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ON MINIMUM ENERGY PROBLEMS*

G. DA PRATO’, A. J. PRITCHARD$, AND J. ZABCZYK

Abstract. A stochastic system described by a semilinear equation with a small noise is considered.
Under suitable hypotheses, the rate functionals for the family of distributions associated to the solution and
the exit time and exit place of the solution are computed.
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1. Introduction. The paper is concerned with several deterministic optimization
questions which arise in the theory of small noise distributed systems.

Let us assume that a stochastic system is described by a semilinear equation

(1.1) dX (AX + F(X))dt +x/ dW, X(O) a H, e > O,

where A and F are, respectively, linear and nonlinear parts of the drift term and W
is a Wiener process with incremental covariance Q on a Hilbert space H.

The optimization problems considered in this paper are motivated by the problem
of finding the rate functionals for the family of distributions (X:(.)), e>0. They
are also related to the problem of calculating (for a given domain) the exit time and
exit place of the processes X(.), e>0, (see [4], [5], [11], [12], [14], [15]). Here and
in the sequel the distribution of a random variable : is denoted as (:).

If ET(a," is the rate functional for the family of measures (XX’(T)), e > 0,
then also of importance is the functional E(a, b) infT>oE-(a, b), a, b H, which is
sometimes called the quasipotential ([4], [5]). For an appropriate choice of the initial
condition, E is the rate functional for the invariant distributions (,) of the
process X.

Assume that a is a stable equilibrium point for the deterministic system
Az + F(z), and let @ be a set contained in H which is open with respect to the strong
topology and contains the point a. Define- inf{t :>0; X(t)O}

then lim+o In e(-) is called the exit rate.
Now let ya,+(. be a solution to the following controlled equation"

f ay + F(y) + Q1/Zch, y(O) a

in which 4’ stands for a square integrable function from [0, +[ into H.
Under fairly general conditions, (see [14]), we have

Er(a, b) =inf 14,<s)ll ds; ya"(T)=b

and see [5], [12], and [14],

1.2) lim In e r inf E(a, b).
e$O
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210 G. DA PRATO, A. J. PRITCHARD, AND J. ZABCZYK

The set of all those points where the infimum in (1.2) is attained is the exit set, and
this also has an important probabilistic interpretation (see [4], [5], [13]).

The present paper is concerned with the problem of finding or estimating E- and
Eoo and is also concerned with the problem of minimizing Eoo over the boundary of a
given set D. We will refer to them as the minimum energy problem and the exit problem,
respectively. We show that in certain important cases explicit solutions are possible.

The paper is divided into three parts. The first part is devoted to the minimum
energy problem for linear systems. Here we gather partially known results. Basic
formulae and estimates are given in Theorem 2.2. The next section starts from an upper
estimate for the energy Eoo which, however, is only valid locally. The main result of
the paper is formulated in Theorem 3.7 which gives explicit formulae for Eoo for the
so called gradient systems. The first part of the theorem is an extension of a result by
Friedlin [5] which also allows for a much larger class of drift terms. The second part
is concerned with systems of second order in time, which are not discussed in [5]. All
the basic steps of the proof are the same as those for the related results in finite
dimensional spaces (see [4]); they require more sophisticated control theoretic and
analytical developments. The final part presents a complete solution of the exit problem
when the dynamics are linear.

This paper is a shortened version of the report [3], to which we will refer for
additional details.

2. Minimum energy problem for linear systems. Consider a linear control system

(2.1) y=Ay+Bu, y(O)=a6H

on a Hilbert space H. The operator A generates a C0-semigroup of linear operators
S(t), => 0 and B is a bounded linear operator from a Hilbert space U into H. We will
always assume u(. L2[0, T; U] for arbitrary T> 0.

The mild solution of (2.1) is given by

(2.2) y(t) S(t)a + S(t- s)Bu(s) ds, >- 0.

Let us fix T> 0 and consider the following linear operator Lr acting from L[0, T; U]
into H:

(2.3)

Thus

L.u S( T- s)Bu(s) ds.

y( T) S( T)a + LT-u.
Recall that if L is a bounded linear operator between Hilbert spaces H1, H2, then the
value of its pseudoinverse operator L-1 at a point y Im L H2 is characterized as
the unique vector x H such that

Lx y, (x z, x) 0 for all z H, Lz y.

Equivalently x L-y is the element with the smallest norm satisfying Lx y.
It is clear that there exists a control u(. L2[0, T; U] transferring a to b in time

T if and only if b S(T)a Im Lr, and it is clear that the control which achieves this
and minimizes the functional u-* J Ilu(s)ll 2 ds--called the energy functional--is

(2.4) u Lr’(b S( T)a).
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ON MINIMUM ENERGY PROBLEMS 211

Let us recall that the system (2.1) is null controllable in time T>0 if an arbitrary
state b H can be transferred to 0 in time T. Moreover, the set T of all states which
can be reached from 0 in time T>0 with controls u(.) L2[0, T; HI is called the
reachable space in time T. If T is the whole space then the system is said to be
exactly controllable in time T. Finally a semigroup S(t) is said to be stable if, for some
positive constants M and ca we have ]]S(t)]]-< Me-)’ (see [1], [2]).

Define the linear operator

Rt S(r)BB*S*(r) dr, >= O.

We have the following proposition (see Ill, [2]).
PROPOSITION 2.1. (i) The function Rt, >-0, is the unique solution of the equation

d
(2.5) -7:(Rtx, x)=2(RA*x,x)+]]B*x]] 2, xD(A*), t>_0; Ro=L
at"’-

(ii) IfA generates a stable semigroup then limt_+o Rt-- R exists and is the unique
solution of the equation

(2.6) 2(Ra*x, x)+ [[B*x[]2--O, X D(A*).

The following theorem gives general results for the functionals Er(a, b), the
minimal energy of transferring a to b in time T, and E(a, b), a, b H, T> O. In its
formulation we will use the convection that if an element x is not in the domain of
an unbounded operator C we set Cx][ +00.

THEOREM 2.2. (i) For arbitrary T> 0 and a, b H:

ET(a, b) IJR2)-’(S(T)a b)l .
(ii) If S(t) is stable and the system (2.1) is null controllable in time To > 0, then

E(0, b)= ]](U’/2)-’bll 2 b H.

Moreover, there exists C > 0, such that

(2.7) ]I(R’/2)-’b]I2<- ET(O, b)<= CJI(R’/2)-’bl] 2, b H, T>= To.

Proof The proof of (i) can be found, for instance, in [1]. To prove (ii) let us
remark that the null controllability in time To is equivalent to the fact that for a constant

C > 0 and all x H,

fo 1/2x 2 , 2B*S*(r)x dr R To >= C, S To)x

But

f (k+l)T

=0 dkT

and for a constant C2 > 0,

IIB*S*(r)xll dr

llB*S*(r)xll dr <- Cllxl , xeH.
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212 G. DA PRATO, A. J. PRITCHARD, AND J. ZABCZYK

Consequently, for some constants M > 0, to > 0, C3 > 0,

IoI[el/2xl[- [[B*S*(F)Xl] dr+ C Y [Is*(To)xll
k=l

IIB*S*(r)xII dr+C -rolS*(ro)xll
o k=o

+-- (-e-o) -’ lB*S*(r)xll dr
C

1/2Hence Im el/c lm Rro Since the operator (e1/- /
ro R is closed and thus bounded

it follows that (2.14) holds. Now limr,Rr R so (2.13) must hold as well.
We now consider two special cases. Assume that A’D(A)c H H is a negative

definite operator on a Hilbert space H and that C’H H is a bounded operator. The
operators A and ,

= A C

define Co-semigroups on H and = D(-A)I/x H. The semigroups define mild
solutions of the following Cauchy problems

(2.8) 2 Ax, x(O) H
(.9) 2 ax + c, x(0) e D(-a) /, (0) H.

The controlled version of (2.8)-(2.9) are

(.0) =ay+u, y(O)=xg
(.) 2 ay + c+ u, y(0) O(-a)/), (0) v e H.

We have the following theorem.
TOM 2.3. (i) Assume that the operatorA is negative definite, then the reachable

see rfor che syscem (2.10) is, for all T> O, exactly D((-A) /) and

(0, b) 2(-a)’/bl, b H.

(ii) If in addition the operator C is negative definite, bounded and (-C)/ commutes
with (-A)/ then the system (2.11) is exactly controllable and

Proo For the details of the proof see [3]. The proof that (2.11) is exactly
controllable is similar to the one given for the one dimensional wave equation in [2],
although, of course, a more general spectral decomposition is required.

This result does not generalize to arbitrary semigroups; however for analytic
semigroups the first part of (i) can be generalized. To do this we must introduce the
real interpolation space D(1/2, 2). We recall that D(1/2, 2) is the set of all x in H
such that there exists a function y(.) W’(0, ; H)L(O, ; D(A)) such that
y(0) x (see [7]).

THEOREM 2.4. Suppose that A generates an analytic semigroup on H, then the
reachable set for system (2.10) does not depend on time and is equal to D(1/2, 2).
Moreover the energy norm ((0,.))/ is equivalent to the norm of D(1/2,2).

Proo Let T> 0, u(. L[0, T; H]; then the solution of (2.10) is given by

;oy()= s(-s)u(s) s
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ON MINIMUM ENERGY PROBLEMS 213

and we have (see [8]) that y(.) W1’2(0, oo; H)f’IL2(0, ; D(A)). Hence y(T)
Da(1/2, 2).

Conversely let x Da(1/2, 2); then we want to show that there exists a control
u(.)L2[0, T; H] such that y(T)=x. Now since xDa(1/2,2) there exists z(.)
W/2(0, ; H)f’l L2(0, c; D(A)) such that z(0)= x. Choose a C real function d)("
such that 4(0) 0, 4)(T) 1 and set

( t) dp( t)z( T- t), u( t) ( t) A( t); [0, T]

Then u(- )Le[0, T; H], (t) y(t) and :(T) y(T) x as required.
We now consider

y( t) S( t)x + S( s)u(s) ds

and first suppose that x DA 1 / 2, 2). Then there exists z(.
W1,2(0, oo; H)(q L2(, oo; D(A)) such that z(0)--x. Let h be a real valued C function
such that h(0) 1, h(T) 0 and set y(,t) h(t)z(t), then y(0) x, y(T) 0 and p(.
Ay(. L2[0, T; HI. Thus it suffices to choose u(t) p(t) Ay(t). For x H we first
choose u(t) 0 in [0, T/2]; thus y(T/2) DA(1/2, 2). Now by the previous argument we
can find a control u(.)L2[T/2, T; HI such that y(T) =0.

3. Minimum energy problems for nonlinear systems. Results like Theorems 2.2, 2.4
for linear systems do not have immediate generalizations to nonlinear ones. However
local results can be obtained via linearization as we shall show in Theorem 3.1. This
theorem will also play a role in proving Theorem 3.7, which is an extension of Theorem
2.3 and is the most important result of the paper.

Denote by V the space Im Lr Im R2 associated with the control system (2.1),
equipped with the norm 11. I]-:

Ilxll-II(R=)-’xl[- IIZ’xll.
It follows immediately from the control theoretic interpretation that if <-s,

V, c V and Ilxll,-<-Ilxll, x vt.
Let us assume that for all T> 0 sufficiently small, F: VT- U and for all r > 0, there
exists Nr, T > 0 such that

(3.1) IIF(a)-F(b)llu<--N,Tlla-bllT provided IlallT<--r, IlbllT<--r.
Consider the following equation:

(3.2) 3) (Ay + BF(y))+ Bu, y(0) 0,

which has the following mild form:

io(3.3) y(t)= S(t-r)BF(y(r)) dr+ S(t-r)Bu(r) dr.

TEOREM 3.1. If 2Nr,r/-< 1 and Ilbll<-r((-2N,,/-)/2N,-,/-)then
Er(0, b) _-< (llb[l + rNr,wV/-)2.

We will need the following result, also of independent interest.
PROPOSITION 3.2. A mild solution y(.) of (2.1) with initial condition 0 is

VT-Continuous on [0, T].
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214 G. DA PRATO, A. J. PRITCHARD, AND J. ZABCZYK

Proof Fix 0 s =< T, then

y(s)- y(t) S(s- r)Bu(r) dr- S(t- r)Bu(r) dr

S(s- r)B{u(r)- u(r-(s- t))If_,.(r)} dr.

Thus, from the definition of the norms in and

(3.4) [ly(s) y(t)ll2lly(s)y(t)[ 2 for , ]u(r)-u(r-(s-t))I,_,.,l(r)] dr

u(r)- u(r-(x- t))ll = dr+ I[u(r)ll z dr.
--t

But the right-hand side of (3.4) tends to 0 as s- 0 and so the result follows.
Proof The equation (3.2) can be written as

where F(y) denotes the function F(y(s)) s [0, T]. If there exists a control u(. that
transfer zero to b in time T, then

(3.4) x LrF(y)+ Lru.
Set

(3.5) u L?l(b- LrF(y)).

We will now show that the following equation

(3.6) y(t)=L,F(y)+L,L?(b-LrF(y)) t[0, T]

has a Vr-continuous solution. Note that then necessarily

(r) F(y) + x F() x

and the transferring control is given by (4.6).
For z Z C[0, T; Vr] define (z) by

O(z)(t) ,v() + ,?(x-F(z)).
It follows from Theorem 4.1 that : Z Z. Note

O(0)(t) ,?lx [0,

and hence

sup L,L’ b T-- U

So II(0)ll/--< IlbllT- Let w, z Z, then

(w)()- (z)() L,[V(w) V(z)] + ,’([F(z) F(w)])

and hence

(w)- (z)llz IIL.(F(w)- F(z))llz -IIL.L’(L[F(z)- F(w)])llz

2 IIF(w(s)) f(z(s))[l ds
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ON MINIMUM ENERGY PROBLEMS 215

If w IIz r, z llz r, then

II(w)- (z)llz <--2Nr, T IIw(s)-z(s)ll ds) <_- 2N,4TII w- 11.

To show that the iterates z (0), n 1, 2, .., are convergent it is enough to prove
that IIz I1 r, for n 1, 2,.... Set k 2Nr,r, then

6(o) IIz 6(o)- 6-1(0) Ilz + 6-’(0) 6-=(o) IIz +... + 6=(o)- 6 (0) IIz
(k- + + k)l[6(0)ll Ilbll .1-k

So by the induction argument if

2N,
(1 2N,)

xb r,

then 116(o)llz r for all n 1, 2,.... The sequence {z,} is thus convergent in Z to
a solution y(. of the equation (3.6). Now

Ilu(s)[I = ds Ilb- gF(u)ll <= Ilbllr+ IlF(y(s))ll g ds

IlbllT + Nr,r IlY(s)II ds N IlbllT + rNr,T.
This complete the proof.

Remark 3.3. With a similar proof to the one above we can show that there exists
a unique solution of equation (3.2) on the interval [0, T] for any control satisfying

1-2Nr,
2Nr,T< 1 and sup IIL,ulIT <,

,r 2N,r
Also, nonzero initial states can be taken into account.

COROLLARY 3.4. Assume that for a given T> 0 the transformation F satisfies (3.1)
with Nr,TO as rO. enfor arbitrary e >0 there exists >0 such that g IlbllT < , then
Er(O, b) e.

Proo The result follows immediately from Theorem 3.1.
We will show that Theorem 2.3 can be extended to nonlinear systems of the form

(3.7) Ay U’(y) + u, y(O) ao H

(3.8) Ay U’(y) + u, y(O) ao D(-A)’/:, (0) bo H.

We will make the following assumptions

(i) A is a negative definite operator on the Hilbert space H.
(ii) U is a functional from V= D((-A) 1/2) into R+ of class C 1, U(0)=0,

OU(O) =0.
(iii) ere exists a mapping U" V H, Lipschitz on bounded sets such that

DU(x; h) (U’(x), h), for all x, h

where DU(x; h) denotes the value ofthe Frdchet derivatives at x in the direction
h.

(iv) is a positive constant.

Example 3.5. Let A=(d/dxa), D(A)= W(0, L) Wa(0, L). For any positive
integer k, we shall denote by wk(o, L) the Sobolev space consisting of all the real
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216 G. DA PRATO, A. J. PRITCHARD, AND J. ZABCZYK

functions on [0, T] which have square integrable derivatives of any order less or equal
to k. Moreover, we set W(0, L)={u WI(0, L); u(0)-u(L)=0}. Then V=
D(-A) 1/2= W(O, L). Define

U(x) ck(x(s)) ds, x V,

where 4 is a real valued function of class C 1. It is easy to see that

U’(x)(s) 6’(x(s)), s [0, L], x V.

The assumptions (ii) and (iii) are satisfied in this case.
Example 3.6. The functional U(x)= II(-a)’/Zxll2, x w obviously satisfies the

condition (ii) and DU(x; h)= 2((-A) 1/2x, (-A) 1/2h), x, h V. But U’(x) is defined
only for x D(A), so (iii) does not hold.

The minimal energy required to transfer ao to al for the system (3.7) and from
[] to [[] for the system (3.8) will be denoted by ET(ao, al) and ET([o], [b,]),
respectively. Also E(.,. infT>oET(’," ).

We denote by za( ), Z[](" the solutions of the uncontrolled systems

(3.9) Az- U’(z), z(O) a H

(3.10) Az U’(z) fl,, z(O) a D(-A)1/2, ,(0) b H.

THEOREM 3.7. Assume that the assumptions (i)-(iv) hold.
(1) If a f: D(-a) 1/2 then E(0, a)=+.
(2) If aD(-A) 1/2 and (-a)l/2z(t)->O as to in H, then

(3.11) E(0, a)= ]](-a)l/Zall+ZU(a).
(3) If [] Yf and zg(t) 0 as - in Yf, then

(3.12) E O’ -13[ll(-A)’/-all2+2g(a)+llbll]"

Proof The proof is based on the following identities. For the system (3.7), with
y(O)D(-A) 1/2

(3.13) [lu(s)ll 2 ds=- Ilu(s)+2Ay(s)-2U’(y(s))[[ 2 ds

+ (-A)’/=y( T)[[ + 2 U(y(T)) -II(-m)/=y(0) 2

2 U(y(0))].

For the system (3.8), with y(0) D(-A)1/2, p(O) H,

l for llo(3.14) Ilu(s)ll ds=- [lu(s)-2(s)l[ as

//3 (-A)1/2y(T) Ila / 2 U(y(T)) + ll.9( T)ll =
-II(-A)l/2y(0)112-2U(y(o))- I1(0)

To show that (3.13) holds let us use the fact that the mild solution of (3.7) is in fact
a strong solution. Elementary calculations give

lfo
r

(3.15) \/(1, 2)\i(o, T, Ilu(s)ll 2 ds)=- Ilu(s)+Zay(s)-ZU’(y(s))ll 2 ds)

-2 ((s), Ay(s)- U’(y(s))) as
o
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ON MINIMUM ENERGY PROBLEMS 217

(3.16)

and

It remains to show that
r

(.f(s), U’(y(s))) U(y( T))- U(y(O))ds

(3.17) -2 ()(s), Ay(s)) ds I(-A)’/y( Y)ll =- (-A)’/y(0) -0

In fact the identities (3.16) and (3.17) are true for arbitrary functions y(.) from
W1"2(0, T; H)1"] L2(0, T; D(A)). To see this consider a sequence {yn(" )} of functions
from C1(0, T; D(A)) converging to y both in W’2(0, T; H) and in L2(0, T; D(A))
topologies. Such a sequence exists since the domain D(A) is dense in H. For each n
and all [0, T]

d
U(y,( t)) DU(y,( t); ))n(t)) (U’(y,(t)), y,( t))

dt

and

d d
II(-A)/y,(t)ll=(Ay(t), y,(t))= 2(Aye(t), .9(t)).

dt

So the identities (3.16) and (3.17) hold for each yn, n 1,2,.... However, we can
pass to the limit in the above identities and therefore (3.16) and (3.17) hold for general

To prove (3.14) note that the functional U is defined on all state space and is of
class C 1. Thus if the control u(. is smooth and initial condition is in the domain of
the generator then

Ilu(s)ll ds-- Ilu(s)-2.(s)+2.(s)ll 2 as

1lot--- Ilu(s)-2(s)ll 2 ds+2 (f(s)-Ay(s)+ U’(y(s)), ) ds

and consequently (3.14) holds in this case. The general case is obtained by a standard
approximation argument.

Note that if (t)=Az(t)-U’(z(t)),t[O, T], then for y( t) z( T- t) we have

j( t) + Ay( t) U’(y( t)) O, y(O) z(T), y(T) z(O), (0, T).

Moreover, the function y(. is a solution of (3.7) when u( t) -2Ay( t) + 2U’(y(t)),
e [0, T], and for this control the first term on the right-hand side of (3.13) vanishes.

Hence u(. )e L2[0, T; HI and

Ew(O, a)>= II(-A)’/2oII2+2U(o)
(3.18)

Ew(z"(T), a)--II(-m)’/2all2+2U(a)-ll(-A)l/2z"(Y)ll2-2U(z"(y)).

But

Er+,(O, a) <= E,(O, za( T)) + Er(za( T), a).

Since (-a) ’/2z" T) -> 0 as T-+ oo it follows from Theorem 3.1 but E(0, z"(T)) -+ 0
as T->oo. Thus

lim ET(Z"(T), a)= I](-A)’/2al[2+2U(a)
rc
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218 G. DA PRATO, A. J. PRITCHARD, AND J. ZABCZYK

and

inf ET(O, a)<= II(-A)/all:+2U(a)
T>0

and so formula (3.11) holds. Formula (3.12) can be proved in a similar way.
Remark 3.8. Assume that Q is a linear positive definite operator that commutes

with A (more precisely with the spectral measure associated with A) and consider the
following system:

1 1Uf’ Q-lAy 5Q- (y) -1/2Q.9 + u

y(O) x D(-A)1/2, y(0) V H.

Then the formula (3.12) can be generalized to the following

(3.19) E
0

II(-A)l/all+ U(a)+(Ob,

with basically the same proof.
Remark 3.9. Let be a separable Banach space containing H such that the

inclusion operator i: Y(- is radonifying. This means that if is a Hilbert space then
is Hilbert-Schmidt. Then there exists an invariant measure on for the process

lur _1dX Ydt dY-- Q-AX +Q- (x) QY) dt + dW

and up to a multiplicative constant is of the form

e-(/)(,)p[dxI
where/x is a Gaussian invariant measure for the linear system

dX= Ydt dY=(Q-AX QY) dt+dW.

The measure is cylindrical on with mean vector o and covariance operator

(3.20) R=[ Q-1 0 10 Q-’

The representation (3.20) is valid provided we introduce a new but equivalent inner
product (.,.) on Y(

(Jail [a]} =((_Q_,A)I/Za, (_Q_,A)I/2)+(b, b2).
bl b2

The proof of this result follows from [15].

4. The exit problem. For details of the stochastic exit problem see [5], [12]. Here
we discuss its deterministic analogue. To fix ideas we concentrate on the system (3.7)
and assume that the conditions of Theorem 3.7 are satisfied. In addition let be a
Banach space containing D(-A)/ and such that the inclusion operator i: 3- is
randonifying, which means that the image i(7) of the cylindrical Gaussian measure
N(0, I) has an extension to a r-additive measure on Borel subsets of .

Example 4.1 (Compare [5]). Let

d 2

D(A) W(O, L)(-] We(O, L).
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ON MINIMUM ENERGY PROBLEMS 219

Then

D(-A)’/e W(0, L).

If E C[0, L], then the inclusion i" Wo(0, L)-* $ is radonifying (see [6]).
Let @ be a bounded open set in $ containing 0. For arbitrary e > 0 define

(0@) {x e g, distances (x, 0@) < e}(4.1)

and let

r[ inf(E(O, b); b (0@) fq @},
+r inf{E(0, b); b e (0@) fq @c},

where @ and @c denote, respectively, the closure and the complement of @.

= inf{E(0, b); b e 0@}.

If

r-= lim r, r+= lim r+
e$0

then r-_-< , r+-< and we expect that in fact r-= r+= . The numbers r-, r+, and
will be called, respectively, the lower, the upper exit rates, and the exit rate.

The following problems are of interest for both deterministic and stochastic
systems.

PROBLEM 4.2. Under what conditions r-= r+= ?
PROBLEM 4.3. Assume that r-= r+= . Calculate and describe as explicitly as

possible the set

(4.2) ={b e0@); E(0, b)= }

which will be called the exit set.
For linear systems some answers to the above questions are available assuming

that g--H(see [12]); here we consider a different situation and give rather specific
answers to both the problems. Namely we consider the problem

inf [[Au 2
u

where A is a closed operator on H= L2(F) with the domain D(A)c C()= E, C()
being the space of continuous functions on F c R and @ is a bounded neighborhood
of 0 in E. If u D(A), we set Ilau II-- /. We will assume also that"

(i) The operator G A-1 is an integral operator with a continuous kernel g(., )"

Gv(x) f. g(x, y)v(y) dy, xF, vH.

(ii) The set @ is of the following form:

@ {u E; -b(x) < u(x) < a(x), x F}

where a(. and b(. are positive functions on F.
The following result holds.

THEOREM 4.4. Assume (i) and (ii) hold. Then r-= r+= and

(4.3) = inf (a(x) ^ b(x) g2(x, y) dy
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220 G. DA PRATO, A. J. PRITCHARD, AND J. ZABCZYK

Let Fo be the set of all x F for which the infimum in (4.3) is attained. If Fo is nonempty
then

= (vx)(.)" v(.)=
a(x) ^ b(x)

g(x,.), x Fo

Proof Let us fix x e F and a positive number c; first we will solve the problem"
inf{I Aull; (x)_-> c, E} (if u D(A), IIAII +o), which is equivalent to

(4.4) inf Ilvl[ 2-- inf 11 11
Gv(x)c Gv(x)=c

where Gv(x)= (g(x,.). v)H. The proof of the following lemma is straightforward.
LEMMA 4.5. Let H be a Hilbert space, v H and c> 0, then for the problem

inf{llull, (u, v)= c} the infimum is attained at u c llvll and is equal to cll
Therefore the problem (4.4) has a unique solution vX( cg(x, )(Iv g2(x, Y) dY) -1

and the minimum value is c211vx( )11-2. The statement ofthe theorem now follows easily.
:Example 4.6. Let Al=(d2/dx2),D(A1) W(O, 1)71 W2(0, 1), g= Co(0, 1) the

space of continuous functions vanishing at 0 and 1, U’= 0 and

@ {z g;; Iz(x)l < a, x [0,1]}.

PROPOSITION 4.7. For the above example r-= r+= 4a2 and the exit set consists

of exactly two functions +/-

(a/2)t if [0,1/2]
S(t)=

(a/2)(1-t) ift[1/2,1].

Proof The proof follows from Theorem 4.4 and elementary calculations.
:Example 4.8. Here we take A2 =-A where A is the same as in Example 4.6.

Note that then D(-A2)/= D(A) and

II(-A)’/zll= Ldx (X) dx.

The set is the same as that in Example 4.6.
Poosio 4.9. For the above example r-= r+= 48a and the exit set consists

of exactly two functions +/- ?

at(3 4t2) if [0, 1/2]
(t)

a(1-t)(3-4(1-t)2) ift[1/2,1].
Remark 4.10. It is clear that a similar result is true for the operator An (-1) 1"

We could also start from the operator A (dZ/dx2) on L2(0, 1; Re of square integrable
vector functions, g C(0, 1; Re) and the set @ could be of more general character

@ {z; z(s) T(s), s [0, 1]}

where T is a multifunction with values in Re. Some additional subtleties arise here.
Remark 4.11. It would be interesting to consider in detail the case A A on

L2(F), F bounded in Rn, D(A1) W(F) W2(F) and A, (-1)m+A Under well-
known conditions, D(Am)c c(F) and the exit problem, as formulated in Problems 1
and 2 can be posed correctly. Some related comments can be found in [5].
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