 〈DH − 1− n|.

We are now ready to see what the time-reversal symmetry reveals about the multispin system. To
understand the importance of time-reversal symmetry here, it is worth considering how it transforms
the multispin Hamiltonian Ĥspin−spin. From (8.1) and (8.54), it follows that:

Θ̂Ĥspin−spinΘ̂−1 = Ĥspin−spin (8.66)

(note that the coupling constants Ti,i′ are all real) which means that Ĥspin−spin is invariant under
time-reversal. This is exactly what we should expect since Ĥspin−spin describes the Hamiltonian of an
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isolated system, and we know that for such systems the homogeneity of time applies (i.e. the energy –
or, in general, the physics – of the system remains the same under any time translation), so Ĥspin−spin

must certainly commute with Θ̂. Consider now the matrix element between the bra 〈n′| and ket |n〉
according to (8.66): 〈

n′
∣∣∣ Θ̂−1Ĥspin−spinΘ̂

∣∣∣n〉 =
〈

n′
∣∣∣ Ĥspin−spin

∣∣∣n〉 (8.67a)〈
n′
∣∣∣ Ĥspin−spin

∣∣∣n〉 =
〈

n′
∣∣∣ Ĥspin−spin

∣∣∣n〉 . (8.67b)

Equation (8.67b) is of vital importance: it tells us that if we know the matrix element
〈

n′
∣∣∣ Ĥspin−spin

∣∣∣n〉
between the kets |n〉 and |n′〉 which are elements of the subspace Bn, then we also know the corre-
sponding matrix element between their hole complements in the subspace B2J0−n. This observation
reduces significantly the computational cost of creating the submatrices {Bn}: once we know Bn we
can easily create B2J0−n. Another interpretation of (8.67b) is that if we convert all HP bosons into
HP holes, and vice versa, the physics remain the same. This is a property we may call particle-hole
transformation invariance.

Equation (8.66) has an even more profound implication. Since Ĥspin−spin is decomposable into
subspaces according to (8.11), each eigenvector of Ĥspin−spin will also belong to only one of these
subspaces. Say

∣∣∣E (n)
µ

〉
an eigenvector of Ĥspin−spin but which belongs to the subspace Bn:

Ĥspin−spin

∣∣∣E (n)
µ

〉
= E (n)

µ

∣∣∣E (n)
µ

〉
(8.68)

where E
(n)
µ is the eigenvalue of Ĥspin−spin relative to

∣∣∣E (n)
µ

〉
. The index µ numbers the eigenvectors of

Ĥspin−spin in Bn, so µ = 1, 2, . . . ,ΩA,n – where ΩA,n is the dimension of Bn, Sec. 8.2.1. As usual, the
time-reversed state of

∣∣∣E (n)
µ

〉
,
∣∣∣E (n)
µ

〉
, is obtained by operating Θ̂ on

∣∣∣E (n)
µ

〉
, i.e.

∣∣∣E (n)
µ

〉
= Θ̂

∣∣∣E (n)
µ

〉
.

Given that
∣∣∣E (n)
µ

〉
=
∣∣∣E (2J0−n)
µ

〉
,
∣∣∣E (n)
µ

〉
necessarily belongs to the subspace B2J0−n. Since Θ̂ commutes

with Ĥspin−spin according to (8.66), it follows that:[
Ĥspin−spin, Θ̂

] ∣∣∣E (n)
µ

〉
= 0 (8.69a)(

E (n)
µ − E (n)

µ

) ∣∣∣E (n)
µ

〉
= 0 (8.69b)

from which we deduce that E
(n)
µ = E

(n)
µ . The implication of (8.69b) is this: two different eigenvectors

of Ĥspin−spin related by time-reversal symmetry also share the same eigenvalue. A far more reaching
conclusion is that once we are able to create and eigendecompose the submatrice Bn of Hspin−spin,
(8.11), we do not need to create its hole complement B2J0−n and eigendecompose it de novo, because
the eigenvalues of the two submatrices coincide and their eigenvectors are related through Θ̂. Finding
the hole complement of an eigenvector can be easily done thanks to (8.65). For example, let the
spin system whose Hamiltonian is given by Ĥspin−spin in (8.1) be the ·CH2OD radical. From table
7.1, we know that a generic normalized eigenvector

∣∣∣E (1)
µ

〉
of the subspace B1 is given by the linear

combination: ∣∣∣E (n=1)
µ

〉
= cµ,1 |1〉+ cµ,2 |3〉+ cµ,3 |6〉+ cµ,4 |12〉 (8.70)

where the cµ,i are real coefficients, and
∑
i c

2
µ,i = 1. The corresponding hole complement of

∣∣∣E (n=1)
µ

〉
,
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∣∣∣E (n=4)
µ

〉
, is an eigenvector which belongs to B4, and∣∣∣E (n=4)

µ

〉
= Θ̂

∣∣∣E (n=1)
µ

〉
= cµ,1Θ̂ |1〉+ cµ,2Θ̂ |3〉+ cµ,3Θ̂ |6〉+ cµ,4Θ̂ |12〉

= cµ,1 |22〉+ cµ,2 |20〉+ cµ,3 |17〉+ cµ,4 |11〉

(8.71)

where, in getting to the last step, we applied (8.65).
It is worth mentioning that there are instances whereby a subspace Bn coincides with its time-

reversed counterpart. Recall that each subspace Bn is characterized by the total number n of HP
bosons each of its basis kets contains. So, if each basis ket of the hole complement of Bn, i.e. B2J0−n,
contains (2J0 − n) HP bosons, then Bn = B2J0−n when both subspaces are characterized by the same
number of HP bosons. That is, when n = 2J0 − n – which happens only when n = J0. But n can
assume the value of J0 only when J0 is an integer. This means that for multispin systems whose total
spin quantum number J0 is an integer, the subspace Bn=J0

is its own hole complement. While the
eigenvalues of all the other subspaces are atleast double degenerate due to (8.69b), the same cannot
be said of Bn=J0 . Conversely, we also conclude that for multispin systems whose total spin quantum
number J0 is a half-integer, if the system’s Hamiltonian is invariant under time-reversal symmetry,
then the energy eigenvalues of the system are all atleast double degenerate. This conclusion is perfectly
inline with Kramer’s degeneracy theorem [137, 164].
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Chapter 9

The isotropic multispin Hamiltonian

in the presence of an external static

magnetic field

The theoretical machinery developed in the previous chapters are still useful and relevant when we
subject the previously isolated multispin system to a static magnetic field Bo. If we take the direction
of the external magnetic field Bo to be the axis of quantization ez, so that Bo = Boez, then the new
spin Hamiltonian of the system, Ĥo, is:

Ĥo = Ẑ + Ĥspin−spin (9.1)

where Ĥspin−spin is still given by (8.1), and

Ẑ := −Bo
∑
i

γiĴ zi . (9.2)

We know from (8.3) that Ĵ z is the zeroth component of a rank k = 1 spherical tensor, so Ẑ is also the
zeroth component of a rank k = 1 tensor. We have also already seen that Ĥspin−spin is a zero rank
spherical tensor. Thus, Ĥo is the sum of the zeroth components of spherical tensors of different ranks.
But we know from (8.2a) that Ĵ ztot commutes with the zeroth component (q = 0) of any spherical
tensor operator. It therefore follows from these considerations that:[

Ĵ ztot, Ĥo

]
= 0̂ (9.3)

which is in complete analogy to (8.4a). This is significant because it means that all the results we
derived above for the isolated multispin system on the basis of (8.4a) also apply here. For example,
Ĥo, like Ĥspin−spin, conserves the total number of HP bosons. So,

〈
n′
∣∣∣ Ĥo

∣∣∣n〉 = 0, if the multispin
kets |n′〉 and |n〉 do not contain the same total number of HP bosons. The conservation of the total
number of HP bosons also implies that, just like in the case of Ĥspin−spin, Ĥo subdivides the system’s
Hilbert space into (2J0 + 1) subspaces: B0,B1, . . . ,B2J0

. Hence, the matrix representation of Ĥo, Ho,

59
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can be written in the block diagonalized form:

Ho =

2J0⊕
n=0

Bn = diag (B0,B1, . . . ,B2J0
) =



B0

. . .

B2J0


(9.4)

just as we saw for Hspin−spin at (8.11), where the definition for Bn – (8.10) – still applies; and Bn, in
analogy to (8.12), is now defined as:

Bn :=
{〈

n
∣∣∣ Ĥo

∣∣∣n′〉 ∣∣∣ ∀n,n′ ∈ Bn} . (9.5)

The generating function for the dimensions {ΩA,n} of the subspaces {Bn} is, therefore, still given
by GA,Ω(q), (8.19).

The expression for the generic matrix element of Ĥo between |n′〉 = |n′1, n′2, . . . , n′N 〉 and |n〉 =

|n1, n2, . . . , nN 〉, follows directly from (8.51) and (9.2):〈
n′
∣∣∣ Ĥo

∣∣∣n〉 =
〈
n′1, n

′
2, . . . , n

′
N

∣∣∣ Ĥo

∣∣∣n1, n2, . . . , nN

〉
= δn′,n

[
−Bo

∑
i

γi(ji − ni) +
∑
i>k

Ti,k(ji − ni)(jk − nk)

]

+
1

2

∑
i>k

Ti,k

√(
ni +

1± 1

2

)(
2ji − ni +

1∓ 1

2

)(
2jk − nk +

1± 1

2

)(
nk +

1∓ 1

2

)
× ∆i,k δn′i,ni±1 δn′k,nk∓1 (9.6)

where we can once again observe that Ĥo conserves the total number of HP bosons. The submatrices
Bn can be easily created by employing (9.6).

Here too, the subspaces Bn and B2J0−n are related by time-reversal symmetry. However, the
striking difference between the isolated Ĥspin−spin and Ĥo is how they are transformed under the
time-reversal operator Θ̂. Unlike Ĥspin−spin, Ĥo is not time-reversal symmetric. In fact, from (8.54)
and (8.66), we derive that:

Θ̂ĤoΘ̂
−1 = Ĥo − 2Ẑ . (9.7)

It must be emphasized that the time-reversal operator Θ̂ we have employed so many times above,
including (9.7), is not a universal time-reversal operator but a local one restricted to the multispin
system. Had Θ̂ been the time-reversal operator acting on the whole Universe, then Ĥo would certainly
commute with Θ̂ since the Universe is an isolated system. Similar results also follow if we consider
the multispin system together with the external magnetic field Bo as one isolated system, and Θ̂ their
combined time-reversal operator. By restricting Θ̂ only to the multispin system, we have inadvertently
partitioned the system into two parts: a focus system (the spins) and its environment (the external
magnetic field), which are both odd (i.e. they change sign) respect to time-reversal operation. This
bipartite partitioning therefore leads to a broken T−symmetry in Ĥo.
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Taking the matrix element of (9.7) between the two generic multispin states |n′〉 and |n〉, we obtain:〈
n′
∣∣∣ Ĥo

∣∣∣n〉 =
〈

n′
∣∣∣ Ĥo

∣∣∣n〉− δn′,n 2Zn,n (9.8)

where, Zn,n :=
〈

n
∣∣∣ Ẑ ∣∣∣n〉. If |n′〉 and |n〉 belong to the subspace Bn, then |n′〉 and |n〉 are elements of

B2J0−n. Thus, (9.8) provides an easy way to generate the submatrix B2J0−n when Bn is known.
An even more important consequence of (9.7) is yet to be unveiled. It has to do with the relationship

between the eigenvalues and eigenvectors of Bn and those of B2Jo−n. We assume Bn is not its own
hole complement. Say

∣∣∣E(n)
µ

〉
an eigenvector of Ĥo in the subspace Bn:

Ĥo

∣∣∣E(n)
µ

〉
= E(n)

µ

∣∣∣E(n)
µ

〉
, µ = 1, 2, . . . ,ΩA,n (9.9)

where E(n)
µ is the eigenvalue of

∣∣∣E(n)
µ

〉
according to Ĥo. Surely, the hole complement of

∣∣∣E(n)
µ

〉
, that

is:
Θ̂
∣∣∣E(n)

µ

〉
≡
∣∣∣E(n)

µ

〉
=
∣∣∣E(2J0−n)

µ

〉
(9.10)

is also an eigenvector of Ĥo, but belongs to the subspace B2J0−n:

Ĥo

∣∣∣E(n)
µ

〉
= E(n)

µ

∣∣∣E(n)
µ

〉
, µ = 1, 2, . . . ,ΩA,n (9.11)

where we recall that ΩA,n = ΩA,2J0−n according to (8.24). Now, from (9.7) we easily derive the
commutation relation between Ĥo and Θ̂:[

Ĥo , Θ̂
]

= 2Ẑ Θ̂ . (9.12)

If we now take the matrix element of (9.12) between the eigenvector
∣∣∣E(n)

µ

〉
and its hole complement∣∣∣E(n)

µ

〉
, we get: 〈

E(n)
µ

∣∣∣ [ Ĥo , Θ̂
] ∣∣∣E(n)

µ

〉
= 2

〈
E(n)
µ

∣∣∣ Ẑ Θ̂
∣∣∣E(n)

µ

〉
(9.13a)

E(n)
µ − E(n)

µ = 2
〈
E(n)
µ

∣∣∣ Ẑ ∣∣∣E(n)
µ

〉
(9.13b)

from which follows that:
E(n)
µ = E(n)

µ − 2
〈
E(n)
µ

∣∣∣ Ẑ ∣∣∣E(n)
µ

〉
. (9.14)

Equation (9.14) asserts that we can easily compute the eigenvalue of the eigenvector
∣∣∣E(n)

µ

〉
from its

hole complement
∣∣∣E(n)

µ

〉
if we already know the latter and its eigenvalue. The significance of (9.14)

cannot be stressed enough. For example, suppose we have a univariate spin system of 10 spin- 1
2 , i.e.

A =
{

1
2

10
}
, whose Hamiltonian in the presence of a static magnetic field is given by Ĥo, (9.1). The

total spin quantum number for the system is J0 = 5, so, in principle, we can determine the eigenvectors
and eigenvalues of Ĥo by eigendecomposing the submatrices B0,B1,B2, . . . ,B10, (9.4). But by virtue
of (9.10) and (9.14), there is no need to create and eigendecompose all the eleven submatrices: we only
need B0,B1,B2,B3,B4,B5 to completely determine the eigenvalues and eigenvectors of Ĥo. This is
an enormous simplification.

Most multispin systems of chemical interest present one or more groups of equivalent spins. We can
further reduce the computational cost of diagonalizing Ĥo if we exploit the presence of these groups
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in the system. The multiset A of spins can be viewed as the sum of multisets:

A =

φ(A)⊎
g

Ag (9.15)

(for example, {12, 2, 5}]{13, 22, 3, 5} = {15, 23, 3, 52}) where φ(A) is the number of groups of equivalent
spins present in A; the index g runs over the groups of equivalent spins, and Ag is the spin multiset
for the g−th group of equivalent spins. Each Ag is then transformed into its Clebsch-Gordan series:
Ag 7→ Ãg (see §8.3). Since the elements of the Clebsch-Gordan series Ãg are independent of each other
(and irreducible), each element of the Cartesian product:

φ(A)

×
g

Ãg = Ã1 × Ã2 × . . .× Ãφ(A) (9.16)

constitutes an independent multiset of spins subject to the same form of spin Hamiltonian and can
be diagonalized independently. Take for example the ·CH2OD radical. If the experimental conditions
are such that the two hydrogen nuclei can be considered as equivalent spins, then the radical consists
of three groups of equivalent spins: 1) the unpaired electron, A1 =

{
1
2

}
; 2) the two hydrogen nuclei,

A2 =
{

1
2

2
}
; and 3) the deuterium nucleus, A3 = {1}. A1 and A3 have only one element each so

they coincide with their Clebsch-Gordan multisets Ãg. On the other hand, we immediately have that
Ã2 = {0, 1}. Hence,

Ã1 × Ã2 × Ã3 =

{
1

2

}
× {0, 1} × {1} =

{{
1

2
, 0, 1

}
,

{
1

2
, 12

}}
. (9.17)

What this means is that when the two hydrogen nuclei in ·CH2OD are considered equivalent, the radical
can be viewed as the sum of two smaller multispin systems, independent of each other: the first system
consists of a spin-1/2 (the unpaired electron) and a spin-1 particle (the deuterium nucleus), while
the second system consists of a spin-1/2 (the same electron) and two spin-1 particles (the deuterium
nucleus and the triplet state of the two hydrogen nuclei). The Hamiltonian of both subsystems is still
of the form given in (9.1). The Hilbert space of both subsystems can be block diagonalized as we saw
above. For the first subsystem, the dimension of the block matrices are coefficients of the polynomial:

(1 + q)(1 + q + q2) = 1 + 2q + 2q2 + q3 . (9.18)

And the dimension of the block matrices for the second subsystem are the coefficients of the following
polynomial:

(1 + q)(1 + q + q2)2 = 1 + 3q + 5q2 + 5q3 + 3q4 + q5 . (9.19)

For each subsystem, all that has been discussed above in this section still applies. To recapitulate,
we see that instead of diagonalizing a matrix of dimension 4 and one of dimension 7 to find the
eigenvalues and eigenvectors of Ĥo for the radical ·CH2OD as we saw previously, we only need to
diagonalize matrices of dimension 2, 3 and 5 when the two hydrogen nuclei are equivalent. When
applied to large spin systems with groups of equivalent spins, this approach reduces the computational
cost of diagonalizing the multispin Hamiltonian significantly.

If we take the naphthalene anion for example, we are dealing with a univariate system of 9 spin-1/2
particles, i.e. A =

{
1
2

9
}
. The dimension of the Hilbert space is, therefore, 512. Suppose we ignore the
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presence of equivalent spins in the system. Then, to engeindecompose the systems Ĥo, we will have
to effectively diagonalize four matrices whose dimensions are 9, 36, 84 and 126, according to the HP
transformation scheme discussed above. If the experimental conditions are sufficiently favorable, the
system can be thought of as consisting of three groups of equivalent spins: 1) the electron, A1 =

{
1
2

}
;

2) a collection four hydrogen nuclei, A2 =
{

1
2

4
}
; and 3) another collection of four hydrogen nuclei,

A3 =
{

1
2

4
}
. Then, Ã2 = {2, 13, 02}, and Ã3 = {2, 13, 02}. Thus,

Ã1 × Ã2 × Ã3 =

{
1

2

}
× {2, 13, 02} × {2, 13, 02}

=

{{
1

2
, 2, 2

}
,

{
1

2
, 2, 1

}3

,

{
1

2
, 2, 0

}2

,

{
1

2
, 1, 2

}3

,

{
1

2
, 1, 1

}9

,

{
1

2
, 1, 0

}6

,

{
1

2
, 0, 2

}2

,

{
1

2
, 0, 1

}6

,

{
1

2
, 0, 0

}4
}

. (9.20)

So the eigendecomposition of the naphthalene anion’s Hamiltonian Ĥo can be done by considering a
series of smaller but independent multisets: i) one multispin system comprised of a spin-1/2 and two
spin-2 particles, i.e. {1/2, 2, 2}; ii) three multispin systems each of the type {1/2, 2, 1}, etc. For each of
these subsystems, we can apply the HP transformation and create the block matrices. In the case of the
naphthalene anion, the largest block matrix we shall encounter comes from the subsystem {1/2, 2, 2}.
For this particular subsystem, the dimension of the block matrices follows from the generating function:

(1 + q)(1 + q + q2 + q3 + q4)2 = 1 + 3q + 5q2 + 7q3 + 9q4 + 9q5 + 7q6 + 5q7 + 3q8 + q9 . (9.21)

Hence, if we take into account the two groups of equivalent spins present in the naphthalene anion,
the largest matrix we will ever have to diagonalize is of dimension 9, which is remarkable.

To fully exploit the presence of groups of equivalent spins in the multispin system, we need the
Clebsch-Gordan coefficients. This constitutes the primary computational challenge in the method just
illustrated. One can thus incorporate optimized subroutines for the calculation of Clebsch-Gordan
coefficients into ones multispin algorithm. The somehow comforting observation we can make here
is that, in most of the multispin systems of interest, groups of equivalent spins hardly exceed six in
number – which means a subroutine which can handle the Clebsch-Gordan coefficients for the addition
of up to six angular momenta suffices for most routine computations.
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Chapter 10

Eigendecomposition of Liouvillians

In ordinary quantum mechanics in state space, the eigenvalues of observables — like the Hamiltonian
or magnetization vector — , which are absolute quantities (at least, up to a constant), are the natural
occurrences. Meanwhile, what we experimentally measure in spectroscopic experiments like nuclear
magnetic resonance (NMR) are quantities related to the differences between these eigenvalues. This
fact is nicely conveyed in the resonance conditions of said experiments. An alternative way of doing
quantum mechanics whereby such energy differences naturally come up as the expectation values of
some operator is thus more suitable to spectroscopy. Such an alternative is accomplished when we
formulate quantum mechanics in the so-called Liouville space [63, 74]. In addition, the Liouville space
formulation makes it relatively easier to treat relaxation processes, compared to the Hilbert space
[74]. It is therefore understandable why the Liouville space formalism is popular in various fields of
spectroscopy, including magnetic resonance. The catch, however, is that given a Hilbert space of finite
dimension DH, the dimension of its corresponding Liouville space is D2

H – which roughly translates
into even higher computational costs when one works in Liouville space.

As it is well-known, operators in Hilbert space, including the density matrix, become vectors
(supervectors) in Liouville space. Likewise, mappings which transformed one operator into another in
Hilbert space become operators (superoperators) in Liouville space.

Recall that the Hamiltonian is known to be the generator of the dynamics of the density matrix
in Hilbert space. When the density matrix becomes a supervector in Liouville space, its dynamics are
generated by the superoperator called the Liouvillian. Just as we eigendecompose the Hamiltonian Ĥ

in the Hilbert space to get the eigenenergies of the system, the eigendecomposition of its corresponding
Liouvillian ˆ̂

L returns all possible pairwise differences between the eigenenergies [63]. The relation
between a given Hamiltonian Ĥ and its Liouvillian ˆ̂

L is [63]:

ˆ̂
L = Ĥ ⊗ Î− Î⊗ Ĥ ∗ (10.1)

where "⊗" denotes the operation of vector space tensor direct product; Î is the identity operator defined
on the same Hilbert space as Ĥ , and Ĥ ∗ is the complex conjugate of Ĥ . We once again observe from
(10.1) that the dimension of the linear space where ˆ̂

L operates, i.e. the Liouville space, is of dimension
(DH)2. For example, if we have a multispin system A =

{
1
2

10
}
, whose Hamiltonian is given by Ĥo

in (9.1), the simulation of the multispin system’s magnetic spectra would require eigendecomposing a
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matrix of dimension 210 = 1024 according to the tout court approach if we work in the system’s spin
state space. If we choose to work in the Liouville space, the same tout court approach will have us
eigendecompose the matrix representation of the Liouvillian, which is of dimension 220 = 1, 048, 576.

This apparent inconvenience in computational costs one has to grapple with when working in the
Liouville space can be easily overcome. Indeed, if U is the matrix (supermatrix ) which diagonalizes L,
i.e.

U L U−1 = D (10.2)

where D is the diagonal supermatrix of the eigenvalues of L, and U is the eigenvector matrix of H :

U H U −1 = D (10.3)

where D is the diagonal matrix containing the eigenvalues of H , then it can be proved that:

U = U ⊗
(
U −1

)T (10.4)

and
D = D ⊗ I− I⊗D (10.5)

where "⊗" in (10.4) and (10.5) indicates the operation of Kronecker (or matrix direct) product, and
I is the identity matrix of the same dimension as D . Equation (10.4) is of great significance because
it enables us to compute the eigenvector supermatrix U directly from U by means of a simple matrix
direct product, without having to diagonalize the Liouvillian L de novo. Note that when the Hamilto-
nian is real, like in the case of the multispin Hamiltonian Ĥo seen above, U is an orthogonal matrix,
and so (10.4) reduces to the form:

U = U ⊗U . (10.6)

Combining the relations given in (10.4) and (10.5) with the HP transformation and related techniques
discussed in previous sections could be very useful in reducing the computational cost of simulating
the magnetic resonance spectra of multispin systems described by isotropic Hamiltonians like Ĥo in
Liouville space. For example, going back to our previous example with the multiset A =

{
1
2

10
}
, if we

want to work in Liouville space, instead of eigendecomposing a square matrix of dimension 220, we can
obtain the same eigen-supervectors and -supervalues through (10.6) and (10.5), respectively, by eigen-
decomposing only the submatrices B0,B1,B2,B3,B4,B5 which are of dimension 1, 10, 45, 120, 210

and 252, respectively. The computational cost can be further drastically reduced if we take into
consideration the presence of groups of equivalent spins as explained in Chap. 9.
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On Schwinger bosons

We conclude this part with a brief introduction to Schwinger bosons, which is another kind of spin
representation commonly used in condensed matter physics. Schwinger bosons are closely related to
the Holstein-Primakoff bosons, but the two representations are suitable for certain specific applications.
The HP bosons are particularly useful in transforming quantum mechanical problems into counting
problems. The Schwinger bosons are extremely powerful tools when we want to describe the behavior
of spin states under unitary transformations like rotations. The literature provides a plethora of
applications of the Schwinger bosons, mainly in quantum magnetic studies. This presentation of the
HP transformation won’t be complete without this brief introduction to Schwinger bosons. However,
the introduction we provide below departs greatly from what one may find elsewhere. Besides the
simplicity of our exposition below, we stress on the close link between Schwinger bosons and HP
bosons – which is rarely done in such details in the literature. Readers may see [13, 143] for the
mainstream exposition, interpretation and applications of Schwinger bosons.

We begin our introduction to Schwinger bosons by noting that the presence of the square root
of operators in the HP transformation, (6.14) and (6.15), makes its use in the study of important
problems like the rotation of spin states very inconvenient. The Schwinger transformation, from which
derives the Schwinger bosons, provides an alternative way to represent the spin operators Ĵ± and Ĵ z

in a very simple way without trace of any square roots. Interestingly, as we show below, the Schwinger
representation follows directly from the HP transformation.

When we introduced the time-reversal operator in Sec. 8.4, (8.55), we saw that when it acts on a
spin state represented by HP bosons, it transforms the HP bosons present into holes and the holes into
HP bosons, contemporarily. We also saw that the sum of the number of holes and HP bosons in any
given basis state |n〉 of a spin-j particle is always 2j. And that, while b̂†b̂ counts the number of HP
bosons, the operator (2j− b̂†b̂) counts the number of holes. The transition from HP transformation to
the Schwinger transformation relies on one simple trick: treat the holes and HP bosons as two set of
independent particles that can be created and annihilated separately (with the caveat that the sum of
their occupation numbers remain constant). If we do so, then we need to assign an occupation number
operator to the holes. Let us indicate this occupation number operator as â†â. Thus,

â†â = 2j − b̂†b̂ . (11.1)
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Clearly, â† and â are the creation and annihilation operators for the holes, respectively; and they obey
the same commutation rules as b̂† and b̂. Equation (8.55) may, therefore, be rewritten as:

Θ̂ b̂†b̂ Θ̂−1 = â†â . (11.2)

Since {b̂, b̂†} effect only the HP bosons and {â, â†} act on only the holes, the two set of operators
commute with each other. For the sake of clarity, let n̂b ≡ b̂†b̂ and n̂a ≡ â†â; thus, the nonnegative
integers nb and na will indicate the number of HP bosons and holes, respectively. We are therefore
representing spin states with two types of particles, i.e. HP bosons and (HP) holes:

HP representation 7→ Schwinger representation

|n〉 7→ |nb, na〉

where, obviously, n = nb. Hence, in the Schwinger representation we need two occupation numbers
to indicate a single spin eigenvector of Ĵ z. Moreover, given that the two sets of operators {b̂, b̂†} and
{â, â†} operate on different particles, it follows that:

b̂ |nb, na〉 =
√
nb |nb − 1, na〉 b̂† |nb, na〉 =

√
nb + 1 |nb + 1, na〉 (11.3)

â |nb, na〉 =
√
na |nb, na − 1〉 â† |nb, na〉 =

√
na + 1 |nb, na + 1〉 (11.4)

where the nonnegative integers na and nb are subject to the contraint: na + nb = 2j, (11.1).
In regards to the operator Ĵ z, we note that if we combine (6.5) with (11.1), we obtain the following

expression for Ĵ z in function of n̂b and n̂a:

Ĵ z =
1

2

(
â†â− b̂†b̂

)
=

1

2
(n̂a − n̂b) . (11.5)

(recall we have set ~ = 1). It is clear from (11.5) that the usual spin magnetic number m in |j,m〉
relates to na and nb through the expression:

m =
1

2
(na − nb) . (11.6)

Moreover, from (11.1), we also have the condition:

j =
1

2
(na + nb) . (11.7)

Equation (11.6) and (11.7), together, constitute the conditions the integers na and nb must satisfy in
order to represent the usual spin state |j,m〉.

What about the Schwinger representation for Ĵ±? To begin, recall the operator Ĵ + =

√
2j − b̂†b̂ b̂

in the HP representation, (6.14). From this expression, we see that the operator b̂ first reduces the

number of HP bosons by 1 while the operator
√

2j − b̂†b̂ leaves the resulting state unchanged in
the number of HP bosons. The net effect of Ĵ + is, therefore, to reduce nb by 1. But, given that
na+nb = 2j, (11.7), it follows that if Ĵ + has the effect of reducing nb by 1, then it must also have the
effect of increasing the number of holes by the same quantity, i.e. na 7→ na + 1. The operator which
increases na by 1 is â†. Therefore, Ĵ + must be proportional to â†b̂:

Ĵ + = c â† b̂ = c b̂ â† (11.8)
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where c is the proportionality constant. If we let Ĵ + operate on |nb, na〉, we find that:

Ĵ + |nb, na〉 = c â† b̂ |nb, na〉 (11.9a)

= c
√

(na + 1)
√
nb |nb − 1, na + 1〉 (11.9b)

= c
√

(2j − nb + 1)
√
nb |nb − 1, na + 1〉 (11.9c)

where we have made use of (11.3) and (11.4). If we compare (11.9c) with (6.14), we immediately
reach the conclusion that c = 1 (bear in mind that n = nb, and as stated above, we have set ~ = 1

throughout this section). Thus,
Ĵ + = â† b̂ = b̂ â† . (11.10)

Hence, it also follows that:

Ĵ− =
(
Ĵ +
)†

= â b̂† = b̂† â . (11.11a)

Equations (11.5), (11.10) and (11.11a) constitute the Schwinger transformation. Unlike the HP trans-
formation, we see that the Schwinger transformation is linear in the operators â†, â, b̂†, b̂.

In §6, we saw that the vacuum state |n = 0〉 in the HP representation of the Ĵ z eigenvectors of spin-
j corresponds to the state |j, j〉 in the normal |j,m〉−representation. The Schwinger representation
also has its vacuum state, namely |nb = 0, na = 0〉 = |0, 0〉. This vacuum state, unlike the one we
encountered in the HP representation, does not correspond to any specific spin state, and its energy is
undefined. However, one interesting characteristic of the Schwinger vacuum is that it is the same for
all spins. This is in net contrast to the HP vacuum.

Just as generic spin states in the HP representation can be created from the HP vacuum state
by filling the latter with a number of HP bosons, generic spin states in the Schwinger representation
can be easily created from the Schwinger vacuum |0, 0〉 by creating a number of holes and HP bosons.
Thus,

|j,m〉 7→ |nb, na〉 =

(
â†
)na

√
na!

(
b̂†
)nb

√
nb!
|0, 0〉 (11.12)

where the factor 1√
na!nb!

is necessary to keep the state on the RHS normalized like |nb, na〉. If we
express na and nb in (11.12) in terms of j and m, using (11.6) and (11.7), it turns out that:

|j,m〉 7→ |j −m, j +m〉 =

(
â†
)j+m√

(j +m)!

(
b̂†
)j−m

√
(j −m)!

|0, 0〉 . (11.13)

In the Schwinger representation, the HP bosons and HP holes are collectively called Schwinger bosons.
Among the many useful applications of the Schwinger bosons is the relatively straightforward ease

with which they allow the derivation of the famous Majorana formula [144], which states the general
expression for the transition probability between two generic spin states of an arbitrary spin in the
presence of: 1) a static magnetic field along a specified direction in space (chosen as the quantization
axis), and 2) a rf field perpendicular to the static field. Other applications of the Schwinger bosons
include the derivation of analytical expressions for the matrix elements of the rotation operator. In
particular, they can be used to easily derive a close expression for the elements of the Wigner d−matrix
[137, 143]. Closed expressions for the Clebsch-Gordan coefficients for the addition of two, three and
four angular momenta can also obtained using the Schwinger bosons [143].
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Part III

Quantum Markovian master equations
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Part III presents quantum Markovian master equations and the conditions which lead to them. The
concept of universal dynamical maps (UDM) and completely positive (CP) maps are also presented.

The contents of this part are not original findings of the author. However, the presentations
given here of these known results are mostly original presentations by the author. Some results are
generalizations of those in the literature and others are unpublished results.
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Chapter 12

Generalized Kraus operator sum

representation on a convex set of

finite-dimensional density matrices

12.1 Generalized Kraus operator sum representation

Say Hd a state space (Chap. 1) of dimension d, and Od the Hilbert space of linear operators acting
on Hd (Sec. 1.1). Let O+,1

d denote the convex cone in the set of trace-class unit-trace positive
semi-definite self-adjoint linear operators acting on Hd [138]. Naturally, O+,1

d ⊂ Od. Consider the
mapping Λ : O+,1

d → O+,1
d , where Λ is understood to be linear and conserves convexity (i.e. for scalars

{c1, c2|c1, c2 ≥ 0∧c1 +c2 = 1} and operators ρ1, ρ2 ∈ O+,1
d , Λ[c1ρ1 +c2ρ2] = c1Λ[ρ1]+c2Λ[ρ2] ∈ O+,1

d ).
For arbitrary ρ ∈ O+,1

d , it can be shown that it is always possible to express ρ′ ≡ Λρ as [132, 138, 155]

ρ′ = Λρ =
∑
µ

MµρM
†
µ (12.1)

where the operators Mµ ∈ Od satisfy the completeness relation∑
µ

M†µMµ = Id . (12.2)

Equation (12.2) is reminiscent of (3.3), and confirms the fact that the map Λ preserves trace. The
map Λ also preserves Hermiticity and is obviously positive1. The sum in (12.1) may be referred to
as a generalized Kraus operator sum representation of the map Λ, and the operators {Mµ} are the
generalized Kraus operators.

In general, the operators Mµ depend on (the eigenvectors of) ρ [138, 155]. This assertion stems
from the fact that given any pair of elements ρA, ρB ∈ O+,1

d , it is always possible to find a generalized
Kraus operators {Mµ} such that

ρB =
∑
µ

MµρAM
†
µ . (12.3)

1A map Φ : Mn →Mm – where Mn and Mm are linear spaces of complex n× n and m×m matrices, respectively –
is positive if for any positive semi-definite element A of Mn, Φ(A) is also positive semi-definite [28].
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This can be easily proved, and we provide one below. The following proof follows closely that given in
[155].

First of all, based on the spectral decomposition theorem (1.17), we may write

ρA =

d∑
k=1

λA,k |αk〉〈αk| = UA ρA,λ U
†
A (12.4)

where {|αk〉}, {λA,k} are the eigenvectors and eigenvalues of ρA, respectively; UA is the unitary
transformation matrix whose k−th column is |αk〉 and ρA,λ is the diagonal matrix whose (k, k)−th
entry is λA,k. Analogously, for ρB we may write

ρB =

d∑
k=1

λB,k |βk〉〈βk| = UB ρB,λ U
†
B . (12.5)

Note also that for ρA,λ and ρB,λ we may write

ρA,λ =

d∑
k=1

λA,k |k〉〈k| ρB,λ =

d∑
k=1

λB,k |k〉〈k| (12.6)

where |k〉 is the k−th canonical basis of dimension d, i.e.

|k〉 =

(
0 . . . 0︸ ︷︷ ︸

k−1

1 0 . . . 0︸ ︷︷ ︸
d−k

)T
. (12.7)

It can be shown that there exist operators {ΓB,µ} (µ = 0, 1, 2, . . . , d− 1) such that

ρB,λ =
∑
µ

ΓB,µ ρA,λ Γ†B,µ (12.8)

and who satisfy the completeness relation∑
µ

Γ†B,µΓB,µ = Id . (12.9)

It can be verified that, up to a unitary transformation,

ΓB,µ =

d−µ∑
k=1

√
λB,k |k〉〈k + µ| +

d∑
k=d−µ+1

√
λB,k |k〉〈k + µ− d| . (12.10)

Equations (12.8) and (12.9) can be easily verified. Indeed,

d−1∑
µ=0

Γ†B,µΓB,µ =

d−1∑
µ=0

d−µ∑
k=1

λB,k |k + µ〉〈k + µ| +

d−1∑
µ=0

d∑
k=d−µ+1

λB,k+µ−d |k + µ− d〉〈k + µ− d|

=

d∑
k=1

d−1∑
µ=0

λB,k−µ |k〉〈k| +

d∑
k=1

d−1∑
µ=0

λB,d+k−µ |k〉〈k|

=

d∑
k=1

( d−1∑
µ=0

λB,k−µ +

d−1∑
µ=0

λB,d+k−µ

)
|k〉〈k| =

d∑
k=1

( k−1∑
µ=0

λB,k−µ +

d−1∑
µ=k

λB,d+k−µ

)
|k〉〈k|

=

d∑
k=1

|k〉〈k| = Id .

(12.11)
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Also,

d−1∑
µ=0

ΓB,µ ρA,λ Γ†B,µ

=

d−1∑
µ=0

d∑
k=1

[ d−µ∑
k′′=1

d−µ∑
k′=1

√
λB,k′

√
λB,k′′ |k′〉〈k′ + µ| k〉〈k| k′′ + µ〉〈k′′|λA,k

+

d−µ∑
k′=1

d∑
k′′=d−µ+1

√
λB,k′

√
λB,k′′ |k′〉〈k′ + µ| k〉〈k| k′′ + µ− d〉〈k′′|λA,k

+

d−µ∑
k′′=1

d∑
k′=d−µ+1

√
λB,k′

√
λB,k′′ |k′〉〈k′ + µ− d| k〉〈k| k′′ + µ〉〈k′′|λA,k

+

d∑
k′=d−µ+1

d∑
k′′=d−µ+1

√
λB,k′

√
λB,k′′ |k′〉〈k′ + µ− d| k〉〈k| k′′ + µ− d〉〈k′′|λA,k

]
.

(12.12)

Using the orthonormality property of the canonical basis, we find that

d−1∑
µ=0

ΓB,µ ρA,λ Γ†B,µ

=

d−1∑
µ=0

d∑
k=1

[ d−µ∑
k′′=1

d−µ∑
k′=1

√
λB,k′

√
λB,k′′λA,k |k′〉〈k′′| δk′+µ,kδk′,k′′

+

d−µ∑
k′=1

d∑
k′′=d−µ+1

√
λB,k′

√
λB,k′′λA,k |k′〉〈k′′| δk′+µ,kδk′′,k′+d

+

d−µ∑
k′′=1

d∑
k′=d−µ+1

√
λB,k′

√
λB,k′′ λA,k |k′〉〈k′′| δk′′+µ,kδk′,k′′+d

+

d∑
k′=d−µ+1

d∑
k′′=d−µ+1

√
λB,k′

√
λB,k′′ λA,k |k′〉〈k′′| δk′+µ−d,kδk′′,k′

]
.

(12.13)

The second and third terms vanish since |k〉 = 0 for k > d. Hence

d−1∑
µ=0

ΓB,µ ρA,λ Γ†B,µ =

d−1∑
µ=0

d−µ∑
k′=1

λB,k′λA,k′+µ |k′〉〈k′|+
d−1∑
µ=0

d∑
k′=d−µ+1

λB,k′ λA,k′+µ−d |k′〉〈k′|

=

d∑
k=1

(
d∑

w=k

λA,w

)
λB,k |k〉〈k|+

d∑
k=1

(
k−1∑
w=1

λA,w

)
λB,k |k〉〈k|

=

d∑
k=1

(
d∑

w=k

λA,w +

k−1∑
w=1

λA,w

)
λB,k |k〉〈k| =

d∑
k=1

λB,k |k〉〈k| = ρB,λ .

(12.14)

Having verified that (12.8) and (12.9) hold, from (12.5) and (12.8), it follows that

ρB = UB ρB,λ U
†
B = UB

( d−1∑
µ=0

ΓB,µ ρA,λ Γ†B,µ

)
U†B =

d−1∑
µ=0

UBΓB,µρA,λΓ†B,µU
†
B . (12.15)

But from (12.4), we know

U†A ρA UA = ρA,λ (12.16)
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therefore,

ρB =
∑
µ

UBΓB,µU
†
A ρA UAΓ†B,µU

†
B

=
∑
µ

MBA,µ ρA M†BA,µ

(12.17)

where

MBA,µ ≡ UBΓB,µU
†
A . (12.18)

And in addition, we also see that ∑
µ

M†BA,µMBA,µ = Id . (12.19)

As mentioned above, we note that the operator MBA,µ depends on ρA through UA. And the operators
UB and ΓB,µ determine the eigenvectors and eigenvalues of ρB . As pointed out in [155], since UA
collects only the eigenvectors of ρA, it is inferred that different elements of O+,1

d with the same set
of eigenvectors as ρA but with different eigenvalues share the same set of generalized Kraus operators
{MBA,µ} for fixed ρB .

12.2 Completely positive linear maps and Choi’s theorem

Let Mn and Mm be linear spaces of complex n×n and m×m square matrices, respectively. A positive
linear map Φ : Mn → Mm is said to be completely positive (CP) if for any identity matrix Ip ∈ Mp

(p ∈ {1, 2, 3, . . .}), the map

Φ⊗ Ip : Mn ⊗Mp →Mm ⊗Mp (12.20)

is still positive.

According to Choi’s theorem [28], a linear map Φ : Mn →Mm is completely positive if and only if
it admits the expression,

Φ(A) =
∑
i

V †i AVi (12.21)

– where Vi is a n ×m complex matrix. Based on this very important result and (12.1), we can say
that any linear map Λ : O+,1

d → O+,1
d , is definitely CP – and not just positive. Combining

this with the trace-preserving property of Λ (sealed by the completeness relation in (12.2)), leads to
Λ being completely positive and trace-preserving (CPT). The CPT property also becomes a criterion
by which to ascertain whether or not a linear map is an endomorphism of the set O+,1

d (i.e. if the
map transforms elements of O+,1

d into elements of the same set.). Namely, a linear map Λ is an
endomorphism of the set O+,1

d if and only if it is CPT.

The requirement that any linear map Λ which presupposes to be an endomorphism of O+,1
d be

CPT is not just an abstract mathematical preoccupation, but ensures a profound logical and empirical
coherence in our understanding and description of how quantum states are transformed. We shall
discuss this in more details in the next chapter but for the time being, consider a system S with state
space Hd and the map Λ : O+,1

d → O+,1
d . Consider now another system W with state space Hd′ . The

state space of the bipartite system S + W is Hd ⊗Hd′ . Consider S and W to be noninteracting and
no correlation between the two. If we want to describe the scenario where we apply the map Λ above
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in this very context of the S +W system – where Λ continues to be an endomorphism of O+,1
d while

we leave W ’s state intact –, we will have to use the map

Λ⊗ Id′ : O+,1
d ⊗O+,1

d′ → O
+,1
d ⊗O+,1

d′ . (12.22)

It is reasonable that we require this map to be positive (besides preserving trace and Hermiticity).
More than that, this positivity requirement must hold independent of d′; else, there could be values
of d′ whereby there is no interaction nor correlation between S and W (initially and beyond), but
transforming the state of S suddenly creates some correlations between S and W . Obviously, such a
transformation would be unphysical. But, as we have seen above, requiring Λ ⊗ Id′ to be positive –
independent of d′ – tantamounts to requiring Λ to be CP (besides being trace-preserving), thus CPT.
This is the physical justification for the importance of the CPT requirement.

However, the physical justification for the CPT requirement notwithstanding, (12.1) and (12.2)
informs us that it is already an entrenched and inextricable property of all linear maps Λ : O+,1

d → O+,1
d .

It is a simple exercise to generalize the above results and reach the conclusion that

Λ still remains CPT even if its domain and image are subsets of O+,1
d .
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Chapter 13

Universal dynamical maps

In the study of quantum dynamics, we are usually interested in how the density matrix ρ ∈ O+,1
d

of a quantum system evolves in time. For a coherent account of this time evolution in the interval
to ≤ t ≤ tf – where to and tf are the initial and final instances of our observation we are interested
in – it is easy to see that ρ(t) must remain in the convex set O+,1

d . To this time evolution, we may
associate the map

Λt,to : C+,1
d → C′+,1d (13.1)

such that ρ(t) = Λt,toρ(to), where ρ(to) ∈ C+,1
d and C+,1

d ,C′+,1d are subsets of O+,1
d . We may refer

to Λt,to as a quantum dynamical map (or simply quantum map). Using the results of the previous
chapter, in particular (12.17), it follows readily that

Λt,toρ(to) = ρ(t) =

d−1∑
µ=0

Mµ(t, to)ρ(to)M
†
µ(t, to) (13.2)

where – from (12.18) and (12.10), respectively –

Mµ(t, to) = U(t)Γµ(t)U†(to) (13.3)

Γµ(t) =

d−µ∑
k=1

√
λk(t) |k〉〈k + µ| +

d∑
k=d−µ+1

√
λk(t) |k〉〈k + µ− d| . (13.4)

We recall again here that {|k〉} is the canonical basis of Hd, (12.7). Moreover, {λk(t)} are the eigen-
vectors of ρ(t), while U(t) and U(to) are the unitary operators which diagonalize ρ(t) and ρ(to),
respectively. Naturally, the generalized Kraus operators {Mµ(t, to)} satisfy the completeness relation
in (12.2), namely,

d−1∑
µ=0

M†µ(t, to)Mµ(t, to) = Id . (13.5)

Again, we observe that the generalized Kraus operators {Mµ(t, to)} depend on the initial state ρ(to),
while U(t) and {Γµ(t)} determine ρ(t).

Interestingly, the operatorsMµ(t, to) bear some important similarities to the quantum measurement
operators we discussed in Chap. 3 and Chap. 4. In fact, comparing (13.2) with (4.14), we may view the
former as some sort of generalized non-selective measurement, albeit a rather peculiar one. Contrary
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to the quantum measurement operators we saw in Chap. 3 and Chap. 4, which were independent
of the initial state, the operators Mµ(t, to) here do actually depend on the initial state, as remarked
earlier. From Chap. 12, it becomes conspicuously evident that this dependency on the initial state
would confine the domain of Λt,to to the set C+,1

d [ρ(0)] ⊂ O+,1
d , where C+,1

d [ρ(0)] is the set of all convex
combinations of elements of O+,1

d which commute with the initial state ρ(0).

A simpler quantum map Λt,to will be one whose associated Kraus operators {Mµ(t, to)} are in-
dependent of the initial state – just like those encountered in Chap. 3 and Chap. 4. Such a map
is commonly referred to as a universal dynamical map (UDM) [132]. The following definitions then
follow:

Definition 13.0.1. Given the state space Hd, a quantum map Λ is said to be a universal dynamical
map (UDM) if

Λ : O+,1
d → C′+,1d (13.6)

where C′+,1d ⊆ O+,1
d .

Definition 13.0.2. Given the state spaceHd, a quantummap Λ is said to be a non-universal dynamical
map (non-UDM) if

Λ : C+,1
d

(
⊂ O+,1

d

)
→ C′+,1d . (13.7)

In other words, the domain of Λ is a proper subset of O+,1
d .

We also deduce from the results of the preceding chapter that both UDMs and non-UDMs are CPT
with respect to their respective domains.

In the study of open quantum systems, we usually consider a bipartite system consisting of a system
of interest S and its environment (or reservoir) R. The state space of the system-plus-reservoir, S+R,
is HS ⊗HR – where HX is the state space of free X (X = S,R). An effective quantum map for the
focused system S is obtained by tracing out R’s degrees of freedom, reducing the state space therefore
from HS ⊗ HR to HS . The quantum dynamics stemming from this state space reduction is usually
referred to as reduced dynamics. If the effective quantum map Λt,to obtained does not depend on the
initial state of S, then we talk of an induced UDM. It can be shown [132] that the quantum map Λt,to

for S is an induced UDM if and only if: i) the initial global system-plus-reservoir (S+R) state ρ(to) is
a separable one, i.e. ρ(to) = ρS(to)⊗ ρR(to) – where ρS(to) and ρR(to) are the initial density matrices
of S and the reservoir/environment R, respectively –, and ii) ρR(to) remains the same for any ρS(to).

13.1 Induced universal dynamical maps – Schrödinger picture

To illustrate how a UDM may originate from reduced dynamics, consider a closed S + R evolving
according to the Hamiltonian H, where

H = HS ⊗ IR + IS ⊗HR +HI (13.8)

– where HS and HR are the free Hamiltonians of S and R, respectively, and HI is their interaction
Hamiltonian. We consider the state spaces of S and R (HS and HR, respectively) to be finite-
dimensional, and IS and IR are the identity operators on HS and HR, respectively. Since the S + R
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is closed, it follows from Postulate II of quantum quantum mechanics, (2.1) and (4.4), that, in the
Schrödinger picture,

d

dt
ρ(t) = −i [H, ρ(t)] (13.9)

from which follows that

ρ(t) = e−iHtρ(0)eiHt (13.10)

– where we have simply put to = 0. Then

ρS(t) = TrR [ρ(t)] = TrR
[
e−iHtρ(0)eiHt

]
(13.11)

where TrR[•] denotes the operation of partial trace over R.

A few words on the partial trace are in order here. Given two linear operators A and B, defined on
the finite-dimensional state spaces H and H′, respectively, the partial trace TrB [A⊗B] is defined as

TrB [A⊗B] ≡
∑
b

(
I⊗ 〈b|

)(
A⊗B

)(
I⊗ |b〉

)
(13.12)

where I is the identity operator on H, the set {|b〉} is an orthonormal basis which spans H′ and ‘⊗’
denotes the Kronecker product.

Going back to (13.11), and using (13.12), we may write

ρS(t) = TrR
[
e−iHt (ρS(0)⊗ ρR(0)) eiHt

]
=
∑
β

(
IS ⊗ 〈β|

)(
e−iHt (ρS(0)⊗ ρR(0)) eiHt

)(
IS ⊗ |β〉

)
(13.13)

where, without loss of generality, we choose the state vectors {|β〉} to be the eigenvectors of ρR(0).
That is,

ρR(0) =
∑
β

λβ |β〉〈β| . (13.14)

With (13.14), we may also rewrite (13.13) as

ρS(t) =
∑
β

(
IS ⊗ 〈β|

)[
e−iHt

(
ρS(0)⊗

∑
β′

λβ′ |β′〉 〈β′|
)
eiHt

](
IS ⊗ |β〉

)
. (13.15)

Employing the properties of the Kronecker product, the following chain of algebraic rearrangements
follows from (13.15):

ρS(t) =
∑
β

∑
β′

(
IS ⊗ 〈β|

)
e−iHt

[(
ρS(0)⊗ 1

)(
IS ⊗ λβ′ |β′〉 〈β′|

)]
eiHt

(
IS ⊗ |β〉

)

=
∑
β

∑
β′

λβ′

(
IS ⊗ 〈β|

)
e−iHt

[(
ρS(0)⊗ 1

)(
IS ⊗ |β′〉

)(
IS ⊗ 〈β′|

)]
eiHt

(
IS ⊗ |β〉

)

=
∑
β

∑
β′

λβ′

(
IS ⊗ 〈β|

)
e−iHt

[(
IS ⊗ |β′〉

)(
ρS(0)⊗ 1

)(
IS ⊗ 〈β′|

)]
eiHt

(
IS ⊗ |β〉

)

=
∑
β

∑
β′

[√
λβ′

(
IS ⊗ 〈β|

)
e−iHt

(
IS ⊗ |β′〉

)]
ρS(0)

[√
λβ′

(
IS ⊗ 〈β′|

)]
eiHt

(
IS ⊗ |β〉

)]
(13.16)
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which leads to the final result

ρS(t) =
∑
β

∑
β′

Kββ′(t)ρS(0)K†ββ′(t) (13.17)

where

Kββ′(t) ≡
√
λβ′

(
IS ⊗ 〈β|

)
e−iHt

(
IS ⊗ |β′〉

)
. (13.18)

We note that the operators Kββ′(t) are independent of ρS(t) as they depend solely on ρR(0). We thus
see that if ρR(0) is fixed for an arbitrary ρS(0), then the quantum map Λt,0 : O+,1

d → O+,1
d , where

Λt,0ρS(0) =
∑
β

∑
β′

Kββ′(t)ρS(0)K†ββ′(t) (t ≥ 0) (13.19)

is a UDM in the Schrödinger picture. Note that the crucial step in the derivation of (13.17) is the
separability of the initial state of the bipartite system. It can also be easily verified that∑

β

∑
β′

K†ββ′(t)Kββ′(t) = IS . (13.20)

It follows then from Choi’s theorem (Sec. 12.2) and (13.20) that Λt,0 in (13.19) is CPT.

It must be emphasized that the operators Kββ′(t) are linear operators acting on HS . Indeed, if we
take an arbitrary orthonormal basis {|s〉} of HS , then from (13.18), we may rewrite Kββ′(t) as

Kββ′(t) =
∑
s,s′

√
λβ′

(
|s〉〈s| ⊗ 〈β|

)
e−iHt

(
|s′〉〈s′| ⊗ |β′〉

)

=
∑
s,s′

√
λβ′ |s〉

[(
〈s| ⊗ 〈β|

)
e−iHt

(
|s′〉 ⊗ |β′〉

)]
〈s′|

=
∑
s,s′

√
λβ′ csβ,s′β′(t) |s〉〈s′|

(13.21)

where the coefficient csβ,s′β′(t) has the expression

csβ,s′β′(t) ≡
〈
s, β
∣∣ e−iHt ∣∣s′, β′〉 (13.22)

with |s, β〉 ≡ |s〉 ⊗ |β〉. The final result in (13.21) clearly shows that Kββ′(t) ∈ OS1 since it is a linear
combination of the operators {|s〉〈s′|} which span the Hilbert space OS , Sec. 1.1.

Note that the operators Kββ′(t) are indexed by states vectors of the environment. This may prove
inconvenient when using (13.17) to describe the dynamics of S, especially when the dimension of HR
greatly exceeds that of HS . It is therefore advisable to rewrite (13.17) in a form where the Kraus
operators are indexed by states directly related to HR. This can be easily achieved as follows: since,
as we have seen, Kββ′(t) ∈ OS , we can express Kββ′(t) as a linear combination of any orthonormal
operator basis of OS , Sec. 1.1. Equation (13.21) is just an example of such an expansion. Let the
dimension of HS be d. For simplicity, let {Aµ} (µ = 0, 1, 2, . . . , d2 − 1) be an orthonormal operator
basis of OS . That is,

Tr[AµA
†
µ′ ] = δµ,µ′ . (13.23)

1OS is the Hilbert space of linear operators acting on HS .
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Then we may expand each Kββ′(t) as a linear combination of {Aµ}:

Kββ′(t) =

d2−1∑
µ=0

cµ,ββ′(t)Aµ , where cµ,ββ′(t) ≡ Tr[Kββ′(t)A
†
µ ] . (13.24)

Introducing this expansion into (13.17) yields

Λt,0ρS(0) =

d2−1∑
µ=0

d2−1∑
µ′=0

ζµµ′(t) AµρS(0)A †µ′ (13.25)

where

ζµµ′(t) ≡
∑
β

∑
β′

cµ,ββ′(t) c
∗
µ′,ββ′(t) . (13.26)

The significance of (13.25) is that the range of influences of the environment R on the time evolution of
S is now succinctly encapsulated in the coefficients {ζµµ′(t)}. Interestingly, the matrix ζ(t) is positive
semi-definite, i.e. given x ∈ Cd

2

, x†ζx ≥ 0. Indeed

x†ζx =
∑
µ,µ′

x†µζµµ′(t)xµ′ =
∑
β

∑
β′

∑
µ,µ′

x†µcµ,ββ′(t) c
∗
µ′,ββ′(t)xµ′

=
∑
β

∑
β′

(∑
µ

x†µcµ,ββ′(t)

)(∑
µ′

x†µ′cµ′,ββ′(t)

)†
=
∑
β

∑
β′

∣∣∣∣∑
µ

x†µcµ,ββ′(t)

∣∣∣∣2 ≥ 0 .

(13.27)

Since ζ(t) is positive semi-definite, we know its eigenvalues are nonnegative and there exits a unitary
transformation U(t) which diagonalizes ζ(t), i.e.

ζ(t) = U(t)γ(t)U†(t) (13.28)

where γ(t) is the diagonal matrix which collects the eigenvalues of ζ(t). From (13.28), it follows that

ζµµ′(t) =

d2−1∑
µ′′=0

Uµµ′′(t)γµ′′µ′′(t)U
†
µ′′µ′(t) . (13.29)

Substituting (13.29) into (13.25), we get

Λt,0ρS(0) =

d2−1∑
µ=0

d2−1∑
µ′=0

d2−1∑
µ′′=0

Uµµ′′(t)γµ′′µ′′(t)U
†
µ′′µ′(t) AµρS(0)A †µ′

=

d2−1∑
µ′′=0

(√
γµ′′µ′′(t)

d2−1∑
µ=0

AµUµµ′′(t)

)
ρS(0)

(√
γµ′′µ′′(t)

d2−1∑
µ′=0

U†µ′′µ′(t)A
†
µ′

) (13.30)

which may be simply written as

Λt,0ρS(0) =

d2−1∑
µ=0

Kµ(t)ρS(0)K †
µ (t) (13.31)

where

Kµ(t) ≡
√
γµ(t)

d2−1∑
µ′=0

Aµ′Uµ′µ(t) . (13.32)
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(we have simply written γµµ as γµ). Here too, it can be verified that the operators {Kµ(t)} satisfy the
completeness relation

d2−1∑
µ=0

K †
µ (t)Kµ(t) = IS . (13.33)

Naturally, the quantum map Λt,0 in (13.31) is still a UDM in the Schrödinger picture for a fixed initial
state ρR(0) of R. The fingerprints of R’s influence on the time-evolution of S are to be found in the
scalars {γµ(t)} and {Uµµ′(t)}.

It is worth observing that while the generalized Kraus operators discussed in the previous chapter
were at most d in total (see for example (12.17) and (12.18)), the Kraus operators Kµ(t) in (13.31)
are at most d2 in total. The reason for this discrepancy lies in the fact that the map Λt in (13.31) is
an induced UDM.

13.2 Induced universal dynamical maps – Heisenberg picture

As it is known, in the Heisenberg picture, we let elements of Od other than the density matrix evolve
in time. Given the Schrödinger picture quantum map Λt,0, its Heisenberg picture representation (ΛHt,0)
can be easily derived from Λt,0 by imposing an invariance on the extended Hilbert-Schmidt inner
product 〈Λt,0ρS(0), A〉 – where A ∈ Od and A 6= ρS – as one moves into the Heisenberg picture. That
is,

〈Λt,0ρS(0), A〉 =
〈
ρS(0),ΛHt,0A

〉
(13.34)

– which, according to (1.15), translates into

Tr
[
A Λt,0ρS(0)

]
= Tr

[
ΛHt,0A ρS(0)

]
(13.35)

where we have made use of Hermitian property of Λt,0ρS(0) and ρS(0). If we make use of (13.31), for
example, then (13.35) may be written as

Tr
[
A

d2−1∑
µ=0

Kµ(t)ρS(0)K †
µ (t)

]
= Tr

[
ΛHt,0A ρS(0)

]

Tr
[ d2−1∑
µ=0

AKµ(t)ρS(0)K †
µ (t)

]
= Tr

[
ΛHt,0A ρS(0)

]
.

(13.36)

Making use of the cyclic property of the trace functional, we may conveniently rearrange the factors
on the l.h.s., obtaining

Tr
[( d2−1∑

µ=0

K †
µ (t)AKµ(t)

)
ρS(0)

]
= Tr

[
ΛHt,0A ρS(0)

]
(13.37)

– from which follows that

ΛHt,0A =

d2−1∑
µ=0

K †
µ (t)AKµ(t) . (13.38)

The invariance in (13.35) is important because it allows the expectation value of an observable to
remain unchanged with respect to either picture.



Chapter 14

Quantum dynamical semigroups

We saw in Sec. 13.1 how an induced UDM may originate from a reduced dynamics. If we revise
our discussion in Sec. 13.1 attentively, we recognize that if we fix t = tf , the quantum map Λtf ,0 as
given in (13.31) takes as input ρS(0) and maps it to a new state ρS(tf ), parameterized by tf . The
caveat here is that at the initial time t = 0, the bipartite system S +R must be in the separable state
ρS(0)⊗ ρR(0), where ρR(0) is fixed. The map Λtf ,0 does not inform us, whatsoever, on how S evolves
in the time interval 0 < t < tf , for example: it just tells us what the state of S is at the instant tf .
One might be inclined to assume that the map Λtf ,t′ – where 0 < t′ < tf –, must also be a UDM.
It can be easily proved that that is not actually the case in general [132]. This problem is sometimes
referred to as the ‘time continuity problem’ of UDMs [132].

However, there is a class of induced UDMs of particular interest in the theory of open quantum
systems which are free from the time continuity problem. In particular, these UDMs are such that for
0 ≤ t1 ≤ t2 ≤ t,

Φt,t2Φt2,t1 = Φt,t1 . (14.1)

This composition property allows these maps to form a one-parameter (with respect to the initial time
t = 0) semigroup {Φt,0|t ∈ R+}1 on O+,1

d – technically referred to as a quantum dynamical semigroup
[5, 22, 37]. Equation (14.1) is usually referred to as the semigroup condition or Markov property [5]. It
is not difficult to also realize that for quantum dynamical semigroups, the extended Hilbert-Schmidt
inner product (1.15) 〈Φt,0ρS(0), A〉 = Tr

[
A Φt,0ρS(0)

]
, for A ∈ Od, is a continuous function of t [5]2.

14.1 Generators of quantum dynamical semigroups

If {Φt,0|t ∈ R+} is a quantum dynamical semigroup, then it can be shown that [5, 22, 37, 58, 97, 132]

d

dt
ρS(t) = LρS(t) (14.2)

where ρS(t) ≡ Φt,0ρS(0). The map L : O+,1
d → Od is said to be the generator of the quantum dynamical

semigroup {Φt,0|t ∈ R+}. And (14.2) is referred to as a quantum Markovian master equation3/ Lindblad

1R+ is the set of nonnegative real numbers.
2This is actually true for all induced UDMs.
3Or Markovian quantum master equation [22].
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master equation/ the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. An important result
in the theory of open quantum systems states that all generators of quantum dynamical semigroups
may be cast into a specific standard form. This important result is due to Gorini, Kossakowski,
Sudarshan [58] and Lindblad [97]. Using the fact that ρS(t) ≡ Φt,0ρS(0), it is easily realized that
(14.2) leads to the following formal master equation for the map Φt,0:

d

dt
Φt,0 = LΦt,0 (14.3)

which has the formal solution
Φt,0 = etL . (14.4)

Given the Markov property of the semigroup (14.1), we know Φt,t′Φt′,0 = Φt,0, with 0 ≤ t′ ≤ t. Using
(14.4), it is deduced that

Φt,t′ = e(t−t′)L . (14.5)

We need to also recall that the elements of the quantum dynamical semigroup {Φt,0|t ∈ R+} are also
induced UDMs, and as such, it follows from (13.31) that

Φt,0ρS(0) =

d2−1∑
µ=0

Kµ(t)ρS(0)K †
µ (t) = ρS(t) (14.6)

where the Kraus operators are independent of arbitrary ρS(0) ∈ O+,1
d . Putting together (14.4) and

(14.6), the formal relation

etLρS(0) ≡
d2−1∑
µ=0

Kµ(t)ρS(0)K †
µ (t) = ρS(t) (14.7)

then holds. This also implies that

Φt,0ρS(0) = Φt,t′Φt′,0ρS(0) = Φt,t′ρS(t′) ≡ e(t−t′)LρS(t′) (14.8)

where we have made use of (14.5). From (14.6), it follows that

e(t−t′)LρS(t′) ≡
d2−1∑
µ=0

Kµ(t− t′)ρS(t′)K †
µ (t− t′) . (14.9)

With these results we can determine the general form of the generator L of a quantum dynamical
semigroup. In other words, we can determine the general features a reduced quantum master equation
for ρS(t) must possess in order to guarantee that the associated induced UDMs form a quantum
dynamical semigroup.

14.2 Derivation of the Lindblad master equation

Consider the quantum dynamical semigroup {Φt,0|t ∈ R+} on the state space Hd of the focus system
S. Naturally, (14.6) holds. As elements of Od, we may expand the Kraus operators {Kµ(t)} in any
orthonormal basis of Od. In the literature, the basis always chosen is one in which one of the elements
is proportional to the identity operator Id, without specifying the nature of the other (d2−1) elements.
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To fill this gap, we draw the Reader’s attention to the fact that any finite dimensional state space Hd
can be mapped to the spin state space of a spin-(d− 1)/2 particle. For example, any two-dimensional
state space can be mapped to the spin state space of a spin-1/2 particle. From this observation, it is
easy to conclude that any finite dimensional Hilbert space of linear operators Od can be mapped to the
Hilbert space of linear operators acting on the spin state space of a spin-(d− 1)/2 particle. Allard and
Härd in [6] have provided a complete operator basis set for any spin quantum number. The advantage
of their proposed spin operator basis is that it always includes an operator which is proportional to
the identity operator. This makes their basis appropriate for our purpose. Using the results in [6], we
choose as basis of Od the set of operators {FSk,q,$}, where S ≡ (d− 1)/2, $ ∈ {x, y, z} and

FSk,qx =
1√

2(2S + 1)

(
TSk,−q + (−1)q TSk,q

)
(q 6= 0)

FSk,qy =
i√

2(2S + 1)

(
TSk,−q − (−1)q TSk,q

)
(q 6= 0)

FSk,qz =
1√

2S + 1
TSk,q (q = 0)

(14.10)

– where for fixed S, 0 ≤ k ≤ 2S, and −k ≤ q ≤ k (k is a non-negative integer and q is an integer). With
respect to [6], we have changed the normalization constant of the operators {FSk,q,$}. The operators
TSk,q are irreducible spherical tensors defined as [6]:

TSk,q =
√

2S + 1
√

2k + 1

S∑
m=−S

S∑
m′=−S

(−1)S−m

(
S k S

−m q m′

)
|S,m〉〈S,m′| (14.11)

where

(
S k S

−m q m′

)
denotes a Wigner-3j symbol (see Appendix A) and the |S,m〉 denotes the spin

ket of a spin-S[= (d − 1)/2] particle with spin quantum magnetic number −S ≤ m ≤ S4. Using the
symmetric and orthogonality properties of the Wigner-3j symbols outlined in Appendix A, it can be
verified that

Tr
[
TSk,qT

S†
k′,q′

]
= (2S + 1) δk,k′ δq,q′ . (14.12)

Employing this orthogonality relation, it can be easily proved that

Tr
[
FSk,q$F

S†
k′,q′$′

]
= δk,k′ δq,q′ δ$,$′ . (14.13)

Since the set {FSk,q,$} is countable, it is possible to enumerate its elements. We may choose an
enumeration ranging from 1 to d2 (that is, the cardinality of the set). This is equivalent to performing
a mapping of the sort {k, q,$} → {ν}, where ν = 1, 2, . . . , d2. Consequently, {FSk,q,$} → {FSν }, and
(14.14) becomes simply

Tr
[
FSν F

S†
ν′

]
= δν,ν′ . (14.14)

In light of these results, we may express each Kraus operator Kµ(t) in (14.6) as a linear combination
of the set {FSν }, obtaining:

Kµ(t) =

d2∑
ν=1

cµν(t) FSν , cµν(t) ≡ Tr
[
Kµ(t) FS†ν

]
. (14.15)

4It is also possible to express the operators TSk,q (14.11) in terms of the HP bosons, Chap. 6.
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Substituting (14.15) into (14.6) yields

ρS(t) =

d2∑
ν=1

d2∑
ν′=1

ζνν′(t) F
S
ν ρS(0)FS†ν′ (14.16)

where the coefficient ζνν′(t) is defined as

ζνν′(t) ≡
d2−1∑
µ=0

cµν(t)c∗µν′(t) . (14.17)

Just as we did in (13.27), one can show that the matrix ζ(t) in (14.17) is positive semi-definite.
Let FS0,0z be FSν=d2 . Then, it follows from the properties of the Wigner-3j symbols (Appendix A)

that FSd2 = 1√
d
Id. With this choice, it readily follows that Tr

[
FSν
]

= 0 for ν = 1, 2, . . . , (d2 − 1).
Furthermore, from the limit definition of derivate, we know

d

dt
ρS(t) = lim

ε→0

1

ε

[
ρS(t+ ε)− ρS(t)

]
. (14.18)

Recall according to (14.6), ρS(t+ ε) = Φt+ε,0ρS(0) and ρS(t) = Φt,0ρS(0). Using the Markov property
of the dynamical semigroup {Φt,0|t ∈ R+}, i.e. (14.1), it follows that

ρS(t+ ε) = Φt+ε,0ρS(0) = Φt+ε,tΦt,0ρS(0) = Φt+ε,tρS(t) (14.19a)

=

d2−1∑
µ=0

Kµ(ε)ρS(t)K †
µ (ε) (14.19b)

=

d2∑
ν=1

d2∑
ν′=1

ζνν′(ε) F
S
ν ρS(t)FS†ν′ (14.19c)

where in obtaining (14.19b) we have made use of (14.8), and (14.19c) follows from (14.15) and (14.17).
With (14.19c), (14.18) becomes

d

dt
ρS(t) = lim

ε→0

1

ε

[ d2∑
ν=1

d2∑
ν′=1

ζνν′(ε) F
S
ν ρS(t)FS†ν′ − ρS(t)

]
. (14.20)

From (14.20), it follows that

d

dt
ρS(t) = lim

ε→0

1

ε

[
ζd2d2(ε)FSd2ρS(t)FS†d2 +

d2−1∑
ν′=1

ζd2ν′(ε)F
S
d2ρS(t)FS†ν′ +

d2−1∑
ν=1

ζνd2(ε)FSν ρS(t)FS†d2

+

d2−1∑
ν=1

d2−1∑
ν′=1

ζνν′(ε)F
S
ν ρS(t)FS†ν′ − ρS(t)

]

= lim
ε→0

1

ε

[
ζd2d2(ε)− d

d
ρS(t) +

d2−1∑
ν′=1

ζd2ν′(ε)√
d

ρS(t)FS†ν′ +

d2−1∑
ν=1

ζνd2(ε)√
d

FSν ρS(t)

+

d2−1∑
ν=1

d2−1∑
ν′=1

ζνν′(ε)F
S
ν ρS(t)FS†ν′

]

= κd2d2ρS(t) + ρS(t)F † + FρS(t) +

d2−1∑
ν=1

d2−1∑
ν′=1

κνν′F
S
ν ρS(t)FS†ν′ .

(14.21)
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where we have set

F ≡
d2−1∑
ν=1

κν,d2FSν (14.22)

with

κνν′ ≡


limε→0

1
ε

ζd2d2 (ε)−d
d (for ν = ν′ = d2)

limε→0
1
ε

ζνd2 (ε)√
d

(for ν′ = d2 and ν 6= d2)

limε→0
1
ε ζνν′(ε) (for ν′ 6= d2 and ν 6= d2)

. (14.23)

Since the trace is conserved (due to the completeness relation satisfied by the Kraus operators, (13.33)),
it follows from the last equation in (14.21) that

κd2d2Id + F † + F +

d2−1∑
ν=1

d2−1∑
ν′=1

κνν′F
S†
ν′ F

S
ν = 0 (14.24)

from which we derive that

κd2d2Id = −F † −F −
d2−1∑
ν=1

d2−1∑
ν′=1

κνν′F
S†
ν′ F

S
ν . (14.25)

Writing the product between
(
κd2d2Id

)
and ρS(t) in the symmetric form and using (14.25) yields5

κd2d2ρS(t) =
1

2

[
κd2d2ρS(t) + ρS(t)κd2d2

]

= −1

2

{
ρS(t),F † + F

}
− 1

2

d2−1∑
ν=1

d2−1∑
ν′=1

κνν′
{
FS†ν′ F

S
ν , ρS(t)

}
.

(14.26)

Inserting (14.26) into (14.21), we get

d

dt
ρS(t) = −1

2

{
ρS(t),F † + F

}
+ρS(t)F †+FρS(t)+

d2−1∑
ν=1

d2−1∑
ν′=1

κνν′

[
FSν ρS(t)FS†ν′ −

1

2

{
FS†ν′ F

S
ν , ρS(t)

}]
.

(14.27)

But note that

−1

2

{
ρS(t),F † + F

}
+ ρS(t)F † + FρS(t) =

1

2
ρS(t)

(
F † −F

)
− 1

2

(
F † −F

)
ρS(t) . (14.28)

Since F † −F is skew-Hermitian, we may write

1

2

(
F † −F

)
= iH (14.29)

where H ∈ Od is Hermitian. Thus,

−1

2

{
ρS(t),F † + F

}
+ ρS(t)F † + FρS(t) = −i

[
H, ρS(t)

]
. (14.30)

Inserting this into (14.27) finally yields

d

dt
ρS(t) = −i

[
H, ρS(t)

]
+

d2−1∑
ν=1

d2−1∑
ν′=1

κνν′

[
FSν ρS(t)FS†ν′ −

1

2

{
FS†ν′ F

S
ν , ρS(t)

}]
. (14.31)

5For X,Y ∈ Od, {X,Y } denotes the anti-commutator. That is, {X,Y } = XY + Y X.
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In other words – according to (14.2) –, the generator L of the quantum dynamical semigroup {Φt,0|t ∈
R+} is such that

LρS(t) = −i
[
H, ρS(t)

]
+

d2−1∑
ν=1

d2−1∑
ν′=1

κνν′

[
FSν ρS(t)FS†ν′ −

1

2

{
FS†ν′ F

S
ν , ρS(t)

}]
. (14.32)

The first term of (14.32) describes a unitary evolution. The second term is called the dissipator term
and describes non-unitary transformations of the density matrix. It is important to note that the
matrix κ appearing in the dissipator term is a (d2−1) square matrix. But more importantly, it follows
from (14.23) that it is also positive semi-definite, just like ζ(t). This observation allows two more
alternative ways of expressing the result in (14.32). Indeed, in analogy to (13.28) and (13.29), we have
that

κνν′ =

d2−1∑
ν′′=1

Uνν′′γν′′ν′′U
†
ν′′ν′ (14.33)

where U is the unitary transformation which diagonalizes κ and γ is the diagonal matrix containing
the eigenvalues of κ. Introducing (14.33) into (14.32) yields

LρS(t) = −i
[
H, ρS(t)

]
+

d2−1∑
ν=1

γν

[
AνρS(t)A†ν −

1

2

{
A†νAν , ρS(t)

} ]
(14.34)

where γν ≡ γνν and

Aν ≡
d2−1∑
ν′=1

FSν′Uν′ν . (14.35)

But since the eigenvalues {γν} are all nonnegative reals due to the fact that κ is positive semi-definite,
we may also rewrite (14.34) as

LρS(t) = −i
[
H, ρS(t)

]
+

d2−1∑
ν=1

[
VνρS(t)V †ν −

1

2

{
V †ν Vν , ρS(t)

} ]
(14.36)

with Vν ≡
√
γνAν . Moreover, (14.34) and (14.36) are said to be the diagonal forms of the generator

L [22]. And the operators {Aν} (or even {Vν}) are usually referred to as Lindblad operators.



Chapter 15

Microscopic derivation of quantum

Markovian master equations

In the previous chapter, we derived the Lindblad master equation, (14.32)/(14.34)/(14.36), starting
from the Kraus operator sum representation of the quantum dynamical semigroup, (14.6). The deriva-
tion therefore rests on knowing the Kraus operators {Kµ(t)} related to the semigroup. In practical
scenarios, one do not know the Kraus operators beforehand, for they also constitute the unknowns
of the quantum dynamics. For open quantum systems, what one usually has is the total Hamilto-
nian H of the S + R system, assumed to be a closed quantum system. This then begs the question:
under what conditions/approximations/assumptions can the induced UDMs of such a system form a
quantum dynamical semigroup? Put slightly differently, we are asking what are the necessary condi-
tions/approximations/assumptions which ensure that the generator L of the reduced dynamics of the
focused system S is a generator of quantum dynamical semigroup, if we start from the unitary dynam-
ics of the S + R closed system. The derivation of such a generator from the equation of motion for
the unitary dynamics of the S+R is what goes under the name of microscopic derivation of quantum
Markovian master equations.

In the microscopic derivation we are going to undertake below, we will resort to the so-called weak-
coupling assumption. This assumption will be a central theme in subsequent discussions, especially in
the Part IV. With the total Hamiltonian H of the closed bipartite quantum system given in (13.8),
the assumption entails that

‖HS ⊗ IR + IS ⊗HR‖ � ‖HI‖ . (15.1)

That is, the interaction Hamiltonian HI is a perturbation term with respect to the sum of the free
Hamiltonians of S and R. In this work, we shall assign a stricter interpretation to (15.1): for Hermitian
X,Y ∈ Od, where X |xk〉 = Ek |xk〉 , k = 1, 2, . . . , d, Ek ∈ R, – we shall adopt the following meaning:

‖X‖ � ‖Y ‖ ⇒
∣∣∣∣ 〈xk|Y |xk′〉Ek − Ek′

∣∣∣∣� 1 ∀ Ek 6= Ek′ . (15.2)
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15.1 Unitary evolution of the closed quantum system

As mentioned above, we start with the Schrödinger equation for the closed bipartite quantum system,
(13.9):

d

dt
ρ(t) = −i [H, ρ(t)] (15.3)

where H = HS ⊗ IR + IS ⊗HR +HI , (13.8). It is clear that the initial state must still be a separable
one as we discussed in Chap. 13, i.e.

ρ(0) = ρS(0)⊗ ρR(0) (15.4)

– else, the quantum map we get after tracing out the environment R will fail to be an induced UDM
[132] – to begin with.

In light of the weak-coupling assumption, we may transit into the interaction picture. By doing so,
we transform (15.3) into

d

dt
%(t) = −i [V (t), %(t)] (15.5)

where

%(t) ≡ eit[HS⊗IR+IS⊗HR]ρ(t)e−it[HS⊗IR+IS⊗HR]

=

(
eitHS ⊗ eitHR

)
ρ(t)

(
e−itHS ⊗ e−itHR

) (15.6)

and

V (t) ≡
(
eitHS ⊗ eitHR

)
HI

(
e−itHS ⊗ e−itHR

)
. (15.7)

The formal integration of (15.5) results in

%(t) = %(0)− i
∫ t

0

dt′ [V (t′), %(t′)] . (15.8)

With this formal solution, (15.5) becomes

d

dt
%(t) = −i [V (t), %(0)]−

∫ t

0

dt′ [V (t), [V (t′), %(t′)]]

= −i [V (t), %(0)]−
∫ t

0

dτ [V (t), [V (t− τ), %(t− τ)]] .

(15.9)

Tracing out the environment R, we obtain

d

dt
%̃S(t) = −iTrR [V (t), %(0)]−

∫ t

0

dτ TrR [V (t), [V (t− τ), %(t− τ)]]

= −iTrR [V (t), %(0)]−
∫ t

0

dτ TrR
([

V †(t), V (t− τ)%(t− τ)
]

+ h.c.

) (15.10)

where %̃S(t) ∈ O+,1
d is the reduced density matrix of S in the interaction picture:

%̃S(t) = TrR[%(t)] . (15.11)

The operation TrR[•] denotes partial trace over R and is defined in (13.12).
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15.2 Defining ρ(t) and HI

To proceed with the derivation, we need to consider explicit expressions for ρ(t) and HI .

First of all, we note that given the initial condition in (15.4) – imposed by induced UDMs –, we
may express ρ(t) as

ρ(t) = ρS(t)⊗ ρR(0) + ρcorr(t) (15.12)

where the operator ρcorr(t) ∈ OS+R is traceless and satisfies the initial condition

ρcorr(0) = 0 . (15.13)

The operator ρcorr(t) accounts for the correlations between S and R which may come into effect in
the time interval t > 0. Substituting (15.12) into (15.6), we obtain

%(t) = %S(t)⊗ %oR(t) + %corr(t) (15.14)

where

%S(t) ≡ eitHSρS(t)e−itHS (15.15a)

%oR(t) ≡ eitHRρR(0)e−itHR (15.15b)

%corr(t) ≡
(
eitHS ⊗ eitHR

)
ρcorr(t)

(
e−itHS ⊗ e−itHR

)
. (15.15c)

Regarding HI , we may express it as

HI =
∑
i,j

cij Ai ⊗Bj (15.16)

where Ai ∈ OS and Bj ∈ OR and cij is a scalar1. The Hermiticity of HI naturally requires that∑
i,j

c∗ij A
†
i ⊗B

†
j =

∑
i,j

cij Ai ⊗Bj . (15.19)

Note that even if HI is not in the form as given in (15.16), we can still put it in a similar form by
simply expanding it in any operator basis of OS+R. Indeed, if {|s〉〈s′|} and {|α〉〈α′|} are operator
basis of OS and OR, respectively, then {|s〉〈s′|⊗ |α〉〈α′|} is an operator basis for OS+R. Thus, we may
expand HI ∈ OS+R in the basis {|s〉〈s′| ⊗ |α〉〈α′|}, no matter the form of HI . That is,

HI =
∑
s,s′

∑
α,α′

hsα,s′α′ |sα〉 〈s′α′| =
∑
s,s′

∑
α,α′

hsα,s′α′ |s〉〈s′| ⊗ |α〉〈α′| (15.20)

1In the literature, HI is usually assumed to be of the form

HI =
∑
i

Ai ⊗Bi (15.17)

where Ai ∈ OS , Bi ∈ OR and A†i = Ai and B
†
i = Bi. Certainly, (15.16) is more general than (15.17). But in [22], for

example, it is claimed that (15.17) is the most general form of the interaction Hamiltonian HI . That is obviously not
accurate. To give a simple example, if S and R are both two-level systems, then a possible interaction Hamiltonian HI
is

HI = c+−σ+ ⊗ σ− + c∗+−σ− ⊗ σ+ + c33σ3 ⊗ σ3 (15.18)

where c33 is real, c+− is a complex scalar and the {σµ} are related to the Pauli matrices. See also [71].
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where |sα〉 ≡ |s〉 ⊗ |α〉 and

hsα,s′α′ ≡ 〈sα|HI |s′α′〉 . (15.21)

With (15.16), it follows from (15.7) that

V (t) =
∑
i,j

cij Ai(t)⊗Bj(t) (15.22)

where

Ai(t) ≡ eitHSAie−itHS (15.23a)

Bj(t) ≡ eitHRBje−itHR . (15.23b)

Employing these new expressions for %(t) and V (t) – i.e. (15.14) and (15.22) – in (15.10), it turns out
that

d

dt
%̃S(t) = −i

∑
i

(∑
j

cij
〈
Bj(t)

〉
R

)[
Ai(t), %S(0)

]

−


∫ t

0

dτ
∑
i,i′

(∑
j,j′

c∗ijci′j′
〈
B†j (τ)Bj′(0)

〉
R

) [
A†i (t), Ai′(t− τ)%S(t− τ)

]
+ h.c.

+

∫ t

0

dτ TrR
[(∑

i,j

∑
i′,j′

c∗ijci′j′ A
†
i (t)Ai′(t− τ)⊗B†j (t)Bj′(t− τ)

)
%corr(t− τ)

]
+ h.c.

−
∫ t

0

dτTrR
[(∑

i′,j′

ci′j′ Ai′(t− τ)⊗Bj′(t− τ)

)
%corr(t− τ)

(∑
i,j

c∗ij A
†
i (t)⊗B

†
j (t)

)]
+ h.c.


(15.24)

where

〈
Bj(t)

〉
R
≡ TrR

[
Bj(t)ρR(0)

]
(15.25a)〈

B†j (τ)Bj′(0)
〉
R
≡ TrR

[
B†j (τ)Bj′(0)ρR(0)

]
. (15.25b)

The functions
〈
B†j (τ)Bj′(0)

〉
R

are the so-called environment/reservoir correlation functions. Note
that this particular form of these correlation functions as given in (15.25b) is usually obtained in the
literature [22] by assuming that the reservoir is in a stationary state with respect to its free Hamiltonian,
so that [HR, ρR(0)] = 0. In obtaining (15.25b), however, we made use of no such assumption, for the
result simply follows from the fact that

TrR
[
B†j (t)Bj′(t− τ)%oR(t− τ)

]
= TrR

[
eitHRB†je

−itHRei(t−τ)HRBj′e
−i(t−τ)HRei(t−τ)HRρR(0)e−i(t−τ)HR

]
= TrR

[
eiτHRB†je

−iτHRBj′ρR(0)

]
= TrR

[
B†j (τ)Bj′ρR(0)

]
=
〈
B†j (τ)Bj′(0)

〉
.

(15.26)
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15.3 The Born approximation and the stability condition of en-

vironment

So far, the only approximation or assumption we have made is the weak-coupling assumption. Thus,
in this limit, (15.24) is exact. We now introduce the first of a series of approximations which will
ultimately turn the generator of the dynamics into a generator of a quantum dynamical semigroup.
This is the Born approximation. With this approximation, we are assuming the correlations between S
and R which may come into play in the course of the bipartite system’s time evolution is negligible. In
other words, ‖ρS(t)⊗ ρR(0)‖ � ‖ρcorr(t)‖ ∼ 0 for t ≥ 02. With this approximation, (15.24) becomes

d

dt
%S(t) = −i

∑
i

(∑
j

cij
〈
Bj(t)

〉
R

)[
Ai(t), %S(0)

]

−


∫ t

0

dτ
∑
i,i′

(∑
j,j′

c∗ijci′j′
〈
B†j (τ)Bj′(0)

〉
R

) [
A†i (t), Ai′(t− τ)%S(t− τ)

]
+ h.c.

 .

(15.27)

(Note that with the Born approximation, %̃S(t)→ %S(t).)
The second approximation we are going to introduce is what is sometimes referred to as the stability

condition of environment. Here, one assumes the first term in (15.10) (or (15.27)) is identically zero.
That is,

TrR [V (t), %(0)] =
∑
i

(∑
j

cij
〈
Bj(t)

〉
R

)[
Ai(t), %S(0)

]
= 0 . (15.28)

In the literature [22], the more stringent assumption that
〈
Bj(t)

〉
= 0 ,∀Bj(t) is often adopted. Also

in the literature [22, 100], it is argued that even if (15.28) is not satisfied, one can redefine HS and HI

as follows

HS → HS +
∑
i,j

cij
〈
Bj(t)

〉
R
Ai (15.29a)

HI →
∑
i,j

cij Ai ⊗
(
Bj −

〈
Bj(t)

〉
R

IR
)

(15.29b)

so that the first term in (15.27) still remains identically zero. Despite the fact that this strategy allows
one to get rid of the first term in (15.27), great caution must be exercised when applying it because
it could have unanticipated dramatic effects on the results3. This strategy may thus be said to be
airbrushed in the literature. We are, therefore, simply going to assume (15.28) holds. In light of this
assumption, (15.27) further simplifies to

d

dt
%S(t) = −


∫ t

0

dτ
∑
i,i′

(∑
j,j′

c∗ijci′j′
〈
B†j (τ)Bj′(0)

〉
R

) [
A†i (t), Ai′(t− τ)%S(t− τ)

]
+ h.c.

 .

(15.30)

15.4 The Markov approximations

The presence of ρS(t − τ) in (15.30) implies that the master equation is not local in time [103], and
that ρS evolves with some memory effects. To make the master equation local in time – so that if

2Here, with ‖X‖, we intend any linear operator norm, but not necessarily the stricter specification given in (15.2).
3This is the subject of a paper the author is currently working on.
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we take a snapshot of ρS at any chosen instant t ≥ 0, its time evolution will depend on the state at
that very instant, i.e. ρS(t), and not on states of previous instances –, we introduce the first Markov
approximation, where we substitute %S(t− τ) in (15.30) with %S(t):

d

dt
%S(t) = −


∫ t

0

dτ
∑
i,i′

(∑
j,j′

c∗ijci′j′
〈
B†j (τ)Bj′(0)

〉
R

) [
A†i (t), Ai′(t− τ)%S(t)

]
+ h.c.

 . (15.31)

The master equation hereby obtained is essentially the Redfield equation [129]. This approximation
can be justified in real applications whereby the timescale τB over which the reservoir correlation
functions decay is very short compared to the timescale τS of S’ evolution, [22], and the timescale τB
is not accessible to experimental observations [15]. If τB is very short compared to the timescale of
observation of S, then we may go further by extending the upper limit of the integration in (15.32) to
infinity (second Markov approximation), obtaining:

d

dt
%S(t) = −


∫ ∞

0

dτ
∑
i,i′

(∑
j,j′

c∗ijci′j′
〈
B†j (τ)Bj′(0)

〉
R

) [
A†i (t), Ai′(t− τ)%S(t)

]
+ h.c.

 . (15.32)

The Born approximation and Markov approximations are sometimes collectively referred to as the
Born-Markov approximation [22].

15.5 The secular approximation

Let {|εn〉} (n = 1, 2, . . . , d) be the eigenvectors of HS . Naturally,

HS |εn〉 = εn |εn〉 (15.33)

where the real scalar εn is the eigenvalue corresponding to the eigenvector |εn〉. With the set {|εn〉},
we can decompose the operators {Ai} as follows:

Ai =
∑
ωo

Ai(ωo) (15.34)

where
Ai(ωo) ≡

∑
n,n′

|εn〉〈εn|Ai |εn′〉〈εn′ | δωo,εn′−εn . (15.35)

The frequencies {ωo} are thus seen to range over all possible pairwise differences between the eigen-
values of HS . Note that because the {Ai} are not assumed to be Hermitian (as it is usually the case
in the literature [22]) , we have from (15.35), that[

Ai(ωo)
]†

=
∑
n,n′

|εn〉〈εn|A†i |εn′〉〈εn′ | δ−ωo,εn′−εn = A†i (−ωo) . (15.36)

Had Ai been Hermitian, then
[
Ai(ωo)

]†
= Ai(−ωo), as given in the literature [22]. The distinction

between
[
Ai(ωo)

]† and A†i (ωo) is therefore paramount, and should be kept in mind. In the following,
we shall simply write

[
Ai(ωo)

]† as Ai(ωo)†.
Using (15.34) and (15.35), it readily follows from (15.23a) that

Ai(t) =
∑
ωo

e−itωoAi(ωo) (15.37)
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– from which follows that
A†i (t) =

∑
ωo

eitωoAi(ωo)
† . (15.38)

Equations (15.37) and (15.38) allow us to rewrite (15.32) as

d

dt
%S(t) = −


∫ ∞

0

dτ
∑
i,i′

∑
ωo,ω′o

(∑
j,j′

c∗ijci′j′
〈
B†j (τ)Bj′(0)

〉
R

)
eit(ωo−ω

′
o)eiτω

′
o
[
Ai(ωo)

†, Ai′(ω
′
o)%S(t)

]
+ h.c.


(15.39)

or, more succinctly,

d

dt
%S(t) = −

∑
i,i′

∑
ωo,ω′o

eit(ωo−ω
′
o)Γii′(ω

′
o)
[
Ai(ωo)

†, Ai′(ω
′
o)%S(t)

]
+ h.c.

 . (15.40)

where
Γii′(ωo) ≡

∑
j,j′

c∗ijci′j′

∫ ∞
0

dτ eiτωo
〈
B†j (τ)Bj′(0)

〉
R
. (15.41)

It is clear from (15.40) that the timescale τS of S’ evolution in the interaction picture is in the order
of τ−1

S ∼ min{|ωo − ω′o| | ωo 6= ω′o}. If the timescale of S’ relaxation τrel (which, for nondimensional
{Ai}, depends on the matrix Γii′(ω

′
o)) is very long compared to τS , then the factors eit(ωo−ω

′
o) will be

rapidly oscillating for ωo − ω′o 6= 0. Superimposing these rapid oscillations with the relaxation of S,
we see that we will barely resolve the oscillations as they are fast compared to the relaxation. This
means that we can simply set ωo = ω′o in (15.40), and the latter becomes

d

dt
%S(t) = −

∑
i,i′

∑
ωo

Γii′(ωo)
[
Ai(ωo)

†, Ai′(ωo)%S(t)
]

+ h.c.


=
∑
i,i′

∑
ωo

[
Γii′(ωo)Ai′(ωo)%S(t)Ai(ωo)

† − Γii′(ωo)Ai(ωo)
†Ai′(ωo)%S(t)

+ Γ∗i′i(ωo)Ai′(ωo)%S(t)Ai(ωo)
† − Γ∗i′i(ωo)%S(t)Ai(ωo)

†Ai′(ωo)

]
.

(15.42)

Note that we may decompose Γii′(ωo) as follows:

Γii′(ωo) =
1

2

[
Γii′(ωo) + Γ∗i′i(ωo)

]
+ i

1

2i

[
Γii′(ωo)− Γ∗i′i(ωo)

]
=

1

2
γii′(ωo) + iSii′(ωo)

(15.43)

where

γii′(ωo) ≡ Γii′(ωo) + Γ∗i′i(ωo) (15.44a)

Sii′(ωo) ≡
1

2i

[
Γii′(ωo)− Γ∗i′i(ωo)

]
. (15.44b)

With this decomposition of Γii′(ωo), (15.42) becomes

d

dt
%S(t) = −i

[
HLS , %S(t)

]
+
∑
ωo

∑
i,i′

γii′(ωo)

[
Ai′(ωo)%S(t)Ai(ωo)

† − 1

2

{
Ai(ωo)

†Ai′(ωo), %S(t)
} ]
(15.45)
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where the Hermitian operator HLS , called the Lamb shift Hamiltonian [22], has the expression

HLS ≡
∑
ωo

∑
i,i′

Sii′(ωo)Ai(ωo)
†Ai′(ωo) . (15.46)

And one can easily verify that the Lamb shift Hamiltonian HLS commutes with HS :[
HLS , HS

]
= 0 . (15.47)

We also note that the master equation in (15.45) is quite reminiscent of (14.31), which we saw gives
the general structure of a quantum Markovian master equation. For the quantum map related to the
master equation in (15.45) to be CPT, the matrix

[
γii′(ωo)

]
needs to be positive semi-definite. But

from its definition in (15.44a), there is no indication that
[
γii′(ωo)

]
is positive semi-definite. Let us

take a closer look at this matrix.

15.6 Approximating ρR(0) as a HR stationary state

From (15.44a) and (15.44a), it follows that

γii′(ωo) = Γii′(ωo) + Γ∗i′i(ωo)

=
∑
j,j′

c∗ijci′j′

∫ ∞
0

dτ eiτωo
〈
B†j (τ)Bj′(0)

〉
R

+

∑
j,j′

c∗i′jcij′

∫ ∞
0

dτ eiτωo
〈
B†j (τ)Bj′(0)

〉
R

∗

=
∑
j,j′

c∗ijci′j′

(∫ ∞
0

dτ eiτωo
〈
B†j (τ)Bj′(0)

〉
R

+

∫ 0

−∞
dτ eiτωo

〈
B†j′(−τ)Bj(0)

〉∗
R

)
.

(15.48)

We observe that the matrix
[∑

j,j′ c
∗
ijci′j′

]
is positive semi-definite, so for

[
γii′(ωo)

]
to be positive

semi-definite, it must be required that(∫ ∞
0

dτ eiτωo
〈
B†j (τ)Bj′(0)

〉
R

+

∫ 0

−∞
dτ eiτωo

〈
B†j′(−τ)Bj(0)

〉∗
R

)
≥ 0 . (15.49)

It is worth noting at this point that〈
B†j′(−τ)Bj(0)

〉∗
R

= TrR
[
B†j (τ)Bj′(0)%oR(τ)

]
(15.50)

where, from (15.15b), we know %oR(t) = eitHRρR(0)e−itHR – which is the initial density matrix of the
reservoir in the interaction picture. One easily realizes that if ρR(0) is a stationary state with respect
to HR, so that

[
HR, ρR(0)

]
= 0, then %oR(t) = ρR(0) and (15.50) becomes〈

B†j′(−τ)Bj(0)
〉∗
R

= TrR
[
B†j (τ)Bj′(0)ρR(0)

]
=
〈
B†j′(τ)Bj(0)

〉
R
. (15.51)

With (15.51), (15.48) simply becomes

γii′(ωo) =
∑
j,j′

c∗ijci′j′

∫ ∞
−∞

dτ eiτωo
〈
B†j (τ)Bj′(0)

〉
R
≥ 0 . (15.52)

The matrix
[
γii′(ωo)

]
is now positive semi-definite because according to Bochner’s theorem [130], the

Fourier transform ∫ ∞
−∞

dτ eiτωo
〈
B†j (τ)Bj′(0)

〉
R
≥ 0 (15.53)
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given that the reservoir correlation functions
〈
B†j (τ)Bj′(0)

〉
R
are positive definite. We therefore realize

that the assumption that ρR(0) is a stationary state with respect to HR is sufficient to make the matrix[
γii′(ωo)

]
positive semi-definite, turning the master equation in (15.45) into a quantum Markovian

master equation.

15.7 Summary

Recapitulating, we have seen that starting from the master equation in (15.3) for the unitary dynamics
of the bipartite quantum system S + R, we have been able to derive a reduced dynamics for the
subsystem S which is a UDM after applying a series of approximations and assumptions. We found
that the equation of motion for S’ density matrix is

d

dt
%S(t) = L%S(t) (15.54)

where

L%S(t) = −i
[
HLS , %S(t)

]
+
∑
ωo

∑
i,i′

γii′(ωo)

[
Ai′(ωo)%S(t)Ai(ωo)

†− 1

2

{
Ai(ωo)

†Ai′(ωo), %S(t)
} ]

(15.55)

and γii′(ωo) has the expression

γii′(ωo) =
∑
j,j′

c∗ijci′j′

∫ ∞
−∞

dτ eiτωo
〈
B†j (τ)Bj′(0)

〉
R
. (15.56)

Since the matrix
[
γii′(ωo)

]
is positive semi-definite, L must be the generator of a quantum dynamical

semigroup. Another way to express the generator L is:

L%S(t) = −i
[
HLS , %S(t)

]
+D

[
%S(t)

]
(15.57)

where, D
[
%S(t)

]
, the dissipator term has the expression:

D
[
%S(t)

]
≡
∑
ωo

∑
i,i′

γii′(ωo)

[
Ai′(ωo)%S(t)Ai(ωo)

† − 1

2

{
Ai(ωo)

†Ai′(ωo), %S(t)
} ]

. (15.58)

Naturally, one can put the dissipator term D
[
%S(t)

]
into its diagonal form, as we saw in (14.34) and

(14.36).
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Part IV

Semiclassical quantum Markovian

master equations
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In this Part, we try to devise a methodology which allows one to use the ideas and mathematical
tools discussed in Part III even when the environment is not fully quantized. We use continuous wave
(CW) magnetic resonance as proof of concept. We also introduce an approximation scheme we have
termed affine commutation perturbation (ACP) and show that the ACP scheme entails non-trivial
results even at the zeroth-order approximation. And indeed, we shall focus mainly on the zeroth-order
approximation of the ACP scheme.

We shall undertake a microscopic derivation of quantum Markovian master equation for CW mag-
netic resonance in the weak-coupling limit when the environment (the external magnetic fields) is
treated classically. In this derivation, the microscopic derivation discussed in Chapter 15 will prove
very helpful. One major departure from what we discussed in Chapter 15 is that we shall not enforce
the environment stability condition, (15.28). This means we shall keep the term linear in the system-
environment interaction in the master equation. Concentrating on the zeroth-order of the ACP scheme,
we show that this choice leads to a non-UDM (non-universal dynamical map, Chap. 13). However, by
enforcing the environment stability condition, the map becomes UDM. And it is interesting to observe
that while most of the non-UDMs hitherto studied in the literature (with a quantized environment)
are a result of initial system-environment correlations [21, 26, 72, 104, 106, 134, 145], in our case, such
a map stems from the presence of the term linear in the system-environment interaction in the master
equation. As we shall show, this term is also crucial for the correct theoretical description of CW
magnetic resonance experiments.

The contents in this Part are primarily the original contributions of the author and are based on
his preprints:

[62] J.A. Gyamfi, An Introduction to the Holstein-Primakoff Transformation, with Ap-
plications in Magnetic Resonance, arXiv:1907.07122, 2019.

[64] J.A. Gyamfi, Semiclassical Quantum Markovian Master Equations. Case Study:
Continuous Wave Magnetic Resonance of Multispin Systems., arXiv:2004.10872, 2020.

Unlike [64], we make full use of the distinction between UDMs and non-UDMs here.

https://arxiv.org/abs/1907.07122
https://arxiv.org/abs/2004.10872
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Chapter 16

Why semiclassical quantum

Markovian master equations

In Part III of this work, we discussed bipartite systems whereby both the focused system and its envi-
ronment are treated as quantum entities. This approach to open quantum system theory outlined in
Part III is one of many alternative approaches one can find in the literature [162], and it is sometimes
referred to as the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) approach. The requirement that
both the focused system S and its environment R be quantized, naturally impedes its application in
those areas where, for all practical purposes, it suffices to treat the environment (or part of it) at
the classical level. Cogent examples here include the description of processes like vibronic dynamics,
molecular vibrations and electronically nonadiabatic molecular dynamics – in condensed-phase sys-
tems [83, 135, 166]. This has motivated the development of diverse open quantum system models and
techniques where the focused system is treated quantum mechanically while the whole environment (or
part of it) is described classically. In some of these approaches, the quantum bath correlation functions
in the equation of motion for the quantum focused subsystem are substituted with appropriately sym-
metrized classical correlation functions [111]. One other approach which has gained traction goes as
follows: one begins with the Liouville-von Neumann equation for the fully quantized S+R system, and
then performs a partial Wigner transformation over the relevant external degrees of freedom of the en-
vironment [83]. This has the advantage of imparting a classical character to the environment’s degrees
of freedom while maintaining their operator character. One may go further and define an appropriate
projection operator for the quantum system’s degrees of freedom and then derive a Nakajima-Zwanzig
equation from the equation of motion resulting from the partial Wigner transformation described ear-
lier [156]; this yields an equation of motion for the reduced density matrix ρS(t) of the focused system
S. What seems to be missing in the literature, however, is a similar development within the GKSL
approach.

We show here in Part IV that it is possible to derive a quantum master equation for the quantum
subsystem S along the lines of the GKSL approach, even when part of the environment (if not the
whole) is not explicitly treated quantum mechanically. We illustrate this by developing a quantum
theory for continuous wave (CW) magnetic resonance within the GKSL approach. We shall not take
into account any of the molecular non-spin degrees of freedom – for example, molecular tumbling or

107
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rotations [71, 173], to name a few.
Magnetic resonance experiments, both ESR (electron spin resonance) and NMR (nuclear magnetic

resonance), provide a very simple and reliable test ground to study and understand open quantum
systems and its quantum technological applications [12, 16, 34, 55, 76–78, 92, 123, 141, 150, 161]. This
is one of the reasons why it is only fitting that we bridge the gap between the theory of quantum
magnetic resonance as formulated by pioneers like Bloch, Wangsness, Purcell, Pound, Bloembergen,
Anderson, Kubo etc during the early decades of research in magnetic resonance [2, 8, 17, 32, 33, 35,
46, 61, 89, 116, 127, 142, 159, 160, 163] and the theory of open quantum systems (within the GKSL
framework) [22, 29, 57, 58, 87, 97, 114, 132, 165]. We focus here on CW magnetic resonance – instead
of the pulsed technique – for historical reasons. In addition, there has been a renewed interest in
the CW technique because of advancements made in electronic engineering, which could improve the
sensitivity and reduce the cost of its application in research laboratories [113].



Chapter 17

Wavefunction vs density matrix

formalism in magnetic resonance

17.1 Wavefunction formalism

Like in many other areas, the history of magnetic resonance shows that the theoretical investigation
of the dynamics of the focused quantum system has been developed along the lines of two main
formalisms. These are: the wavefunction and the density matrix formalism [18].

In the wavefunction formalism, the primary object of interest is the transition probability per unit
time (or transition rate) between various pairs of spin states. These transition rates are then employed
to derive an expression for the spectrum [147]. The derivation of expressions for the transition rate
are based on a first-order time-dependent perturbation approximation of the probability amplitudes
[147]. This is normally accompanied by the assumption that the system is initially in a given specific
normalized pure state. The time-dependent perturbation theory used is that due to Dirac [41], where
one obtains the probability amplitudes by solving a system of differential equations.

To appreciate better the density matrix approach to spin dynamics to be discussed in the latter
part of this chapter and the next chapters, we briefly discuss here the limitations of the wavefunction
formalism, especially in relation to magnetic resonance. We also point out the assumptions on which the
often used transition rate equations [147] derived from the formalism and used in magnetic resonance
rest. (In this chapter, the constant ~ is not set equal to 1.)

Consider a spin system with its spin Hilbert space HS , and whose spin Hamiltonian H (t) is given
by the sum

H (t) = Ho + H ′(t) . (17.1)

Ho in (17.1) is the time-independent component of H (t). We denote the eigenvectors of Ho as {|k〉},
where

Ho |k〉 = Ek |k〉 , and 〈k| k′〉 = δk,k′ . (17.2)

H ′(t) in (17.1), on the other hand, is the time-dependent part of H (t).

According to the time-dependent Schrödinger equation (2.1), the equation of motion for a generic
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normalized spin ket |ψ(t)〉 ∈ HS satisfies the first-order linear differential equation

i~
d

dt
|ψ(t)〉 = H (t) |ψ(t)〉 . (17.3)

Let us assume that at the initial time to, the corresponding normalized spin ket is |ψ(to)〉 (which is
supposed to be known).

If H ′(t) can be considered as a perturbation term with respect to Ho (in the sense of (15.2)),
then, we may solve (17.3) for |ψ(t)〉 through a perturbation expansion. To ensure convergence of this
expansion, we may transit to the interaction picture by introducing the following transformation:

|ψ(t)〉 = Uo(t, to) |φ(t)〉 (17.4)

with

Uo(t, to) := e−i(t−to)Ho/~ (17.5)

where |φ(t)〉 is the spin ket in the interaction picture. Then, in light of this transformation, it follows
from (17.1) and (17.3) that

i~
d

dt
|φ(t)〉 = Vto(t) |φ(t)〉 Vto(t) := U †o (t, to)H

′(t)Uo(t, to) (17.6)

from which we derive that

|φ(t)〉 = UI(t, to) |φ(to)〉 (17.7)

where,

UI(t, to) := I +
1

i~

∫ t

to

dt′ Vto(t
′) +

(
1

i~

)2 ∫ t

to

dt′
∫ t′

to

dt′′ Vto(t
′)Vto(t

′′)

+

(
1

i~

)3 ∫ t

to

dt′
∫ t′

to

dt′′
∫ t′′

to

dt′′′ Vto(t
′)Vto(t

′′)Vto(t
′′′) + . . . (17.8)

where I is the identity operator on HS . Since the normalized eigenkets {|k〉} constitute an orthonormal
basis for the Hilbert space HS , we may expand |φ(t)〉 in this basis,

|φ(t)〉 =
∑
k

|k〉 〈k| φ(t)〉 =
∑
k

ak(t) |k〉 (17.9)

where,

ak(t) := 〈k| φ(t)〉 . (17.10)

It then definitely follows from (17.7) and (17.10) that

ak(t) = 〈k|UI(t, to) |φ(to)〉 . (17.11)

Naturally,

|φ(to)〉 = |ψ(to)〉 =
∑
k

ak(to) |k〉 . (17.12)

Since the initial ket |ψ(to)〉 is normalized, it follows that∑
k

|ak(t)|2 = 1 (t ≥ to) . (17.13)
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Given that the initial ket |ψ(to)〉 is supposed to be known, the coefficients {ak(to)} are also known. If
we make use of (17.12), (17.11) becomes

ak(t) =
∑
k′

〈k|UI(t, to) |k′〉 ak′(to) . (17.14)

From (17.11) and (17.14), we see that we have succeeded in expressing the coefficients {ak(t)} in
function of only known quantities. More importantly, these expressions for ak are also exact. According
to (17.11), we may interpret ak(t) as the transition amplitude from the initial state |φ(to)〉 to the
eigenstate |k〉, by means of the evolution operator UI(t, to). In particular, we note from (17.14) that
ak(t) is a weighted sum of all the initial probability amplitudes {ak′(to)}; the weighting factor here is
the transition amplitude from the generic eigenstate |k′〉 to |k〉 by means of UI(t, to).

Going back to the Schrödinger picture, it follows from (17.4) and (17.9) that

|ψ(t)〉 =
∑
k

ak(t)e−i(t−to)Ek/~ |k〉 . (17.15)

17.1.1 The first-order approximation and the zero-temperature limit

The derivation carried out above is exact. In general, however, it is hardly possible to exactly evaluate
(17.14) for the coefficient ak(t) without any approximations. In practical computations, the approx-
imations are introduced at the level of the evolution operator UI(t, to), (17.8). We consider in this
subsection and the next expressions for the probabilities |ak(t)|2, since these are most often of practical
interest.

If we choose to approximate ak(t)a∗l (t) up to first-order in H ′(t), then from (17.14) and (17.8) we
have

ak(t)a∗l (t) = ak(to)a
∗
l (to)−

1

i~
∑
k′

∫ t

to

dt1 e
−i(t1−to)ωl,k′ 〈k′|H ′(t1) |l〉 ak(to)a

∗
k′(to)

+
1

i~
∑
k′

∫ t

to

dt1 e
−i(t1−to)ωk′,k 〈k|H ′(t1) |k′〉 ak′(to)a∗l (to) (17.16)

(ωm,m′ ≡ (Em − Em′)/~), from which we derive that

|ak(t)|2 = |ak(to)|2 +
2

~
=

[∑
k′

∫ t

to

dt1 e
−i(t1−to)ωk′,k 〈k|H ′(t1) |k′〉 ak′(to)a∗k(to)

]
. (17.17)

Note that these first-order approximation expressions are generally valid for any initial ket |ψ(to)〉.
However, it is common practice in the literature to assume |ψ(to)〉 is precisely one of the eigenkets
{|k〉} of Ho, say |ko〉 [11, 33, 116]. Accordingly, the coefficients {ak(to)} are such that

ak(to) = δk,ko , ∀ k. (17.18)

Without loss of generality, we may refer to this assumption as the "zero-temperature limit" [56].
The zero-temperature limit assumption, (17.18), is obviously a great simplification even within the
wavefunction formalism. In standard magnetic resonance experiments conducted at T > 0K, the
initial state of the probed spin system is hardly a pure state [18], let alone one whose expansion
coefficients in {|ko〉} satisfy (17.18).
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At any rate, in the zero-temperature limit, (17.17) simplifies to:

|ak(t)|2 = δk,ko +
2

~
=
[∫ t

to

dt1 e
−i(t1−to)ωko,k 〈k|H ′(t1) |ko〉 δko,k

]
= δk,ko . (17.19)

Thus, nothing interesting happens at the first-order approximation in the zero-temperature limit.
Nevertheless, the normalization condition, (17.13), is satisfied.

17.1.2 The second-order approximation and the zero-temperature limit

From (17.14) and (17.8), we see that the expression for |ak(t)|2 approximated to second-order in H ′(t)

yields

|ak(t)|2 = |ak(to)|2 +
2

~
=

[∑
k′

∫ t

to

dt1 〈k|Vto(t1) |k′〉 ak′(to)a∗k(to)

]

− 2

(
1

~

)2

<

[∑
k′

∫ t

to

dt1

∫ t1

to

dt2 〈k|Vto(t1)Vto(t2) |k′〉 ak′(to)a∗k(to)

]

+

(
1

~

)2
∣∣∣∣∣∑
k′

∫ t

to

dt1 〈k|Vto(t1) |k′〉 ak′(to)

∣∣∣∣∣
2

. (17.20)

In the zero-temperature limit, (17.20) simplifies to:

|ak(t)|2 = δko,k − 2

(
1

~

)2

<
[∫ t

to

dt1

∫ t1

to

dt2 〈ko|Vto(t1)Vto(t2) |ko〉
]
δk,ko

+

(
1

~

)2 ∣∣∣∣∫ t

to

dt1 e
−i(t1−to)ωko,k 〈k|H ′(t1) |ko〉

∣∣∣∣2 (17.21)

– from which follows that
∑
k |ak(t)|2 = 1. Thus, the normalization condition stated in (17.13) is also

satisfied at this order of approximation. This is actually the case for all orders of approximation.
It is easily derived from (17.21) that for k 6= ko,

|ak(t)|2 =

(
1

~

)2 ∣∣∣∣∫ t

to

dt1 e
−i(t1−to)ωko,k 〈k|H ′(t1) |ko〉

∣∣∣∣2 . (17.22)

This is the ubiquitous transition probability equation in the wavefunction formalism [11], which is
applied in many problems – including magnetic resonance [33, 116]. In fact, theoretical derivations
in quantum magnetic resonance studies based on the wavefunction formalism are usually carried out:
1) with the product ak(t)a∗l (t) approximated to second-order in H ′(t), and 2) assuming the zero-
temperature limit condition. Together, these two have been extensively applied both in the theory of
electron spin resonance (ESR) [116] and nuclear magnetic resonance (NMR) [33]. As limiting as the
zero-temperature assumption is, its employment has played an invaluable role in our understanding
of the magnetic resonance phenomenon in the framework of quantum mechanics. Certainly, the re-
duction in mathematical complexity one achieves with it has been a decisive factor in its widespread
applications. For example, the starting point of Solomon’s derivation of expressions for the transition
rates between the states in a system of two spins in his 1955 seminal paper [147] – which has had an
enormous impact on the field – is actually the expression in (17.22). Consequently, the expressions
for the relaxation times T1 and T2 in [147] should be used bearing in mind the limitations of the
zero-temperature limit and the wavefunction formalism [2, 18].
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17.2 Density matrix formalism

The wavefunction formalism has long been known to be inadequate for the full quantum mechanical
description of spin dynamics because it fails to account for the evolution of the coherences (which,
we know, play a crucial role in the quantum mechanical description of the magnetic resonance phe-
nomenon) [2, 129]. In the study of magnetic resonance, the density matrix formalism [18, 117] has been
widely used to treat relaxation processes in the presence of a random perturbation. The Wangsness-
Bloch-Redfield [129, 160] theory is the archetypal example. In all such theories, the goal is to find
a reasonably approximated expression for the density matrix ρS(t) (or d

dtρS) of the focused spin sys-
tem, neglecting, however, key questions regarding the nature of ρS(t)’s evolution in time. The GKSL
approach, on the other hand, pays particular attention to these aspects and tries to provide general
requisites on the properties of the map under which ρS(t) evolves. The completely positive trace-
preserving (CPT) [5, 22, 28, 57, 58, 96, 97, 114, 132, 165] property is arguably the most celebrated
of these. Even more, it has been the common view that the CPT property is a fundamental requi-
site of any reputable quantum map [4]. This view, however, has been challenged by some authors
[119, 146]. According to the opposing view, the fundamental requisite to be required of a quantum
map is that it preserves Hermiticity, trace and positivity [146, 149]. The unclenching of the view of the
CPT requirement as an inescapable one has been met with an increase in research on non-CP maps
[26, 72, 106, 145, 168]. After all, studies [21, 104, 134] have shown a close connection between non-CP
maps and non-Markovian [23, 30, 103, 122, 128] dynamics – the latter being a hot topic.

On a close examination, one realizes that the debate on how fundamental the CPT requirement
is could be a problem of definition. The reason is that, viewed along the lines of UDMs and non-
UDMs, it is clear – as explained in Sec. 12.2 and the beginning of Chap. 13 – that the CPT property
and the very concept of quantum dynamical maps are two inextricable notions, for a map cannot
be a quantum dynamical map, in the first place, without being CPT. And that the CPT property
is inarguably fundamental. It is an accident of history that what we have termed UDMs here are
what are commonly referred to in the literature as CPT maps. The consequence of this misnomer is
that non-UDMs (or what some may call positive but non-CP maps [26, 168]) became something of an
anathema – even though they are CPT with respect to their domain and admit Kraus operator sum
representations (Chap. 13). We shall give a concrete practical example of a Kraus operator sum for a
non-UDM in Sec. 20.5.

All in all, applying the GKSL approach to some problems of considerable interest like multispin
magnetic resonance is not an easy sell because the environment (i.e. the applied magnetic fields, in
the case of magnetic resonance) needs to be fully quantized. In the theory of magnetic resonance, as
formulated by the above-mentioned pioneers and others, the so-called Maxwell-Bloch scheme [75] is
used. In this scheme, the spin system is quantized while the external magnetic fields are consigned to
a classical description (Maxwell equations). Naturally, we could quantize the applied electromagnetic
fields and carry out our derivations without any significant conceptual hurdle. Using quantized applied
electromagnetic fields in magnetic resonance theory has been done, for example, by Jeener and Henin
[75], and also by Engelke [45]. The results one obtains are in good agreement with those obtained under
the Maxwell-Bloch scheme [45, 75]. A fully quantized electromagnetic field, though, may be necessary
under more sophisticated experiments, but for what concerns standard NMR and ESR experiments,
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it suffices to treat the external fields classically. And this will be our strategy in the next chapters.



Chapter 18

Proposal on how to handle classical

environments

In Chap. 15, we saw how the generator for a quantum dynamical semigroup can be obtained from the
unitary dynamics of a closed bipartite quantum system, following a number of approximations and
assumptions. The steps involved – under the assumptions of weak-coupling limit – may be summarized
as follows:

1. start with a Liouville-von Neumann equation for ρR+S(t) (the density matrix for the closed S+R

bipartite system) – Sec. 15.1, (15.3);

2. transition to the interaction picture – Sec. 15.1, (15.5);

3. trace out the environment degrees of freedom to obtain an equation of motion for S’ density
matrix in the interaction picture – Sec. 15.1, (15.10);

4. introduce the Born approximation and the environment stability condition – Sec. 15.3;

5. introduce the Markov approximations – Sec. 15.4;

6. introduce the secular approximation – Sec. 15.5; and

7. assume the initial density matrix ρR(0) of the environment is stationary with respect to its free
Hamiltonian HS – Sec. 15.6.

When R is considered classical, a GKSL-like equation may be obtained in the weak-coupling limit
as follows:

1. start with a Liouville-von Neumann equation for the reduced density matrix ρS(t), where S’
Hamiltonian is an effective one. Here, the (time-dependent) factors and parameters in the effec-
tive Hamiltonian will originate from the environment’s degrees of freedom and would have been
determined by some other means;

2. transform the equation of motion into the interaction picture;

3. introduce the Markov approximations; and then

115



116 Chapter 18. Proposal on how to handle classical environments

4. perform the secular approximation.

It is implicitly assumed in step (1) (in the case of classical R) that the initial state of S+R is ‘separable’
(i.e. no initial correlations between the quantum system and the classical environment). Somewhere
between steps (2) and (4), one has to define an appropriate set of Lindblad operators; this may prove
difficult to accomplish for some problems or may require some very ingenious choices, but, nonetheless,
there is, somehow – looking at Chap. 15, for example – a general understanding on how to proceed
[22]. This is more so when the resonance condition consists of a set of independent conditions which
must occur concurrently. CW magnetic resonance is a good example in this regard.



Chapter 19

Semiclassical Quantum Markovian

Master Equation Approach to CW

Magnetic Resonance

19.1 Preamble

In standard CW magnetic resonance experiments, the sample is subjected to an oscillating field B1(t)

of constant frequency ω while, simultaneously, a steady magnetic field Bo (perpendicular to B1(t),
with ‖B1(t)‖ � ‖Bo‖) is sweepingly applied so as to tune the focus system to resonance.1 Keeping
strict adherence to this faithful description will land us into what we may call generalized Landau-
Zerner [94, 99, 172] transition problems, obscuring the central effort of this part – which is, to derive a
GKSL-like equation for CW magnetic resonance experiments whereby we treat the applied fields (Bo

and B1) as classical entities. For the sake of argument, we shall not explicitly take into account the
sweeping of Bo. Rather, we take the view that for any instance of Bo, the spin system settles very
fast to an equilibrium state (solely dependent on Bo) upon its interaction with the latter field, before
it begins to adjust to the presence of B1(t). Put in other terms, we may view the experiment as a two
step process, whereby we first apply Bo and then B1(t). If any justification at all is to be allowed for
this simplified view of the CW experiment under discussion, we may invoke the fact that: 1) except
at very low temperatures, the scale of resonance energy in magnetic resonance experiments is quite
small compared to thermal energy (high-temperature approximation) [53], and 2) ‖B1(t)‖ � ‖Bo‖.
Naturally, the function of the steady field Bo is to create the Zeeman effect, while B1(t) stimulates
transitions between the energy levels resulting from the Zeeman effect.

Bearing in mind the above reinterpretation of the experiment, consider an ensemble of noninter-
acting molecules in some condensed phase environment. Each member of the ensemble is a multispin

1Another alternative is to hold the frequency Bo constant and vary ω, but this scheme is not the experimentally
preferred way of doing business.
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system A with the isotropic Hamiltonian Hspin−spin, where:

Hspin−spin :=
∑
i>j

TijSi · Sj (19.1)

where Si (≡ Sxi ex + Syi ey + Szi ez) is the i−th element’s spin vector operator, and Tij is the coupling
constant between spins i and j. Sαi is the spin operator along the axis α ∈ {x, y, z} for spin i. Note
that all the other degrees of freedom with the exception of the spin degrees in question constitute the
environment, so in a fully quantum treatment, the coupling constants will result from the tracing out
of the environment’s degrees of freedom. A fully quantized condensed phase like the liquid phase – in
which many of these experiments are carried out – is all but easy to manage. The coupling constants
Tij here are, therefore, assumed to have been determined by some other means [43, 50, 84, 95, 112].
Surely, these constants incorporate the influence of the environment. And in the liquid phase, one
usually speaks of ‘solvent effects’ [43, 95, 112].

If we take Bo as lying along the z−axis (i.e. Bo = Boez), and consider the latter as the axis of
quantization, then the Hamiltonian of the multispin system acquires a new term (i.e. the Zeeman
term):

Ho = Hspin−spin + ξzBo (19.2)

where,
ξα := −µα = −

∑
i

γiS
α
i α ∈ {x, y, z} (19.3)

where µα indicates the total magnetic moment operator of the multispin system along the axis α, and
γi is the effective gyromagnetic ratio of the i−th spin. Suppose we apply the oscillating field B1(t) at
the instant to, and assume the spin system had reached its thermal equilibrium state under Bo prior
to to. Then, the density matrix of the multispin system immediately before the instant to, ρS(to), is:

ρS(to) =
e−βHo

Z
, Z := Tr

[
e−βHo

]
, (19.4)

where β ≡ 1
kBT

(kB is the Boltzmann constant and T is the absolute temperature), and Ho is defined
in (19.2). Equation (19.4) can be justified on the basis of statistical mechanics, and we give a detailed
account of it in Appendix B. The operator ρS (which we now, henceforth, simply indicate as ρ) – after
the application of B1(t) – must then satisfy the Cauchy initial value problem: d

dtρ(t) = −i [Ho + V (t), ρ(t)] , (t > to)

ρ(t) = e−βHo

Z , (t = to)
(19.5)

where,
V (t) := ξ ·B1(t) (19.6)

with the components of ξ defined in (19.3). Two observations are due here: First of all, it is implicit in
the initial condition on ρ, (19.5), that there is no correlation (quantum or classical) between the spin
system and the oscillating field. This is tantamount to the Born approximation (Sec. 15.3). Secondly,
the same equation will have us think ρ(t) may evolve by means of a unitary evolution superoperator,
but that would contradict the fact that ρ(t) represents the density matrix of an open quantum system.
Nevertheless, although the experimental conditions largely justify the series of approximations (like



19.1 Preamble 119

the Markovian) we shall introduce in the course of our discussion, they also have the advantage of
leading to a non-unitary evolution of ρ(t).

Taking into account the fact that the oscillating magnetic fields actually used in experiments are
not perfectly monochromatic, it is only reasonable that we take B1(t) to be a superposition of various
independent oscillating fields (for simplicity, all of zero phase and with the same maximum):

B1(t) =
∑
r

2B1 cos(ωrt)ex (19.7)

where 2B1 and ωr are the maximum amplitude and frequency of the r−th oscillating field, respectively.
The frequencies ωr are distributed around a central frequency ω, and we assume ω � |δωr|, where
δωr ≡ ω − ωr. B1(t) in (19.7) is a generalization of the usual B1(t) = 2B1 cos(ωt)ex used in the
literature [8, 17, 33]. For the sake of clarity, we choose to decompose B1(t) into two cluster of rotating
fields in the x− y plane, both with the same intensity but each having a sense of rotation opposite to
the other:

B1(t) = B1,+(t) + B1,−(t) (19.8)

where,
B1,±(t) :=

∑
r

B1 [cos(ωrt)ex ± sin(ωrt)ey] . (19.9)

B1,±(t) rotate in the anticlockwise and clockwise directions, respectively, when observed from the top
of the direction parallel to that of Bo. As it is well-known, for a given spin, only one of these may
give rise to the resonance phenomenon depending on the sign of its Larmor frequency [2]. On similar
footing, we may decompose the interaction term V (t) as follows:

V (t) = V+(t) + V−(t) (19.10)

with

V±(t) = B1

∑
r

[ξx cos(ωrt)± ξy sin(ωrt)] (19.11a)

= B1

∑
r

e∓iωrtS
z

ξxe±iωrtS
z

(19.11b)

where Sz :=
∑
i S

z
i , i.e. the total spin operator along the z−axis. According to the sign of the Larmor

frequency of the spin, only one of V±(t) contributes significantly to the observed resonance spectra; for
example, if the Larmor frequency is positive (thus, negative gyromagnetic ratio), then the observed
spectra is primarily due to the interaction term V+(t), with negligible contributions from V−(t).

As noted earlier, in the usual experimental setup, B1 � Bo, so we can consider V (t) as a pertur-
bation with respect to Ho. We may then take (19.5) into the interaction picture. The result is: d

dt%(t) = −i [V (t), %(t)] , (t > to)

%(to) = e−βHo

Z , (t = to)
(19.12)

where,

%(t) := eitHoρ(t)e−itHo (19.13a)

V (t) := eitHoV (t)e−itHo = V+(t) + V−(t) . (19.13b)
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From (19.12), it follows that:

d

dt
%(t) = −i [V (t), %(to)]−

∫ t−to

0

dτ [V (t), [V (t− τ), %(t− τ)]] (19.14)

– which is analogous to (15.27). Obviously, the difference between (19.14) and (15.27) lies in the
fact that the latter was derived after tracing out a quantum mechanically described environment
and imposing the Born approximation, while (19.14) simply results from a dynamics described by
an effective Hamiltonian in which the effects of the environment are manifest through some given
(time-dependent) parameters. Like in (15.27), we also observe from (19.14) that the evolution of %(t)

depends on its history due to the presence of %(t−τ) on the l.h.s. Let us assume the evolution of % does
effectively depend on its history only in the time-frame 0 ≤ τ ≤ τB , where τB is some characteristic
time which depends on the interaction between the spin system and the external fields. Supposing
the resolution of our experiment does make the time-frame 0 ≤ τ ≤ τB practically inaccessible to our
investigation [15], so that measurements on the spin system effectively refer to t� τB , instances during
which the evolution of % does not depend on its history, but only on its present state, then we may
substitute %(t − τ) in (19.14) with %(t) (Markov approximation). (When the experimental technique
being employed is capable of appropriately resolving certain system-environment correlations [15], it
may be necessary to account for the non-Markovian [23, 30, 103, 122, 128] property in %(t)’s evolution).
If, in addition, we set to = 0 and extend the upper limit of the integral over τ to infinity (this is just
an approximation on the integral over τ ; and it is particularly justified for steady-state experiments
like the one under discussion), the final result is:

d

dt
%(t) = −i [V (t), %(0)]−

∫ +∞

0

dτ [V (t), [V (t− τ), %(t)]] . (19.15)

Note that by taking the limit to → −∞ (i.e. adiabatic approximation[56]) in (19.14), we also get
(19.15) since %(0) = %(−∞) = e−βHo

Z . Though the adiabatic approximation – which assumes the
system, prior to the application of B1(t), had been in the equilibrium state for a very, very long time
– leads essentially to the same equation of motion as (19.15) for %(t), it requires that the lower limit of
the integral over t be t = −∞ instead of t = 0. This is a subtle but important difference as there could
be instances whereby this lower limit of t according to the adiabatic approximation leads to infinite
expectation values of some observables. In the following, we stick to (19.15) bearing in mind that the
lower limit of t is t = 0.

One other important thing to note is that (19.15) is analogous to (15.32) if we suppress the first-
order term in V (t). Recall that this first-order term in the system-reservoir interaction Hamiltonian
was suppressed in (15.32) by applying the environment stability condition, (15.28). Contrary to what
we did in Sec. 15.3, we choose to keep this linear term simply because – unlike in the usual microscopic
derivations in the literature whereby this term usually becomes zero (or is assumed to be) upon a trace
operation over the environment’s quantum degrees of freedom [22] – here, only the spin system is
treated at the quantum level from the beginning and there are no quantum degrees of freedom of the
environment (the magnetic fields) to trace over. We have thus no reason to neglect the term. As it will
turn out later in our discussion, this term is crucial to the quantum theory of magnetic resonance and
allows us to derive a number of important results already known in the literature. Most importantly,
we shall show that it is the springboard to the development of a linear response theory from the
perspective of quantum Markovian master equations.
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19.2 Affine commutation perturbation

Following the microscopic derivation we did in Chap. 15, the very next step2 from (19.15) will be a
decomposition – analogous to the decomposition in (15.37) – of the operator V (t) . And that would
be followed by the secular approximation. We choose, however, to detour a little bit by introducing
at this very stage a second level of perturbation. This will help us further breakdown the dynamics
of the multispin system into the key contributing factors, while at the same time help us obtain quite
accurate results even at lower orders of perturbation.

Let us now go back to (19.2) and analyze Ho. Under usual experimental conditions, it is often
the case that ‖ξzBo‖ �

∥∥∥∑i>j TijSi · Sj
∥∥∥ (in the sense of (15.2)). The spin-spin interaction term,

Hspin−spin, may therefore be treated as a perturbation with respect to the Zeeman term, ξzBo. Instead
of simply treating Hspin−spin as a perturbation term with respect to ξzBo, we are going to do what
we call affine commutation perturbation (ACP). In this scheme, the perturbation term is rewritten as
a sum of two operators: A′ + B′, where the operator A′ commutes with the leading term, while B′

does not. A′ is then added to the leading term and their sum is treated as the new leading term, while
B′ becomes the new perturbation term and the normal perturbation expansion is then carried out. If
A′ exists and one performs the ACP expansion, the results one obtains – compared to those from the
standard perturbation expansion – are more accurate even at low orders.

As we intend to perform an ACP, we rewrite Ho as:

Ho = Zo + X (19.16)

where,

Zo := Boξ
z +

∑
i>j

TijS
z
i S

z
j (19.17a)

X :=
1

2

∑
i>j

Tij
(
S+
i S
−
j + S−i S

+
j

)
(19.17b)

(S±j ≡ Sxj ± iS
y
j ). Note that ‖Zo‖ � ‖X ‖. Moreover, Zo commutes with the total spin operator

along the z−axis, Sz. And more importantly, the eigenvectors of Zo are simply the multispin kets in
the uncoupled representation.

Using Feynman’s operator calculus [48], we now expand all operators in (19.15) dependent on
X in powers of the latter. Namely, the rotated operators: 1) %(t) = eit(Zo+λX )ρ(t)e−it(Zo+λX ), 2)
V (t) = eit(Zo+λX )V (t)e−it(Zo+λX ) and 3) %(0) = e−β(Zo+λX )

Tr[e−β(Zo+λX )]
(where the constant λ, introduced

here for book-keeping purposes, will be set equal to 1 at the end). For the first two, we get:

%(t) =

∞∑
n=0

λn %(n)(t) (19.18a)

V (t) =

∞∑
n=0

λn V (n)(t) (19.18b)

2One could also redefine Ho and V (t), following (15.29) so that the first term on the r.h.s. of (19.14) becomes
identically zero. Though it is formally doable, on a closer examination, one realizes that it is more pragmatic not to go
down that path.
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where,

%(n)(t) = eitZo

[
n∑
k=0

k∑
k′=0

Y (n−k)(t) ρ(k−k′)(t) Y (k′)†(t)

]
e−itZo (19.19)

V (n)(t) = eitZo

[
n∑
k=0

Y (n−k)(t) V (t) Y (k)†(t)

]
e−itZo (19.20)

where, for n ≥ 1,

Y (n)(t) ≡ in
∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsn X (s1)X (s2) · · ·X (sn) (19.21)

while Y (n)(t) ≡ I for n = 0 – with

X (x) := e−ixZoX eixZo . (19.22)

Naturally, ρ(t) depends on X . This dependence slightly complicates the expansion of %(t) in powers
of X , compared to V (t). The operator ρ(m)(t) in (19.19) denotes the m−th term coming from the
formal expansion of ρ(t) in powers of X . Put differently, ρ(m)(t) is the equivalent of %(m)(t) in the
Schrödinger picture. In general, the relation between the two is not a simple unitary transformation.
As a matter of fact, only %(0)(t) and ρ(0)(t) are related through a unitary transformation. To illustrate
this very important point, consider, for example, the cases n = 0 and n = 1 from (19.19); these yield
the following expressions:

%(0)(t) = eitZoρ(0)(t)e−itZo (19.23a)

%(1)(t) = eitZoρ(1)(t)e−itZo + i

∫ t

0

ds
[
%(0)(t),X (s− t)

]
. (19.23b)

from which we derive that:

ρ(0)(t) = e−itZo%(0)(t)eitZo (19.24a)

ρ(1)(t) = e−itZo%(1)(t)eitZo − i
∫ t

0

ds
[
ρ(0)(t),X (s)

]
. (19.24b)

Moving on, to fully expand (19.15) in powers of X , we are only left with the expansion of %(0).
Resorting once more to Feynman’s operator calculus [48], one can show that, for a fixed β = 1

kBT
:

%(0) =

∞∑
n=0

λn%(n)(0) (19.25)

where,

%(n)(0) ≡ %(0)(0)

n∑
n′=0

ζn′(iβ) Y (n−n′)(iβ) (19.26)

and

%(0)(0) ≡ e−βZo

Tr [e−βZo ]
. (19.27)

The coefficients {ζn(iβ)} are the solution to a system of linear equations (of infinite dimension),
characterized by a coefficient matrix which is a lower triangular Toeplitz matrix. It can be verified



19.3 The zeroth-order approximation 123

that every ζn(iβ) is proportional to the determinant of an upper Hessenberg matrix. Indeed, for n ≥ 1,

ζn(x) = (−1)n det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
Y (1)(x)

〉
o

〈
Y (2)(x)

〉
o

〈
Y (3)(x)

〉
o

〈
Y (4)(x)

〉
o

. . .
〈
Y (n−1)(x)

〉
o

〈
Y (n)(x)

〉
o

1
〈
Y (1)(x)

〉
o

〈
Y (2)(x)

〉
o

〈
Y (3)(x)

〉
o

. . .
〈
Y (n−2)(x)

〉
o

〈
Y (n−1)(x)

〉
o

0 1
〈
Y (1)(x)

〉
o

〈
Y (2)(x)

〉
o

. . .
〈
Y (n−3)(x)

〉
o

〈
Y (n−2)(x)

〉
o

0 0 1
〈
Y (1)(x)

〉
o

. . .
〈
Y (n−4)(x)

〉
o

〈
Y (n−3)(x)

〉
o

...
...

...
... . . .

...
...

0 0 0 0 . . . 1
〈
Y (1)(x)

〉
o

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(19.28)

while for n = 0, ζn(x) = 1. Moreover,〈
Y (n)(x)

〉
o
≡ Tr

[
%(0)(0) Y (n)(x)

]
. (19.29)

(On passing, we would like to draw the Reader’s attention to an evident connection between the
expression for the coefficient ζn(x) as given in (19.28) and the determinant expression for the n−th
complete Bell polynomial [115].) The recursive relation for the coefficients {ζn(x)}, for n ≥ 1, is as
follows:

ζn(x) = −
n−1∑
n′=0

ζn′(x)
〈
Y (n−n′)(x)

〉
o
. (19.30)

(Compare (19.28) and (19.30) with Theorem I of [73].)

With these expansions of the operators %(t),V (t) and %(0) in X , (19.15) turns out to be:

∞∑
n=0

λn
d

dt
%(n)(t) = −i

∞∑
n=0

∞∑
n′=0

λn+n′
[
V (n)(t), %(n′)(0)

]
−
∞∑
n=0

∞∑
n′=0

∞∑
n′′=0

∫ +∞

0

dτ λn+n′+n′′
[
V (n)(t),

[
V (n′)(t− τ), %(n′′)(t)

]]
. (19.31)

Equating terms of the same order in λ on both sides of (19.31) yields a non-homogeneous system of
triangular differential equations for {%(n)(t)}, which can be solved step-by-step beginning with the
line n = 0. Indeed, one can easily derive from (19.31) that the generic %(n)(t) satisfies the differential
equation:

d

dt
%(n)(t) = −i

n∑
k=0

[
V (n)(t), %(n−k)(0)

]
−

n∑
k=0

k∑
k′=0

∫ +∞

0

dτ
[
V (n−k)(t),

[
V (k−k′)(t− τ), %(k′)(t)

]]
.

(19.32)

19.3 The zeroth-order approximation

In standard perturbation theory, one has to necessarily go to first-order or beyond in order to see the
effects of the perturbation term. This is not the case with ACP, where some effects of the perturbation
are already manifest at zeroth-order. We demonstrate this point by showing below that if we simply
take %(t) = %(0)(t) +O(X ), i.e. the zeroth-order approximation, the results we obtain are in excellent
agreement with experiments.
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In the discussions below, we are going to make use of the Holstein-Primakoff transformation and
the index compression map ηo we discussed in Part II (see Chap. 6 and Chap. 7). In particular,
if each member of the ensemble of noninteracting molecules is represented by the multiset of spins
A = {j1, j2, . . . , jN}, then, a generic multispin state of a member of the ensemble in the uncoupled
representation is span by the basis {|j1,m1〉 |j2,m2〉 · · · |jN ,mN 〉}, where −ji ≤ mi ≤ ji is the spin
magnetic quantum number of the i−th spin. In conjunction with the index compression map ηo, we
saw – in Chap. 7, (7.1) – that the HP transformation makes it possible to map each of these basis
elements to a unique nonnegative integer n, whose range is 0 ≤ n ≤ (DH − 1) – where DH is the
dimension of the multispin Hilbert space: DH =

∏N
i=1 di, di ≡ 2ji + 1. Thus, we can simply indicate

a multispin basis element in the uncoupled representation as |n〉. Naturally, 〈n′| n〉 = δn′,n.
As remarked earlier, the eigenstates of Zo are simply the uncoupled multispin states

{|j1,m1〉 |j2,m2〉 · · · |jN ,mN 〉}

– which we have just seen can be simply represented as {|n〉}. Thus, by virtue of the HP representation
and the index compression map ηo, we have that:

Zo |n〉 = εn |n〉 (19.33a)

Sz |n〉 = Mn |n〉 (19.33b)

where,

εn := 〈n|Zo |n〉 (19.34a)

Mn := 〈n|Sz |n〉 . (19.34b)

Mn is the multispin state |n〉’s total spin magnetic quantum number along the axis of quantization.
In the following, we are going to assume that if εn′ − εn = εn′′ − εn, then n′ = n′′. That is, we are

assuming there are no accidental degeneracies of the multispin states in relation to the Hamiltonian
Zo.

19.3.1 Derivation of zeroth-order approximation to the semiclassical quan-
tum Markovian master equation

As remarked earlier, with the zeroth-order approximation, we are taking %(t) = %(0)(t) + O(X ), and
– according to (19.32) – %(0)(t) satisfies the differential equation

d

dt
%(0)(t) = −i

[
V (0)(t), %(0)(0)

]
−
∫ +∞

0

dτ
[
V (0)(t),

[
V (0)(t− τ), %(0)(t)

]]
. (19.35)

We now present a microscopic derivation of a GKSL-like equation for %(0)(t) starting from (19.35).
We begin our derivation by noting that (19.35) may be rewritten in the following form:

d

dt
%(0)(t) = −i

[
V (0)(t), %(0)(0)

]
−
∫ +∞

0

dτ
([

V (0)†(t),V (0)(t− τ)%(0)(t)
]

+ h.c.
)

(19.36)

where h.c. denotes the presence of the Hermitian conjugate term. By virtue of (19.13b) and (19.20),

V (0)(t) = V
(0)

+ (t) + V
(0)
− (t) (19.37a)

V
(0)
± (t) = B1

∑
r

eit(Zo∓ωrSz)ξxe−it(Zo∓ωrSz) . (19.37b)
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(19.37a) allows us to divide the r.h.s. of (19.36) into contributions from V
(0)
± (t), with cross-terms (i.e.

terms involving the factors V
(0)

+ ,V
(0)
− – simultaneously) coming from the second term. Assuming

these cross-terms do not contribute, we may reduce (19.36) to the form:

d

dt
%(0)(t) = −i

[
V

(0)
+ (t) + V

(0)
− (t), %(0)(0)

]
−
∫ +∞

0

dτ
([

V
(0)†

+ (t),V
(0)

+ (t− τ)%(0)(t)
]

+ h.c.
)

−
∫ +∞

0

dτ
([

V
(0)†
− (t),V

(0)
− (t− τ)%(0)(t)

]
+ h.c.

)
. (19.38)

It is most convenient, at this point, to proceed with our derivation by expanding the operator ξx

in the eigenbasis of Zo in the following manner3:

ξx =
∑
n,ωo

ξx(n, ωo) (19.39)

where4,
ξx(n, ωo) :=

∑
n,n′

|n〉 〈n| ξx |n′〉 〈n′| δωo,εn′−εnδn,Mn′−Mn (19.40)

where {|n〉} are the eigenvectors of Zo, (19.33). Note that the {n} in (19.39) and (19.40) are nec-
essarily integers, and the {ωo} are the pairwise frequency separation between the eigenvalues of Zo.
Interestingly, one also observes that:

[Zo, ξ
x(n, ωo)] = −ωo ξx(n, ωo) (19.41a)

[Sz, ξx(n, ωo)] = −n ξx(n, ωo) (19.41b)

while, [
Zo, ξ

x†(n, ωo)
]

= ωo ξ
x†(n, ωo) (19.42a)[

Sz, ξx†(n, ωo)
]

= n ξx†(n, ωo) . (19.42b)

Thus, from (19.41) and (19.42), the identity:

ξx†(n, ωo) = ξx(−n,−ωo) (19.43)

readily follows. The same identity could have been proved directly from (19.40). The commutation
relations in (19.41) and (19.43) indicate that the operator ξx(n, ωo) is a generalized ladder operator
which, when applied to a generic eigenket |n〉 of Zo, transforms |n〉 into a weighted sum of other
eigenkets of Zo, who all share the same eigenvalue ≡ (εn−ωo), as well as the same total spin magnetic
quantum number ≡ (Mn − n). Likewise, ξx†(n, ωo) transforms |n〉 into a sum of other eigenkets of
Zo, each of which is characterized by the same eigenvalue and total spin magnetic quantum numbers;
namely, (εn + ωo) and (Mn + n), respectively. Indeed, it follows from (19.39) that:

ξx(n, ωo) |n〉 =
∑
n′

Cn′,n(n, ωo) |n′〉 (19.44a)

ξx†(n, ωo) |n〉 =
∑
n′

Cn′,n(−n,−ωo) |n′〉 (19.44b)

3This is analogous to the decomposition in (15.34).
4Compare this with (15.35).
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where,

Cn′,n(n, ωo) := 〈n′| ξx |n〉 δωo,εn−εn′ δn,Mn−Mn′ . (19.45)

Going back to (19.37b), we note that with the introduction of the decomposition of ξx according
to (19.39), V

(0)
± (t) simplifies to5:

V
(0)
± (t) = B1

∑
r

∑
n,ωo

e−it(ωo∓ωrn)ξx(n, ωo) . (19.46)

With this new expression for V
(0)
± (t), (19.38) becomes, – in analogy to (15.40) –:

d

dt
%(0)(t) = −iB1

∑
r

∑
n,ωo

(
e−it(ωo−ωrn) + e−it(ωo+ωrn)

) [
ξx(n, ωo), %

(0)(0)
]

−

∑
r,r′

∑
n,ωo

∑
n′,ω′o

eit[(ωo−ω
′
o)−(ωrn−ωr′n

′)] Γ(ω′o − n′ωr′)
[
ξx†(n, ωo), ξ

x(n′, ω′o)%
(0)(t)

]
+ h.c.


−

∑
r,r′

∑
n,ωo

∑
n′,ω′o

eit[(ωo−ω
′
o)+(ωrn−ωr′n

′)] Γ(ω′o + n′ωr′)
[
ξx†(n, ωo), ξ

x(n′, ω′o)%
(0)(t)

]
+ h.c.

 (19.47)

where,

Γ(ω′o ± ωr′n′) := B2
1

∫ +∞

0

dτ eiτ(ω′o±ωr′n
′)

= B2
1

[
πδ(ω′o ± n′ωr′) + i P

(
1

ω′o ± n′ωr′

)] (19.48)

and the operation P(•) indicates Cauchy’s Principal Value.

The time-dependent factors in (19.47) are all complex exponential functions. For the first term
in (19.47), these factors lead to what we have termed the linear response Hamiltonian, HLR(t) (see
below). Unlike the time-dependent factors in the first term, those in the second and third terms of
(19.47) are functions of the differences between the eigenvalues {ωo}, as well as weighted differences
between the field frequencies ωr. These factors can be rapidly oscillating when the frequency function
multiplying t is far from zero. The contribution of those rapidly oscillating factors to the evolution
of %(0)(t) is negligible compared to those terms where the frequency function multiplying t is in the
neighborhood of zero. We may therefore discard those rapidly oscillating terms in the second and third
terms of (19.47) (secular approximation). This leads to the condition: (ωo − ω′o)± (ωrn− ωr′n′) = 0,
which is easily satisfied if

ωo = ω′o , n = n′ , ωr = ωr′ . (19.49)

We emphasize that this is also the only solution compatible with our assumption (see (19.38)) that
the cross-terms involving V

(0)
+ (t) and V

(0)
− (t) do not contribute at second-order in B2

1 to the equation
of motion.

With (19.49), the sum of the last two terms of (19.47) reduces to:

−
∑
r

∑
n,ωo

(
Γ(ωo − nωr) + Γ(ωo + nωr)

)[
ξx†(n, ωo), ξ

x(n, ωo)%
(0)(t)

]
+ h.c. . (19.50)

5This is the equivalent of (15.37).
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It is convenient at this point to decompose Γ(ωo ± ωrn) into the sum:

Γ(ωo ± ωrn) =
1

2
ηxx(ωo ± ωrn) + iζxx(ωo ± ωrn) (19.51)

where,

ηxx(ωo ± ωrn) := 2πB2
1 δ(ωo ± nωr) (19.52a)

ζxx(ωo ± ωrn) := B2
1 P

(
1

ωo ± nωr

)
. (19.52b)

If we now assume a continuous distribution of the frequencies in the applied radiation field, then∑
r 7→

∫
dω′ρf (ω′) and ωr 7→ ω′ – where ρf (ω′) is the probability density function for the radiation

field’s frequencies (still centered on ω, as discussed earlier). And it can be verified, after some algebraic
manipulations, that:

−
∫
dω′ρf (ω′)

∑
n,ωo

(
Γ(ωo − nω′) + Γ(ωo + nω′)

)[
ξx†(n, ωo), ξ

x(n, ωo)%
(0)(t)

]
+ h.c.

= −i
[
HLS+ +HLS−, %

(0)(t)
]

+D+

[
%(0)(t)

]
+D−

[
%(0)(t)

]
(19.53)

where,

HLS± ≡
∑
n,ωo

∫ +∞

−∞
dω′ρf (ω′)ζxx(ωo ∓ ω′n)ξx†(n, ωo)ξ

x(n, ωo) (19.54)

and

D±
[
%(0)(t)

]
≡
∑
n,ωo

∫ +∞

−∞
dω′ ρf (ω′)ηxx(ωo ∓ ω′n)

[
ξx(n, ωo)%

(0)(t)ξx†(n, ωo)

− 1

2

{
ξx†(n, ωo)ξ

x(n, ωo), %
(0)(t)

}]
. (19.55)

It is quite clear that the sum
(
HLS+ +HLS−

)
constitute a Lamb shift Hamiltonian (see (15.46)), while

the sum
(
D+

[
%(0)(t)

]
+D−

[
%(0)(t)

] )
is the dissipator term (see (15.58)). The sign subscripts for HLS

and D indicate their origins: the subscript ‘+’ means the object originates from the second term of
(19.38), while ‘−’ indicates its origin is the third term of (19.38). Furthermore, in (19.73) and (19.55),
we have extended the lower limit of the integral over ω′ from zero to (−∞). This causes no appreciable
error in subsequent calculations since the frequency ω at which ρf (ω′) is centered on is in the order of
MHz, and is usually quite sharply peaked. Naturally, the normalization condition

∫ +∞
−∞ dω′ ρf (ω′) = 1

holds.
A closer look at the integrals in (19.73) and (19.55) shows that:

∫ +∞

−∞
dω′ρf (ω′)ζxx(ωo ∓ ω′n) =

±
πB2

1

n ρ�f (±ωo/n), (n 6= 0)

B2
1 P

(
1
ωo

)
, (n = 0)

(19.56)

∫ +∞

−∞
dω′ ρf (ω′)ηxx(ωo ∓ ω′n) =


2πB2

1

|n| ρf (±ωo/n), (n 6= 0)

2πB2
1 δ(ωo), (n = 0)

(19.57)

where ρ�f (±ωo/n) is the Hilbert transform [86] of ρf centered on ±ωo/n:

ρ�f (±ωo/n) :=
1

π

∫ +∞

−∞
dω′ P

(
ρf (ω′)

±ωo/n− ω′

)
. (19.58)
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Note that given a specific ξx(n, ωo), it follows from (19.43) that if we make the transformation n 7→ −n,
then ωo 7→ −ωo must also follow. Making use of this property and the fact that ξx(0, 0) = 0, we may
conveniently rewrite the dissipator terms D±, (19.55), as:

D±
[
%(0)(t)

]
=

∑
n>0,ωo

2πB2
1

n
ρf (±ωo/n)

[
ξx(n, ωo)%

(0)(t)ξx†(n, ωo)−
1

2

{
ξx†(n, ωo)ξ

x(n, ωo), %
(0)(t)

}]

+
∑

n>0,ωo

2πB2
1

n
ρf (±ωo/n)

[
ξx†(n, ωo)%

(0)(t)ξx(n, ωo)−
1

2

{
ξx(n, ωo)ξ

x†(n, ωo), %
(0)(t)

}]
(19.59)

and for the Lamb shift Hamiltonians, HLS±, (19.73), we may write:

HLS± = ±
∑

n>0,ωo

πB2
1

n
ρ�f (±ωo/n)

[
ξx†(n, ωo), ξ

x(n, ωo)
]
. (19.60)

Drawing on the fact that the operator ξx is the q = ±1 component of a rank k = 1 spherical tensor
(see (8.3)), we see that n = +1 in (19.59) and (19.60).

Let us now turn to the first term on the r.h.s. of (19.47) and split it into two:

− iB1

∑
r

∑
n,ωo

e−it(ωo−ωrn)
[
ξx(n, ωo), %

(0)(0)
]
− iB1

∑
r

∑
n,ωo

e−it(ωo+ωrn)
[
ξx(n, ωo), %

(0)(0)
]

.

(19.61)

We focus now on the first term of (19.61). Assuming here a continuous distribution of the frequencies
of the applied radiation field, we get:

− iB1

∑
r

∑
n,ωo

e−it(ωo−ωrn)
[
ξx(n, ωo), %

(0)(0)
]

7→ −iB1

∑
n,ωo

∫ +∞

−∞
dω′ ρf (ω′) eit(ω

′n−ωo)
[
ξx(n, ωo), %

(0)(0)
]
. (19.62)

But,

−iB1

∑
n,ωo

∫ +∞

−∞
dω′ ρf (ω′) eit(ω

′n−ωo)
[
ξx(n, ωo), %

(0)(0)
]

= −iB1

∑
ωo

e−itωo
∫ +∞

−∞
dω′ ρf (ω′) eitω

′
[
ξx(+1, ωo), %

(0)(0)
]

+ h.c.

= −iB1

∑
ωo

e−itωoϕf (t)
[
ξx(+1, ωo), %

(0)(0)
]

+ h.c.

= −i
[
HLR+(t), %(0)(0)

]
(19.63)

where we can easily recognize ϕf (t) in the above expression as the characteristic function of ρf (ω′):

ϕf (t) ≡
∫ +∞

−∞
dω′ ρf (ω′) eitω

′
(19.64)

and
HLR+(t) ≡ B1ϕf (t)

∑
ωo

e−itωoξx(+1, ωo) + h.c. . (19.65)
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Analogously, for the second term of (19.61), we have

− iB1

∑
r

∑
n,ωo

e−it(ωo+ωrn)
[
ξx(n, ωo), %

(0)(0)
]

= −i
[
HLR−(t), %(0)(0)

]
(19.66)

where
HLR−(t) ≡ B1ϕ

∗
f (t)

∑
ωo

e−itωoξx(+1, ωo) + h.c. (19.67)

(ϕ∗f (t) is the complex conjugate of ϕf (t)).

19.3.2 Summary

Putting these results together, it follows that (19.47) – after secular approximation – becomes

d

dt
%(0)(t) = A(t)%(0)(0) + L%(0)(t) (19.68)

where:
A(t)%(0)(0) := −i

[
HLR(t), %(0)(0)

]
(19.69)

with HLR(t), the linear response Hamiltonian, defined as:

HLR(t) := 2B1<[ϕf (t)]
∑
ωo

e−itωoξx(+1, ωo) + h.c. (19.70)

Moreover, the superoperator L in (19.68) is the generator of a quantum dynamical semigroup, and is
given as follows:

L%(0)(t) := −i
[
HLS , %

(0)(t)
]

+D
[
%(0)(t)

]
(19.71)

where the first and second terms in (19.71) are the unitary evolution and dissipator terms at zeroth-
order (in X ), respectively. HLS is the Lamb shift Hamiltonian at zeroth-order, and is given by the
expression:

HLS = HLS+ +HLS− (19.72)

with
HLS± = ±πB2

1

∑
ωo

ρ�f (±ωo)
[
ξx†(+1, ωo), ξ

x(+1, ωo)
]

(19.73)

where ρ�f (±ωo) is defined in (19.58).
Similarly, the dissipator term, D

[
%(0)(t)

]
, in (19.71) is given by the sum:

D
[
%(0)(t)

]
= D+

[
%(0)(t)

]
+D−

[
%(0)(t)

]
(19.74)

where

D±
[
%(0)(t)

]
=
∑
ωo

2πB2
1ρf (±ωo)

[
ξx(+1, ωo)%

(0)(t)ξx†(+1, ωo)−
1

2

{
ξx†(+1, ωo)ξ

x(+1, ωo), %
(0)(t)

}]
+
∑
ωo

2πB2
1ρf (±ωo)

[
ξx†(+1, ωo)%

(0)(t)ξx(+1, ωo)−
1

2

{
ξx(+1, ωo)ξ

x†(+1, ωo), %
(0)(t)

}]
.

(19.75)
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For ωo > 0, the operator ξx(+1, ωo) may be described as responsible for emission of a photon at the
frequency ωo; while in the case ωo < 0, the equivalent absorption process may be attributed to the same
operator. It is also important to recognize that for a radiation field with a sharply peaked frequency
distribution ρf (ω′), either D+ or D− will contribute significantly, at resonance, to the dissipator term
– depending on the sign of ωo; for example, if ωo > 0, D+ will dominate. In any case, it is quite clear
from (19.75) that the rate of emission and absorption coincide. This comes at no surprise since we
treated the oscillating field classically. Had we treated the field quantum mechanically, we would have
found a contribution to the dissipator term due to spontaneous emission [22], which would have made
the rates of total emission of photons differ from that of absorption.

Perhaps, a number of other noteworthy observations are also due here. First of all, we note
that despite the fact that the master equation in (19.68) is local in time, the presence of the term
A(t)%(0)(0) deprives the quantum map of the semigroup property. However, we may deduce a very
important feature of the superoperator A(t) due to the presence of the characteristic function ϕf (t) in
the expression for the linear response Hamiltonian HLR+(t), (19.70). Indeed, for all practical reasons,
ρf is a real-valued continuous symmetric function in the shift frequency δω ≡ ω − ω′ (ω′ is a random
frequency), and whose range coincides with R. (Infact, the most common distributions for ρf are
Lorentzian, Gaussian and Voight – which are symmetric in δω.) According to Pòlya’s theorem [120],
we must expect the characteristic function of ρf (δω), ϕf (t), to satisfy the following properties: i) be
a real-valued, symmetric and continuous function defined for all real values of t; ii) with maximum
at t = 0 – specifically, ϕf (0) = 1; iii) with limt→∞ ϕf (t) = 0 and iv) be convex for t > 0. The most
important property to notice here, for the purpose of our discussion, is property iii). Its implication is
that when t� τf (where τf is the time scale of relaxation of ϕf (t)), HLR(t) approaches zero, leading
therefore the A(t) term in (19.68) to effectively become negligible and the equation becomes a true
quantum Markovian master equation, thus restoring the semigroup property. Hence, the generator in
(19.68) approaches asymptotically that of a quantum dynamic semigroup. For example, suppose the
distribution ρf (ω′) is taken to be a Lorentzian, such that:

ρf (ω′) =
1

π

(
∆ν
2

)2(
∆ν
2

)2
+ (ω − ω′)2

(19.76)

where ∆ν is the distribution’s full-width at half maximum (FWHM). Then, the corresponding char-
acteristic function, ϕf (t), is:

ϕf (t) =

∫ +∞

−∞
dω′ eiω

′tρf (ω′) = eiωte−( ∆ν
2 )|t| (19.77)

hence, with τ−1
f = ∆ν

2 .
Moreover, we note that the superoperator A(t) does not operate on %(0)(t), for t > 0. This means

the master equation in (19.68) may therefore be regarded as a time-dependent Markovian [36, 103]
one, whereby the time-dependence is not to be found in the rate constants present in the quantum
dynamical semigroup’s generator L, but in the inhomogeneous term present in the master equation
which is independent of %(0)(t > 0).

Formally solving Eq (19.68) for %(0)(t), we find that (see Appendix C.1 for derivation):

%(0)(t) = Λ(t)%(0)(0) (19.78)
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with
Λ(t) := eLt +

∫ t

0

dt′ eL(t−t′)A(t′) . (19.79)

Surely, with A(t) = 0, the map Λ(t) is clearly a UDM6, and therefore CPT. However, Λ(t) – as given
in (19.79) – is in general non-UDM78 (see Appendix C.2). It is interesting to note that Λ(t) replicates
the same structure of linear non-UDMs present in the literature [26, 72] (where both the focus system
and the environment are quantized). Namely, it is the sum of two terms: the first term is a UDM,
while the second (or inhomogeneous) term is a more complicated map which is traceless [21, 26, 72].
Furthermore, Λ(t) may also be written as the difference between two CP maps (see Appendix C.2)
– which again proves Λ(t) to be a non-UDM [145, 168]. It is important to observe that, here in the
zeroth-order, the theory restricts the domain of the map Λ(t), {%(0)(0)} , to %(0)(0) = e−βZo

Tr[e−βZo ]
, (19.27)

– which is a Boltzmann state. Failing to do so may lead to unphysical results (see Appendix C.4).
Moreover, there are strong indications that Λ(t) is positive on its domain. We provide a heuristic
argument in favor of this proposition in Appendix C.3. A more careful, and perhaps elegant, analysis
of the positivity of Λ(t) needs to be done. Nevertheless, the positivity of Λ(t) on its domain would
imply that

Λ(t) : C+,1
d [%(0)(0)]

(
⊂ O+,1

d

)
→ O+,1

d (19.80)

where C+,1
d [%(0)(0)] denotes the set of all convex combinations of elements of O+,1

d which commute
with %(0)(0). But what is more revealing, (19.80) – in light of Chap. 12 – would also imply that Λ(t)

is CPT on C+,1
d [%(0)(0)].

As we shall see below (Chap.s 20-22), despite the fact that it breaks the UDM property of Λ(t) in
(19.79), the presence of A(t) puts the predictions of the theory impressively in line with experimental
results; on the other hand, the predictions become quite incompatible with experimental results if we
choose to neglect the inhomegeneous term.

19.4 On higher-order terms

We have concerned ourselves so far with the zeroth-order term of the ACP scheme, (19.32). If, in
deriving the master equation for the higher order terms (i.e. n ≥ 1) of %(t), we apply the same
techniques and reasoning which led to (19.68), then, one can see that, in general:

d

dt
%(n)(t) = L%(n)(t) +A(t)%(n)(0) + G(n)(t) (19.81)

where the initial condition, %(n)(0), is given by (19.26), and where

G(n)(t) :=

0 (for n = 0)∑n
l=1A(l)(t)%(n−l)(0) +

∑n
l=1 L(l)%(n−l)(t) (for n ≥ 1)

. (19.82)

The superoperators A(t) and L in (19.81) are still given by (19.69) and (19.71), respectively. We
note that the master equation for the higher order term %(n≥1)(t), (19.81), is just the same as that for

6See Definition 13.0.1.
7See Definition 13.0.2.
8What we refer to here as ‘non-UDM’ is what is commonly referred to in the literature as ‘(positive but) non-CP’

maps [26].
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%(0)(t), (19.68), except for the presence of the time-dependent operator G(n)(t) in the former. Evidently,
G(n)(t) depends on the lower order corrections to %(0) and %(t), i.e. %(n′)(0) and %(n′)(t) with n′ < n.
We also remark that the superoperators A(l)(t) and L(l) in (19.82) differ from A(t) and L in (19.81),
and may be seen as some form of higher-order corrections to the latter two, respectively. (More on
this shortly.)

The formal solution to (19.81) is:

%(n)(t) =

(
eLt +

∫ t

0

dt′ eL(t−t′)A(t′)

)
%(n)(0) +

∫ t

0

dt′ eL(t−t′)G(n)(t′) . (19.83)

We have reasons to believe that the quantum map involved here is also non-UDM. In fact, we see again
in (19.83) the same structure observed for non-UDMs maps [21, 26, 72]: the first term, eLt%(n)(0),
involves a UDM, while

∫ t
0
dt′ eL(t−t′)A(t′)%(n)(0) +

∫ t
0
dt′ eL(t−t′)G(n)(t′) constitute the traceless inho-

mogeneous term. It must be mentioned, however, that eLt%(n)(0) for n ≥ 1 is also traceless.
For any given order n in (19.32), the approximations and arguments (see Sec. 19.3.1 for details)

we laid out for the zeroth-order must be replicated. This leads to an equation of motion of the form
given in (19.81). Specifically, the secular approximation must be applied to the second term in (19.32).
But before that, if one had assumed at the zeroth-order that the cross-terms involving V

(n)
± (t) may

be neglected (as we did), then the same assumption must be applied to the second term in (19.32).
Finally, one must also assume a continuous distribution of the frequencies in the oscillating field for
both terms in (19.32).

If we consider the first-order correction to %(t), %(1)(t), for example, it follows from (19.32) that

d

dt
%(1)(t) = −i

[
V (0)(t), %(1)(0)

]
− i
[
V (1)(t), %(0)(0)

]
−
∫ +∞

0

dτ
[
V (1)(t),

[
V (0)(t− τ), %(0)(t)

]]
−
∫ +∞

0

dτ
[
V (0)(t),

[
V (1)(t− τ), %(0)(t)

]]
−
∫ +∞

0

dτ
[
V (0)(t),

[
V (0)(t− τ), %(1)(t)

]]
. (19.84)

We note that the first and last terms in (19.84) are actually copies of the r.h.s. of (19.35), except that
%(0)(0) and %(0)(t) are now substituted with %(1)(0) and %(1)(t), respectively. So, after applying the
above mentioned approximations and assumptions, these two terms transform as follows:

−i
[
V (0)(t), %(1)(0)

]
7→ A(t)%(1)(0) (19.85a)

−
∫ +∞

0

dτ
[
V (0)(t),

[
V (0)(t− τ), %(1)(t)

]]
7→ L%(1)(t) (19.85b)

where A(t) and L are still given by (19.69) and (19.71), respectively. And the expression for %(1)(0) is
derived from (19.26).

Similarly, for the second term of (19.84), we may write

− i
[
V (1)(t), %(0)(0)

]
7→ A(1)(t)%(0)(0) (19.86)

where A(1)(t) will be linear in X and bear some similarities with A(t). The third and fourth terms
of (19.84) may be put together after applying the said approximations and assumptions, and we may
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write

−
∫ +∞

0

dτ
[
V (1)(t),

[
V (0)(t− τ), %(0)(t)

]]
−
∫ +∞

0

dτ
[
V (0)(t),

[
V (1)(t− τ), %(0)(t)

]]
7→ L(1)%(0)(t) . (19.87)

Here too, the superoperator L(1) will linearly depend on X .
Thus, after implementing the said approximations and assumptions, (19.84) simply becomes

d

dt
%(1)(t) = A(t)%(1)(0) + L%(1)(t) + G(1)(t) (19.88)

where
G(1)(t) = A(1)(t)%(0)(0) + L(1)%(0)(t) . (19.89)

Note that (19.88) and (19.89) are in agreement with (19.81) and (19.82), respectively. In fact, following
the same line of reasoning as we just did for the first-order correction, one can show by induction that
(19.81) and (19.82) hold for any given order n. Furthermore, in solving (19.88) for %(1)(t), we must
impose the condition Tr[%(1)(t)] = 0 (this also applies to all %(n)(t) with n ≥ 1).
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Chapter 20

Application I: CW experiment with an

ensemble of spin-1/2 particles.

20.1 The master equation

To illustrate the application of the equations and concepts derived and discussed in the preceding
chapter, it may help to consider an ensemble of particles of spin-1/2. In this case, there won’t be
any need of ACP, given that we do not have the spin-spin coupling term, Hspin−spin, (19.1), to begin
with. Indeed, almost all equations in Chap. 19, from (19.2) to (19.79), apply here – only that we just
need to set Hspin−spin → 0, which also translates into setting X → 0 and Zo → Boξ

z, (19.17). With
these transformations, we note that the non-homogeneous system of triangular differential equations in
(19.32) reduces to a single differential equation, namely (19.35). Actually, the overall result of putting
Hspin−spin → 0 is that %(t) coincides now exactly with %(0)(t), and (19.68) becomes:

d

dt
%(t) = A(t)%(0) + L%(t) (20.1)

which is now, by default, the relative exact equation of motion for %(t) – i.e. within the very limitations
of the approximations and assumptions which led to (19.68).

20.2 Determining the Lindblad operators

All that is left now is to determine the operators {ξx(+1, ωo)} and substitute them into (19.69), (19.73)
and (19.75). To make the connection with some known results in the literature more intelligible, we
shall make use of the Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (20.2)

In this regard, Zo, as stated in the previous paragraph, becomes:

Zo = −γBo
2
σ3 (20.3)

135
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with γ being the gyromagnetic ratio of the spin-1/2, and Bo the magnitude of the steady magnetic
field. The eigenkets of Zo are:

∣∣+ 1
2

〉
and

∣∣− 1
2

〉
, which according to the HP representation and the index

compression map ηo, may also be denoted as |0〉 and |1〉, respectively. With just two eigenkets, it is
easily observed that the possible frequency difference ωo between these eigenkets are: ωo ∈ {0,±γBo}.

Furthermore, it is clear from the definition given in (19.40) that:

ξx(+1, ωo) = −γ
2
σ−, ξx(−1,−ωo) = −γ

2
σ+ (20.4)

when ωo = −γBo, i.e. the Larmor frequency – with

σ± =
1

2
(σ1 ± iσ2) . (20.5)

However, when ωo = 0, ξx(n, ωo) = 0 for all possible values of n. We may, therefore, in the following,
intend ωo as the Larmor frequency without loss of generality. Interestingly, given (20.4), it readily
follows from (19.41) and (19.42) that:

[Zo, σ±] = ±ωo σ± (20.6)

and the initial density matrix %(0) is

%(0) =
e−βZo

Tr[e−βZo ]
. (20.7)

20.3 Explicit expression for the master equation

With the identity of the operators {ξx(n, ωo)} in our possession, thanks to (20.4), we now determine
HLR(t), HLS and D± [•] through (19.70), (19.73) and (19.75), respectively. Namely:

HLR(t) = <[ϕf (t)]ω1e
−itωoσ− + h.c. (20.8)

HLS = π
(ω1

2

)2 [
ρ�f (ωo)− ρ�f (−ωo)

]
[σ−, σ+]

= −π
(ω1

2

)2 [
ρ�f (ωo)− ρ�f (−ωo)

]
σ3

(20.9)

with ω1 := −γB1. Regarding the dissipator term, it easily follows from (19.75) and (20.4) that:

D± [%(t)] = 2π
(ω1

2

)2

ρf (±ωo)
[
σ−%(t)σ+ −

1

2
{σ+σ−, %(t)}

]
+ 2π

(ω1

2

)2

ρf (±ωo)
[
σ+%(t)σ− −

1

2
{σ−σ+, %(t)}

]
. (20.10)

This dissipator component is reminiscent of its analogue in the quantum optical master equation (see
(3.219) of [22]). The only difference between the two are the rate constants. In the quantum optical
master equation [22], the radiation field is treated quantum mechanically, thus allowing to account for
the rate of spontaneous emission, besides the usual stimulated rates of emission and absorption. In
(19.75) and (20.10), there is no trace of rate of spontaneous emission simply because the oscillating
field is treated classically.
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Regarding the rates of stimulated emission and absorption, it is worth observing that when ωo > 0

(i.e. γ < 0), the first term in (20.10) describes the stimulated emission process
∣∣− 1

2

〉
←
∣∣+ 1

2

〉
at the

rate Γ− 1
2 ,+

1
2
, while the second term of the same equation describes the stimulated absorption process∣∣+ 1

2

〉
←
∣∣− 1

2

〉
at the rate Γ+ 1

2 ,−
1
2
. The rate of both processes coincides:

Γ− 1
2 ,+

1
2

= Γ+ 1
2 ,−

1
2

= 2π
(ω1

2

)2

[ρf (ωo) + ρf (−ωo)]

≡ Γ(ωo) . (20.11a)

If we write
%(t) =

1

2

[
I + 2 〈σ−(t)〉′ σ+ + 2 〈σ+(t)〉′ σ− + 〈σ3(t)〉′ σ3

]
(20.12)

where 〈σ±(t)〉′ ≡ Tr[%(t)σ±] and 〈σ3(t)〉′ ≡ Tr[%(t)σ3], (with 〈x〉′ we mean the expectation value of x
in the interaction picture; the unprimed 〈x〉, until otherwise stated, will be the analogous expectation
value in the Schrödinger picture) then (20.12) and (20.1) lead to the differential equations

d

dt
〈σ3(t)〉′ = −2Γ(ωo) 〈σ3(t)〉′ (20.13a)

d

dt
〈σ+(t)〉′ = iω1 tanh(βωo/2)<[ϕf (t)]e−itωo − [Γ(ωo) + i$(ωo)] 〈σ+(t)〉′

with $(ωo) given by the expression:

$(ωo)

2
≡ π

(ω1

2

)2 [
ρ�f (ωo)− ρ�f (−ωo)

]
≡ ωLS(ωo) (20.14)

where ωLS is the ‘Lamb shift rate’ and originates from HLS , (20.9). In the following we shall simply
write Γ and $, but their dependence on ωo must be kept in mind. Naturally, 〈σ−(t)〉′ = 〈σ+(t)〉′∗.

Bearing in mind that in the Schrödinger picture 〈σ±(t)〉′ 7→ 〈σ±(t)〉 e∓iωot, we deduce that the
stationary solutions for 〈σ3(t)〉 and 〈σ+(t)〉 – namely, 〈σ3(t)〉s and 〈σ+(t)〉s – in the Schrödinger
picture are:

〈σ3(t)〉s = 0 (20.15a)

〈σ±(t)〉s = −ω1 tanh(βωo/2)

[ωo −$]± iΓ
<[ϕ(t)] . (20.15b)

Since <[ϕ(t)] tends to zero as t→ +∞ according to Pòlya’s theorem, it follows that 〈σ±(t)〉 also tend
to zero as t→ +∞. Putting this observation together with (20.12), we readily come to the conclusion
that the equilibrium state, %eq = ρeq, of the qubit ensemble in our CW experiment is the corresponding
maximally mixed state, i.e. ρeq = 1

2 I. This also means that the associated quantum map contracts the
Bloch sphere to a point, namely the center. Indeed, solving the differential equations in (20.13) in the
Schrödinger picture, we find:

〈σ3(t)〉 = − tanh(βωo/2) e−2Γt (20.16)

〈σ±(t)〉 = < 〈σ+(t)〉 ± i= 〈σ+(t)〉 (20.17)

where
< 〈σ+(t)〉 = e−Γtω1 tanh(βωo/2)

∫ t

0

dt′ eΓt′ sin[($ − ωo)(t− t′)] <[ϕf (t′)] (20.18)

= 〈σ+(t)〉 = e−Γtω1 tanh(βωo/2)

∫ t

0

dt′ eΓt′ cos[($ − ωo)(t− t′)] <[ϕf (t′)] . (20.19)

It is thus evident that 〈σ±(t)〉 inexorably approaches zero as t→ +∞. From (20.5), we also find that

〈σ1(t)〉 = 2< 〈σ+(t)〉 and 〈σ2(t)〉 = 2= 〈σ+(t)〉 . (20.20)
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20.4 Some applications in linear response theory

To illustrate how the present model of semiclassical quantum Markovian master equation, (20.1), also
entails known results in LRT (linear response theory), we determine the dynamical structure factor
[56] of ξx(+1, ωo). Since ξx(+1, ωo) is proportional to σ−, (20.4), we can equally concentrate below on
the dynamic structure factor of σ−, Sσ−σ+(ω′):

Sσ−σ+
(ω′) =

1

2π

∫ +∞

−∞
dt eiω

′t 〈σ−(t)σ+〉 (20.21)

where the correlation 〈σ−(t)σ+〉 ≡ Tr[σ−(t)σ+ρ(0)] is evaluated in the Heisenberg picture. We therefore
need to determine how our quantum map evolves σ− in the Heisenberg picture.

Given that any qubit operator X can be written as

X =
1

2
[c0(0)I + c1(0)σ1 + c2(0)σ2 + c3(0)σ3] (20.22)

with
ci(0) = Tr[Xσi] i = {0, 1, 2, 3} (20.23)

(where σ0 ≡ I), it naturally follows that the Heisenberg picture evolution of X, X(t), must be of the
form

X(t) =
1

2
[c0(t)I + c1(t)σ1 + c2(t)σ2 + c3(t)σ3] (20.24)

where the coefficients ci(t) are to be determined through the condition we saw in (13.34) – namely,

Tr[ρ(t)X] = Tr[ρ(0)X(t)] . (20.25)

After some algebra, one finds that with ρ(0) = e−βZo

Tr[e−βZo ]
= 1

2 [I + 〈σ3(0)〉σ3], where 〈σ3(0)〉 =

− tanh(βωo/2), 
c0(t)

c1(t)

c2(t)

c3(t)

 =


κ0(t) κ1(t) κ2(t) κ3(t)

κ1(t) κ0(t) −iκ3(t) iκ2(t)

κ2(t) iκ3(t) κ0(t) −iκ1(t)

κ3(t) −iκ2(t) iκ1(t) κ0(t)



c′0(t)

c′1(t)

c′2(t)

c′3(t)

 (20.26)

where 
c′0(t)

c′1(t)

c′2(t)

c′3(t)

 =


1 0 0 0

0 cos(ωot) sin(ωot) 0

0 − sin(ωot) cos(ωot) 0

0 0 0 1



c0(0)

c1(0)

c2(0)

c3(0)

 (20.27)

and

κ0(t) ≡ 1− 〈σ3(0)〉′ 〈σ3(t)〉′

1− 〈σ3(0)〉′2
(20.28a)

κ1(t) ≡ i

[
〈σ2(t)〉′ 〈σ3(0)〉′ − i 〈σ1(t)〉′

1− 〈σ3(0)〉′2

]
(20.28b)

κ2(t) ≡ −i

[
〈σ1(t)〉′ 〈σ3(0)〉′ + i 〈σ2(t)〉′

1− 〈σ3(0)〉′2

]
(20.28c)

κ3(t) ≡ 〈σ3(t)〉′ − 〈σ3(0)〉′

1− 〈σ3(0)〉′2
(20.28d)
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and where, as remarked earlier – (20.12) – 〈σi(t)〉′ is the equivalent of 〈σi(t)〉 in the interaction picture.
Namely, 

〈σ1(t)〉′

〈σ2(t)〉′

〈σ3(t)〉′

 =


cos(ωot) sin(ωot) 0

− sin(ωot) cos(ωot) 0

0 0 1



〈σ1(t)〉
〈σ2(t)〉
〈σ3(t)〉

 (20.29)

where 〈σ3(t)〉 is given by (20.16) and, 〈σ1(t)〉 and 〈σ2(t)〉 are defined in (20.20).

It follows then that with the initial density matrix ρ(0) = e−βZo

Tr[e−βZo ]
, given a qubit operator X,

its corresponding dynamical structure factor SXX†(ω′) = 1
2π

∫ +∞
−∞ dt eiω

′t
〈
X(t)X†

〉
in terms of the

coefficients ci(0), ci(t) is:

SXX†(ω
′) =

1

4

[(
C3,0(ω′) + C0,3(ω′)

)
〈σ3(0)〉+ C0,0(ω′)

+ C3,3(ω′) + 4
eβωo/2

Tr[e−βZo ]
C+,+(ω′) + 4

e−βωo/2

Tr[e−βZo ]
C−,−(ω′)

]
(20.30)

where

Cν,µ(ω′) =
1

2π

∫ +∞

−∞
dt eiω

′tcν(t)c∗µ(0) (20.31)

with

c±(t) =
1

2
[c1(t)± ic2(t)] (t ≥ 0) . (20.32)

Going back to Sσ−σ+
(t), (20.21), we may apply (20.30) by setting X = σ−. This reduces (20.30) to

Sσ−σ+
(ω′) =

eβωo/2

Tr[e−βZo ]
C+,+(ω′)

=
eβωo/2

Tr[e−βZo ]

1

2π

∫ +∞

−∞
dt ei(ω

′−ωo)t 1− 〈σ3(t)〉
1− 〈σ3(0)〉

=
1

2

[
δ(ω′ − ωo) + tanh(βωo/2) · 1

π

2Γ

(2Γ)2 + (ω′ − ωo)2

]
.

(20.33)

This tells us that the spectrum of the time-dependent fluctuations of σ− has a Lorentzian profile
centered on the Larmor frequency ωo and its HWHM (half width at half maximum) is twice the
transition rate between the two level system. The temperature dependence of the profile is embodied
in the factor tanh(βωo/2).

Conversely, if we put X = σ+, it turns out from (20.30) that

Sσ+σ−(ω′) =
e−βωo/2

Tr[e−βZo ]
C−,−(ω′)

=
e−βωo/2

Tr[e−βZo ]

1

2π

∫ +∞

−∞
dt ei(ω

′+ωo)t 1 + 〈σ3(t)〉
1 + 〈σ3(0)〉

=
1

2

[
δ(ω′ + ωo)− tanh(βωo/2) · 1

π

2Γ

(2Γ)2 + (ω′ + ωo)2

]
.

(20.34)

It is evident that for ωo > 0, Sσ−σ+(ω′) is the stimulated absorption spectrum and Sσ+σ−(ω′) is the
stimulated emission spectrum [56]. At any rate, the two spectra are related through the relation

Sσ−σ+
(ω′)− Sσ+σ−(−ω′) = tanh(βωo/2) · 1

π

2Γ

(2Γ)2 + (ω′ − ωo)2
. (20.35)



140 Chapter 20. Application I: CW experiment with an ensemble of spin-1/2 particles.

This relation differs from the one given in LRT (see, for example, (3.73) of [56]). To recover the
LRT limit from (20.35), we need to remember that the whole edifice of LRT rests on the adiabatic
process assumption, where it is assumed the interaction between the system and the bath is weak
enough so as not to change appreciably the occupation probabilities of the initial state of the system,
and that the system has remained in its equilibrium state in the far past prior to its encounter with
the bath. This is equivalent to taking the limit L → 0 in our master equation, (20.1), and having
to(the initial time)→ −∞. In other terms, we can get the adiabatic process limit of a given dynamic
structure factor obtained from the full solution of the quantum Markovian master equation by taking
the limits Γ→ 0 and ωLS → 0. Now, if we introduce

Sadσ−σ+
(ω′) ≡ lim

ωLS ,Γ→0
Sσ−σ+

(ω′) (20.36a)

Sadσ+σ−(ω′) ≡ lim
ωLS ,Γ→0

Sσ+σ−(ω′) (20.36b)

– where Sadσ−σ+
(ω′) and Sadσ+σ−(ω′) indicate the adiabatic process limits of Sσ−σ+

(ω′) and Sσ+σ−(ω′),
respectively – then we readily derive from (20.33) and (20.34) that

Sadσ+σ−(−ω′) = e−βωoSadσ−σ+
(ω′) (20.37)

which is the relation between the two spectra according to LRT [56].

It is certainly worth noting that without the linear response Hamiltonian HLR(t), (20.8), we would
have had 〈σ±(t)〉 = 0 ∀t ≥ 0 since 〈σ±(0)〉 = 0 (see (20.13)). As a consequence, the dynamic
structure factors Sσ∓σ±(ω′), for example, would result to be always zero, meaning we do not observe
any absorption or emission spectrum – but that would have been contrary to experimental observations.
Given that HLR(t) stems from the superoperator A(t), (19.69), the observation just made reinforces
the assertion that A(t) is central to the theory and cannot be simply – generally speaking – put to
zero (or ignored) in (20.1) in order to make the quantum map Λ(t), (19.79), a UDM.

20.5 Generalized Kraus operator sum representation

As indicated in Appendix C.2, the quantum map Λ(t) related to the master equation in (20.1) cannot
be a UDM. It is interesting to note that in this particular simple example where we are dealing with
an ensemble of spin-1/2 particles, it can be fairly easily shown – using the results discussed in Chap.
12 – that the density matrix %(t) in (20.12) may nevertheless – in spite of Λ(t) not being UDM – be
written according to a (generalized) Kraus operator sum as follows:

%(t) = Λ(t)%(0) =

1∑
µ=0

Mµ(t)%(0)M†µ(t) (20.38)

where %(0) is given by (20.7), and

Mµ(t) ≡ U(t)Γµ(t) . (20.39)

The matrix U(t) is unitary:

U(t) =

(
a+(t) a−(t)

b+(t) b−(t)

)
(20.40)
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where

a±(t) = cos
[
β±(t)/2

]
e−iϑ(t)/2 (20.41a)

b±(t) = sin
[
β±(t)/2

]
eiϑ(t)/2 (20.41b)

β+(t)

2
= arctan

−1−
√

1 + |η(t)|2

|η(t)|

 = arctan

 |η(t)|

1 +

√
1 + |η(t)|2

 (20.42)

β−(t)

2
= − arctan

1 +

√
1 + |η(t)|2

|η(t)|

 (20.43)

and finally,

η(t) ≡ 2
〈σ+(t)〉′

〈σ3(t)〉′
eiϑ(t) ≡ 〈σ+(t)〉′∣∣〈σ+(t)〉′

∣∣ (20.44)

– where expressions for 〈σ+(t)〉′ and 〈σ3(t)〉′ follow from (20.13) (or, alternatively, can be derived from
(20.15))1.

Regarding the matrix Γµ(t), we have:

Γ0(t) =

(√
λ+(t) 0

0
√
λ−(t)

)
Γ1(t) =

(
0

√
λ+(t)√

λ−(t) 0

)
(20.45)

where
λ±(t) ≡ 1

2

[
1± 〈σ3(t)〉′

√
1 + |η(t)|2

]
. (20.46)

The functions λ±(t) are positive-definite. One way to see this is by observing that since %(t) is always
a mixed state, we have that (Chap. 4):

Tr
[
%(t)%†(t)

]
< 1

1

2
+

∣∣〈σ3(t)〉′
∣∣2

2
+ 2

∣∣〈σ+(t)〉′
∣∣2 < 1∣∣〈σ3(t)〉′

∣∣2
4

+
∣∣〈σ+(t)〉′

∣∣2 < 1

4

(20.47)

– from which it readily follows that

1

2

∣∣〈σ3(t)〉′
∣∣√1 + |η(t)|2 =

√
1

4

∣∣〈σ3(t)〉′
∣∣2 +

∣∣〈σ+(t)〉′
∣∣2 < 1

2
. (20.48)

It can also be easily verified that the generalized Kraus operators {Mµ(t)}, (20.39), satisfy the com-
pleteness relation

1∑
µ=0

M†µ(t)Mµ(t) = I2 . (20.49)

If one should compare (20.39) with (12.18), one might think a unitary matrix is missing in (20.39).
That unitary matrix is one which diagonalizes %(0). But %(0) is already diagonal in the basis {|0〉 , |1〉},
so one may say the unitary matrix which diagonalizes %(0) in this very basis is the identity matrix

1Note that 〈σ3(t)〉′ = 〈σ3(t)〉, as remarked earlier on in this chapter. We have chosen to keep 〈σ3(t)〉′ for consistency
since we are clearly working in the interaction picture.
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I2. Note, however, that one exquisite implication of this observation is that the (positivity) domain of
Λ(t) comprises all qubit density matrices which are diagonal in the basis {|0〉 , |1〉}, as pointed out in
Sec. 19.3.2.

We conclude this chapter by noting that – from (20.38), (20.39) and appropriate subsequent equa-
tions –,

%(t) = λ+(t) |ψ+(t)〉〈ψ+(t)|+ λ−(t) |ψ−(t)〉〈ψ−(t)| (20.50)

where
|ψ±(t)〉 = a±(t) |0〉+ b±(t) |1〉 . (20.51)

We thus conclude (or, perhaps, confirm) that λ±(t) are the eigenvalues of %(t). In other words, λ±(t)

express the populations of the qubit system in the course of the dynamics (obviously, in the basis
{|ψ±(t)〉}).



Chapter 21

Application II: The Linear Response

Theory connection.

Since the seminal work of Davies and Spohn [38], there have been a number of works [3, 27, 107]
aimed at revisiting at least some aspects of Kubo’s LRT [56, 59, 101, 154, 158] from the perspective of
quantum (non-)Markovian master equations. Much of these efforts have been concentrated on deriving
fluctuation-dissipation theorems. We showed in the preceding chapter how the theory and formalism
we are developing entail some of the key results in LRT. In this chapter, we shall try to extend some
of the results obtained in Sec. 20.4 to the general case of an arbitrary multispin system. We also show
how the celebrated LRT fluctuation-dissipation theorem [56] is easily derived as a limit case.

We begin with the following formal solution to (19.68):

%(0)(t)− %(0)(0) =

∫ t

0

dt′ A(t′)%(0)(0) +

∫ t

0

dt′ L%(0)(t′) (21.1)

which in the Schrödinger picture (see (19.23a)) becomes:

ρ(0)(t)− ρ(0)(0) = −i
∫ t

0

dt′
[
e−itZoHLR(t′)eitZo , ρ(0)(0)

]
+

∫ t

0

dt′ L
[
e−i(t−t

′)Zoρ(0)(t′)ei(t−t
′)Zo

]
. (21.2)

Thus, for any given operator X of the multispin system, we derive from (21.2) that:〈
X(0)(t)

〉
−
〈
X(0)(0)

〉
= −i

∫ t

0

dt′
〈[
X, e−itZoHLR(t′)eitZo

]〉
o

+

∫ t

0

dt′ Tr
(
XL

[
e−i(t−t

′)Zoρ(0)(t′)ei(t−t
′)Zo

])
(21.3)

where
〈
X(0)(t)

〉
≡ Tr

[
Xρ(0)(t)

]
and 〈F 〉o ≡ Tr

[
Fρ(0)(0)

]
. Naturally,

〈
X(0)(t)

〉
is the expectation

value of the observable X at zeroth-order in X . We now show that if we take the limit L → 0 (or if
the quantum dynamic semigroup generator term is negligible with respect to the linear response term),
we get a richer version of linear response theory [56, 59, 101, 154, 158] from (21.3). We may term this
the ‘LRT limit’ of (21.3). Indeed, with L → 0, (21.3) reduces to:〈

X(0)(t)
〉
−
〈
X(0)(0)

〉
= −i

∫ t

0

dt′
〈[
X, e−itZoHLR(t′)eitZo

]〉
o
. (21.4)

143
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In any case, after some simple rearrangements, it can be shown that:

− i
∫ t

0

dt′
〈[
X, e−itZoHLR(t′)eitZo

]〉
o

= 2B1

∫ +∞

−∞
dω′ρf (ω′)

∑
ωo

eitωo

2

[
χωo,∞(ω′) + χωo,t(ω

′)
]

+ c.c.

(21.5)
with

χωo,∞(ω′) ≡ χ+,ωo,∞(ω′) + χ−,ωo,∞(ω′) (21.6a)

χωo,t(ω
′) ≡ χ+,ωo,t(ω

′) + χ−,ωo,t(ω
′) (21.6b)

where χ±,ωo,∞(ω′) and χ±,ωo,t(ω
′) together define the linear frequency-dependent response function

of the spin system’s observable X to the perturbation defined by the coupling between the rotating
fields, B1,±(t), and ξx. In particular, χ±,ωo,∞(ω′), which define the steady-state limit of the linear
response, are given by the expressions:

χ±,ωo,∞(ω′) := lim
η→0+

〈[X, ξx(+1, ωo)]〉o
(±ω′ − ωo) + iη

(21.7)

while for χ±,ωo,t(ω′), the transient elements of the response function, we have:

χ±,ωo,t(ω
′) := − lim

η→0+

〈[X, ξx(+1, ωo)]〉o
(±ω′ − ωo) + iη

e[i(±ω
′−ωo)−η]t (21.8)

where,
〈[X, ξx(+1, ωo)]〉o := Tr

(
[X, ξx(+1, ωo)] ρ

(0)(0)
)
. (21.9)

It is interesting to observe that χ±,ωo,∞(ω′), (21.7), are precisely the usual frequency response functions
one would define for the pair of operators X and ξx(+1, ωo) in LRT under the so-called Lehmann
representation [56]. In LRT, one obtains χ±,ωo,∞(ω′) under the assumption of an adiabatic process
[56, 59, 101, 154, 158], where, as remarked earlier, can be seen as taking the limits L → 0, to → −∞.
It is crucial to note here that while the first limit alone retains the transient components of the
response functions, the introduction of the second limit dumps these. For steady-state experiments
like CW magnetic resonance, taking the limit to → −∞ is acceptable since it practically translates
into the limit t→ +∞, i.e. the steady-state limit; but for transient experiments like pulsed NMR and
ESR, these transient response functions play a crucial role in the theory. Interestingly, the integral∫ +∞
−∞ dω′ρf (ω′)χωo,t(ω

′) is an exponentially decaying oscillatory function, with decay rate τf . So, for
t� τf , the transient component of the response function becomes negligible and (21.5) reduces to the
form:

− i
∫ t

0

dt′
〈[
X, e−itZoHLR(t′)eitZo

]〉
o

= 2B1

∫ +∞

−∞
dω′ρf (ω′)

∑
ωo

[
eitωo

2
χωo,∞(ω′) + c.c.

]

= 2B1

∫ +∞

−∞
dω′ρf (ω′)

∑
ωo

[
cos(ωot)χ

′

ωo,∞(ω′) + sin(ωot)χ
′′

ωo,∞(ω′)
]

(21.10)

where:

χ
′

ωo,∞(ω′) := <χωo,∞(ω′) = <χ+,ωo,∞(ω′) + <χ−,ωo,∞(ω′) (21.11a)

−χ
′′

ωo,∞(ω′) := =χωo,∞(ω′) = =χ+,ωo,∞(ω′) + =χ−,ωo,∞(ω′) (21.11b)
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and

<χ±,ωo,∞(ω′) =

[
P

(
<
〈[
X†(+1, ωo), ξ

x(+1, ωo)
]〉
o

±ω′ − ωo

)

+ πδ(±ω′ − ωo)=
〈[
X†(+1, ωo), ξ

x(+1, ωo)
]〉
o

]
(21.12)

=χ±,ωo,∞(ω′) =

[
P

(
=
〈[
X†(+1, ωo), ξ

x(+1, ωo)
]〉
o

±ω′ − ωo

)

− πδ(±ω′ − ωo)<
〈[
X†(+1, ωo), ξ

x(+1, ωo)
]〉
o

]
. (21.13)

In these last two equations, we have made use of the fact that

〈[X, ξx(+1, ωo)]〉o =
〈[
X†(+1, ωo), ξ

x(+1, ωo)
]〉
o
. (21.14)

(The expression for X(+1, ωo) follows from (19.40).) This identity clearly indicates that the linear
response functions χ±,ωo,∞(ω′) and χ±,ωo,t(ω′) become identically zero if X is not proportional to the
q = ±1 component of a spherical tensor of rank k ≥ 1 like ξx(+1, ωo). For, example, if X = ξz, which
is the zeroth-component of a rank k = 1 tensor, ξz(+1, ωo) = 0, therefore, 〈[ξz, ξx(+1, ωo)]〉o = 0 as a
consequence.

Moreover, one can easily show that <χωo,∞(ω′) is the Hilbert transform of =χωo,∞(ω′) (which also
means the latter is the Hilbert transform of the former multiplied by (−1)), as one would expect from
the Kramers-Krönig dispersion relation [56, 59].

It is worth noting that the LRT limit of (21.3) is always real, independent of whether X is
real Hermitian or not. This is clear from (21.5). In the limit case whereby X is real Hermitian,〈[
X†(+1, ωo), ξ

x(+1, ωo)
]〉
o
is also real and we get:

<χ±,ωo,∞(ω′) = P
〈[
X†(+1, ωo), ξ

x(+1, ωo)
]〉
o

±ω′ − ωo
(21.15)

and
=χ±,ωo,∞(ω′) = −πδ(±ω′ − ωo)

〈[
X†(+1, ωo), ξ

x(+1, ωo)
]〉
o
. (21.16)

These expressions coincide with those from LRT [56]. Many of the results known in LRT can also
be derived from the above relations but care must be taken when comparing these relations. Most
importantly, one must note that the spin operators here, i.e. ξx(+1, ωo), which get coupled to the
relevant part of the external field are not Hermitian.

For example, in the qubit problem discussed in the previous chapter, we saw that ξx(+1, ωo) is
given by (20.4). Then, for the response of µx (the magnetic moment operator of the qubit system
along the direction x) to the coupling of ξx(+1, ωo) to B1(t), we simply put X = µx = −ξx (see
(19.3)) . And since in this case

〈[
X†(+1, ωo), ξ

x(+1, ωo)
]〉
o

= −(γ/2)2 〈[σ+, σ−]〉o is real, (21.15) and
(21.16) also hold. Now, if – in order to keep tradition with the notations in use in LRT [56] – we write
χωo,∞(ω′) ≡ (γ/2)2χσ−σ+(ω′), we see that for positive ωo, it follows from (21.16) that

=χσ−σ+
(ω′) = πδ(ω′ − ωo) 〈[σ+, σ−]〉o = −πδ(ω′ − ωo) tanh(βωo/2) . (21.17)
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It is interesting to observe that if we now take the adiabatic process limit of (20.35), and then make
use of (20.37) and (21.17), we end up with

=χσ−σ+
(ω′) = −π

(
1− e−βωo

)
Sadσ−σ+

(ω′) (21.18)

which is the celebrated LRT fluctuation-dissipation theorem [56].



Chapter 22

Application III: Theoretical

zeroth-order spectrum in the adiabatic

process limit.

22.1 Theoretical considerations

At this stage, it should be evident to the Reader that, when it comes to theoretical spectra, the Lindblad
superoperator L in our master equation, (19.68), has the role of primarily allowing for a finite width
of the resonance lines. This is quite evident, for example, from the qubit dynamic structure factors we
derived in (20.33) and (20.34). On the other hand, by taking the adiabatic process limit, we shrink
the finite-width resonance lines to Dirac-delta-like ones. This tells us that if we are only interested
in determining the position and intensity of the resonance lines, then we just have to consider the
adiabatic process limit of our master equation in (19.68). In the following, our object of concern will
be the position and intensity of the resonance lines so we consider the adiabatic process limit of (19.68).

In CW experiments, the signal detected is the induced voltage E in the receiver coil caused by
the time variation of the magnetic flux therein due to the relaxation of the sample’s spin polarization
vector. It is known that [33, 44]:

E ∝ P

B1
(22.1)

where P is the power absorbed per unit volume of the sample. In the steady-state limit,

P = lim
t→+∞

1

t

∫ t

0

dt′
dE(t′)

dt′
(22.2)

– where dE(t)
dt is the rate at which the spin system absorbs energy from the oscillating field, per unit

volume of sample. With B1(t) given by (19.7), we have that,

dE(t)

dt
= B1(t) · d 〈M(t)〉

dt
= 2

∑
ωr

B1 cos(ωrt)
d
〈
M

(0)
x (t)

〉
dt

+O(X ) (22.3)

where
〈
M

(0)
x (t)

〉
is the zeroth-order approximation of the expectation value of the operator Mx (≡

(N/V )µx = −(N/V )ξx; (N/V ) is the number of particles per unit volume), i.e. the magnetization
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operator along the x− axis. Hence, it follows from (22.2) that:

P = lim
t→+∞

1

t

∫ t

0

dt′ 2
∑
ωr

B1 cos(ωrt
′)
d
〈
M

(0)
x (t′)

〉
dt′

(22.4)

or alternatively,

P = 4B2
1

∑
ωr′

∑
ωr

∑
ωo

ωo lim
t→+∞

1

t

∫ t

o

dt′
[
− cos(ωr′t

′) sin(ωot
′)χ′ωo,∞(ωr)

+ cos(ωr′t
′) cos(ωot

′)χ′′ωo,∞(ωr)

]
. (22.5)

Here, we have used the steady-state limit of
〈
M

(0)
x (t)

〉
, derived directly from (21.4) and (21.10):

〈
M (0)
x (t)

〉
= 2B1

∫ +∞

−∞
dω′ρf (ω′)

∑
ωo

[
cos(ωot)χ

′

ωo,∞(ω′) + sin(ωot)χ
′′

ωo,∞(ω′)
]

(22.6)

– where, as usual, the relations in (21.11) hold, with

χ′±,ωo,∞(ω′) = P
〈[
M†x(+1, ωo), ξ

x(+1, ωo)
]〉
o

±ω′ − ωo
(22.7)

χ′′±,ωo,∞(ω′) = πδ(±ω′ − ωo)
〈[
M†x(+1, ωo), ξ

x(+1, ωo)
]〉
o

(22.8)

and 〈[
M†x(+1, ωo), ξ

x(+1, ωo)
]〉
o

=

(
N

V

)∑
n,n′

|〈n| ξx(+1, ωo) |n′〉|
2
(
P (0)

n − P (0)
n′

)
(22.9)

– where
P (0)

n ≡
〈

n
∣∣∣ ρ(0)(0)

∣∣∣n〉 =
e−βεn

Tr [e−βZo ]
. (22.10)

The fact that we are working in the steady-state limit is confirmed by the absence of the transient
magnetic susceptibilities χ′ωo,t, χ

′′
ωo,t in (22.5). In obtaining (22.5), we have made use of (22.6) and

the transformation
∫ +∞
−∞ dω′ρf (ω′) 7→

∑
ωr
. Upon going through with the integration in (22.5), we

see that the terms proportional to χ′ωo,∞ either vanish or may be neglected altogether for all practical
purposes. Thus,

P = 2B2
1

∑
ωr′

∑
ωr

∑
ωo

ωo lim
t→+∞

(
sinc [(ωo + ωr′)t] + sinc [(ωo − ωr′)t]

)
χ′′ωo,∞(ωr) . (22.11)

But the fact that ωr′ is always positive, together with the presence of the Dirac delta function in
the definition of χ′′±,ωo,∞, (22.8), also makes the term proportional to sinc [(ωo ± ωr′)t] negligible with
respect to the sinc [(ωo ∓ ωr′)t] term for positive and negative ωo, respectively, reducing, therefore,
(22.11) to:

P = 2B2
1

∑
ωr

∑
ωo

ωo lim
t→+∞

(
sinc [(ωo − ωr)t]χ′′+,ωo,∞(ωr) + sinc [(ωo + ωr)t]χ

′′
−,ωo,∞(ωr)

)
= 2B2

1

∑
ωo

ωo

∫
dω′ρf (ω′) lim

t→+∞

(
sinc [(ωo − ω′)t]χ′′+,ωo,∞(ω′) + sinc [(ωo + ω′)t]χ′′−,ωo,∞(ω′)

)
= P+ + P−

(22.12)
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where
P± = 2πB2

1

∑
ωo

ωo ρf (±ωo)
〈[
M†x(+1, ωo), ξ

x(+1, ωo)
]〉
o
. (22.13)

Making use of the relation in (22.9), we may rewrite (22.12) as:

P =

(
N

V

)∑
ωo

ωo
∑
n,n′

(
P (0)

n − P (0)
n′

)
Γn,n′(ωo) (22.14)

where

Γn,n′(ωo) = Γ+
n,n′(ωo) + Γ−n,n′(ωo) (22.15a)

Γ±n,n′(ωo) := 2πB2
1ρf (±ωo) |〈n| ξx(+1, ωo) |n′〉|

2
. (22.15b)

Γ±n,n′(ωo) is the transition rate between the states |n〉 and |n′〉 at the frequency ±ωo, respectively –
with ωo = εn′ − εn. The expression for Γn,n′(ωo) in (22.15a) can be easily derived from (19.68) if one
expands %̇(0)

n,n(t) ≡
〈
n
∣∣ d%(0)(t)/dt

∣∣n〉, and compares the result with the general expression for the Pauli
master equation [5, 22].

If the applied oscillating field has a frequency distribution ρf (ω′) sharply peaked at ω, and ω = ±ω′o,
where ω′o is one of the allowed transition frequencies of the spin system, we see that only the frequency
ω′o in the summation

∑
ωo
, (22.14), survives. In this case, one of Γ±n,n′(ω

′
o) dominates the other in the

sum in (22.15a). For example, Γ+
n,n′(ω

′
o)� Γ−n,n′(ω

′
o) if ω′o is positive.

If we apply the high temperature approximation [53], i.e. ρ(0)(0) ≈ D−1
S (I− βZo), with β = 1

kBT

(DS is the dimension of the multispin Hilbert space) in (22.14), and introduce the obtained zeroth-order
approximation for P (i.e. (22.14)) into (22.1), we get:

E ∝
∑
ωo

Ω(ωo) ·
1

DS

∑
n,n′

|〈n| ξx(+1, ωo) |n′〉|
2 (22.16)

Ω(ωo) :=

(
N

V

)
2πB1ω

2
oβ [ρf (ωo) + ρf (−ωo)] . (22.17)

For fixed Ω(ωo), we note from (22.16) that the intensity of the resonance signal at ω = ±ωo,
Int(ωo), is:

Int(ωo) ∝
1

DS

∑
n,n′

|〈n| ξx(+1, ωo) |n′〉|
2
. (22.18)

This means at zeroth-order, all pair of states {|n〉 , |n′〉} such that εn′ − εn = ωo and Mn′ −Mn = +1,
contribute to Int(ωo). The operator ξx being the sum of single spin operators, (19.3), we also note
that another implication of the observation just made is the following: for a specific choice of |n〉 , |n′〉,
the nonzero value of 〈n| ξx(+1, ωo) |n′〉 can only be interpreted as a transition involving a single spin
of the multiset A = {j1, j2, . . . , jN} – at a given time. Let’s call this spin the "resonance spin". We
therefore find from (19.33) and (19.17) that:

εn′ − εn = −γiBo +
∑
k 6=i

Tikmz,k (22.19)

where the resonance spin is assumed to be the i−th element of the multiset A = {j1, j2, . . . , jN}, and
mz,k = 〈n|Szk |n〉 = 〈n′|Szk |n′〉 is the magnetic quantum number of the k−th spin according to the
multispin states |n〉 and |n′〉.
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To proceed with our discussion, it is much helpful to reconsider the multiset of spins A = {j1, j2, . . . , jN}
in terms of equivalent spins. By "equivalent" spins we mean a submultiset A ′ of A whose elements
cannot be distinguished from each other on the basis of their coupling tensors with other spins and
external fields [62] (see Part II). Say the resonance spin i belongs to the group of equivalent spins
labeled α. In terms of equivalent spins, we may rewrite (22.19) as:

εn′ − εn = −γαBo +
∑
α′ 6=α

Tαα′Mz,α′ . (22.20)

Mz,α′ is the total spin magnetic quantum number of the α′−th group of equivalent spins according to
the multispin states |n〉 and |n′〉. In the HP representation, we may express Mz,α′ as [62, 66]:

Mz,α′ = Jα′ − nα′ (22.21)

where Jα′ = jα′Nα′ is the total spin of the α′−th group of equivalent spins (Nα′ is the cardinality of
the group and jα′ is the spin quantum number of each member of the group, assumed to be identical
for all). The integer nα′ is the total number of HP bosons distributed among the Nα′ spins of the
α′−th group [66].

Suppose in our CW experiment, the frequency ω and the amplitude B1 of the rotating field are
fixed, with ω = ωo, while the steady magnetic field Bo is slowly tuned to resonance. If the frequency
gap εn′ − εn in (22.20) coincides with ωo, then we derive from the latter that the resonance condition
in terms of the amplitude of the steady field is (see also [163]):

Bo = Bα(ωo) +
∑
α′ 6=α

λαα′nα′ (22.22)

where,

Bα(ωo) := −ωo
γα
−
∑
α′ 6=α

λαα′Jα′ (22.23a)

λαα′ := −Tαα
′

γα
. (22.23b)

The absolute values |λα,α′ | are the so-called splitting constants in magnetic resonance. Bα(ωo) is the
position of the resonance line originating from the transition event (involving obviously the resonance
spin) whereby all the spins of the other groups are with their maximum spin projection along the
quantization axis (i.e. nα′ = 0 ∀α′). As we can see from (22.23a), for a fixed frequency ωo, Bα(ωo) is
constant. Below, we shall use Bα(ωo) as the reference for the other resonance lines, i.e. we shall be
considering ∆B ≡ [Bo −Bα(ωo)].

We readily infer from (22.22) that, in this weak coupling limit under consideration, the resonance
position Bo depends on the total HP bosons’ occupation numbers {nα′}. The intensity of the detected
magnetic resonance signal – in reference to the resonance spin group α – is proportional to the degen-
eracy Cα,{nα′} of the collection {nα′}. Indeed, if cnα′ is the degeneracy of HP boson’s total occupation
number nα′ for the α′−th group of equivalent spins (i.e. cnα′ is the number of different distinct ways
of distributing a total of nα′ HP bosons between the Nα′ spins of the α′−th group; or, in other words,
cnα′ is the number of distinct ways of configuring the spins of the α′−th group so as to obtain a total
spin magnetic quantum number of Mz,α′ = (Jα′ − nα′)), then it readily follows that:

Cα,{nα′} =
∏
α′

cnα′ (22.24)
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since distinct groups of equivalent spins are independent of each other. It is easy to prove that the
generating function for the integers Cα,{nα′} is the polynomial Pα(x) [62, 66]:

Pα(x) :=
∏
α′ 6=α

(
1 + xα′ + . . .+ x

2jα′
α′

)Nα′
=
∑
{nα′}

Cα,{nα′}
∏
α′

x
nα′
α′ .

(22.25)

Having determined Cα,{nα′}, we may now go back to (22.16). It is now clear that for fixed ω = ±ωo, if
the transition frequency for the α−th group of equivalent spins happen to coincide with ωo, then the
induced voltage in the receiver coil is:

E ∝ Ω(ωo)
γ2
αNα
Dα,S

(
2jα + 2

3

)
Cα,{nα′} . (22.26)

Consequently,

Int(Bo) ∝
γ2
αNα
Dα,S

(
2jα + 2

3

)
Cα,{nα′} (22.27)

where Dα,S is the dimension of the spin Hilbert subspace comprising the resonance group α and all
the other equivalent groups with which it effectively interacts with (i.e. those with Tαα′ 6= 0). In
this case, the index α′ in (22.25) (and in (22.20)-(22.24)) may then be re-interpreted as running over
only those groups with Tαα′ 6= 0. From the last two equations above, we note the dependence of the
signal intensity on the quantum spin number jα of the resonance group through the 2jα−th tetrahedral
number, i.e.

(
2jα+2

3

)
. With all other parameters and conditions held constant, these equations inform

us that the higher the spin quantum number of the resonance group, the higher the intensity of the
signal. We also note that for a fixed resonance group α, the integers {Cα,{nα′}} are effectively the
relative intensities of the resonance signals.

In our derivation of (22.26), we have assumed the resonance spin group α is present in all the initial
N chemical species of the ensemble. This is not always the case. (22.26) and (22.27) may therefore
be multiplied by the fraction fα of the initial N which contains the resonance group α. In NMR,
for example, if the resonance group in the sample has not undergone any alteration of its isotopic
concentration fα becomes the natural abundance of the group.

Moreover, if there are more than one resonance spin groups who satisfy the resonance conditions,
it is clear that (22.26) and (22.27) must be summed over such groups since the operator ξx(n, ωo) is
the sum of single spin operators, (19.3) and (19.39).

(22.22) and (22.27), together determine the resonance spectrum of the spin system at zeroth-order
in X according to ACP, in the adiabatic process limit. While the former gives the resonance steady
field Bo for a given configuration of the spins in terms of {nα′}, the latter equation gives the intensity
of the resonance signal. And the properties of the spectrum – which one can easily conclude from these
two equations – are in agreement with those reported by Gutowsky, McCall and Slichter [60, 61]. But
more importantly, we must remark that the polynomial Pα(x), (22.25), is the generating function for
the resonance spectrum. Once we construct Pα(x) and are in possession of the value of parameters
like the constants λα,α′ , γα and ωo, we can easily generate the stick-plot spectrum. Each term of
Pα(x) represents a resonance line: for a given term, the coefficient indicates the relative intensity of
the corresponding resonance line, while the exponents of the variables determine – by means of (22.22)
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– the position of the resonance line. The advancement in computer algebra makes the computational
implementation of this protocol easy to achieve. We illustrate these points by considering specific
examples from ESR, namely the absorption spectrum of naphthalene, anthracene and biphenyl anions.
The parameters are taken from [163] and the plots were generated from a simple Python code which
implemented (22.22) and (22.25) (and an extensive use of the SymPy [109] library was made).

22.2 Naphthalene anion

The naphthalene anion, Fig. 22.1, has two groups of equivalent nuclei: the first group comprises the
hydrogen nuclei in the positions 1, 4, 5, 8, and those in the positions 2, 3, 6, 7 form the second group.
The splitting constants for the two groups are λe,1 = 4.90 G and λe,2 = 1.83 G (counterion is K+)[163].
From (22.25), we conclude that the generating function for this anion’s ESR spectra at zeroth-order

Figure 22.1: Naphthalene anion

is:
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(22.28)

Let the exponents of x1 and x2 count the total number of HP bosons held by the first and second group
of equivalent nuclei, respectively. As remarked above, every term in the polynomial Pe(x) represents
a resonance line: The coefficient of a given term indicates the relative intensity of the corresponding
resonance line and the exponents of the variables of the term determine the position of the resonance
line by means of (22.22). If we take the term (24x2

2x
3
1), for example, the relative intensity of the

resonance line it represents is 24, the number of HP bosons specifying the configuration of group 1
(x1), and group 2 (x2) are 3 and 2, respectively. So, from (22.22), we determine that the corresponding
resonance line falls at ∆B = 3λe,1 + 2λe,2 = 18.36 G from the reference position Bα(ωo) (which may
be set equal to zero for convenience). We show the stick-plot ESR spectrum of the naphthalene anion
computed this way in Fig. 22.2. The experimental [163] positions and relative intensities of the spectral
lines are in very good agreement with the simple theoretical spectrum in Fig. 22.2.

22.3 Biphenyl anion

The biphenyl anion, Fig. 22.3, has three groups of equivalent protons: two of which are of cardinality
4, and the last of cardinality 2. Let λe,1, λe,2 be the splitting constants of the first and second groups
of equivalent protons (of size 4), and λe,3 the splitting constant of the set of equivalent protons of size
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Figure 22.2: Theoretical ESR stick-plot spectrum of naphthalene anion (counterion: K+). Parameters
used were taken from [163]. Each spectral line is labeled by its relative intensity.

2. From the literature [163], we have: λe,1 = 2.675 G, λe,2 = 0.394 G and λe,3 = 5.387 G. Once again,

Figure 22.3: Biphenyl anion

we see from (22.25) that the generating function for biphenyl anion’s ESR spectrum is:
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(22.29)

For each term, the exponent of xi corresponds to the number of HP bosons held by the i−th group
of equivalent protons. The ESR spectrum can be generated from this polynomial as explained above.
For example, if we take the term (4x3

2x
4
1), the relative intensity of the corresponding spectral line is

4, and it falls at a distance of ∆B = 4λe,1 + 3λe,2 = 11.882 G from Bα(ωo), the reference position.
The generating function in (22.29) has 75 terms, which is also the number of spectral lines to expect
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Figure 22.4: High-field theoretical ESR stick-plot absorption spectrum of biphenyl anion (counterion:
K+). Parameters were taken from [163].

experimentally. We show in Fig. 22.4 the stick-plot ESR spectrum for the biphenyl anion generated
from Pe(x), (22.29).

22.4 Anthracene anion

Like the biphenyl anion, the anthracene anion – Fig. 22.5 – has three groups of equivalent protons
and of the same dimension as those of the biphenyl anion. Let λe,1 and λe,2 be the splitting constants

Figure 22.5: Anthracene anion

of the first and second groups of equivalent spins of dimension 4, and λe,3 the splitting constant of
the group of dimension 2. Their values are taken from the literature [163] to be: λe,1 = 2.73 G,
λe,2 = 1.51 G and λe,3 = 5.34 G. Given that the biphenyl and anthracene anions present the same
groups of equivalent spins (cardinality-wise), their high-field spectra also share the same generating
function. As a matter of fact, using the generating function in (22.29), we can determine the stick-plot
spectrum of the anthracene anion. The result is reported in Fig. 22.6. Both spectra in Figs. 22.2
and 22.6 have the same number of resonance lines, and the distribution of the relative intensities of
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Figure 22.6: High-field theoretical ESR stick-plot absorption spectrum of anthracene anion (counterion:
K+). Parameters were taken from [163].

these lines is the same in both spectra. The only difference between the two are the positions of the
resonance lines.
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Chapter 23

Conclusion and perspectives

23.1 On the distinction between UDMs and non-UDMs

In this work, we have tried to refine certain concepts in relation to the theory of open quantum systems
taking inspiration from results in [138, 155]. We have seen that quantum dynamical maps may be
classified into two categories: universal dynamical maps (UDMs) [132] and non-universal dynamical
maps (non-UDMs) based on the nature of their domain. For a finite-dimensional state space Hd,
UDMs have as domain the entire set O+,1

d (i.e. the convex cone in the set of trace-class unit-trace
positive semi-definite self-adjoint linear operators acting on Hd). On the other hand, the domain of
a non-UDM is restricted to a proper subset of O+,1

d . We have shown that it is an entrenched and
inextricable property of both UDMs and non-UDMs to be completely positive and trace-preserving
(CPT) with respect to their respective domains. This marks a stark contrast to the notion of CPT
maps in the literature – where a quantum map is understood to be CPT if its domain coincides with
O+,1
d . We thus see that what we have termed here UDMs (non-UDMs) is what is normally called CPT

(positive but non-CP) maps in the literature [26, 72, 106, 145, 168].

It is important we view the domains of quantum maps as significant as the maps themselves1.
In this sense, the distinction between UDMs and non-UDMs becomes crucial. This distinction, we
believe, could also help settle the debate [4, 119, 146] on how fundamental CPT maps are. We believe
the debate is, in ultimate analysis, a problem of definition. This is because, viewed along the lines of
UDMs and non-UDMs, it is clear – as explained in Sec. 12.2 and the beginning of Chap. 13 – that
the CPT property and the very concept of quantum dynamical maps are two indivisible notions, for
a map cannot be a quantum dynamical map, in the first place, without being CPT. By referring to
UDMs as CPT maps in the literature, the community came under the impression that a map is CPT if
and only if it is UDM. So when Pechukas [119] or Shaji and Sudarshan [146] assert that, for example,
a reduced dynamics need not be CP, what they actually meant is that the map needs not be UDM.
In fact, these authors stress on the map having its (positivity) domain – which again reminds us of
non-UDMs.

The arguments put forward in [138, 155] and in this thesis exhort us to be more circumspect

1Just as it is good practice – if not imperative – to specify the domain of an analytic function in complex analysis,
so should we make it a habit of specificying the domain of a quantum map, especially when it is a non-UDM.
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about the notion of CPT maps. With the distinction between UDMs and non-UDMs now clear, some
interesting problems also come to mind. For example, we saw in Chap. 13 the conditions under which
a quantum dynamical semigroup may emerge from an induced UDM (i.e. a UDM resulting from
reduced dynamics) [132]. Analogously, we may ask:

1. what are the general conditions which lead to an induced non-UDM (from a unitary S + R

dynamics)?;

2. Is it possible for induced non-UDMs to form a one-parameter quantum dynamical semigroup?;

3. If the answer to the last question is affirmative, what is the general form of the generator for
such a quantum dynamical semigroup?

23.2 On semiclassical quantum Markovian master equations

We have shown that it is possible to extend the GKSL approach to open quantum system theory to
those problems where one wants to treat the environment at a classical level. A quantum theory for
CW magnetic resonance was developed in this work as proof of concept. And in the development of
the theory, we introduced the affine commutation perturbation (ACP) scheme, which makes it possible
to account for some effects of the perturbation even at the zeroth-order approximation. Indeed, we
were able to derive the CW magnetic spectra of multispin systems at the zeroth-order of the ACP
scheme and computed the ESR spectra for a number of radicals – which are in good agreement with
the experimental spectra. It must, however, be emphasized that the generating function method for
computing theoretical spectra expounded in Sec. 22 predicates on the weak-coupling assumption, and
on the condition that ‖Zo‖ � ‖X ‖ (in the sense of (15.2)). We also mention that quadrupolar effects
may also be accounted for by adding the corresponding isotropic term to Ho in (19.2).

We have focused here on quantum Markovian master equations, but the approach can easily be
extended to non-Markovian ones as well. More importantly, in discussing the dynamics at the zeroth-
order, we have argued and illustrated the importance of the term linear in the system-environment
interaction, A(t)%(0)(0), (19.68). We have shown that this term – which is usually discarded (even
when not identically zero) on the basis of the environment stability condition (Sec. 15.3) in standard
microscopic derivations of quantum Markovian master equations – actually leads to a linear response
theory (LRT) within the GKSL formalism (Sec. 21). With it, we were able to derive some known
results in standard LRT [56] as limit cases. Despite its vital importance, we also observed that the
presence of this linear term prohibits the zeroth-order quantum map Λ(t), (19.79), from: i) becoming
a UDM and ii) forming a (one-parameter) quantum dynamical semigroup. Nonetheless, we have also
shown that there are strong indications suggesting that the map Λ(t) is a positive on its assigned
domain, namely %(0)(0) = e−βZo

Tr[e−βZo ]
, (19.27). This simply means Λ(t) is a non-UDM with domain

{%(0)(0)}, according to the theory. In the broader context, the domain of Λ(t) is the set C+,1
d [%0(0)]

(i.e. the set of all convex combinations of elements of O+,1
d which commute with %(0)(0)) – for a

multispin system whose (spin) state space is of dimension d. Despite being a non-UDM, we know
from Sec. 12.2 that Λ(t) is CPT and has a Kraus operator sum representation on its domain. We
illustrated this point by considering a CW experiment with an ensemble of spin-1/2 particles in Sec.
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20.5. There, we observed that in spite of the presence of the term A(t)%(0) in the master equation
(20.1) which impeded the generator from becoming that of a quantum dynamical semigroup, we were
still able to find a Kraus operator sum representation for Λ(t), i.e. (20.38). We also showed that the
Kraus operators also satisfied the usual completeness relation, (20.49) – guaranteeing that the map
Λ(t) preserves trace on its domain.

We have considered only the quantum map associated with the zeroth-order ACP quantum master
equation, (19.68). Concerning the maps associated with the higher-order terms2 of the ACP scheme
(Sec. 19.4), similar detailed studies need to be carried out but we have reason to believe that by restrict-
ing these maps to their respective specified domains (i.e. {%(n)(0)}, (19.26)), the resulting n−th-order
approximated map which evolves %(0) approximated to the n−th order in X (i.e.

∑n
m=0 %

(m)(0)), will
also be a non-UDM. The ideas and guiding principles necessary to study these higher-order corrections
are quite clear but the mathematical manipulations involved could be lengthy and quite demanding.

Imagine applying the techniques developed in Chap. 19 to a certain problem (where one treats
the focused system quantum mechanically but the environment is treated classically). Naturally, if for
some reasons the term linear in the system-environment interaction, A(t)%(0)(0), (19.68), is identically
zero, then (19.68) reduces to a truly semiclassical quantum Markovian master equation, and the map
Λ(t) becomes a UDM.

In this semiclassical approach to open quantum system theory, it may be necessary (or more ap-
propriate) to explicitly treat certain classical environment degrees of freedom as stochastic variables.
For example, if we want to account for the influence of non-spin degrees of freedom like molecular
rotations and vibrations on the dynamics of the multispin degrees of freedom, we will have to treat
the former as part of the environment (with respect to the spin degrees). These non-spin degrees
of freedom may also be adequately described as stochastic variables whose probability distributions
evolve according to some master equation – which could be, for example, a Fokker-Planck or Smolu-
chowski equation [54, 118, 157]. In these cases, the semiclassical quantum master equation (Markovian
or non-Markovian), will depend explicitly on the stochastic variables, and to obtain the effective (or
‘reduced’) semiclassical dynamics, one will have to integrate the master equation over the said proba-
bility distribution functions for the stochastic variables3. This approach may be seen as an alternative
to the so-called ‘stochastic Liouville equation’ [14, 53, 88, 151].

23.3 On the Holstein-Primakoff transformation

We have also shown how with the Holstein-Primakoff (HP) transformation, we may easily translate
certain problems in multispin magnetic resonance into counting problems. This connection may be
an indication of a profound and no less consequential relationship between magnetic resonance and
discrete mathematics; a relationship, which, if ultimately fully understood, might help free – to a
significant degree – multispin magnetic resonance from the spell of the curse that is of dimensionality
[90, 91]. On this note, it is only reasonable that we envisage a future where the full power and glory

2Surely, as explained in Sec. 19.4, one will have to apply to the corresponding higher-order correction master equations
the same approximations and assumptions invoked for the zeroth-order term.

3The author has extensively explored this approach together with Prof. V. Giovannetti and Prof. D. Rossini, and
hope to publish their findings soon.
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of discrete mathematics are unequivocally brought to bear in the study of magnetic resonance. Here,
computer algebra – now almost ubiquitous in modern computing languages and which is finding its
way also into magnetic resonance [7, 49] – is going to play a central role in the simulation of multispin
magnetic resonance spectra. And the recurrent use of generating functions like GA,Ω(q) (8.19), GA,λ(q)

(8.43) and Pα(x) (22.25) in this work strongly suggests the pivotal role polynomial algebra is also
going to play in magnetic resonance simulations.

Furthermore, the usefulness of the HP transformation is not only limited to counting problems.
For example, it can be used to calculate Clebsch-Gordan coefficients (thus, Wigner-3nj symbols) –
(n = 1, 2, 3, . . .). Schwinger [143] has used his eponymous transformation to derive analytic expressions
for Clebsch-Gordan coefficients arising from the addition of up to four angular momenta. Early research
conducted by the author suggests that the HP transformation probably offers an elegant way to go
beyond that. This is an important and interesting problem which we believe should command the
attention of many in the community as the calculation of Wigner-12j, -15j symbols and beyond [20,
85, 167] is becoming an important problem in several areas of physics, including quantum computing
[24, 25].

We would also like to mention the connection between the HP transformation and Quantum Cal-
culus [81]. This connection was moderately discussed in one of the author’s publications [66]. We
believe more research elucidating this connection is needed and worth the effort. In studying the HP
transformation and its relation to discrete mathematics and Quantum Calculus, one cannot help but
see the many territories which await explorations.
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Appendix A

Wigner-3j symbols

The Wigner-3j symbol offers a compact way to express and distill the properties of the Clebsch-Gordan
coefficients arising from the coupling of two angular momenta j1 and j2. The Wigner-3j symbol is
defined as [164, 170] (

j1 j2 j3

m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

〈j1m1, j2m2| j3 −m3〉 (A.1)

where −ji ≤ mi ≤ ji with i ∈ {1, 2, 3}. The general formular for the Clebsch-Gordan coefficient
〈j1m1, j2m2| j3m3〉 is given by Racah’s formula [124, 125, 170]

〈j1m1, j2m2| j3m3〉 = δm1+m2,m3

[
(2j3 + 1)

(s− 2j3)!(s− 2j2)!(s− 2j1)!

(s+ 1)!

× (j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j3 +m3)!(j3 −m3)!

]1/2

×
∑
ν

(−1)ν
[
ν!(j1 + j2 − j3 − ν)!(j1 −m1 − ν)!(j2 +m2 − ν)!

× (j3 − j2 +m1 + ν)!(j3 − j1 −m2 + ν)!

]−1

(A.2)

where the index ν ranges over all integral values which do not make any of the arguments of the
factorials in the denominator negative, and s = j1 + j2 + j3.

The Wigner-3j symbols have the following symmetric properties [164, 170]:

1. Odd permutation of columns:

(−1)j1+j2+j3

(
j1 j2 j3

m1 m2 m3

)
=

(
j2 j1 j3

m2 m1 m3

)
=

(
j1 j3 j2

m1 m3 m2

)
=

(
j3 j2 j1

m3 m2 m1

)
(A.3)

2. Even permutation of columns:(
j1 j2 j3

m1 m2 m3

)
=

(
j2 j3 j1

m2 m3 m1

)
=

(
j3 j1 j2

m3 m1 m2

)
(A.4)
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3. Negating the {mi}:(
j1 j2 j3

−m1 −m2 −m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

m1 m2 m3

)
. (A.5)

The orthogonality properties of Wigner-3j symbols are [164, 170]:

1. Summation over m1,m2:

∑
m1,m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j′3

m1 m2 m′3

)
=

1√
2j3 + 1

δj3,j′3δm3,m′3
(A.6)

2. Summation over j3,m3 with weight (2j3 + 1):

∑
j3,m3

(2j3 + 1)

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m′1 m′2 m3

)
= δm1,m′1

δm2,m′2
. (A.7)



Appendix B

Microcanonical and Canonical

Ensembles in Magnetic Resonance

We cannot apply the concepts of statistical mechanics to one isolated molecule or spin of interest.
Statistical mechanics requires the thermodynamic limit, i.e. N → ∞, V → ∞, but N/V = finite
quantity. We therefore need to consider a huge collection of identical molecules. In line with the
assumption made in Sec. 19.1 concerning the ensemble, we shall assume that the interaction between
the molecules is very weak, so as to approximate the system as consisting of essentially free molecules.
In practical terms, this may be realized when the concentration of the molecules to be probed is
very low1. Thus, we have an ensemble of ‘free’ solvated molecules. These free solvated molecules
are essentially quasi particles. The effect of the solvent cloud is made manifest in change of the
bare molecules properties like "effective mass", "effective charge" etc. We shall assume that the spin
properties of the bare molecule are the same as those of the quasi particle. Our aim here is to describe
this collection of quasi particles on sound statistical and mathematical principles. The derivation given
here follows closely a similar derivation given in [105] for the Ising model.

Say ν(n), a specific set of parameters specifying the state of the n−th quasi particle. We shall
indicate the energy corresponding to ν(n) as E (n)(ν(n)). By configuration, we mean a possible state of
the ensemble. Each configuration Ca will be represented by a set of states {ν(1)

a , ν
(2)
a , . . . , ν

(N)
a }, where

ν
(n)
a indicates the state of the n−th quasi particle according to the configuration Ca.

Say C (N) the set of all possible configurations of the N quasi particles. We may now partition
C (N) into subsets characterized by the same total energy Etot. Thus, C (N,Etot) indicates a collection
of configurations each with a total energy of Etot.

If we fix the total energy of the N quasi particles as Etot, we may assume that all possible con-
figurations of states {Ca, Cb, . . .} whose total energy Etot amounts to Etot are equally probable. That
is all the elements of the subset C (N,Etot = Etot) are equally probable. This is the microcanonical
ensemble (N,Etot, V fixed). Since we have fixed the total energy, the ensemble can only assume the

1Looking back on the CW experiment, we can say that prior to the ‘application’ (i.e. the system adjusting to the
presence) of B1(t), we are dealing with an isolated collection of solvated molecules in which the only relevant external
interactions these have are those with the solvent molecules and the external field Bo, and the Hamiltonian of each
member of the ensemble is Ho, (19.2).
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configurations of the set C (N,Etot = Etot), and none other. It follows then that, in the microcanonical
ensemble, the probability that the configurations of the N quasi particles are ν(1), ν(2), . . . , ν(N) is
simply

P
(
ν(1), ν(2), . . . , ν(N);Etot

)
=

1

Ω(Etot)
δEtot,Etot (B.1)

where

Ω(Etot) = dim C (N,E ′tot = Etot)

=
∑
ν′(1)

· · ·
∑
ν′(N)

δEtot,E ′tot
(B.2)

Etot =

N∑
n=1

E (n)(ν(n)) E ′tot =

N∑
n=1

E (n)(ν
′(n)) . (B.3)

We may choose a better way to study the statistical mechanical properties of the collection of quasi
particles by moving from the microcanonical to the canonical ensemble (where instead of keeping
N,V,Etot fixed, we rather keep N,V, T fixed). The latter seems suitable because it is practically an
arduous task to keep the energy of a macroscopic system fixed, but not the temperature T . Here,
we imagine selecting one of the N quasi particles, say the n−th, and asking ourselves what is the
probability that it has the configuration ν(n) given that the total energy of the system is Etot. What
we have done is to partition the whole system into a focus system (i.e. the n−th quasi particle) and
the environment (i.e. the remaining quasi particles). The thermodynamic temperature is determined
by the environment. At equilibrium, it is natural to expect that each arbitrarily chosen quasi particle
as the focus system should see the same environment. This amounts to saying that at equilibrium, the
temperature is fixed.

Now, it is obvious that the probability P (ν(n); Etot = Etot) that the configuration of the n−th quasi
particle is ν(n) given that Etot = Etot, is

P (ν(1); Etot = Etot) =
∑
ν(2)

· · ·
∑
ν(N)

P
(
ν(1), ν(2), . . . , ν(N);Etot

)
=
∑
ν(2)

· · ·
∑
ν(N)

1

Ω(Etot)
δEtot,Etot

=

∑
ν(2) · · ·

∑
ν(N) δEtot,Etot

Ω(Etot)

(B.4)

where for simplicity we have chosen n to be 1.

At this point, it is convenient to express the Kronecker delta function δx,y as

δx,y =
1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ ei(x−y)θ . (B.5)

Making use of the identity in (B.5), we have

δEtot,Etot =
1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ ei(Etot−Etot)θ . (B.6)
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Thus Ω(Etot) becomes

Ω(Etot) =
∑
ν(1)

· · ·
∑
ν(N)

δEtot,Etot

=
∑
ν(1)

· · ·
∑
ν(N)

1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ ei(Etot−Etot)θ

=
∑
ν(1)

· · ·
∑
ν(N)

1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ ei[Etot−

∑N
n=1 E (n)(ν(n))]θ

=
1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ eiEtotθ

(∑
ν(1)

· · ·
∑
ν(N)

e−i[
∑N
n=1 E (n)(ν(n))]θ

)

=
1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ eiθEtotZ(iθ) ,

(B.7)

where
Z(x) :=

∑
ν(1)

· · ·
∑
ν(N)

e−xEtot =
∑
ν(1)

· · ·
∑
ν(N)

e−x[
∑N
n=1 E (n)(ν(n))] . (B.8)

Note that because the particles are identical, we may also rewrite the expression for Z(iθ) as follows:

Z(iθ) =
∑
ν(1)

· · ·
∑
ν(N)

e−iθ[
∑N
n=1 E (n)(ν(n))]

=

(∑
ν(1)

e−iθE
(1)(ν(1))

)(∑
ν(2)

e−iθE
(2)(ν(2))

)
· · ·

(∑
ν(N)

e−iθE
(N)(ν(N))

)

=

(∑
ν(1)

e−iθE
(1)(ν(1))

)N
= ZNs (iθ)

(B.9)

with
Zs(x) :=

∑
ν

e−xEs(ν) (B.10)

where Es is the energy of a single quasi particle. But note also that

Z(iθ) = elnZ(iθ) = elnZNs (iθ) = eN lnZs(iθ) . (B.11)

Hence,

Ω(Etot) =
1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ eiθEtotZ(iθ)

=
1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ eiθEtoteN lnZs(iθ)

=
1

2πi
lim
α→∞

1

α

∫ iπα

−iπα
dη eηEtoteN lnZs(η)

(B.12)

where in the last line, we now have a complex variable of integration. We now evaluate this integral in
the limitN →∞. One way of doing so is the so-calledmethod of steepest descent (or the Darwin-Fowler
method) [102].

To begin with, it is clear that since η is complex, the integrand in the last line of (B.12) is oscillatory.
Since Ω(Etot) is finite, it implies that the integrand goes to zero as |η| → ∞, thus the integrand has
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a peak. This means that the integrand is a succession of decreasing crests which vanishes |η| → ∞.
We may imagine that in the limit N →∞, only the peak of the integrand contributes significantly to
the integral. Hence, we may approximate the integrand as its peak plus the immediate contour. We
therefore need to find the absolute maximum of the integrand. We may express η as

η = β + iy . (B.13)

Then, ∣∣∣eηEtoteN lnZs(η)
∣∣∣ =

∣∣eηEtotZNs (η)
∣∣

=
∣∣∣e(β+iy)Etot

∣∣∣ ∣∣ZNs (η)
∣∣

= eβEtot |Zs(η)|N

(B.14)

But,

|Zs(η)| =

∣∣∣∣∣
(∑

ν

e−ηEs(ν)

)∣∣∣∣∣
=

(∑
ν

e−(β+iy)Es(ν)

)(∑
ν

e−(β−iy)Es(ν)

)
=
∑
ν,ν′

e−β[Es(ν)+Es(ν
′)]e−iy[Es(ν)−Es(ν

′)]

=
∑
ν,ν′

e−β[Es(ν)+Es(ν
′)] cos (y [Es(ν)− Es(ν

′)]) + i
∑
ν,ν′

e−β[Es(ν)+Es(ν
′)] sin (y [Es(ν)− Es(ν

′)])

=
∑
ν,ν′

e−β[Es(ν)+Es(ν
′)] cos (y [Es(ν)− Es(ν

′)]) .

(B.15)

Thus,

max
∣∣∣eηEtoteN lnZs(η)

∣∣∣ = max eβEtot

∑
ν,ν′

e−β[Es(ν)+Es(ν
′)] cos (y [Es(ν)− Es(ν

′)])

N

= eβEtot

∑
ν,ν′

e−β[Es(ν)+Es(ν
′)] max cos (y [Es(ν)− Es(ν

′)])

N
(B.16)

which implies that we obtain the absolute maximum of the integrand when y = 0. Since the integration
is only along the imaginary line and the integrand is analytic, we may deform the integration contour,
branching into the real part, without changing the value of the integral since the contribution of the
real part cancels out. We may therefore choose wisely β in such a way that when N → ∞, the only
significant contributions to the integral originate from values of y around the peak, that is points in
the neighborhood of y = 0. This is the steepest descent method. We are therefore going to evaluate
both the denominator and the numerator on the RHS of (B.4) by the steepest descent method.

To begin with,

Ω(Etot) =
1

2πi
lim
α→∞

1

α

∫ iπα

−iπα
dη eηEtoteN lnZs(η)

=
1

2πi
lim
α→∞

1

α

∫ iπα

−iπα
dη eN[ηE+lnZs(η)]

(B.17)
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where

E :=
Etot
N

. (B.18)

Let us now expand the ηE + lnZs(η) around some arbitrary ηo. We get

ηE + lnZs(η) = ηoE + lnZs(ηo) + (η − ηo)

[
E +

∂

∂η
lnZs(η)

∣∣∣∣
η=ηo

]

+
(η − ηo)2

2

[
∂2

∂η2
lnZs(η)

∣∣∣∣
η=ηo

]
+O((η − ηo)3) . (B.19)

Hence,

Ω(Etot) =
1

2πi
lim
α→∞

1

α

∫ iπα

−iπα
dη eN[ηoE+lnZs(ηo)] × eN(η−ηo)

[
E+ ∂

∂η lnZs(η)|
η=ηo

]

× e
N(η−ηo)2

2

[
∂2

∂η2 lnZs(η)
∣∣∣
η=ηo

]
×O

(
eN(η−ηo)3

)
. (B.20)

The integration, having only complex extrema, implies a contour integration along the real value of η
(i.e. the real value of η is kept contant). Now, assuming <[η] = ηo = β, it follows then that (η− ηo) is
purely complex. Indeed, if η = β+ iy, then η− ηo = iy. Therefore, dη = idy and the integral becomes

Ω(Etot) =
1

2π
lim
α→∞

1

α

∫ πα

−πα
dy eN[βE+lnZs(β)] × eiNy

[
E+ ∂

∂η lnZs(η)|
η=β

]

× e
−Ny

2

2

[
∂2

∂η2 lnZs(η)
∣∣∣
η=β

]
×O

(
e−iNy

3
)
. (B.21)

We note that the integrand factor whose exponent is linear in y oscillates. In particular, these os-
cillations become very rapid as N → ∞. We may eliminate these rapid oscillations by imposing the
condition that the exponent vanishes all together, i.e.

Ny

[
E +

∂

∂η
lnZs(η)

∣∣∣∣
η=β

]
= 0 (B.22)

whose non trivial solution requires that

E = − ∂

∂η
lnZs(η)

∣∣∣∣
η=β

=

∑
ν E (ν)e−βE (ν)

Z(β)
. (B.23)

What we have done is a sort of coarse graining. The integral at this point becomes

Ω(Etot) =
1

2π
eN[βE+lnZs(β)] × lim

α→∞

1

α

∫ πα

−πα
dy e

−Ny
2

2

[
∂2

∂η2 lnZs(η)
∣∣∣
η=β

]
×O

(
e−iNy

3
)
. (B.24)

For the integral to converge in the limit α→∞, we see that

∂2

∂η2
lnZs(η)

∣∣∣∣
η=β

≥ 0 (B.25)

which means that the function ∂
∂η lnZs(η) must be monotonic. We now show that (B.25) is always



172 Appendix B. Microcanonical and Canonical Ensembles in Magnetic Resonance

satisfied for real β. Indeed,

∂

∂η

(
∂

∂η
lnZs(η)

)
=

∂

∂η

(
1

Zs(η)

∂

∂η

∑
ν

e−ηEs(ν)

)

=
∂

∂η

(
− 1

Zs(η)

∑
ν

Es(ν)e−ηEs(ν)

)

= −
−Zs(η)

∑
ν E 2

s (ν)e−ηEs(ν) +
(∑

ν Es(ν)e−ηEs(ν)
)2

Z2
s (η)

=

∑
ν E 2

s (ν)e−ηEs(ν)

Zs(η)
−
(∑

ν Es(ν)e−ηEs(ν)

Zs(η)

)2

=

∑
ν E 2

s (ν)e−ηEs(ν)

Zs(η)
−
(
− ∂

∂η
lnZs(η)

)2

.

(B.26)

And so,

∂

∂η

(
∂

∂η
lnZs(η)

)∣∣∣∣
η=β

=

∑
ν E 2

s (ν)e−βEs(ν)

Zs(β)
− E2

=

∑
ν E 2

s (ν)e−βEs(ν)

Zs(β)
− E2

∑
ν e
−βEs(ν)

Zs(β)

=

∑
ν

(
E 2
s (ν)− E2

)
e−βEs(ν)

Zs(β)

=

∑
ν

(
E 2
s (ν) + E

2 − 2E · E
)
e−βEs(ν)

Zs(β)
.

(B.27)

Thus,

∂

∂η

(
∂

∂η
lnZs(η)

)∣∣∣∣
η=β

=

∑
ν E 2

s (ν)e−βEs(ν)

Zs(β)
+ E

2
+−2E · E

=

∑
ν E 2

s (ν)e−βEs(ν)

Zs(β)
+ E

2
+−2E

∑
ν Es(ν)e−βEs(ν)

Zs(β)

=

∑
ν E 2

s (ν)e−βEs(ν)

Zs(β)
+ E

2
∑
ν e
−βEs(ν)

Zs(β)
+−2E

∑
ν Es(ν)e−βEs(ν)

Zs(β)

=

∑
ν

(
E 2
s (ν) + E

2 − 2Es(ν)E
)
e−βEs(ν)

Zs(β)

=

∑
ν

(
Es(ν)− E

)2
e−βEs(ν)

Zs(β)
≥ 0 .

(B.28)

Note that ∑
ν E 2

s (ν)e−βEs(ν)

Zs(β)
= E 2 (mean square energy per particle) (B.29)

and so ∂2

∂2η lnZs(η)
∣∣∣
η=β

is the variance of the energy per particle, which is always positive.

Now, returning to the integral in (B.24), i.e.

Ω(Etot) =
1

2π
eN[βE+lnZs(β)] × lim

α→∞

1

α

∫ πα

−πα
dy e

−Ny
2

2

[
∂2

∂η2 lnZs(η)
∣∣∣
η=β

]
×O

(
e−iNy

3
)

we recall that

erf(A) =
1√
π

∫ A

−A
dx e−x

2

. (B.30)
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Now, if we introduce the variable x, where

x2 :=
Ny2

2

[
∂2

∂η2
lnZs(η)

∣∣∣∣
η=β

]
≡ Ny2

2
σ2

E (β) (B.31)

where
σ2

E (β) :=
∂2

∂η2
lnZs(η)

∣∣∣∣
η=β

(B.32)

we see that

dy =

√
2

Nσ2
E (β)

dx (B.33)

and so,

∫ πα

−πα
dy e−

Ny2

2 σ2
E (β) =

√
2

Nσ2
E (β)

∫ πα

√
Nσ2

E
(β)

2

−πα

√
Nσ2

E
(β)

2

dx e−x
2

=

√
2π

Nσ2
E (β)

1√
π

∫ πα

√
Nσ2

E
(β)

2

−πα

√
Nσ2

E
(β)

2

dx e−x
2

=

√
2π

Nσ2
E (β)

erf

[
πα

√
Nσ2

E (β)

2

]
(B.34)

from which follows that

Ω(Etot) ∼
1

2π
eN[βE+lnZs(β)] × lim

α→∞

1

α

√
2π

Nσ2
E (β)

erf

[
πα

√
Nσ2

E (β)

2

]

∼ 1√
2πNσ2

E (β)
eN[βE+lnZs(β)] × lim

α→∞

1

α
erf

[
πα

√
Nσ2

E (β)

2

]
.

(B.35)

We now evaluate the numerator of (B.4) using the same procedure. First of all, we find that∑
ν(2)

· · ·
∑
ν(N)

δEtot,Etot =
∑
ν(2)

· · ·
∑
ν(N)

1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ ei(Etot−Etot)θ

=
∑
ν(2)

· · ·
∑
ν(N)

1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ ei[Etot−E (1)(ν(1))−

∑N
n=2 E (n)(ν(n))]θ

=
1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ ei[Etot−E (1)(ν(1))]θ

(∑
ν(2)

· · ·
∑
ν(N)

e−i[
∑N
n=2 E (n)(ν(n))]θ

)

=
1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ eiθ[Etot−E (1)(ν(1))]Z ′(iθ) ,

(B.36)

where it is obvious that
Z ′(iθ) = ZN−1

s (iθ) = e(N−1) lnZs(iθ) . (B.37)

Hence, ∑
ν(2)

· · ·
∑
ν(N)

δEtot,Etot =
1

2π
lim
α→∞

1

α

∫ πα

−πα
dθ eiθ[Etot−E (1)(ν(1))]+(N−1) lnZs(iθ)

=
1

2πi
lim
α→∞

1

α

∫ iπα

−iπα
dη eη[Etot−E (1)(ν(1))]+(N−1) lnZs(η) .

(B.38)
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From (B.12), we see immediately that the solution of the above is formally the same as (B.35) provided
we make the following transformations in the latter:

Etot 7→ Etot − E (1)(ν(1)) = NE − E (1)(ν(1))

N lnZs(η) 7→ (N − 1) lnZs(η) .
(B.39)

Thus,

∑
ν(2)

· · ·
∑
ν(N)

δEtot,Etot ∼
1√

2π(N − 1)σ2
E (β)

e[NβE−βE (1)(ν(1))+(N−1) lnZs(β)] × lim
α→∞

1

α
erf

[
πα

√
(N − 1)σ2

E (β)

2

]

=
1√

2π(N − 1)σ2
E (β)

e[NβE+N lnZs(β)]e[−βE (1)(ν(1))−lnZs(β)]

× lim
α→∞

1

α
erf

[
πα

√
(N − 1)σ2

E (β)

2

]
.

(B.40)

And so finally, we may substitute (B.35) and (B.40) into (B.4) and take the thermodynamic limit, i.e.
N →∞,

P (ν(1); Etot = Etot) = lim
N→∞

∑
ν(2) · · ·

∑
ν(N) δEtot,Etot

Ω(Etot)

= lim
N→∞

 1√
2π(N−1)σ2

E (β)
e[NβE+N lnZs(β)]e[−βE (1)(ν(1))−lnZs(β)]

1√
2πNσ2

E (β)
eN[βE+lnZs(β)]

×
limα→∞

1
α erf

[
πα

√
(N−1)σ2

E (β)

2

]
limα→∞

1
α erf

[
πα

√
Nσ2

E (β)

2

]


∼ e−βE (1)(ν(1))

Zs(β)
.

(B.41)

From (B.23), the constant β is known from statistical mechanics to be β = 1
kBT

– where kB is Boltz-
mann’s constant and T is the absolute temperature of the system [117]. In the case of an ensemble
of identical molecules subjected to a static magnetic field Bo = Boez, whereby each member of the
ensemble has Hamiltonian Ho, (19.2), we see that E (1)(ν(1)) 7→ Ho (if we transition to quantum statis-
tics). And P (ν(1); Etot = Etot) in (B.41) becomes ρS(to) (i.e. ρS(0)) in (19.4). Upon transitioning to
quantum statistics, we need to view members of the ensemble as quantum particles. This means we
need to also take into account their indistinguishability. This normally brings about profound impli-
cations leading to Bose-Einstein statistics or Fermi-Dirac statistics (or even something in between). It
is however known that for high-temperatures and low densities (which is our case), the importance of
implementing quantum indistinguishability into the derivation fades out since in this limit, the behav-
ior of the system approaches asymptotically that of a classical system [117]. This justifies the density
matrix in (19.4) as the initial state of the multispin system prior to the ‘application’ of B1(t).



Appendix C

Some analyses on the quantum map

Λ(t)

C.1 Derivation of the equation for Λ(t)

We want to find the map Λ(t) associated with the zeroth-order master equation in (19.79), which reads

d

dt
%(0)(t) = A(t)%(0)(0) + L%(0)(t) . (C.1)

Following [30], let

%(0)(t) = Λ(t)%(0)(0) . (C.2)

Then, from (C.1) we have
d

dt
Λ(t) = A(t) + L Λ(t) (C.3)

which after performing the Laplace transform (indicated by the operational symbol L) becomes

sΛ̃(s)− I = Ã(s) + L Λ̃(s) (C.4)

where L [Λ(t)] = Λ̃(s) and L [A(t)] = Ã(s). Upon a rearrangement of the terms in (C.4), we end up
with

(sI− L) Λ̃(s) = Ã(s) + I . (C.5)

That is,

Λ̃(s) = (sI− L)
−1
(
Ã(s) + I

)
. (C.6)

If we now expand the resolvent (sI− L)
−1 in powers of the generator L, we get

(sI− L)
−1

=

∞∑
n=0

Ln

sn+1
(C.7)

with Ln = I for n = 0. Thus, (C.6) becomes

Λ̃(s) =

∞∑
n=0

Ln
(
Ã(s)

1

sn+1
+ I

1

sn+1

)
. (C.8)
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The inverse Laplace transform of this last equation is

Λ(t) =

∞∑
n=0

Ln
(
L−1

[
Ã(s)

1

sn+1

]
+ I · L−1

[
1

sn+1

])

=

∫ t

0

dτ

( ∞∑
n=0

Ln τ
n

n!

)
A(t− τ) + I ·

( ∞∑
n=0

Ln t
n

n!

)

=

∫ t

0

dτ eLτA(t− τ) + eLt =

∫ t

0

dτ eL(t−τ)A(τ) + eLt .

(C.9)

C.2 Λ(t) is a not a UDM

Certainly, Λ(t) preserves trace for any input state %(0)(0). For Λ(t) to qualify as a UDM (universal
dynamical map1), its output state must always be positive semi-definite (with unit trace), irrespective
of the input state %(0)(0) 6= 0. It can be easily shown that this is not the case for Λ(t). Again, it has
to do with the presence of the superoperator A(t) in the expression for Λ(t) (19.79). If we take a look
at (19.78),

%(0)(t) = eLt%(0)(0) +

∫ t

0

dt′ eL(t−t′)A(t′)%(0)(0) (C.10)

we see that while the first term on the right is certainly UDM, the second term involves the composition
of two superoperators acting on %(0)(0). In the Kraus operator sum representation, (C.10) may be
rewritten as

%(0)(t) =
∑
α

Kα(t)%(0)(0)K †
α (t) +

∑
α

∫ t

0

dτ Kα(t − τ)
[
A(τ)%(0)(0)

]
K †
α (t − τ) (C.11)

where the Kraus operators {Kα(t)} obey the usual completeness relation
∑
α K †

α (t)Kα(t) = I. Or,
more explicitly,

%(0)(t) =
∑
α

Kα(t)%(0)(0)K †
α (t) +

∑
α

∫ t

0

dτ Kα(t− τ)M (τ)%(0)(0)M †(τ)K †
α (t− τ)

−
∑
α

∫ t

0

dτ Kα(t− τ)M †(τ)%(0)(0)M (τ)K †
α (t− τ) (C.12)

with [52, 153]

M (t) ≡ 1√
2

[
I− iHLR(t)

]
(C.13)

where HLR(t) is the linear response Hamiltonian, (19.70). Furthermore, we note that

I =
∑
α

K †
α (t)Kα(t) +

∑
α

∫ t

0

dτ M †(τ)K †
α (t− τ)Kα(t− τ)M (τ)

−
∑
α

∫ t

0

dτ M (τ)K †
α (t− τ)Kα(t− τ)M †(τ) (C.14)

– which confirms again that Λ(t) is trace-preserving. However, from (C.12), we see that %(0)(t) cannot
be guaranteed to be always positive for an arbitrary %(0)(0) – given that it is the difference between
two positive operators. In fact, Λ(t) can be seen as the difference between two CP maps:

Λ(t) = Φ1,t − Φ2,t (C.15)
1See Definition 13.0.1.
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Φ1,t[%
(0)(0)] ≡

∑
α

Kα(t)%(0)(0)K †
α (t) +

∑
α

∫ t

0

dτ Kα(t− τ)M (τ)%(0)(0)M †(τ)K †
α (t− τ) (C.16a)

Φ2,t[%
(0)(0)] ≡

∑
α

∫ t

0

dτ Kα(t− τ)M †(τ)%(0)(0)M (τ)K †
α (t− τ) . (C.16b)

Thus, the map Λ(t) is not a UDM2 [26, 145, 168].

C.3 Positivity of Λ(t) on its specified domain, some indications

Even though Λ(t) is not a UDM, this, however, does not imply that it is a non-UDM. To prove it is
a non-UDM, we need to prove that it is positive on its domain. There are strong indications this is
exactly the case. These indications stem from the parameters involved in the theory and assumptions
like B1

Bo
� 1. The positivity of Λ(t) on its domain, if that be the case, may therefore be attributed to

these parameters and the assumptions of the theory (which are to some extent, experimental constraints
in many cases), rather than an elegant theorem like Choi’s [28]. We present these arguments in the
following. A better analysis may, perhaps, be necessary in the future.

Let |ν〉 be a generic vector of the spin system’s Hilbert space HS . We show below that there are
indications that

∑
α

〈
ν
∣∣∣Kα(t)%(0)(0)K †

α (t)
∣∣∣ν〉 > ∣∣∣∣∣∑

α

∫ t

0

dτ
〈
ν
∣∣∣Kα(t− τ)

[
A(τ)%(0)(0)

]
K †
α (t− τ)

∣∣∣ν〉∣∣∣∣∣ (C.17)

for the Boltzmann input state %(0)(0) = e−βZo

Tr[e−βZo ]
– making, therefore, the map Λ(t) positive for this

particular input state.

To begin with, from the expressions for A(t) and %(0)(0), we have that

A(t)%(0)(0) = i2B1<[ϕf (t)]
∑
ωo

∑
n,n′

δωo,εn′−εnδ+1,Mn′−Mn

(
P

(0)
n′ − P

(0)
n

)
×
(
eiωot |n′〉〈n′| ξx |n〉 〈n| − h.c.

)
(C.18)

2Recall what we call ‘non-UDM’ is commonly referred to the literature as ‘non-CP’ map.
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– where P (0)
n = e−βεn

Tr[e−βZo ]
, (22.10) –, which means

∣∣∣∣∣∑
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0

dτ
〈
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∣∣∣∣4B1

∑
ωo

∑
n,n′

δωo,εn′−εnδ+1,Mn′−Mn

(
P

(0)
n′ − P

(0)
n
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0

dτ eiωoτ<[ϕf (τ)]
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〈ν|Kα(t− τ) |n′〉
〈
n
∣∣K †

α (t− τ)
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≤ 4B1
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ωo

∑
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∣∣∣P (0)
n′ − P

(0)
n

∣∣∣ |〈n′| ξx |n〉|
×
∣∣∣∣=
(∫ t

0

dτ eiωoτ<[ϕf (τ)]
∑
α

〈ν|Kα(t− τ) |n′〉
〈
n
∣∣K †

α (t− τ)
∣∣ν〉) ∣∣∣∣

≤ 4B1

∑
ωo

∑
n,n′

δωo,εn′−εnδ+1,Mn′−Mn

∣∣∣P (0)
n′ − P

(0)
n

∣∣∣ |〈n′| ξx |n〉|
×
∣∣∣∣=(∫ t

0

dτ eiωoτ<[ϕf (τ)]

) ∣∣∣∣× max
|n′′〉,t

(∑
α

|〈ν|Kα(t) |n′′〉|2
)
. (C.19)

Furthermore, since ϕf (t) is the characteristic function of a symmetric distribution function, we know
from Pòlya’s theorem [120] that |<[ϕf (τ)]| ≤ 1, so∣∣∣∣∣∑

α

∫ t

0

dτ
〈
ν
∣∣∣Kα(t− τ)

[
A(τ)%(0)(0)

]
K †
α (t− τ)

∣∣∣ν〉∣∣∣∣∣
≤ 4B1

∑
ωo

∑
n,n′

δωo,εn′−εnδ+1,Mn′−Mn

∣∣∣P (0)
n′ − P

(0)
n

∣∣∣ |〈n′| ξx |n〉|
×
∣∣∣∣=(∫ t

0

dτ eiωoτ
) ∣∣∣∣× max

|n′′〉,t

(∑
α

|〈ν|Kα(t) |n′′〉|2
)

= 4B1

∑
ωo

∑
n,n′

δωo,εn′−εnδ+1,Mn′−Mn

∣∣∣P (0)
n′ − P

(0)
n

∣∣∣ |〈n′| ξx |n〉|
×
∣∣∣∣cos(ωot)− 1

ωo

∣∣∣∣× max
|n′′〉,t

(∑
α

|〈ν|Kα(t) |n′′〉|2
)
. (C.20)

Given that ξx = −
∑
i γiS

x
i , (19.3), we thus have∣∣∣∣∣∑

α

∫ t

0

dτ
〈
ν
∣∣∣Kα(t− τ)

[
A(τ)%(0)(0)

]
K †
α (t− τ)

∣∣∣ν〉∣∣∣∣∣
≤ 4

∑
ωo

∑
n,n′

δωo,εn′−εnδ+1,Mn′−Mn

∣∣∣P (0)
n′ − P

(0)
n

∣∣∣ (∑
i

|ω1(i)|
|ωo|

|〈n′|Sxi |n〉|

)

× |cos(ωot)− 1| × max
|n′′〉,t

(∑
α

|〈ν|Kα(t) |n′′〉|2
)

(C.21)

where |ω1(i)| ≡ |γi|B1. If the spin configurations in the states |n〉 and |n′〉 are such the i−th spin is the
only spin which alters its spin state so that: 1) 〈n′|Sxi |n〉 6= 0, 2) ωo = εn′ − εn and 3) 1 = Mn′ −Mn,
then it follows from (22.20) that |ωo| ≈ |γi|Bo. This implies that for all the nonzero terms on the r.h.s.
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of (C.21),
∣∣∣ω1(i)
ωo

∣∣∣ ≈ B1

Bo
� 1. In high-resolution NMR [33], for example, the ratio B1

Bo
is in the order

of 10−6. Note also that all the factors multiplying the sum
(

4
∑
i
|ω1(i)|
|ωo| |〈n

′|Sxi |n〉|
)
are all positive

numbers which are at most equal to unity, and almost all of them can be compared to a counterpart
on the l.h.s. of (C.17). Indeed, it may be argued that the validity of the inequality in (C.17) pivots
on the ratio B1

Bo
. In fact,

∑
α

〈
ν
∣∣∣Kα(t)%(0)(0)K †

α (t)
∣∣∣ν〉 =

∑
n

P (0)
n

(∑
α

|〈ν|Kα(t) |n〉|2
)

(C.22)

so,

∑
n

P (0)
n

(∑
α

|〈ν|Kα(t) |n〉|2
)
� 4

∑
n,n′

∑
ωo

δωo,εn′−εnδ+1,Mn′−Mn

∣∣∣P (0)
n′ − P

(0)
n

∣∣∣ (∑
i

|ω1(i)|
|ωo|

|〈n′|Sxi |n〉|

)

× |cos(ωot)− 1| × max
|n′′〉,t

(∑
α

|〈ν|Kα(t) |n′′〉|2
)

(C.23)

for the non-null Boltzmann state %(0)(0), due to the fact that |ω1(i)|
|ωo| � 1 (recall ωo 6= 0). This confirms

the inequality stated in (C.17). Therefore, Λ(t) is a non-UDM with domain C+,1
d [%(0)(0)] (19.80).

C.4 On restricting Λ(t) to its specified domain

As discussed in Sec. 19.3.2, without the term A(t)%(0)(0) in (19.68) (or (C.1)), Λ(t) is obviously a
UDM, and therefore also CP. We have seen in the last subsection an argument indicating why Λ(t) is
positive for input states

%(0)(0) =
e−βZo

Tr[e−βZo ]
(C.24)

with Zo given by (19.17), i.e.

Zo ≡ −
∑
i

γiBoS
z
i +

∑
i>j

TijS
z
i S

z
j . (C.25)

It is vital the input states are restricted to (C.24), else one risks obtaining unphysical results. We
can see this by studying, for example, Λ(t) in the limit L → 0 (this is close to taking the adiabatic
process limit). Then, Λ(t) reduces to

Λ(t) = I +

∫ t

0

dτ A(τ) = I + F(t) (C.26)

where, for an operator X,

F(t)X = −i [K(t), X] , K(t) ≡
∫ t

0

dτ HLR(τ) (C.27)

where HLR(t) is the linear response Hamiltonian, (19.70). Consequently, with L = 0,

%(0)(t) = Λ(t)%(0)(0) (C.28a)

= %(0)(0)− i
[
K(t), %(0)(0)

]
(C.28b)

= [I− iK(t)] %(0)(0) [I + iK(t)]−K(t)%(0)(0)K(t) . (C.28c)



180 Appendix C. Some analyses on the quantum map Λ(t)

(This equation can also be derived from (C.12) by noting that
∑
α Kα(t)XK †

α (t)→ X as L → 0.) The
resulting %(0)(t) in (C.28c) is still the difference between two positive operators, so it cannot be positive
for an arbitrary input state – unless extra information or assumptions are provided. Nonetheless, it
has the Kraus operator sum representation for Hermitian non-CP maps [145], and satisfies the related
trace preserving condition [145] – namely,

[I− iK(t)]
†

[I− iK(t)]−K†(t)K(t) = I . (C.29)

These last two observations notwithstanding, the action of the map Λ(t) needs to be restricted to its
specified domain, i.e. (C.24). As mentioned above, failing to do so may lead to unphysical results.
To illustrate this very important point, we shall analyze (C.28c) under two scenarios: 1) without
considering (C.24)3 , and 2) taking into account (C.24). These arguments reinforce the notion that
Λ(t) is non-UDM.

C.4.1 Analyzing (C.28c) without taking into account (C.24)

For example, if %(0)(0) is taken to be a pure state, i.e. %(0)(0) = |0〉〈0|, and we do not take into
account (C.24), it can be shown that %(0)(t) in (C.28c) would appear in this case to be nonpositive for
K(t) 6= 0. Thus, Λ(t) would describe an unphysical process.

To prove the proposition, we first observe that with %(0)(0) = |0〉〈0|, (C.28c) may be rewritten as

%(0)(t) = |v1〉〈v1| − |vo〉〈vo| (C.30)

where
|vo〉 ≡ K(t) |0〉 , |v1〉 ≡ [I− iK(t)] |0〉 = |0〉 − i |vo〉 (C.31)

whose norms are
‖|vo〉‖ =

√〈
0
∣∣K(t)2

∣∣0〉 , ‖|v1〉‖ =
√

1 +
〈
0
∣∣K(t)2

∣∣0〉 (C.32)

– where we have exploited the fact that K(t), (C.27), is Hermitian. For non-null K(t) (which is the
case if HLR(t) is nonzero), ‖|vo〉‖ is strictly positive, i.e. ‖|vo〉‖ > 0.

Let x =
√〈

0
∣∣K(t)2

∣∣0〉 and K(t) 6= 0. Furthermore, let |ṽo〉 and |ṽ1〉 be the normalized kets

corresponding to |vo〉 and |v1〉, respectively – that is, |ṽo〉 ≡ |vo〉
‖|vo〉‖ and |ṽ1〉 ≡ |v1〉

‖|v1〉‖ . Then, (C.30)
may be rewritten as

%(0)(t) = (1 + x2)

[
|ṽ1〉 〈ṽ1| −

x2

1 + x2
|ṽo〉 〈ṽo|

]
. (C.33)

We may expand |ṽ1〉 as
|ṽ1〉 = α |ṽo〉+ β |ṽo⊥〉 (C.34)

where |ṽo⊥〉 is the normalized ket perpendicular to |ṽo〉, while α and β are complex scalars which also
satisfy the condition |α|2 + |β|2 = 1. Substituting (C.34) into (C.33) yields

%(0)(t) = (1 + x2)

[(
|α|2 − x2

1 + x2

)
|ṽo〉 〈ṽo|+ αβ∗ |ṽo〉 〈ṽo⊥|+ α∗β |ṽo⊥〉 〈ṽo|+ |β|

2 |ṽo⊥〉 〈ṽo⊥|
]

(C.35)
3The argument to be laid out in the next subsection to illustrate this point is a paraphrase of an argument originally

put forward by Prof. Vittorio Giovannetti in the course of private discussions with the author. All errors are that of the
author alone.
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– which in matrix form simply becomes

%(0)(t) = (1 + x2)

(|α|2 − x2

1+x2

)
αβ∗

α∗β |β|2

 . (C.36)

From this last equation, it follows that the determinant of %(0)(t) is

det[%(0)(t)] = −x2(1 + x2) |β|2 . (C.37)

Thus, det[%(0)(t)] < 0 since x > 0 for non-null K(t). So, for L = 0 and A(t) 6= 0, the map Λ(t) would
blatantly describe an unphysical process for a pure input state.

Note, however, that – according to (C.26) – for K(t) = 0, while L = 0, Λ(t) simply becomes the
identity operator I. As we shall see in the next subsection, it turns out that this is actually the case if
%(0)(0) is pure and we take into account (C.24).

C.4.2 Analyzing (C.28c) taking into account (C.24)

On a closer examination, if we restrict the input states to Λ(t)’s domain, i.e. (C.24), we realize that
%(0)(0) cannot be a pure state unless all the particles composing the chemical species have zero spin
quantum number (examples are 16O and 12C nuclei). For such a system, it can be shown that K(t)

becomes identically zero, therefore, making A(t) = 0 and Λ(t) = I.
To prove the last proposition, let us recall that HLR(t), (19.70), is defined as

HLR(t) = 2B1<[ϕf (t)]
∑
ωo

e−iωotξx(+1, ωo) + h.c. (C.38)

where, according to (19.40),

ξx(+1, ωo) =
∑
n,n′

|n〉 〈n| ξx |n′〉 〈n′| δωo,εn′−εnδ+1,Mn′−Mn . (C.39)

In addition, we know from (19.3) that

ξx = −
∑
i

γiS
x
i . (C.40)

The operator ξx is therefore a zero-trace operator.
Now, if we set %(0) = |0〉〈0|, then we are somehow admitting that the spin system in question is a

collection of spin zero particles, and |0〉 is the (spin) state vector of the collection (up to a phase-factor).
In this case, we easily deduce from (C.39) that

ξx(+1, ωo) = δωo,0δ+1,0Tr[ξx] |0〉〈0| (C.41)

which is identically zero. Consequently, HLR(t) and K(t) also become identically zero. And as a result,
Λ(t)→ I.

We may also note that for a non-entirely-spin-zero system, %(0)(0) approaches a pure spin state
when T (temperature) → 0 and/or Bo → ∞. In any case, even under these extreme conditions, it is
mathematically impossible for %(0)(0) of a non-entirely-zero-spin system – as defined in (C.24) – to be
of rank 1 (thus, a pure state).
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