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KOLMOGOROV EQUATION ASSOCIATED
TO THE STOCHASTIC REFLECTION PROBLEM ON

A SMOOTH CONVEX SET OF A HILBERT SPACE

BY VIOREL BARBU,1 GIUSEPPE DA PRATO2 AND LUCIANO TUBARO2

University Al. I. Cuza, Scuola Normale Superiore and University of Trento

We consider the stochastic reflection problem associated with a self-
adjoint operator A and a cylindrical Wiener process on a convex set K with
nonempty interior and regular boundary � in a Hilbert space H . We prove the
existence and uniqueness of a smooth solution for the corresponding elliptic
infinite-dimensional Kolmogorov equation with Neumann boundary condi-
tion on �.

1. Introduction. Let us consider a stochastic differential inclusion in a Hilbert
space H , {

dX(t) + (
AX(t) + NK(X(t))

)
dt � dW(t),

X(0) = x.
(1.1)

Here A :D(A) ⊂ H → H is a self-adjoint operator, K = {x ∈ H :g(x) ≤ 1},
where g :H → R is convex and of class C∞, NK(x) is the normal cone to K

at x and W(t) is a cylindrical Wiener process in H (see Hypothesis 1.1 for more
precise assumptions). Obviously the expression in (1.1) is formal and its precise
meaning should be defined.

When H is finite-dimensional a solution to (1.1) is a pair of continuous adapted
processes (X,η) such that X is K-valued, η is of bounded variation with dη con-
centrated on the set of times where X(t) ∈ � (the boundary of K) and

X(t) +
∫ t

0
AX(s) ds + η(t) = x + W(t), t ≥ 0, P-a.s.,

∫ T

0

(
dη(t),X(t) − z(t)

) ≥ 0, P-a.s.,

for all z ∈ C([0, T ];K). The existence and uniqueness of a solution (X,η) to latter
equation was first proven by Cépa in [5]. (See also [3] for a slightly different
formulation.)
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Therefore, under the assumptions of [3] or [5], one can construct a transition
semigroup in C(K) by the usual formula

Ptϕ(x) = E[ϕ(X(t, x))], t ≥ 0, ϕ ∈ C(K).

The infinitesimal generator L of Pt is the Kolmogorov operator

Lϕ = 1
2�ϕ + 〈Ax,Dϕ〉

equipped with a Neumann condition at the boundary � of K . (See, e.g., [3], where
the more general case of oblique derivative boundary conditions were also consid-
ered.)

Let us go now to the infinite-dimensional situation. In this context (1.1) was
first studied by Nualart and Pardoux [18], when H = L2(0,1), A is the Laplace
operator with Dirichlet or Neumann boundary conditions and K is the convex set
of all nonnegative functions of L2(0,1); see also [13].

The Kolmogorov operator in this situation was described by Zambotti [21], in
the space L2(H, ν) where ν is the law of the 3D-Bessel Bridge which coincides
with the unique invariant measure of (1.1). Zambotti was able to show that the
Dirichlet form

a(u, v) =
∫
K

〈Du,Dv〉dν

is closable by proving a suitable integration by parts formula and to construct the
corresponding Markov semigroup.

Except the situation mentioned above, no existence and uniqueness results
for (1.1) are known for the infinite-dimensional equation (1.1). Also it was so far
open the characterization of the of the domain of the corresponding Kolmogorov
operator.

In this paper we shall consider a regular convex set K with nonempty interior
and, though this does not cover the case considered by [21], we are able, how-
ever, to get sharp informations on the Kolmogorov generator for a quite general
class of convex sets K . In this way, though we are not able to approach directly
the stochastic variational problem (1.1), we can instead find a regular solution of
the corresponding infinite-dimensional Kolmogorov equation equipped with the
Neumann boundary condition,{

λϕ − 1
2 Tr[D2ϕ] − 〈x,ADϕ〉 = f, x ∈ K ,

〈Dϕ,NK(x)〉 = 0, ∀x ∈ �,
(1.2)

where λ > 0 and f ∈ L2(K, ν).
In this way we obtain a Markov semigroup Pt which by the results of [16]

provides a process corresponding to a martingale solution of (1.1) (see also the
forthcoming paper [1]).

A basic tool we are using is a co-area formula from Malliavin; see [17] valid
for g of class C∞. Moreover, in the Appendix we present a direct proof of this
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formula when g is C2 and fulfills some additional conditions which are covered in
several situations, for instance when K is a ball; in that case the co-area formula
was proved (1979) by Hertle [14].

Let us explain the content of this paper. As we said, we take a convex set of the
form K = {x ∈ H :g(x) ≤ 1} where g :H → R is of class C∞ and with second
order derivative D2g positive definite. Then we consider the probability measure ν

given for any Borel set I of K by

ν(I ) = μ(I)

μ(K)
,

where μ is the Gaussian measure (corresponding to the linear problem without
reflection) of mean 0 and covariance Q = 1

2A−1.
In Section 2, by exploiting a basic infinite-dimensional co-area formula,

see [17], we are able to prove an integration by parts formula for ν. This allows us
to show in Section 3 that the Dirichlet form

a(u, v) =
∫
K

〈Du,Dv〉dν

is closable (see also [1] for a different approach). In this way, by the usual vari-
ational theory, we can define its generator N and construct the corresponding
Markov transition semigroup Pt , which is reversible since N is self adjoint.

In Section 4 we study the Kolmogorov equation (1.2) by the classical method
of penalization

λϕε − 1

2
Tr[D2ϕε]+〈x,ADϕε〉+ 1

ε
〈x −	K(x),Dϕε〉 = f, x ∈ H,(1.3)

where 	K(x) is the projection of x on K . We show that {ϕε} strongly converges
to the solution ϕ = (λI − N)−1f of (1.2) and that

D(N) ⊂
{
ϕ ∈ W 2,2(K, ν) :

∫
K

|A1/2Dϕ|2 dν < +∞
(1.4)

and 〈Dϕ,NK(x)〉 = 0 on �

}
.

These results seem to be new in infinite dimensions; see [2, 3, 7] for the finite-
dimensional case.

Finally, Section 5 is devoted to equations of the form{
dX(t) + (

AX(t) + F(X(t)) + NK(X(t))
)
dt � dW(t),

X(0) = x,
(1.5)

where F :H → H is a nonlinear perturbation of A.
In Section 5.1 we assume that F = DV where V :H → R is a regular potential.

This case is an easy generalization of the previous one (i.e., when F = 0), namely
measure ν is replaced by the following one:

ζ(dx) = e−2V (x)∫
K e−2V (y)ν(dy)

ν(dx).
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This extension is briefly described in that section.
In Section 5.2 the case of a bounded Borel function F , not necessarily of poten-

tial type, is considered. Here we can solve the Kolmogorov equation{
λϕ − 1

2 Tr[D2ϕ] + 〈x,ADϕ〉 − 〈F(x),Dϕ〉 = f, x ∈ K ,
〈Dϕ,NK(x)〉 = 0, ∀x ∈ �

(1.6)

by a straightforward perturbation argument, taking avantage of the inclusion (1.4).
In this way we obtain a solution ϕ ∈ D(N) of (1.6) only for λ sufficiently large.
Also, obviously, measure ν is not invariant for the corresponding semigroup Qt .
However, using the fact that operator Qt is compact in L2(K, ν), we can show the
existence of an invariant measure ζ for Qt so that the extension of Qt to L1(K, ζ )

is the natural transition semigroup associated with (1.5). Notice, however, that this
semigroup is not reversible (when F is not of potential type).

We conclude this section by precising assumptions and notation which will be
used throughout in what follows.

Assumptions. We are given a real separable Hilbert space H (with scalar prod-
uct 〈·, ·〉 and norm denoted by | · |). Concerning A, K and W we shall assume that:

HYPOTHESIS 1.1. (i) A :D(A) ⊂ H → H is a linear self-adjoint operator
on H such that 〈Ax,x〉 ≥ δ|x|2,∀x ∈ D(A) for some δ > 0. Moreover, A−1 is of
trace class.

(ii) There exists a convex C∞ function g :H → R with D2g positively de-
fined, that is, 〈D2g(x)h,h〉 ≥ γ |h|2, ∀h ∈ H where γ > 0, such that

K = {x ∈ H :g(x) ≤ 1}, � = {x ∈ H :g(x) = 1}.
(iii) W is a cylindrical Wiener process on H of the form

W(t) =
∞∑

k=1

βk(t)ek, t ≥ 0,

where {βk} is a sequence of mutually independent real Brownian motions on a
filtered probability spaces (�,F , {Ft }t≥0,P) (see, e.g., [8]) and {ek} is an ortho-
normal basis in H which will be taken as a system of eigen-functions for A for
simplicity, that is,

Aek = αkek ∀k ∈ N,

where αk ≥ δ.

We notice that the interior K
◦

is nonempty since D2g is positive definite.

Notation. We denote by B(H) [resp. B(K)] the σ -field of all Borel subsets
of H (resp. K) and by P (H) [resp. P (K)] the set of all probability measures on



KOLMOGOROV EQUATION 1431

(H,B(H)) [resp. (K,B(K))].
Everywhere in the following Dϕ is the derivative of a function ϕ :H → R. By

D2ϕ :H → L(H,H) we shall denote the second derivative of ϕ. We shall denote
also by Cb(H) and Ck

b(H), k ∈ N, the spaces of all continuous and bounded func-
tions on H and, respectively, of k-times differentiable functions with continuous
and bounded derivatives. The space Ck(K), k ∈ N, is defined as the space of re-
strictions of functions of Ck

b(H) to the subset K .
The boundary of K will be denoted by �. NK(x) is the normal cone to K at x,

that is,

NK(x) = {z ∈ H : 〈z, y − x〉 ≤ 0,∀y ∈ K}.
Moreover, we shall denote by dK(x) the distance of x from K and by IK the
indicator function of K ,

IK(x) =
{

0, if x ∈ K ,
+∞, if x /∈ K .

For any ε > 0, Uε will represent the Moreau approximation of IK given by

Uε(x) = inf
{
IK(y) + 1

2ε
|x − y|2, y ∈ H

}
= 1

2ε
dK(x)2, x ∈ H.

It is well known that

DUε(x) = 1

ε

(
x − 	K(x)

)
, x ∈ H,ε > 0,

where 	K(x) is the projection of x over K . In particular, we have

D(d2
K(x)) = x − 	K(x) ∀x ∈ Kc,(1.7)

(Kc is the complement of K) which implies

DdK(x) = x − 	K(x)

dK(x)
∀x ∈ Kc.(1.8)

We denote by n(	K(x)) the exterior normal at 	K(x),

n(	K(x)) = x − 	K(x)

dK(x)
∀x ∈ Kc.

From (1.8) we deduce that

D
(
x − 	K(x)

) = DdK(x) ⊗ DdK(x) + dK(x)D2dK(x) ∀x ∈ Kc.(1.9)

Finally, μ will represent the Gaussian measure in H with mean 0 and covariance
operator

Q := 1
2A−1.



1432 V. BARBU, G. DA PRATO AND L. TUBARO

Since A is strictly positive μ is nondegenerate and full. We set

λk = 1

2αk

∀k ∈ N,

so that

Qek = λkek ∀k ∈ N.

We denote by EA(H) the space of all real and imaginary parts of exponen-
tial functions ei〈h,x〉, h ∈ D(A). Then the operator D :EA(H) ⊂ L2(H,μ) →
L2(H,μ;H) is closable in L2(H,μ) and the domain of its closure is denoted
by W 1,2(H,μ) (the Sobolev space).

The following integration by parts formula for the measure μ is well known
(see, e.g., [9]). For any ϕ,ψ ∈ W 1,2(H,μ) and z ∈ H ,∫

H
〈Dϕ,Q1/2z〉ψ dμ = −

∫
H

〈Dψ,Q1/2z〉ϕ dμ +
∫
H

Wzϕψ dμ,(1.10)

where Wz represents the white noise function,

Wz(x) =
∞∑

k=1

1√
λk

〈x, ek〉〈z, ek〉 ∀z and μ-a.e. x ∈ H.(1.11)

We recall that Wz is a Gaussian random variable in L2(H,μ) with mean 0 and
covariance |z|2.

2. The measure μ conditioned to K . We denote by ν the Gaussian mea-
sure μ conditioned to K , that is,

ν(I ) = μ(K ∩ I )

μ(K)
∀I ∈ B(H).

Since μ is full and K
◦

is nonempty, this definition is meaningful. We notice that,
thanks to Hypothesis 1.1(ii) the surface measure μ� is well defined (see [17]).

We want now to prove an integration by parts formula with respect to mea-
sure ν which generalizes (1.10). For this it is convenient to introduce a sequence
of approximating measures {νε}ε>0 defined by,

νε(dx) = ρε(x)μ(dx), x ∈ H,(2.1)

where,

ρε(x) = Z−1
ε e−1/ε d2

K(x)(2.2)

and

Zε =
∫
H

e−1/ε d2
K(y)μ(dy).(2.3)
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Notice that, by the dominated convergence theorem,

lim
ε→0

Zε = Z0 = μ(K),(2.4)

whereas

lim
ε→0

ρε(x) =
{

1, if x ∈ K ,
0, if x /∈ K .

(2.5)

So, we have

lim
ε→0

νε = ν weakly in P (H).(2.6)

Moreover

Dρε(x) = −2

ε
ρε(x)

(
x − 	K(x)

)
,(2.7)

so that ρε ∈ W 1,2(H,μ).
We shall denote by L2(K, ν) the space of all ν-square-integrable functions on K

with the scalar product

〈u, v〉L2(K,ν) =
∫
K

u(x)v(x)ν(dx)

and the norm |u|2
L2(K,ν)

= 〈u,u〉L2(K,ν).

2.1. The integration by parts formula. Here we are going to derive from
(1.10), an integration by parts formula for the measure νε . Let ϕ ∈ C1

b(H), z ∈ H ,
then, since ρε ∈ W 1,2(H,μ), we find from (1.10) that∫

H
〈Dϕ,Q1/2z〉dνε =

∫
H

〈Dϕ,Q1/2z〉ρε dμ

= −
∫
H

ϕ〈D logρε,Q
1/2z〉dνε +

∫
H

Wzϕ dνε.

Since,

D logρε(x) = −1

ε
(x − 	Kx),

we find the formula∫
H

〈Dϕ,Q1/2z〉νε(dx) = 1

ε

∫
H

ϕ(x)〈x − 	K(x),Q1/2z〉νε(dx)

(2.8)
+

∫
H

Wz(x)ϕ(x)νε(dx).
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LEMMA 2.1. Let ϕ ∈ C1
b(H), z ∈ H . Then there exists the limit

lim
ε→0

J z
ε (ϕ) := lim

ε→0

1

ε

∫
H

ϕ(x)〈x − 	Kx,Q1/2z〉νε(dx)

(2.9)
=

∫
�

ϕ(y)〈n(y),Q1/2z〉μ�(dy),

where n(y) = ∇g(y)/|∇g(y)| is the exterior normal to � at y and μ� is the
surface measure on � induced by μ (see [17]).

PROOF. First we notice that

J z
ε (ϕ) = 1

εZε

∫
{dK(x)>0}

ϕ(x)dK(x)〈n(	K(x)),Q1/2z〉e−d2
K(x)/εμ(dx).

By the co-area formula (see [17], page 140) (see also Theorem A.5 below) we have∫
H

f μ(dx) =
∫ ∞

0

[∫
�r

f (y)μ�r (dy)

]
dr.(2.10)

Notice that the surface measure is defined for all r ≥ 0 taking into account ([17],
Theorem 6.2, Chapter V); moreover ([17], Theorem 1.1, Corollary 6.3.2, Chap-
ter V), give the continuity property in Theorem 6.3.1 of [17], Chapter V. Setting
in (2.10)

f = (1 − 1K)ϕ(x) dK(x)〈n(	K(x)),Q1/2z〉e−d2
K(x)/ε,

we get

J z
ε (ϕ) = 1

εZε

∫ +∞
0

ξe−ξ2/ε dξ

∫
�ξ+1

ϕ(y)〈n(	K(x)),Q1/2z〉μ�ξ (dy).

Hence, setting ξ = √
εs, yields

J z
ε (ϕ) = 1

Zε

∫ ∞
0

se−s2
ds

∫
�√

εs+1

ϕ(y)〈n(	K(y)),Q1/2z〉μ�√
εs
(dy).

So (2.9) follows. �

We are now in position to prove the announced integration by parts formula.

THEOREM 2.2. Let ϕ ∈ C1
b(H), z ∈ H . Then for any z ∈ H we have∫

K
〈Dϕ(x),Q1/2z〉ν(dx) = 1

2μ(K)

∫
�

ϕ(y)〈n(y),Q1/2z〉μ�(dy)

(2.11)
+

∫
K

Wz(x)ϕ(x)ν(dx).

PROOF. The conclusion of the theorem follows letting ε → 0 in (2.8) and
taking into account Lemma 2.1. �
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2.2. The Sobolev space W 1,2(K, ν). We shall define space W 1,2(K, ν) by
proving, as it is usual, closability of the gradient. For this we need a lemma.

LEMMA 2.3. The space

C1
0(K) := {ϕ ∈ C1(K) :ϕ = 0 on �}

is dense in L2(K, ν).

PROOF. It is enough to show that if ϕ ∈ C1(K) then there exists a sequence
{ϕα} ⊂ C1

0(K) such that

lim
α→0

ϕα = ϕ in L2(K, ν).(2.12)

Let {χα}α∈(0,1) ⊂ C1(R) be a sequence such that,

χα(r) =
{

1, for r ∈ [0,1 − α],
0, for r ≥ 1.

Setting now

ϕα(x) = χα(g(x))ϕ(x) ∀α ∈ (0,1),

we see that {ϕα}α∈(0,1) ⊂ C1
0(K) and (2.12) follows from the dominated conver-

gence theorem. �

PROPOSITION 2.4. The mapping

D :C1(K) ⊂ L2(K, ν) → L2(K, ν;H), ϕ → Dϕ,

is closable.

PROOF. Let (ϕn) ⊂ C1(K) be such that

ϕn → 0 in L2(K, ν), Dϕn → F in L2(K, ν;H)

as n → ∞. We have to show that F = 0. Let ψ ∈ C1
0(K) and z ∈ H. Then by (2.11)

with ϕnψ replacing ϕ (see Theorem 2.2) we have that∫
K

〈Dϕn(x),Q1/2z〉ψ(x)ν(dx)

= −
∫
K

〈Dψ(x),Q1/2z〉ϕn(x)ν(dx)

+ 1

2μ(K)

∫
�

ϕn(y)ψ(y)〈n(y),Q1/2z〉μ�(dy)(2.13)

+
∫
K

Wz(x)ϕn(x)ψ(x)ν(dx)

= −
∫
K

〈Dψ(x),Q1/2z〉ϕn(x)ν(dx) +
∫
K

Wz(x)ϕn(x)ψ(x)ν(dx),
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since ψ vanishes on �. Letting n → ∞ we find that∫
H

〈F(x),Q1/2z〉ψ(x)μ(dx) = 0.

This implies F = 0 in view of the arbitrariness of ψ and z [recall Lemma 2.3 and
that Q1/2(H) is dense in H ]. �

We shall still denote by D the closure of D and by W 1,2(K, ν) its domain of
definition. W 1,2(K, ν) is a Hilbert space with the scalar product

〈ϕ,ψ〉W 1,2(K,ν) =
∫
K

[ϕψ + 〈Dϕ,Dψ〉]dν.

2.3. The trace of a function of W 1,2(K, ν). In order to define the trace of
a function ϕ ∈ W 1,2(K, ν) we need a technical lemma.

LEMMA 2.5. Assume that ϕ ∈ C1
b(H). Then the following estimate holds,∫

�
|Q1/2n(y)|2ϕ2(y)μ�(dy)

(2.14)

≤ C

(∫
K

ϕ2(x)ν(dx) +
∫
K

|Dϕ(x)|2ν(dx)

)
,

where C is a suitable constant.

PROOF. Here we follow [12]. Let ϕ ∈ C1(K). Set F(x) = Dg(x). In particu-
lar F(x) = |Dg(x)|n(x) for x ∈ �. Then, replacing in (2.11) ϕ with λkFkϕ

2 and z

with ek , one gets∫
K

λkDkFkϕ
2 dν + 2λk

∫
K

FkϕDkϕ dν

= 1

2μ(K)

∫
�

λk|Dg(y)|〈n(y), ek〉2ϕ2(y)μ�(dy) +
∫
K

xkFkϕ
2ν(dx).

It follows that

1

2μ(K)

∫
�

λk|Dg(y)|〈n(y), ek〉2ϕ2(y)μ�(dy)

≤
∫
K

λkD
2
kgϕ2 dν + 1

2

∫
K

F 2
k ϕ2ν(dx) + 1

2
λ2

k

∫
K

|Dkϕ|2ν(dx)

−
∫
K

xkFkϕ
2ν(dx).

Now the conclusion follows summing up over k, since |Dg| is bounded below
on �. �
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Now we can define the trace γ (ϕ) on � of a function ϕ ∈ W 1,2(K, ν). Let
us consider a sequence {ϕn} ⊂ C1(K) strongly convergent to ϕ in W 1,2(K, ν).
Then by (2.14) it follows that the sequence {|Q1/2n(y)|(ϕn)�} is convergent in
L2(�,μ�) to some element γ̃ (ϕ) ∈ L2(�,μ�). Then we set

γ (ϕ)(y) = 1

|Q1/2n(y)| γ̃ (ϕ)(y), μ�-a.s.

By inequality (2.14) it follows that this definition is consistent, that is, is indepen-
dent of the sequence {ϕn} and the map ϕ → |Q1/2n(y)|γ (ϕ) is continuous from
W 1,2(K, ν) → L2(�,μ�). Notice also that though |Q1/2n(y)| > 0 for all y ∈ �

it is not however bounded from below in infinite dimensions. Now the following
result is an immediate consequence of Lemma 2.5 and the density of C1

b(H) in
W 1,2(K, ν).

PROPOSITION 2.6. Assume that ϕ ∈ W 1,2(K, ν). Then:

(i) |Q1/2n(y)|γ (ϕ) ∈ L2(�,μ�),
(ii) the following estimate holds,∫

�
|Q1/2n(y)|2ϕ2(y)μ�(dy)

(2.15)

≤ C

(∫
K

ϕ2(x)ν(dx) +
∫
K

|Dϕ(x)|2ν(dx)

)
.

We notice that if H is finite-dimensional and Q = I formula (2.15) reduces to
a classical result since |Q1/2n(y)| = 1 on �.

2.4. Compactness of embedding W 1,2(K, ν) ⊂ L2(K, ν). We first show the
log-Sobolev estimate for ν.

PROPOSITION 2.7. For all ϕ ∈ W 1,2(H, ν) we have∫
K

ϕ2 log(ϕ2) dν ≤ 1

λ1

∫
H

|Dϕ|2 dν + ‖ϕ‖2
L2(H,ν)

log
(‖ϕ‖2

L2(H,ν)

)
.(2.16)

PROOF. It is enough to show (2.16) for ϕ ∈ C1(H). By [6] (see also [9]
and [10]) we know that the log-Sobolev estimate holds for the measure νε ,∫

H
ϕ2 log(ϕ2) dνε ≤ 1

λ1

∫
H

|Dϕ|2 dνε + ‖ϕ‖2
L2(H,νε)

log
(‖ϕ‖2

L2(H,νε)

)
.(2.17)

Now the conclusion follows by (2.6) letting ε tend to 0. �

We can now prove the following result.

PROPOSITION 2.8. The embedding W 1,2(K, ν) ⊂ L2(K, ν) is compact.
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PROOF. Let {ϕn} be a sequence in W 1,2(K, ν) such that∫
K

(ϕ2
n + |Dϕn|2) dν ≤ C.(2.18)

We have to show that there exists a subsequence of {ϕn} convergent in L2(K, ν).
For this we proceed as in [6] noticing that, thanks to the log-Sobolev inequal-
ity (2.16), {ϕn} is uniformly integrable and so, it is enough to find a subsequence
of {ϕn} pointwise convergent to an element of L2(K, ν). Let {χα}α∈(0,1) ⊂ C1(R)

be such that,
(i) we have

χα(r) =
{

1, for r ∈ [0,1 − 2α],
0, for r ≥ 1 − α.

(ii) |χ ′
α(r)| ≤ 2

α
,∀α > 0.

Set now

ϕα
n (x) = χα(g(x))ϕn(x) ∀α ∈ (0,1/2).

We claim that for each α ∈ (0,1/2) the sequence {ϕα
n }n∈N is bounded in

W 1,2(H,μ). We have in fact∫
H

|ϕα
n |2 dμ =

∫
H

|ϕα
n |2 dν ≤ C

and, since

Dϕα
n (x) = χα(g(x))Dϕn(x) + χ ′

α(g(x))ϕn(x)Dg(x),

we have

|Dϕα
n (x)| ≤ |Dϕn(x)| + 2

α
|Dg|∞|ϕn(x)|.

Therefore, there is a positive constant C′
α such that∫

H
|Dϕα

n |2 dμ ≤ C′
α.

Recalling that the embedding W 1,2(H,μ) ⊂ L2(H,μ) is compact (see, e.g., [8]),
we can construct a subsequence {ϕα

nk(α)} which is convergent in L2(H,μ) and
then another subsequence which is pointwise convergent. This implies that for
each α ∈ (0, 1

2 ], {ϕnk(α)} is μ-a.e. convergent on Kα = {x :g(x) ≤ 1 − 2α}.
Now, by a standard diagonal procedure we can find a subsequence {ϕnk

} point-
wisely convergent as required. �
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2.5. The Sobolev space W 2,2(K, ν). It is easily seen that for all h, k ∈ N the
linear operator

DhDk :C2(K) ⊂ L2(K, ν) → L2(K, ν), ϕ �→ DhDkϕ,

is closable. If ϕ belongs to the domain of the closure of DhDk (which we shall
still denote by DhDk) we shall say that DhDkϕ belongs to L2(K, ν). Now we
define W 2,2(K, ν) as the space of all functions ϕ ∈ W 1,2(K, ν) such that DhDkϕ ∈
L2(K, ν) for all h, k ∈ N and

∞∑
h,k=1

∫
H

|DhDkϕ(x)|2ν(dx) < +∞.

W 2,2(K, ν) is a Hilbert space with the inner product

〈ϕ,ψ〉W 2,2(K,ν) = 〈ϕ,ψ〉W 1,2(K,ν) +
∞∑

h,k=1

∫
K

DhDkϕ(x)DhDkψ(x)ν(dx).

If ϕ ∈ W 2,2(K, ν) we can define a Hilbert–Schmidt operator D2ϕ(x) on K for
ν-almost all x ∈ K by setting

〈D2ϕ(x)y, z〉 =
∞∑

h,k=1

DhDkϕ(x)〈y, eh〉〈z, ek〉 ∀y, z ∈ H.

We show now that if ϕ ∈ W 2,2(K, ν), then one can define the trace on � of Dϕ.
Similarly to the definition of the trace of ϕ on � we define |Q1/2n(y)|γ (Dϕ) =
limn→∞ |Q1/2n(y)|γ (DϕN) in L2(�,μ�) for all {ϕn} ⊂ C2(K), ϕn → ϕ in
W 2,2(K, ν).

Proposition 2.9 below shows that this trace is well defined.

PROPOSITION 2.9. Assume that ϕ ∈ W 2,2(K, ν). Then:

(i) |Q1/2n(y)||γ (Dϕ)| ∈ L2(�,μ�),
(ii) the following estimate holds,∫

�
|Q1/2n(y)|2|γ (Dϕ(y))|2μ�(dy)

(2.19)

≤ C

(∫
K

|Dϕ(x)|2ν(dx) +
∫
K

|Tr[(D2ϕ(x))2]|ν(dx)

)
.

PROOF. Let ϕ ∈ W 2,2(K, ν) and let {ϕn} ⊂ C2(K) strongly convergent to ϕ

in W 2,2(K, ν). For i ∈ N we apply (2.15) to Diϕn. We have∫
�

|Dg(y)||Q1/2n(y)|2|Diϕn(y)|2μ�(dy)

≤ C

(∫
K

|Diϕn(x)|2ν(dx) +
∫
K

|DDiϕn(x)|2ν(dx)

)
.
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Summing up on i yields∫
�

|Dg(y)||Q1/2n(y)|2|Dϕn(y)|2μ�(dy)

≤ C

(∫
K

|Dϕn(x)|2ν(dx) +
∞∑

i,j=1

∫
K

|DjDiϕn(x)|2ν(dx)

)
.

Then letting n → ∞ we see that {Q1/2n(y)|γ (Dϕn)} is strongly convergent in
L2(K, ν) and so (i) and (ii) follow. �

When it will be no danger of confusion we shall simply set Dϕ instead
of γ (Dϕ).

2.6. The Sobolev space W
1,2
A (K,ν). We define W

1,2
A (K,ν) as the space of all

functions ϕ ∈ W 1,2(K, ν) such that
∞∑
h

λh

∫
H

|Dhϕ(x)|2ν(dx) < +∞.

It is easy to see that W
1,2
A (K,ν) is a Hilbert space with the inner product

〈ϕ,ψ〉
W

1,2
A (K,ν)

=
∫
K

ϕ(x)ψ(x)ν(dx) +
∞∑

h=1

λh

∫
K

Dhϕ(x)Dhψ(x)ν(dx).

If ϕ ∈ W
1,2
A (K,ν) we can define an element of K , A1/2Dϕ(x) for ν-almost all

x ∈ K by setting

〈A1/2Dϕ(x), y〉 =
∞∑

h=1

λhDhϕ(x)〈y, eh〉 ∀y ∈ H.

3. The Dirichlet form associated to ν. We define the symmetric Dirichlet
form

a(ϕ,ψ) =
∫
K

〈Dϕ,Dψ〉dν ∀ϕ,ψ ∈ D(a) = W 1,2(K, ν) × W 1,2(K, ν).

Since, as seen earlier, D is closed in L2(K, ν) we infer that the form a is closed
in the sense of [15], page 315, and as a matter of fact the form a is the closure of
a0(ϕ,ψ) = ∫

K〈Dϕ,Dψ〉dν,∀ϕ,ψ ∈ C1
b(H).

By the Lax–Milgram theorem there exists an isomorphism

N :W 1,2(K, ν) → (W 1,2(K, ν))∗

[where (W 1,2(K, ν))∗ is the dual space of W 1,2(K, ν)] such that

〈ϕ,ψ〉 + a(ϕ,ψ) = 〈N ϕ,ψ〉 ∀ϕ,ψ ∈ W 1,2(K, ν).
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(Here 〈·, ·〉 means the duality between W 1,2(K, ν) and (W 1,2(K, ν))∗ which coin-
cides with 〈·, ·〉L2(K,ν) on L2(K, ν).) We can identify L2(K, ν) with its dual and,
so, we have the well-known continuous and dense inclusions

W 1,2(K, ν) ⊂ L2(K, ν) ⊂ (W 1,2(K, ν))∗.
Now we define a linear operator N :D(N) ⊂ L2(K, ν) → L2(K, ν) as follows.
We say that ϕ ∈ D(N) if it belongs to W 1,2(K, ν) and that there exists C > 0 such
that ∣∣∣∣

∫
K

〈Dϕ,Dψ〉dν

∣∣∣∣ ≤ C|ψ |L2(K,ν) ∀ψ ∈ W 1,2(K, ν).(3.1)

This inequality implies that N ϕ ∈ L2(K, ν). Finally, if ϕ ∈ D(N) we set

Nϕ = 1
2(I − N )ϕ.

In other words,

〈Nϕ,ψ〉 = −1
2a(ϕ,ψ) ∀ϕ,ψ ∈ W 1,2(K, ν).(3.2)

THEOREM 3.1. Operator N is self adjoint in L2(K, ν) and ν is an invariant
measure for N , ∫

K
Nϕ dν = 0 ∀ϕ ∈ D(N).(3.3)

PROOF. By the closedness and symmetry of a it follows that N is closed and
symmetric. Moreover, by the Lax–Milgram theorem, applied to symmetric bilinear
form (u, v) → λ〈u, v〉 + a(u, v), we see that the range R(λI − N) of λI − N

coincides with L2(K, ν) for all λ > 0. Notice also that by (3.1)

〈Nϕ,ϕ〉 = −1
2 |Dϕ|2

L2(K,ν)
∀ϕ ∈ D(N).(3.4)

As regards (3.3) it is immediate by definition of N . �

It is useful to notice also that for each f ∈ L2(K, ν),

(λI − N)−1f = {ϕ :λ〈ϕ,ψ〉L2(K,ν) + 1
2a(ϕ,ψ)

= 〈f,ψ〉L2(K,ν),∀ψ ∈ W 1,2(K, ν)}.
4. The penalized problem. We are here concerned with the penalized equa-

tion {
dXε(t) + (

AXε(t) + βε(Xε(t))
)
dt = dWt,

Xε(0) = x,
(4.1)

where ε > 0, and

βε(x) = 1

ε

(
x − 	K(x)

) ∀x ∈ H.
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Since βε is Lipschitz, (4.1) has a unique mild solution Xε(t, x).
The corresponding Kolmogorov operator reads as follows,

Nεϕ = Lϕ − 〈βε(x),Dϕ〉, ϕ ∈ EA(H), ε > 0,(4.2)

where L is the Ornstein–Uhlenbeck operator

Lϕ = 1
2 Tr[D2ϕ] − 〈x,ADϕ〉, ϕ ∈ EA(H).

It is well known that νε [defined in (2.1)–(2.3)] is an invariant measure for Nε and
that ∫

H
Nεϕψ dνε = −1

2

∫
H

〈Dϕ,Dψ〉dνε ∀ϕ,ψ ∈ EA(H).(4.3)

Moreover, since βε is Lipschitz continuous, operator Nε is essentially m-dissipa-
tive in L2(H, νε) (we still denote by Nε its closure) and EA(H) is a core for Nε

see [9].
Section 4.1 below is devoted to prove several estimates for the (λI − Nε)

−1f

where f ∈ L2(H, νε). Then these estimates are used in Section 4.2 to prove that
(λI − Nε)

−1f converges as ε → 0 for any f ∈ L2(K, ν) to (λI − N)−1f . More-
over we shall end up the section giving sharp informations about the domain of N .

4.1. Estimates for (λI − Nε)
−1f . We need a lemma.

LEMMA 4.1. Let λ > 0, ϕ ∈ EA(H) and set

fε = λϕ − Nεϕ.(4.4)

Then the following estimates hold ∫
H

ϕ2 dνε ≤ 1

λ2

∫
H

f 2
ε dνε,(4.5)

∫
H

|Dϕ|2 dνε ≤ 2

λ

∫
H

f 2
ε dνε,(4.6)

λ

∫
H

|Dϕ|2 dνε + 1

2

∫
H

Tr[(D2ϕ)2]dνε +
∫
H

|A1/2Dϕ|2 dνε

(4.7)

+ 1

ε

∫
Kc

〈(
I − D	K(x)

)
Dϕ,Dϕ

〉
νε ≤ 4

∫
H

f 2
ε dνε.

PROOF. Multiplying both sides of (4.4) by ϕ, taking into account (4.3) and
integrating in νε over H , yields

λ

∫
H

ϕ2 dνε + 1

2

∫
H

|Dϕ|2 dνε =
∫
H

ϕfε dνε.(4.8)
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Now (4.5) and (4.6) follow easily from the Hölder inequality. To prove (4.7) let us
differentiate in the direction of ek both sides of (4.4). We obtain

λDkϕ − NεDkϕ + αkDkϕ + 1

ε

∞∑
h=1

(
δh,k − 〈	K(x)eh, ek〉)Dhϕ = Dkfε.

Multiplying both sides of (4.4) by Dkϕ, taking into account (4.3), integrating in νε

over H and then summing up over k, yields

λ

∫
H

|Dϕ|2 dνε + 1

2

∫
H

Tr[(D2ϕ)2]dνε +
∫
H

|A1/2Dϕ|2 dνε

(4.9)

+ 1

ε

∫
Kc

〈(
I − D	K(x)

)
Dϕ,Dϕ〉dνε =

∫
H

〈Dϕ,Dfε

〉
dνε.

Noting finally that, again in view of (4.3),∫
H

〈Dϕ,Dfε〉dνε = 2
∫
H

f 2
ε dνε − 2λ

∫
H

fεϕ dνε ≤ 4
∫
H

f 2
ε dνε,

the conclusion follows. �

Now we are able to prove the announced estimates.

PROPOSITION 4.2. Let λ > 0, f ∈ L2(H, νε) and let ϕε be the solution of the
equation

λϕε − Nεϕε = f.(4.10)

Then ϕε ∈ W 2,2(H, νε), A1/2Dϕε ∈ L2(H, νε) and the following estimates hold∫
H

ϕ2
ε dνε ≤ 1

λ2

∫
H

f 2 dνε,(4.11)

∫
H

|Dϕε|2 dνε ≤ 2

λ

∫
H

f 2 dνε,(4.12)

λ

∫
H

|Dϕε|2 dνε + 1

2

∫
H

Tr[(D2ϕε)
2]dνε +

∫
H

|A1/2Dϕε|2 dνε

(4.13)

+ 1

ε

∫
Kc

〈(
I − D	K(x)

)
Dϕε,Dϕε

〉
dνε ≤ 4

∫
H

f 2 dνε.

PROOF. Inequality (4.11) is obvious since Nε is dissipative. Let us pro-
ve (4.12). Let λ > 0, f ∈ L2(H, νε) and let ϕε be the solution of (4.10). Since
EA(H) is a core for Nε there exists a sequence {ϕε,n}n∈N ⊂ EA(H) such that

lim
n→∞ϕε,n → ϕε, lim

n→∞Nεϕε,n → Nεϕε in L2(H, νε).

Set fε,n = λϕε,n − Nεϕε,n. Clearly, fε,n → f as n → ∞ in L2(H, νε).



1444 V. BARBU, G. DA PRATO AND L. TUBARO

We claim that ϕε ∈ W 1,2(H, νε) and that

lim
n→∞Dϕε,n → Dϕε in L2(H, νε;H).

Let in fact m,n ∈ N, then by (4.6) it follows that∫
H

|Dϕε,n − Dϕε,m|2 dνε ≤ 1

λ2

∫
H

|fε,n − fε,m|2 dνε.

Therefore the sequence {ϕε,n}n∈N is Cauchy in W 1,2(H, νε) and the claim follows.
Estimate (4.13) can be proved similarly. �

We conclude this section with an integration by parts formula needed later. We
set

V = {ψ ∈ W 1,2(K, ν) : |Q1/2n|ψ ∈ L2(�,μ�)}.

LEMMA 4.3. Let ϕ ∈ D(Nε) and ψ ∈ V . Then the following identity holds.∫
K

Nεϕψ dν = −1

2

∫
K

〈Dϕ,Dψ〉dν

(4.14)

+ 1

μ(K)

∫
�
〈γ (Dϕ),n(y)〉ψ dμ�.

PROOF. Taking in account that EA(H) is a core for Nε , it is sufficient to
prove (4.14) for ϕ ∈ EA(H). By the basic integration by parts formula we deduce,
for any i ∈ N and ψ ∈ V that∫

K
DiϕDiψ dν = −

∫
K

D2
i ϕψ dν + 1

μ(K)

∫
�

γ (Diϕ)(n(y))iψ dμ�

+ 1

λi

∫
K

xiDiϕψ dν.

Now, summing up on i yields∫
K

〈Dϕ,Dψ〉dν = −
∫
K

Tr[D2ϕ]ψ dν + 1

μ(K)

∫
�
〈γ (Dϕ),n(y)〉ψ dμ�

+ 2
∫
K

〈x,ADϕ〉ψ dν.

That is nothing else but (4.14). �

4.2. Convergence of {ϕε}. We are going to show that the sequence {ϕε} is
convergent in L2(K, ν). We first note that for f ∈ Cb(H) we have

ϕε(x) = E

∫ ∞
0

e−λtf (Xε(t, x)) dt ∀x ∈ H.(4.15)
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Now, by a standard argument it follows that from (4.15) that if f ∈ C1
b(H) we have

sup
x∈H

|Dϕε(x)| ≤ 1

λ
‖Df ‖Cb(H) ∀ε,λ > 0.(4.16)

Theorem 4.4 is the main result of this section.

THEOREM 4.4. Let λ > 0, f ∈ L2(K, ν) and let ϕε be the solution of (4.10).
Then {ϕε} is strongly convergent in L2(K, ν) to ϕ = (λI − N)−1f where N is
defined by (3.1).

Moreover, the following statements hold:

(i) limε→0 Dϕε = Dϕ in L2(K, ν;H),
(ii) ϕ ∈ W

1,2
A (H,ν) ∩ W 2,2(K, ν),

(iii) ϕ fulfills the Neumann condition

dϕ

dn
(x) = 〈Dϕ(x),n(x)〉 = 0 on �,(4.17)

where 〈Dϕ(x),n(x)〉 is defined by Proposition 2.9 and |Q1/2n(x)|〈Dϕ(x),n(x)〉 ∈
L2(�,μ�).

PROOF. Without danger of confusion we shall denote again by f the restric-
tion f |K of f to K . In fact each f ∈ L2(K, ν) can be extended by 0 outside K to
a function in L2(H, ν). By this convention, everywhere in the sequel (λI −N)−1f

for f ∈ L2(H, ν) means (λI − N)−1f |K .
Step 1. We have

lim
ε→0

ϕε = (λI − N)−1f in L2(K, ν).(4.18)

In fact by (4.11), (4.12) and the compactness of the embedding of W 1,2(K, ν) in
L2(K, ν) it follows that there exist a sequence {εk} → 0 and ϕ ∈ W 1,2(K, ν) such
that

ϕεk
→ ϕ strongly in L2(K, ν),

Dϕεk
→ Dϕ weakly in L2(K, ν).

Let ψ ∈ C1
b(H) and consider the identity

1

2

∫
H

〈Dϕε,Dψ〉dνε =
∫
H

(f − λϕε)ψ dνε,

which is equivalent to

1

2

∫
K

〈Dϕε,Dψ〉dν + 1

2

∫
Kc

〈Dϕε,Dψ〉dνε =
∫
H

(f − λϕε)ψ dνε.(4.19)
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Since, we have∣∣∣∣
∫
Kc

〈Dϕε,Dψ〉dνε

∣∣∣∣
2

≤
∫
H

|Dϕε|2 dνε

∫
Kc

|Dψ |2 dνε

≤ 2

λ

∫
H

f 2 dνε

∫
Kc

|Dψ |2 dνε → 0

as ε → 0, we deduce, letting ε → 0 in (4.19) that

1

2

∫
K

〈Dϕ,Dψ〉dν =
∫
K

(f − λϕ)ψ dν ∀ψ ∈ C1
b(H).

Obviously, this identity extends to all ψ ∈ W 1,2(H, ν), which implies that ϕ =
(λI − N)−1f and that ϕε → ϕ strongly in L2(K, ν).

Step 2. We have

lim
ε→0

Dϕε = Dϕ in L2(K, ν;K).

We first assume that f ∈ C1
b(H). Let us start from the identity (4.8),

1

2

∫
H

|Dϕε|2 dνε =
∫
K

(λϕε − f )ϕε dνε,(4.20)

which implies

lim
ε→0

1

2

∫
H

|Dϕε|2 dνε =
∫
K

(λϕ − f )ϕ dν

(4.21)

= −〈Nϕ,ϕ〉 = 1

2

∫
K

|Dϕ|2 dν.

Here we have used the fact that

lim
ε→0

∫
Kc

|Dϕε|2 dνε(x) = 0,

which follows taking into account (4.16).
Therefore there exists a sequence {εk} such that

ϕεk
→ ϕ, strongly in L2(K, ν),

Dϕεk
→ Dϕ, weakly in L2(K, ν;H),

lim
k→∞

∫
K

|Dϕεk
|2 dν =

∫
K

|Dϕ|2 dν.

This implies that Dϕεk
→ Dϕ strongly in L2(K, ν;H).

We finally assume that f ∈ L2(H, ν). Since C1
b(H) is dense in L2(K, ν), there

exists a sequence {fn} ⊂ C1
b(H) strongly convergent in L2(K;ν) to f . Set ϕn,ε =

(λI − Nε)
−1fn. By (4.12) we have∫

H
|Dϕε − Dϕn,ε|2 dνε ≤ 2

λ

∫
K

|f − fn|2 dν,
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which implies ∫
K

|Dϕε − Dϕn,ε|2 dν ≤ 2

λ

∫
K

|f − fn|2 dν.

So, again Dϕεk
→ Dϕ strongly in L2(K, ν;H).

Step 3. We have

ϕ ∈ W
1,2
A (K,ν;H) ∩ W 2,2(K;ν).(4.22)

By estimate (4.13) we have that {ϕε} is bounded in W 2,2(K, ν). Therefore there
is a subsequence, still denoted {ϕε} which converges to ϕ in W 2,2(K, ν). In the
same way we see that ϕ ∈ W

1,2
A (K,ν;H).

Step 4. Checking the Neumann condition for ϕ.
From (4.14) we get∫

K
Nεϕεψ dν = −1

2

∫
K

〈Dϕε,Dψ〉dν + 1

μ(K)

∫
�

ψ〈γ (Dϕε),n(y)〉dμ�.

Recalling that Nεϕε = λϕε − f −→ λϕ − f = Nϕ in L2(K, ν) and that
|Q1/2n(y)|〈γ (Dϕε),n(y)〉 → |Q1/2n(y)|〈γ (Dϕ),n(y)〉 in L2(�,μ�) by Propo-
sition 2.9, by (i) and by (3.4) we obtain∫

�
〈γ (Dϕ),n(y)〉ψ dμ� = 0 ∀ψ ∈ V,

which implies (4.17) as claimed. [The set {γ (ψ) :ψ ∈ V } is dense in L2(�,μ�).]
This completes the proof. �

In particular, taking into account that D(N) is equal to the range of (λI −N)−1

we derive by Theorem 4.4 the following result, which gives a sharp information
on the structure of the domain of N .

COROLLARY 4.5. We have

D(N) ⊂
{
ϕ ∈ W

1,2
A (H,ν) ∩ W 2,2(K, ν) :

d

dn
ϕ(x) = 0 on �

}
.(4.23)

We notice also that for ϕ ∈ D(N) regular Nϕ is the classical elliptic differential
operator in H. More precisely, we have

COROLLARY 4.6. If TrD2ϕ ∈ L2(K, ν), 〈x,ADϕ〉 ∈ L2(K, ν) and dϕ
dn

(y) =
0,∀y ∈ � then ϕ ∈ D(N) and

Nϕ(x) = 1
2 TrD2ϕ − 〈x,ADϕ〉 ∀x ∈ K

◦
.(4.24)
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PROOF. By integration by parts formula (2.11) we see that∫
K

〈Dϕ,Dψ〉ν(dx) = −
∫
K

(
1

2
TrD2ϕ − 〈x,ADϕ〉

)
ν(dx)

(4.25)

+ 1

μ(K)

∫
�

ψ(y)
dϕ

dn
(y)μ�(dy) ∀ψ ∈ V,

which in virtue of (iv) and (3.2) implies (4.24) as claimed. �

REMARK 4.7. We conjecture that in Corollary 4.5 one has equality in rela-
tion (4.23), but we failed to prove it. This happens when N is replaced by the
Ornstein–Uhlenbeck generator L and ν by the Gaussian measure μ (see [9]).

Notice also that if ϕ ∈ D(N) we cannot conclude that TrD2ϕ ∈ L2(K, ν) and
〈x,ADϕ〉 ∈ L2(K, ν). This is obviously true if H is finite-dimensional.

5. Perturbation results.

5.1. Perturbation by a regular gradient. Let us consider the stochastic differ-
ential inclusion,{

dX(t) + (
AX(t) + DV (X(t)) + NK(X(t))

)
dt � dW(t),

X(0) = x,
(5.1)

where A,K and W are as before and V :H → R is a C2 function such that DV ∈
C1

b(H ;H).
Let us introduce a probability measure ζ ∈ P (K) by setting

ζ(dx) = Z−1
ζ e−2V (x)ν(dx),

where

Zζ =
∫
K

e−2V (y)ν(dy).

Arguing as in the proof of (2.11), we can show the following integration by parts
formula.

THEOREM 5.1. Let ϕ ∈ C1
b(H). Then for any z ∈ H we have∫

K
〈Dϕ(x),Q1/2z〉ζ(dx)

=
∫
K

ϕ(x)〈DV (x),Q1/2z〉ζ(dx)

(5.2)

+ 1

2μ(K)Zζ

∫
�

ϕ(y)〈n(y),Q1/2z〉e−2U(y)μ�(dy)

+
∫
K

Wz(x)ϕ(x)ζ(dx).
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Now all considerations of Sections 2, 3 and 4 can be easily generalized. In
particular, estimate (4.7) reads as follows

λ

∫
H

|Dϕ|2 dζε + 1

2

∫
H

Tr[(D2ϕ)2]dζε +
∫
H

|A1/2Dϕ|2 dζε

+
∫
H

〈D2V · Dϕ,Dϕ〉dζε + 1

ε

∫
Kc

〈(
I − D	K(x)

)
Dϕ,Dϕ

〉
dζε(5.3)

≤ 4
∫
H

f 2
ε dζε.

In conclusion, we arrive at the following result.

THEOREM 5.2. The operator N (defined as in Section 3 with the Dirichlet
form induced by ζ ) is self adjoint in L2(K, ζ ) and ζ is an invariant measure for N ,∫

K
Nϕ dζ = 0 ∀ϕ ∈ D(N).(5.4)

Moreover, we have

D(N) ⊂
{
ϕ ∈ W

1,2
A (H, ζ ) ∩ W 2,2(K, ζ ) :

d

dn
ϕ(x) = 0 on �

}
.(5.5)

(Details are omitted.)

5.2. Perturbation by a bounded Borel drift. Let F :H → H be bounded and
Borel and consider the stochastic differential inclusion,{

dX(t) + (
AX(t) + F(X(t)) + NK(X(t))

)
dt � dW(t),

X(0) = x.
(5.6)

Let moreover G be the linear operator in L2(K, ν) defined as

Gϕ = Nϕ + 〈F(x),Dϕ〉, ϕ ∈ D(N).(5.7)

PROPOSITION 5.3. G is the infinitesimal generator of a strongly continuous
compact semigroup Qt on L2(K, ν). Moreover its resolvent (λI − G)−1 is given
by

(λI − G)−1 = (λI − N)−1(1 − Tλ)
−1, λ > λ0,(5.8)

where

λ0 = 2‖F‖2
0 = 2 sup

x∈H

|F(x)|2(5.9)

and

Tλψ(x) = 〈F(x),D(λI − N)−1ψ(x)〉, ψ ∈ L2(K, ν), x ∈ K.(5.10)
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PROOF. Let λ > 0, f ∈ L2(K, ν). Consider the equation

λϕ − Nϕ − 〈F(x),Dϕ〉 = f.(5.11)

Setting ψ = λϕ − Nϕ (5.11) becomes

ψ − Tλψ = f,(5.12)

where Tλ is defined by (5.10).
On the other hand, by (4.12) it follows that∫

H
|D(λI − N)−1ψ |2 dν ≤ 2

λ

∫
H

ψ2 dν,

so that

‖Tλψ‖L2(H,μ) ≤
√

2

λ
‖F‖0‖ψ‖L2(H,μ).

Therefore if λ > λ0 (5.11) has a unique solution and the conclusion follows.
Finally, the compactness property of Qt for t > 0 follows from (5.9) and the

compactness of operator (λI − N)−1. �

We want now to show that operator G possesses an invariant measure ζ ab-
solutely continuous with respect to ν. For this let us consider the adjoint semi-
group Q∗

t ; we denote by G∗ its infinitesimal generator, and by �∗ the set of all its
stationary points:

�∗ = {ϕ ∈ L2(K, ν) :Q∗
t ϕ = ϕ, t ≥ 0}.

Though the following lemma is standard, we give a proof, however, for reader’s
convenience. We shall denote by 1 the functions identically equal to 1.

LEMMA 5.4. Q∗
t has the following properties:

(i) For all ϕ ≥ 0 ν-a.e., one has Q∗
t ϕ ≥ 0 ν-a.e.

(ii) �∗ is a lattice, that is, if ϕ ∈ �∗ then |ϕ| ∈ �∗.

PROOF. Let ψ0 ≥ 0 ν-a.e. Then for all ϕ ≥ 0 ν-a.e. and all t > 0 we have∫
K

Qtϕψ0 dν =
∫
K

ϕQ∗
t ψ0 dν ≥ 0.

This implies that ψ0 ≥ 0 ν-a.e., and (i) is proved.
Let us prove (ii). Assume that ϕ ∈ �∗, so that ϕ(x) = Q∗

t ϕ(x). Then we have

|ϕ(x)| = |Q∗
t ϕ(x)| ≤ Q∗

t (|ϕ|)(x).(5.13)

We claim that

|ϕ(x)| = Q∗
t (|ϕ|)(x), x − ν a.s.
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Assume by contradiction that there is a Borel subset I ⊂ K such that ν(I ) > 0 and

|ϕ(x)| < Q∗
t (|ϕ|)(x) ∀x ∈ I.

Then we have ∫
K

|ϕ(x)|ν(dx) <

∫
K

Q∗
t (|ϕ|)(x)ν(dx).(5.14)

On the other hand,∫
K

Q∗
t (|ϕ|) dμ = 〈Q∗

t (|ϕ|),1〉L2(K,ν) = 〈|ϕ|,1〉L2(K,μ) =
∫
K

|ϕ|dμ,

which is in contradiction with (5.14). �

The following result is a generalization of a similar result concerning the
Ornstein–Uhlenbeck semigroup proved in [8].

PROPOSITION 5.5. There exists an invariant measure ζ of Qt which is ab-
solutely continuous with respect to ν. Moreover

ρ := dζ

dν
∈ L2(K, ν).

PROOF. Let λ > 0 be fixed. Clearly 1 ∈ D(G) and we have G1 = 0. Conse-
quently 1

λ
is an eigenvalue of (λI − G)−1 since

(λI − G)−11 = 1

λ
1.

Moreover 1
λ

has finite multiplicity because (λI − G)−1 is compact. Therefore
((λI − G)−1)∗ is compact as well and 1

λ
is an eigenvalue for ((λI − G)−1)∗.

Consequently there exists ρ ∈ L2(K, ν) not identically equal to zero such that

((
(λI − G)−1)∗)

ρ = 1

λ
ρ.(5.15)

It follows that ρ ∈ D(G) and G∗ρ = 0. Since �∗ is a lattice, ρ can be chosen to
be nonnegative and such that

∫
K ρ dν = 1.

Now set

ζ(dx) = ρ(x)ν(dx), x ∈ K.

We claim that ζ is an invariant measure for Qt. In fact taking the inverse Laplace
transform in (5.15) we find that

Q∗
t ρ = ρ,

which implies that for any ϕ ∈ L2(K, ν),∫
K

Qtϕ dζ =
∫
K

Qtϕρ dν =
∫
K

ϕQ∗
t ρ dν =

∫
K

ϕ dζ.
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The proof is complete. �

Notice now that, since dζ
dν

∈ L2(K, ν) there is a natural inclusion of L2(K, ν) in
L1(K, ζ ) so, we can introduce the linear operator in L1(K, ζ ),

NF :D(N) ⊂ L2(K, ν) → L1(K, ζ ), NF ϕ := Gϕ.(5.16)

This is the final result of the paper.

PROPOSITION 5.6. Operator NF defined by (5.16) is dissipative in L1(K, ζ )

and its closure is m-dissipative.

PROOF. The dissipativity of operator NF in L1(K, ζ ) follows from the fact
that measure ζ is invariant for NF and a standard argument; see [11]. Moreover
the range of λI − NF contains L2(K, ν) for λ > λ0 which is dense in L1(K, ζ ).
So, the conclusion follows from the Lumer–Phillips theorem. �

6. An example.

EXAMPLE 6.1. Consider the stochastic equation⎧⎨
⎩

dX(t) − �X(t) dt + NK(X(t)) dt � dWt, in (0,∞) × O,
X(t) = 0, on ∂O,
X(0) = x, in O,

(6.1)

where O is a bounded and open interval of R, and

K = {
x ∈ L2(O) :‖x‖L2(O) ≤ ρ

}
.

Then the previous results apply with H = L2(O), A = −�, D(A) = H 1
0 (O) ∩

H 2(O).
Thus the Markov semigroup Pt generated by N in this case is given by

(Ptϕ0)(x) = ϕ(t, x) where

ϕ ∈ C1([0,∞);L2(L2(O), ν)) ∩ C([0,∞);W 2,2(K, ν)) ∩ W
1,2
A (K,ν;L2(O))

is the solution to infinite-dimensional parabolic equation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt

∫
K

ϕ(t, x)ψ(x)ν(dx)

+
∫
K

(∫
O

Dϕ(t, x)(ξ)Dψ(x)(ξ) dξ

)
ν(dx), ∀t ≥ 0,

ϕ(0, x) = ϕ0(x), x ∈ L2(O)

for all ψ ∈ W 1,2(K, ν).
A more general case is that where

K =
{
x ∈ L2(O) :

∫
O

j (x(ξ)) dξ ≤ ρ2
}
,(6.2)
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where j : R → R is a C∞ function such that 0 ≤ j (r) ≤ C1r
2, j ′′(r) ≥ C2 > 0,

∀r ∈ R. In this latter case

� =
{
x :

∫
O

j (x(ξ)) dξ = ρ2
}

and NK(x)(ξ) = {λ∇j (x(ξ))}λ>0 ∀x ∈ �.

APPENDIX

Here we shall present for the reader’s convenience a few results on co-aerea
formula used in Section 2.1, under additional conditions on g, Hypothesis A.1.

A.1. The co-area formula. Let H be a separable Hilbert space and μ = NQ

a nondegenerate Gaussian measure in H . Let (ek) be the complete orthonormal
basis in H corresponding to the eigenvalues (λk), a sequence of positive numbers,
that is, Qek = λkek, k ∈ N.

Let us recall the integration by parts formula∫
H

Dhϕψ dμ = −
∫
H

Dhψϕ dμ + 1

λh

∫
H

xhϕψ dμ(A.1)

for any ϕ bounded and Borel.
We are given a Borel bounded mapping g :H → R of class C2 such that

HYPOTHESIS A.1.

I1 :=
∫
H

Tr[QD2g(x)]
|Q1/2Dg(x)|2 μ(dx) < ∞,

I2 :=
∫
H

〈D2g(x) · Q1/2g(x),Q1/2g(x)〉
|Q1/2Dg(x)|4 μ(dx) < ∞,(A.2)

I3 :=
∫
H

〈x,Dg(x)〉
|Q1/2Dg(x)|2 μ(dx) < ∞.

REMARK A.2. Let ρ be a nonnegative C2 real function such that for some
c > 0, m ∈ N

|ρ′(r)| + |ρ ′′(r)| ≤ c(1 + rm), |ρ′(r)| ≥ c

and set g(x) = ρ(|x|2). Then we have

I1 = 2ρ′′(|x|2)|Q1/2x|2 + ρ′(|x|2)TrQ

ρ′(|x|2)|Q1/2x|2 ,

I2 = 4(2ρ ′′(|x|2) + ρ′(|x|2)
ρ′(|x|2)|Q1/2x|2 ,

I3 = |x|2
ρ′(|x|2)|Q1/2x|2 .
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Then it is not difficult to see that Hypothesis A.1 is fulfilled. Let us check for
instance that

J1 :
∫
H

1

|Q1/2x|2 μ(dx) < +∞.(A.3)

We have in fact

1

|Q1/2x|2 =
∫ +∞

0
e−t |Q1/2x|2 dt,

so that

J1 =
∫ +∞

0
dt

∫
H

e−t |Q1/2x|2μ(dx) =
∫ +∞

0

∞∏
k=1

1√
1 + 2tλ2

k

dt

≤
∫ +∞

0

3∏
k=1

1√
1 + 2tλ2

k

dt < +∞.

We denote by μg := g#μ the law of g on (R,B(R)). Then for any ϕ : R → R it
holds ∫

R

ϕ(r)μg(dr) =
∫
H

ϕ(g(x))μ(dx).(A.4)

We are going to show following [4] that, under Hypothesis A.1, g#μ � �, where �

is the Lebesgue measure on R, using the well-known sufficient condition∣∣∣∣
∫

R

ϕ′(r)μg(dr)

∣∣∣∣ =
∣∣∣∣
∫
H

ϕ′(g(x))μ(dx)

∣∣∣∣ ≤ C‖ϕ‖0 ∀ϕ ∈ C1
b(H).(A.5)

PROPOSITION A.3. Assume that Hypothesis A.1 is fulfilled. Then g#μ =
μg � �.

PROOF. We claim that∫
H

ϕ′(g(x))μ(dx)

= −
∫
H

ϕ(g(x))
Tr[QD2g(x)]
|Q1/2Dg(x)|2 μ(dx)

(A.6)

− 2
∫
H

ϕ(g(x))
〈D2g(x) · Q1/2g(x),Q1/2g(x)〉

|Q1/2Dg(x)|4 μ(dx)

+
∫
H

ϕ(g(x))
〈x,Dg(x)〉

|Q1/2Dg(x)|2 μ(dx),

which will yield the conclusion.
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Since

〈Dϕ(g(x)),QDg(x)〉 = ϕ′(g(x))|Q1/2Dg(x)|2,
we have∫

H
ϕ′(g(x))μ(dx) =

∫
H

1

|Q1/2Dg(x)|2 〈Dϕ(g(x)),QDg(x)〉μ(dx)

=
∞∑

k=1

λk

∫
H

Dkϕ(g(x))
Dkg(x)

|Q1/2Dg(x)|2 μ(dx).

Using (A.1) yields∫
H

ϕ′(g(x))μ(dx) =
∞∑

k=1

λk

∫
H

Dkϕ(g(x))
Dkg(x)

|Q1/2Dg(x)|2 μ(dx)

= −
∞∑

k=1

λk

∫
H

ϕ(g(x))Dk

[
Dkg(x)

|Q1/2Dg(x)|2
]
μ(dx)

+
∞∑

k=1

∫
H

xkϕ(g(x))
Dkg(x)

|Q1/2Dg(x)|2 μ(dx).

But

Dk

[
Dkg(x)

|Q1/2Dg(x)|2
]

= D2
kg(x)

|Q1/2Dg(x)|2 − 2

∑∞
j=1 λjDkDjg(x)Djg(x)

|Q1/2Dg(x)|4 .

Therefore∫
H

ϕ′(g(x))μ(dx)

=
∞∑

k=1

λk

∫
H

Dkϕ(g(x))
Dkg(x)

|Q1/2Dg(x)|2 μ(dx)

= −
∞∑

k=1

λk

∫
H

ϕ(g(x))
D2

kg(x)

|Q1/2Dg(x)|2 μ(dx)

= −2
∞∑

k=1

λk

∫
H

ϕ(g(x))Dkg(x)

∑∞
j=1 λjDkDjg(x)Djg(x)

|Q1/2Dg(x)|4 μ(dx)

+
∞∑

k=1

∫
H

xkϕ(g(x))
Dkg(x)

|Q1/2Dg(x)|2 μ(dx).

So, (A.5) follows. �

The following result can be proved similarly.
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COROLLARY A.4. Assume that Hypothesis A.1 is fulfilled and let f be
bounded and Borel. Then μfg � �.

A.2. Surface measure. We denote by K the closed set K = {g(x) ≤ 1} and
set

�r = {g(x) = r}, � = �1.

We recall the disintegration formula, see, for example, [19, 20]. For any ϕ :H →
R bounded and Borel we have.∫

H
ϕ(x)μ(dx) =

∫ +∞
0

[∫
�r

ϕ(x)mr(dx)

]
μg(dr),(A.7)

where (mr)r≥0 is a family of Borel measures on [0,+∞) such that the support
of mr is included on �r .

Set

α(r) =
∫
{g≤r}

dμ = μg([0, r]).

By Proposition A.3 α is a.e. differentiable on (0,∞). We set

σμ(�r) := α′(r) = lim
h→0

1

2h

∫
r−h≤g(x)≤r+h

μ(dx).

Now let f bounded and Borel and set

αf (r) =
∫
{g≤r}

f dμ = (f μ)g([0, r]).

Then by Corollary A.4 it follows that αf is a.e. differentiable. We set∫
�r

f (y)σμr (dy) := α′
f (r) = lim

h→0

1

2h

∫
r−h≤g(x)≤r+h

f (x)μ(dx), a.e. r > 0.

We finally prove.

THEOREM A.5. Let f ∈ Bb(H). Then we have∫
H

f (x)μ(dx) =
∫ +∞

0

[∫
�r

f (σ )σμr (dσ )

]
dr.(A.8)

PROOF. Using the disintegration formula (A.7) we have a.e. on (0,∞)∫
�r

f (σ )σμr (dσ ) =: lim
h→0

1

2h

∫
r−h≤g(x)≤r+h

f (x)μ(dx)

= lim
h→0

1

2h

∫ r+h

r−h

[∫
g−1(r)

f (x)mr(dx)

]
σμr (�r) dr.
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By Lebesgue’s theorem we deduce that∫
�r

f (σ )σμr (dσ ) =
∫
g−1(r)

f (x)mr(dx)σμr (�r), a.e. r > 0,

which yields∫
g−1(r)

f (x)mr(dx) = 1

σμr (�r)

∫
�r

f (σ )σμr (dσ ), a.e. r > 0.

Now the conclusion follows by substituting this into (A.7). �
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