
Olympiads in Informatics, 2014, Vol. 8, 123–131
© 2014 Vilnius University, IOI

123

CMS: a Growing Grading System

Stefano MAGGIOLO1, Giovanni MASCELLANI2,
Luca WEHRSTEDT3

1 London, U.K.
2 Faculty of Sciences, Scuola Normale Superiore
 Piazza dei Cavalieri 7, 56126 Pisa, Italy
3 Department of Mathematics, University of Bologna
 Piazza di Porta San Donato 5, 40126 Bologna, Italy
e-mail: s.maggiolo@gmail.com, giovanni.mascellani@sns.it,
luca.wehrstedt@gmail.com

Abstract. We give an update on CMS, the free and open source grading system used in IOI 2012,
2013 and 2014. In particular, we focus on the new features and development practices; on what we
learned by running dozens of contests with CMS; on the community of users and developers that
has started to grow around it.

Keywords: CMS, contest management system, grading system, IOI, IOI-like competitions.

1. Introduction

CMS (Contest Management System) is a free and open source grading system to run
the IOI and similar programming contests1. Since our first presentation in (Maggiolo
and Mascellani, 2012) the project saw a lot of activity: new features were added, some
parts were redesigned, many bugs were fixed. CMS has been used in two IOI editions
(and will be used in 2014) as well as in dozens of other contests all around the world,
both on-line and on-site, from small local contests to international ones. It has received
suggestions, bug reports and code contributions from various enthusiastic developers in
many different countries.

We thus believe that it is time for us to give a new public update to the IOI commu-
nity about the state of the project, summarizing what has happened since the first presen-
tation of CMS and briefly covering where the CMS development is headed.

We will not go again over the motivations, design principles and general structure of
CMS: most of what was described in (Maggiolo and Mascellani, 2012) is still valid. In-
stead, we focus on what we learned from working on a more mature code base, with wider
adoption, larger feedback from users and more contributions external to the core team.

1	 CMS’s home page is http://cms-dev.github.io/

S. Maggiolo, G. Mascellani, L. Wehrstedt124

2. New Development

2.1. Development History

When (Maggiolo and Mascellani, 2012) was being written, CMS was about one year
and a half old, and it was a project led and developed almost exclusively by three core
developers involved in the Italian Olympiads in Informatics and later in the organization
of IOI 2012, held in Italy.

At the time, obviously, CMS development was very tied to the IOI schedule: the
CMS development group was a subset of the IOI’s Host Scientific Committee, and all
efforts were directed to be ready for IOI 2012. Therefore, we used a simple development
model, without formal releases: IOI 2012 was essentially the first public appearance of
CMS, and we planned to release CMS’s first official version soon after. As hosts know,
the IOI week is a hectic time when all sorts of previously overlooked small bugs start
causing lots of problems, and at the same time unorganized fixes accumulate. With our
post-IOI release, we implemented proper solutions substituting the fast fixes and we
identified specific areas of improvement for future releases.

Indeed, a very important criterion for a grading system used at the IOI is the ability
to easily merge upstream the changes introduced during the IOI, as this guarantees that
known problems do not propagate to the following IOIs, and that new features (for ex-
ample, to support new rules) are not implemented several times by different hosts.

We released CMS 0.9 in November 20122. Its structure is essentially the same as that
described in (Maggiolo and Mascellani, 2012). Apart from many small improvements
and fixes, we implemented user tests (in the sense of the IOI rules): the possibility for
contestants to execute their source code against their own input files in the same environ-
ment where their solution will be evaluated.

In March 2013 we released CMS 1.03. This was intended to be an evolutionary re-
lease that continued the post-IOI work. Its highlights were a vastly improved documen-
tation4 and full support for the translation of the contestant interface.

The version used at IOI 2013 was cut from the post-1.0 development branch two
months later, and it included two major additional features: the new sandbox, isolate
(Mareš and Blackham, 2012), and task versioning.

We continued the development of CMS 1.1, which is going to be released before this
article is published. The main additions have been the transition to the new event loop
library, a new service taking care of the communication with RankingWebServer, sup-
port for additional programming languages, easier to write importers, new translations,
improved testing.

We also started improving our development practices: we began reviewing all new
code entering the repository; we focused in improving our tests, increasing their cover-
age; and we set up a continuous integration system5.

2	 Release notes at https://github.com/cms-dev/cms/wiki/CMS-0.9.0-RELEASE-NOTES
3	 Release notes at https://github.com/cms-dev/cms/wiki/CMS-1.0.0-RELEASE-NOTES
4	 The documentation is available at https://cms.readthedocs.org/
5	 The continuous integration web interface is reachable at http://cms.di.unipi.it/jenkins/

CMS: a Growing Grading System 125

During the two years that brought us here, we had the pleasure to appoint two new
core developers (from Italy and Australia) and to receive contributions from other six-
teen people around the world6. Many contributions came from future IOI hosts that de-
cided or are considering using CMS as their grading system. Nonetheless, as the number
of national teams using CMS for training and selection rises, we have seen also a grow-
ing number of contributions from people not involved in IOI hosting.

2.2. New Features

We list in this section the main differences between CMS pre-0.9 and CMS 1.1.

User tests. As per IOI rules, contestants can test their solutions against an input they
propose, and the execution will be performed in the same environment as the evaluation
against the official testcases.

Improved contestants interface. We implemented a new web UI for contestants, based
on Bootstrap (Twitter, Inc., 2010), much nicer to the eye and easier to understand. The
interface has also been made completely translatable and contestants can change the
language.

Translations. At the moment of writing, CMS has been translated in nine languages:
Bosnian, Dutch, English, French, Italian, Japanese, Lithuanian, Russian and Traditional
Chinese. We welcome contributions to extend the list further.

Task versioning. More often than one would want, during a contest it is realized that
some testcases are wrong. With CMS, administrators can create new sets of testcases,
evaluate all submissions against them and find out how many contestants were affected
by the problem; all of this in “background”, without taking down the task or the scores
for the initial set of inputs. When the new testcases are validated, administrators can
switch to them and notify only the affected contestants, without any downtime and with-
out most contestants even noticing.

Task versioning is not limited to input files: it can also be used to test new time and
memory limits, or different libraries, graders, or scoring functions.

New sandbox. The previous sandbox, mo-box (Mareš and Gavenčiak, 2001), was based
on system calls filtering; maintaining the list of allowed calls for compilations and evalu-
ations was often difficult, as it depended on the architecture, the operating system and
the programming language. The new sandbox, isolate (Mareš and Blackham, 2012), was
again co-developed by Martin Mareš and is based on the new namespace features of the
Linux kernel. It requires a reasonably recent version of the kernel (at least 3.8) and the
isolate executable must be run as root (which is accomplished in CMS using the suid
flag), but it does not require special configuration and in particular architecture-depen-
dent ones. Moreover, it enforces limitations directly on the resources, instead than on the
calls used to obtain them. It also causes much less computational overhead.

6	 A complete list is at https://github.com/cms-dev/cms/blob/af11e8d6/AUTHORS.txt

S. Maggiolo, G. Mascellani, L. Wehrstedt126

New event loop library. Up to CMS 1.0 our custom-made RPC system was based upon
Python’s asyncore framework, which now exists for “backward compatibility only” and
is eventually going to be removed from the standard Python libraries. Our HTTP servers
were built on top of Tornado (Facebook, Inc., 2009), which had its own event loop: we
had therefore to have them both running simultaneously, interleaving their steps. The
awkwardness of this design and the serious performance issues indirectly caused by
it that came up at IOI 2012 (see section 3.1 for more details) prompted us to switch to
gevent (Bilenko, 2014), a coroutine-oriented Python library based on the low-level libev
(Lehmann and Giaquinta, 2014) event loop.

New RPC system. Our RPC library, called AsyncLibrary, was based on asyncore and
was hence dropped after the transition to gevent. We wrote a new one that fully benefits
from the new paradigm. That has been a good chance to make it more modular and safer
(for example by catching and logging all exceptions in callbacks).

We also improved performance by avoiding opening more than two connections (one
in each direction) between any pair of services.

ScoringService. The IOI 2013 experienced issues with slow scoring (Blackham, 2013):
after fixing a testcase, the rescore took so long that they could not determine the affected
contestants before the end of the contest. The slow rescoring was introduced on purpose
to return the control to the event loop regularly (as the service would have otherwise ap-
peared stuck to the rest of CMS). The problem was fixed by porting the service to gevent:
that made the regular pauses unnecessary as the event loop could take back control in
any time during the execution of I/O.

ProxyService. The philosophy of CMS has always been to use many small services that
have only a small number of duties, possibly just one; this helps keeping most of the
functionalities up in case something goes wrong in a specific part of CMS. In the previ-
ous design, ScoringService had two duties: to compute the score of each submission
and to send these scores to the ranking server. Therefore, we moved the latter to a new
service, called ProxyService.

Importers and loaders. In CMS 1.0 we had a utility, called YamlImporter, to easily load
into CMS contests and tasks prepared using the file system format of the Italian Olym-
piads. A companion utility, YamlReimporter, was used to “reimport” an already-existing
contest, i.e., updating its data without losing the submissions already sent by the users.

We always stressed that CMS should not force a specific file system format to the
administrators, but the complexity of YamlImporter and YamlReimporter made it diffi-
cult to write similar utilities for other formats. Therefore, we split them into two format-
independent parts (Importer and Reimporter) and a loader, which is specific to our for-
mat. This way, the support for another format can be added by just implementing a new
loader, which only has to create the appropriate objects from an external source, usually
a file system representation. We received some externally contributed loaders over the
last months.

Programming languages support. We added support for new competition languages:
Java (through gcj), Python, PHP, in addition to the classical C, C++ and Pascal. It is now

CMS: a Growing Grading System 127

trivial to add support for other compiled languages and for some interpreted ones. Note
that this is not an endorsement for allowing such new languages in the IOI; in particular,
individual languages can be allowed or not for each contest.
Extended documentation. CMS has now rather comprehensive user documentation,
covering the whole process of setting up CMS to run a contest. From the developer side,
we have about two lines of comments every three lines of code, thanks especially to our
commitment to write docstrings for every function. As CMS becomes a larger project,
some shortcoming of Python’s duck typing system started to become apparent, and we
reacted increasing the documentation of the types of arguments and return values of
functions. Moreover, a tool was developed to ensure that CMS was actually respecting
the indications written in the docstrings (Maggiolo, 2013).

3. CMS Usage

3.1. IOI

CMS was used for running two IOI editions, in 2012 (Sirmione and Montichiari, Italy)
and 2013 (Brisbane, Australia); it will also be used in IOI 2014 (Taipei, Taiwan). In both
past cases CMS performed mostly well; while during the two contests there were some
technical problems, most of them did not depend on CMS misbehaviour, but on mistakes
in the data provided to it (e.g., wrong testcases or graders) or on other faults in the net-
work environment. For a detailed discussion of what happened at IOI 2013, please see
(Blackham, 2013).

There were, though, some issues that were CMS bugs. Probably the most impor-
tant single issue was the inefficiency in the networking framework on which CMS was
based. The RPC and HTTP servers were built on top of asyncore and Tornado, and
took advantage of their non-blocking, callback-based APIs. Unfortunately, connections
opened outside the scope of these frameworks did not benefit from it and any read or
write operation on them was blocking for the whole application. Such instances were,
in particular, the connections to the database (handled by SQLAlchemy) and the HTTP
requests to RankingWebServer (handled by httplib).

Both of these caused serious performance bottlenecks at IOI 2012. Some services
(like ContestWebServer and AdminWebServer) usually spend most of their time doing
database queries: being unable to handle other requests while waiting for the results of a
query made them unresponsive, especially during periods of high load or when perform-
ing large queries. At the IOI this resulted in ContestWebServer not being able to handle
the request burst at the beginning of each day and appearing to be down for minutes.
AdminWebServer did also hang often, but this did not cause problems to contestants.

On the other hand the internet connection at the IOI 2012 site was very poor and
there was a lag of a few seconds on all outgoing requests. That caused the rate at which
data was sent to RankingWebServer to be much less that the rate at which new data was
coming in: ScoringService was spending all its time waiting, neglecting its duty to score

S. Maggiolo, G. Mascellani, L. Wehrstedt128

submissions and building up large queues. This issue was somewhat relieved by group-
ing all queued data into a single HTTP request. Yet, it was not enough and we ended up
using two threads for the two distinct operations. That contributed to induce us to split
off ProxyService.

Using for example Tornado’s HTTPClient (instead of httplib) to handle the HTTP
connections may have resolved this issue, but we could not find viable alternatives to
SQLAlchemy: the few that existed seemed to be less powerful and mature. In the end
we decided to switch to gevent. Its execution model is based on having many execu-
tion units called “coroutines”, that are a lightweight form of cooperative threads: each
of them runs code that performs reads and writes using a synchronous blocking API,
but I/O operations are transparently translated to non-blocking calls and, while waiting,
control is returned to the event loop that allows other coroutines to resume their work.
Within CMS, SQLAlchemy uses Psycopg as backend towards the PostgreSQL server,
which is easily made compatible with coroutines, as detailed in (Varrazzo, 2010). Other
libraries, that were not originally designed to be cooperative, can be added support to by
using gevent’s monkey-patching capabilities. Although the gevent support was already
written, it was not used at IOI 2013, because it was still young and not well tested.

3.2. National and Local Contests

After its presentation at IOI 2012, CMS was used in many different countries for contests
with sizes ranging from local to international. We are aware of contests organized in Ar-
gentina, Australia, Belgium, Chile, Croatia, India, Italy, Japan, Latvia, Lithuania, Serbia,
Slovenia, Taiwan and Tunisia7. It was used both for on-line and on-site contests, from a
dozen to around a hundred contestants; some contests run with CMS were also hosted on
public cloud computing services, such as the well-known Amazon EC2 engine.

CMS is also used to run permanent online instances, which do not serve specific con-
tests, but allow users to continuously submit solutions to the set of offered tasks. Such
instances are used as tools for the training of national IOI teams8 or for collecting the
homework assigned to students during university courses and make the students able to
receive a direct feedback on their work9.

Some forks were devised from CMS for handling more specific situations or contest
types. For instance, William Di Luigi and Luca Versari added some social features like
the possibility for users to interact with a forum10; Masaki Hara runs a CMS instance
which serves contests for the Japanese Olympiad11 which has support for login via Twit-
ter or Facebook authentication.

7	 See a more complete list at http://cms-dev.github.io/testimonials.html
8	 For example, there is an instance for the training of the Italian team at http://cms.di.unipi.it/
9	 For example, http://judge.science.unitn.it/, handling exercises for the Algorithms and

Data Structure class at the University of Trento.
10	This is the case of the already mentioned instance http://cms.di.unipi.it/, which is run by code

at https://github.com/veluca93/oii-web
11 	Code at https://github.com/qnighy/cms, public instance at http://cms.ioi-jp.org/

CMS: a Growing Grading System 129

4. Future Plans

Our main goal for the future, as members of the core development team, is to make us
less central in the development of CMS: to do so, we need more people to send us con-
tributions. Translations, bug reports and fixes are always welcome; for people intending
to become more stable contributors, we set up a page12 with some ideas for interesting,
self-contained projects that offers a gentle introduction to the development side of CMS.
We are open to offer help and tutoring during the implementation of these ideas.

An obvious area for improvement for us is to learn to release more often. CMS 1.1
took too much time to be released and this created problems as the features introduced
in the development version started to justify using it despite being, for obvious reasons,
less stable than CMS 1.0. Smaller, more frequent releases will allow us to deliver new
features much sooner, and we intend to get better at that. The new testing and continuous
integration infrastructure will help us with this goal. Therefore, increasing the coverage
of our tests, and hence the trust on them, is another main goal.

The IOI is by far CMS’s main client, therefore we will continue supporting any IOI
rule change and any new task format. In our experience of these past years, we realized
that national competitions often have different requirements. We tried to do our best to
serve the community while keeping our focus on the IOI, and we will certainly continue
working with the interested national teams to support as many use cases as possible.

In terms of new features, we have at least two big changes coming ahead. The first is
a reorganization of how files associated to a task or to a submission are specified in the
task configuration; this will make it easier to configure tasks and possibly write new task
types. The second is a redesign from the ground up of AdminWebServer, that will expose
a simpler and more informative interface for contest administrators and will realign it to
the UI of ContestWebServer.

5. Conclusion

We have described what has changed in CMS in the last two years, the status quo and
where we plan to direct our development effort. After three years of work, we believe
CMS to be a valid and proved contest system and we invite the whole IOI community
(and, more generally, all those who are interested in organizing programming contests)
to try it, evaluate its suitability for hosting the types of contests they are interested into
and let us know their impressions and suggestions. In our development decisions we
welcome and consider the feedback received from our users.

As pointed out above, we are looking forward to receive contributions. Beside code
development, another way of contributing is by providing translations: it is our commit-
ment to offer an easy to use interface for all contestants, also in cases where English is
not necessarily the lingua franca (for instance, for local or national contests). Potential

12	http://cms-dev.github.io/contribute.html

S. Maggiolo, G. Mascellani, L. Wehrstedt130

contributors are welcome to read the relevant pages in the documentation13 and get in
touch with the CMS development team to have their translations accepted in the main
repository.

Acknowledgments

We would like to heartily thank all contributors and users of CMS, in all roles: develop-
ers, translators, contest administrators, especially when providing feedback, ideas and
bug reports. It is incredibly fulfilling for us to witness the growing of a community
around our project, which we intended and hoped from its start to become a useful tool
for all people involved in the IOI and in similar contests.

We look forward to continue working with all of the past and current contributors and
we welcome anybody willing to donate their effort and their skills to improve CMS.

The CMS project was initially funded by by AICA (Associazione Italiana per il Cal-
colo Automatico) and MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca)
and continues as a volunteer effort.

References

Bilenko, D. (2014). gevent. http://www.gevent.org/
Blackham, B. (2013). “Did that Really Just Happen?” – A Behind the Scenes Look at IOI 2013.

http://goo.gl/f63r78
Facebook, Inc. (2009). Tornado Web Server. http://www.tornadoweb.org/
Lehmann, M., Giaquinta, E. (2014). libev. http://software.schmorp.de/pkg/libev.html
Maggiolo, S. (2013). Pydoc Checker. https://github.com/stefano-maggiolo/pydocchecker
Maggiolo, S., Mascellani, G. (2012). Introducing CMS: a contest management system. Olympiads in Informat-

ics, 6, 86–99.
Mareš, M., Blackham B. (2012). A new contest sandbox. Olympiads in Informatics, 6, 100–109.
Mareš, M., Gavenčiak, T. (2001). The Moe Contest Environment. http://www.ucw.cz/moe/
Twitter, Inc. (2010). Bootstrap. http://getbootstrap.com/
Varrazzo, D. (2010). Coroutine Support for Psycopg.

https://bitbucket.org/dvarrazzo/psycogreen-hg/

13	http://cms.readthedocs.org/en/latest/Localization.html

CMS: a Growing Grading System 131

S. Maggiolo is a software engineer at Google and holds a Ph.D. in
Geometry from SISSA/ISAS, Trieste. He participated in IOI 2002,
winning a bronze medal and in IOI 2003. Since 2006 he collaborates
with the training and selection process for the Italian team at IOI, and
has been Observer in IOI 2009, Deputy Leader of the Italian team
in IOI 2011 and a HSC member for IOI 2012. He is one of the main
authors of CMS.

G. Mascellani has been a contestant in IOI 2007 and 2008, winning a
silver and a bronze medal. He is a Ph.D. student in Geometric Analy-
sis at the Scuola Normale Superiore (Pisa, Italy) and collaborates in
training the Italian team for IOI. He was a member of the HSC for
IOI 2012 and is one of the main authors of CMS. He is a Debian
Developer.

L. Wehrstedt participated twice in the IOI, in 2010 and 2011, win-
ning a bronze medal. He is attending a Bachelor’s degree in Mathe-
matics at the University of Bologna and he is a student at the Collegio
Superiore di Bologna. He has been involved in the training of the
Italian IOI team for the last three years, helped organizing two Italian
Olympiads in Informatics and was in the HSC of the IOI 2012. He is
one of the core developers of CMS.

