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Abstract. We consider a superconductor–two dimensional topological
insulator–superconductor junction and study how the 2π - and 4π -periodic
Josephson currents are affected by the electron–electron interaction. In the long-
junction limit the supercurrent can be evaluated by modeling the system as
a helical Luttinger liquid coupled to superconducting reservoirs. After having
introduced bosonization in the presence of the parity constraint we turn to
consider the limit of perfect and poor interfaces. For transparent interfaces, where
perfect Andreev reflections occur at the boundaries, the Josephson current is
marginally affected by the interaction. However, if strong magnetic scatterers
are present in the weak link, the situation changes dramatically. Here Coulomb
interaction plays a crucial role both in low and high temperature regimes.
Furthermore, a phase-shift of Josephson current can be induced by changing the
direction of the magnetization of the impurity.
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1. Introduction

Two-dimensional topological insulators (2DTI) are characterized by a gapped bulk spectrum
and gapless edge states which are robust against time-reversal invariant perturbations [1, 2].
Originally predicted for HgTe/CdTe quantum wells in [3, 4], and observed in [5], these systems
have attracted a great deal of attention in the last few years because of their peculiar electronic
transport properties. Edge states possess a helical nature, namely electrons have spin direction
and momentum locked to each other and constitute Kramer partners.

Central for the present paper is the study of hybrid 2DTI–superconductor (S) systems,
a topic which has lately gained increased interest both theoretically and experimentally.
A comprehensive description of the activity in this field can be found in [6]. The proximity effect
into a 2DTI has been largely investigated (see e.g. [7–10]). On the experimental side, Andreev
reflection at S–2DTI interfaces has been recently observed by Du and co-workers [11]. The, not
yet observed, Josephson effect through a topological insulator is expected to show spectacular
features. Indeed in 2009 Fu and Kane [12] considered a Josephson junction with two s-wave
superconductors connected by a weak link of length L , obtained by a single edge of a 2DTI.
In the short-junction regime (i.e. when L � ξ , with ξ the Bardeen–Cooper–Schrieffer (BCS)
coherence length), they showed that the S–2DTI–S junction exhibits a fractional Josephson
effect [13–16] in which the current phase relation has a 4π -periodicity, rather than the standard
2π -periodicity, if the fermion parity (parity of the number of electrons in the system) is
preserved. This phenomenon is related to the presence of Majorana fermions [14] at the S–2DTI
interfaces. More recently, Beenakker et al [17] addressed the long-junction regime (L � ξ )
showing that the amplitude of the 4π -periodic critical current, at zero temperature, is doubled
with respect to the 2π -periodic one. The ac Josephson effect in S–2DTI-S has also been
considered [18].

In all papers mentioned above, the effect of the electron–electron interaction on the parity
dependent Josephson current (JC) was neglected. The aim of this paper is to study the 2π - and

New Journal of Physics 15 (2013) 085025 (http://www.njp.org/)

http://www.njp.org/


3

Δeiχ1 Δeiχ2
2DTI

ψ+
ψ−

0 L

y

x

z

Figure 1. Helical states of a single edge of a 2DTI sandwiched between two
s-wave superconductors (shaded areas).

4π -periodic Josephson effect in the long-junction regime for a S–2DTI–S system taking into
account the Coulomb interaction within the framework of the helical Luttinger liquids [19, 20].
Firstly we consider the case of transparent S–2DTI interfaces and then we address the presence
of magnetic impurities in the weak link [21–24]. Non-magnetic impurities cannot induce elastic
back scattering in a helical liquid [25]4. We present analytical results for both high and low
temperature regimes. If no impurities are present, at low temperature the JC exhibits a saw-tooth
behavior, the 4π -periodic critical current is doubled with respect to the 2π -periodic one as in the
non-interacting case. At high temperatures both the 2π - and 4π -periodic currents are sinusoidal
and the 2π -periodic current is suppressed with respect to the 4π -periodic one. Our results agree
with a recent paper by Crépin and Trauzettel [26]. If point-like magnetic impurities are present
within the weak link the situation changes significantly. A single impurity with magnetization
along the z-direction, which is the spin quantization axis of the helical states, induces a phase
shift of the JC with respect to the transparent regime. Both the 2π - and 4π -periodic critical
currents are not affected by such a barrier. Otherwise, when the impurity magnetization lies
in an arbitrary direction of the xy-plane, the current phase relation is always sinusoidal and
the critical current depends on fermion parity and on the Luttinger interaction parameter. The
previous results can be generalized if two barriers are present at the 2DTI–S interfaces.

The paper is organized as follows. In section 2 we give a brief introduction to the
bosonization technique with Andreev boundary conditions and discuss how the fermion parity
can be implemented within the bosonization formalism. In section 3 we discuss the 2π - and
4π -periodic JC for different regimes of the system. In section 4 we summarize our results
together with the conclusions of our work.

2. Model of the superconductor–two dimensional topological
insulator–superconductor system

The setup we consider is depicted in figure 1. A single edge state of a 2DTI is sandwiched
between two s-wave superconducting terminals. The pair potential profile is

1(x)=1 eiχ1H(−x)+1 eiχ2H(x − L) (1)

4 Non-magnetic impurities can lead to back-scattering in a helical liquid in the presence of interaction if inelastic
effects are accounted for [25]. In the present work we consider elastic scattering therefore we are confined to only
discuss the case of magnetic scatterers.
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with χ1, χ2 the macroscopic phases of the superconductors, 1 the modulus of the
superconductive gap and L the distance between the two superconductors. We ignore self-
consistency in determining the order parameter, which is why we can safely model the space
profile of 1 using the step function H(x).

The free Hamiltonian of the edge of the topological insulator is (h̄ = 1)

HF = −ivF

∫ L

0
dx

(
ψ†

+∂xψ+ −ψ†
−
∂xψ−

)
(2)

The operator ψ+/− annihilates right/left moving spin up/down electrons and vF is the Fermi
velocity. Short-range interactions between two electrons in the weak link can be analyzed in
the so called g-ology [27, 28] framework. In a helical Luttinger liquid, one has a forward
scattering term HS4 = g4/2

∫ L
0 dx (ψ†

+ψ+ψ
†
+ψ+ +ψ†

−ψ−ψ
†
−ψ−) and a dispersive scattering term

HS2 = g2

∫ L
0 dx ψ†

+ψ+ψ
†
−ψ−. We have here neglected umklapp terms, which are not relevant in

the renormalization-group sense [19] if interactions are not too strong.
Point-like magnetic barriers in a generic point 06 x 6 L of the weak link are described by

the Hamiltonian

HM =9(x) EM · Eσ9†(x), (3)

where EM = (Mx ,My,Mz) is the magnetization vector and Eσ = (σx , σy, σz) are the Pauli
matrices acting on the spinor space 9 = (eikFxψ+, e−ikFxψ−), with kF the Fermi momentum. By
expanding the scalar product in equation (3), one obtains three terms: HMx = Mx(e−2ikFxψ†

+ψ− +
e2ikFxψ

†
−ψ+), HMy = iMy(e−2ikFxψ†

+ψ− − e2ikFxψ
†
−ψ+) and HMz = Mz(ψ

†
+ψ+ −ψ

†
−ψ−).

Finally the coupling of the edge to the superconducting electrodes, in the limit in
which the superconducting gap is the largest energy scale in the problem, can be introduced
through simple boundary conditions for the edge fermion field. Electrons impinging at the
normal-superconductor (in this case the normal part is the edge of the topological insulator)
interface are retro-reflected as holes, this is the well known Andreev reflection. By solving the
Bogoliubov–de Gennes equations, one can find the boundary conditions for fermionic operators,
which are essentially determined by Andreev reflections. In the limit 1→ +∞, fermionic
boundary conditions take a simple form because they are independent on the energy of the
excitations (electrons can only be Andreev reflected and normal reflections do not occur), one
finds [29] (at the two interfaces)

ψ+(x = 0)= −i eiχ1ψ†
−
(x = 0), (4)

ψ+(x = L)= +i eiχ2ψ†
−
(x = L). (5)

As shown in [29] such conditions, known as Andreev boundary conditions, are equivalent to
twisted periodic boundary conditions for ψ− on an interval of length twice the length of the
original system

ψ−(x + 2L)= ei(π+χ2−χ1)ψ−(x) (6)

supplemented by the connection between ψ+ and ψ− following from the chiral symmetry:

ψ+(x)= −i eiχ1ψ†
−
(−x). (7)

Boundary conditions (6) and (7) can be conveniently done in the bosonization language, which
we introduce in the following sub-section.
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2.1. Bosonization

Fermionic operators can be put into the form ψ±(x)= exp [±i8±(x)]/
√

2πa in terms of the
bosonic fields 8±(x) [27]. The Andreev boundary conditions (6) and (7) are automatically
satisfied if the boson fields are chosen to be [29]

8+(x)= ϕ−

(
N +

χ

π

) πx

2L
+ ρ(−x),

8−(x)= ϕ +
(

N +
χ

π

) πx

2L
+ ρ(x)

(8)

with

ρ(x)= i
∑
q>0

√
π

q L
e−

aq
2
(
e−iqxa†

q − eiqxaq

)
. (9)

In the previous equations a → 0+ is a convergence factor for the theory, χ ≡ χ2 −χ1; ϕ and
N are conjugated zero-mode operators and the bosonic operators satisfy [aq, a†

q ′] = δq,q ′ with
q = πn/L , n ∈ Z. Note that8+ and8− obey canonical commutation relations and [N , ϕ] = 2i,
the eigenvalues of N are even, N = 2k, k ∈ Z as implied by the boundary condition (6).

It is convenient to define the bosonic fields8= (8− +8+) /2 and2= (8− −8+) /2, thus
fermion operators take the form ψ±(x)= exp [−i2(x)± i8(x)]/

√
2πa where

8(x)= ϕ + i
∑
q>0

√
π

q L
e−

aq
2 cos qx(a†

q − aq)≡ ϕ +φ(x),

2(x)=

(
N +

χ

π

) πx

2L
+
∑
q>0

√
π

q L
e−

aq
2 sin qx(a†

q + aq)≡

(
N +

χ

π

) πx

2L
+ θ(x).

(10)

In terms of the bosonic operators (10) the Hamiltonian of the system H = HF + HS2 + HS4

(the superconducting electrodes enter only via the boundary conditions) is the sum of a zero
mode term H0 and of a bosonic term HB:

H ≡ H0 + HB =
ugπ

8L

(
N +

χ

π

)2
+ u

∑
q>0

qa†
qaq, (11)

here u = (1/2π)
(
(2πvF + g4)

2
− g2

2

) 1
2 is the renormalized Fermi velocity and g = ((2πvF +

g4 − g2)/(2πvF + g4 + g2))
1
2 is the Luttinger parameter which is related to the attractive (g > 1)

or repulsive (g < 1) nature of the interaction.
In the bosonized form the Hamiltonian (3) associated to the scattering from the magnetic

impurities takes the form

HMx =
Mx

πa
cos(ϕ +φx + kFx), (12)

HMy =
My

πa
sin(ϕ +φx + kFx), (13)

HMz = Mz∂xθ |x=x . (14)

We have defined φx ≡ φ(x).
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2.2. Fermion parity

In order to see how fermion parity is implemented in the bosonization language let us start
by noting that the superconductive phase difference χ is defined up to multiples of 2mπ with
m ∈ Z. Consequently if we substitute χ → χ + 2nπ (n ∈ Z) in 8+ and χ → χ + 2mπ (m ∈ Z)
in 8−, equations (8) become

8+(x)= ϕ−

(
N +

χ

π

) πx

2L
+ ρ(−x)−

nπx

L
,

8−(x)= ϕ +
(

N +
χ

π

) πx

2L
+ ρ(x)+

mπx

L
.

(15)

Using equation (7) with χ1 set to zero through a proper gauge transformation, we get n = −m
in equations (15). We obtain the periodicity requirements

8+(x + 2L)=8+(x)−π
(

N +
χ

π

)
+ 2mπ,

8−(x + 2L)=8−(x)+π
(

N +
χ

π

)
+ 2mπ

(16)

satisfied by the even eigenvalues of the operator N , N = 2k, k ∈ Z. The field 8(x)
corresponding to the periodicity requirements (16) which obeys the condition 8(x + 2L)=

8(x)+ 2mπ , will be called parity independent in the rest of the paper. We now assume that
the superconductive phase difference χ is defined up to multiples of 4mπ , instead of 2mπ , with
m ∈ Z. By carrying out the same procedure used for the parity independent case we obtain the
analogous of equations (16):

8+(x + 2L)=8+(x)−π
(

N +
χ

π

)
+ 4mπ,

8−(x + 2L)=8−(x)+π
(

N +
χ

π

)
+ 4mπ

(17)

that lead to 8(E)(x + 2L)=8(E)(x)+ 4mπ , which will be called even parity dependent [30].
Periodicity requirements given in equations (17) are satisfied if and only if the eigenvalues of
the operator N take the form N = 4k, k ∈ Z. Furthermore, by inducing an additional shift of the
superconductive phase χ of 2π in equations (17) we obtain the conditions

8+(x + 2L)=8+(x)−π
(

N +
χ

π

)
+ (4m + 2)π,

8−(x + 2L)=8−(x)+π
(

N +
χ

π

)
+ (4m + 2)π

(18)

that lead to 8(O)(x + 2L)=8(O)(x)+ (4m + 2)π , which will be called odd parity
dependent [30]. Periodicity requirements (18) are now satisfied if and only if the eigenvalues of
the operator N take the form N = 4k + 2, k ∈ Z.

We can reach the same conclusions by studying the spectrum of the Hamiltonian (11)
which is unchanged by a proper shift of the superconductive phase χ . If fermion parity is not
conserved, namely the Hamiltonian is invariant with respect to a shift of the form χ → χ + 2πm,
one obtains that N → N − 2m and concludes the eigenvalues of N must be of the form N = 2k.
If fermion parity is conserved χ → χ + 4πm, one obtains the constraint N → N − 4m or
N → N − (4m + 2) and concludes that the eigenvalues must be of the form N = 4k in the even
case and N = 4k + 2 in the odd one. Incidentally note that the number of fermions in the weak
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link is N/2 [31]. It is important to stress that constraints imposed by fermion parity conservation
involve only the eigenvalues of the zero mode operator N and leave the bosonic excitation
modes unaffected. Summarizing, the possible eigenvalues of the operator N are N = 2k, k ∈ Z
if parity is not conserved and N = 4k (even) or N = 4k + 2 (odd), k ∈ Z in the opposite case.

3. The Josephson current

Equipped with the definitions given above we calculate the 2π - and 4π -periodic JC for different
configurations of the system. Firstly we focus on the transparent regime where perfect Andreev
reflections occur in correspondence of the S–2DTI interfaces, then we introduce magnetic
barriers which induce normal reflections with spin-flip. The JC can be computed from the
partition function Z(χ) as

IJ(χ)= −
2e

β

∂ ln Z(χ)

∂χ
, (19)

where e is the elementary charge, β = 1/T , T the temperature and the Boltzmann constant
kB = 1. The partition function can be expressed in the form

Z(χ)=

∞∑
m=−∞

∫
1ϕ=2πm

Dϕ
∫ ∏

q>0

Da†
qDaq exp [S0 + SB + SM], (20)

where 1ϕ = ϕ(β)−ϕ(0)= 2πm and m ∈ Z; SM is the Euclidean action corresponding to the
Lagrangian of magnetic barriers, S0 and SB to the Lagrangian of the Luttinger Hamiltonian
introduced in equation (11):

L B = −

∑
q>0

a†
q∂τaq − u

∑
q>0

qa†
qaq, (21)

L0 =
∂H0

∂n
n − H0 = i

χ

απ
∂τϕ−

2L

α2πug
(∂τϕ)

2, (22)

where

∂τϕ = i
∂H0

∂n
= i
αugπ

4L

(
αn +

χ

π

)
. (23)

Here n ≡ N/α, n ∈ Z and α = 2 if the fermion parity is not conserved, i.e. 2π -periodic case,
and α = 4 if the fermion parity is preserved, i.e. 4π -periodic even case. In the next section we
will also show how to calculate the 4π -periodic odd current. Moreover, we stress again that
constraints on the eigenvalues of the zero mode operator N due to the fermion parity symmetry
affect the Lagrangian L0, as one can see from equations (22) and (23), but not L B .

3.1. Transparent interfaces

Firstly we calculate the 2π - and 4π -periodic supercurrent in the transparent regime for both
low and high temperatures. The evaluation of the partition function is straightforward because
equation (20) can be put into the form Z(χ)= Z0(χ)Z B , with

Z0(χ)=

∞∑
m=−∞

∫
1ϕ=2πm

Dϕ exp

[
i
χ

απ

∫ β

0
dτ∂τϕ−

2L

α2πug

∫ β

0
dτ(∂τϕ)

2

]
. (24)
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Z B is independent on χ and does not contribute to the JC, as one can easily verify from
equation (19). In order to perform the path integral in equation (24), we parameterize ϕ(τ)
as ϕ(τ)= 2πmτ/β + ϕ̃(τ ), with ϕ̃(0)= ϕ̃(β) obtaining

Z0(χ)=

∞∑
m=−∞

e
i 2mχ
α

−
8πm2 L
α2ugβ

∫
ϕ̃(0)=ϕ̃(β)

Dϕ̃ exp

[
−

L

α2πug

∫ β

0
dτ (∂τ ϕ̃)

2

]
. (25)

The integral in equation (25) does not contribute to the supercurrent since it is independent
on χ . Using Poisson’s summation formula [32] and neglecting constants which do not contribute
to the JC, one has

Z0(χ)∝

∞∑
m=−∞

e−
βugπ

8L (αm+ χ
π )

2

=
2

α

√
2

Ag
θ3

(χ
α
, e

−
8π

Aα2 g

)
, (26)

θ3 is the elliptic Jacobi’s function and A ≡ βu/L . In the low temperature regime A � 1, the
supercurrent exhibits a saw-tooth behavior

IJ(χ)=
eug

L

χ

2π
, |χ |<

α

2
π. (27)

As shown by Beenakker et al [17] in the non-interacting case, the 4π -periodic critical current is
twice the 2π -periodic one even in the presence of interactions. In the high temperature regime
A � 1, the JC

IJ(χ)=
8e

αβ
e
−

8π
Aα2 g sin

2χ

α
(28)

has a sinusoidal behavior and the ratio between the 4π -periodic critical current (α = 4) and the
2π -periodic critical one (α = 2) is much larger than 2, since A � 1.

Let us now focus on the role played by interactions. For a generic interaction with g2 6= g4,
one has ug = vF + (g4 − g2)/(2π), i.e. the forward scattering term and the dispersive one act
differently on the critical value of the JC. Conversely, for the Coulomb interaction, one has
g2 = g4, as shown in [33]. In this case, the JC is completely unaffected by the Coulomb
interaction because ug = vF.

In the odd parity conserving case the partition function has the form

Z0(χ)∝

∞∑
m=−∞

e−
βugπ

8L (αm+2+ χ
π )

2

∣∣∣∣∣
α=4

=
2

α

√
2

Ag
θ3

(
χ + 2π

α
, e

−
8π

Aα2 g

)∣∣∣∣∣
α=4

(29)

from which one can easily see that the corresponding current is equal to the even one translated
of 2π .

3.2. One impurity

We start by considering a single magnetic impurity described by the Hamiltonian (14) in
a generic point of the weak link whose magnetization has the same direction of the spin
quantization axis, namely z-axis. The calculation proceeds similarly to the transparent regime,
where L0 is now given by

L0 =
∂H0

∂n
n − H0 = i

(
χ

απ
+

2Mz

αug

)
∂τϕ−

2L

α2πug
(∂τϕ)

2 (30)
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with

∂τϕ = i
∂H0

∂n
= i
αugπ

4L

(
αn +

χ

π

)
+ i
πα

2L
Mz. (31)

From the partition function

Z0(χ)∝
2

α

√
2

Ag
θ3

(
χ

α
+

2Mzπ

αug
, e

−
8π

Aα2 g

)
, (32)

we get the JC in the low temperature regime

IJ(χ)=
eug

L

χ

2π
+

eMz

L
,

∣∣∣∣χ +
2πMz

ug

∣∣∣∣< α

2
π (33)

and in the high temperature regime

IJ(χ)=
8e

αβ
e
−

8π
Aα2 g sin

(
2χ

α
+

4Mzπ

αug

)
. (34)

The values of the critical currents remain unchanged with respect to the transparent regime
found in section 3.1. The current-phase relation, however, exhibits a phase shift whose
magnitude depends on Mz and, for the high-temperature regime, on the periodicity of the
JC. Note that the supercurrent remains finite even at χ = 0 because time reversal symmetry
is broken by the magnetic barrier.

We now consider a magnetic impurity in x = 0, or equivalently in x = L , with
magnetization lying in an arbitrary direction of the xy-plane. The corresponding Hamiltonian is
the sum of the Hamiltonians given in equations (12) and (13):

HM = HMx + HMy =
Mx

πa
cos(ϕ +φ0)+

My

πa
sin(ϕ +φ0) (35)

that can be conveniently written as

HM =
|M |

πa
cos(ϕ +φ0 + δ0) (36)

with |M | =

√
M2

x + M2
y and tan(δ0 −π/2)= My/Mx , −π 6 δ0 6 π ; φ0 = φ(x = 0). The

impurity potential is a relevant term in the renormalization group sense [34] if g < 1, then
we consider the strong barrier limit, where the argument of the cos function in equation (36) is
strongly pinned in the minima. The partition function of the system is given by equation (20),
where SM = −

∫ β
0 dτHM and S0 consists of a linear term S0,l in ∂τϕ and of a quadratic term S0,q ,

as shown in equation (22). Consequently Z(χ) can be expressed in the form

Z(χ)∝ Z0

[
1 + 2

∞∑
m=1

cos

(
2m

α
χ

)
Zm

Z0

]
, (37)

where

Zm =

∫
1ϕ=2πm

Dϕ
∫
Dφ0 exp

[
S0,q + Seff

B + S3 + SM

]
. (38)

Here

Seff
B = −

1

2πgβ

∑
ω

ω2

−
u
L +ω coth Lω

u

|φ0(ω)|
2 (39)
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is an effective action obtained by integrating the degrees of freedom of SB away from the
impurity (more details are given in appendix A where the effective action is calculated for a
generic point x in the weak link); ω = 2πn/β, n ∈ Z are the Matsubara frequencies and

S3 = −
M0

2

∫ β

0
dτ(∂τφ0)

2 (40)

is a high-frequency cut-off action with M0 = 1/3≈ 1/1. We evaluate the partition function in
the semiclassical limit simply by searching the stationary path of the action S ≡ S0,q + S3 + SM

which gives the most relevant contribution to the functional integral. Such a procedure is
justified by the strong magnetic barrier limit. Then, we include the contributions of Seff

B , which
plays the role of a dissipative environment, by integrating out the low energy fluctuations of ϕ
and φ0 around the stationary path [35–38].

It is convenient to introduce the fields
φr = ϕ +φ0,

φR =
1

mL + M0
(mLϕ− M0φ0),

(41)

where mL = 4L/(α2πug). The action S takes then the form

S = −

∫ β

0
dτ

(
Mr

2
(∂τφr)

2 +
MR

2
(∂τφR)

2 +
|M |

πa
cos(φr + δ0)

)
(42)

with Mr = M0mL/(mL + M0), MR = mL + M0. The stationary requirement leads to
δS

δφr
= −Mr∂

2
τφr +

|M |

πa
sin(φr + δ0)= 0,

δS

δφR
= −MR∂

2
τφR = 0

(43)

with the boundary conditions φr(β)−φr(0)= 2πm and φR(β)−φR(0)= 2mπmL/(mL + M0).
As mL � M0, one gets φR(β)−φR(0)≈ 2πm and φst

R ≈ ϕst
= 2πmτ/β + 2πl, l ∈ Z. The

saddle point solution for φr(τ ) obeys a Sine–Gordon equation which admits the instanton
solution

φst
r (τ )= 2 arccos

[
− tanh

(√
|M |

πaM0
τ

)]
+ 2πl0 − δ0 (44)

with l0 ∈ Z. The solution for φst
0 (τ ) is

φst
0 (τ )=

J∑
j=m

e jφ
st
r (τ − τ j)−

2πτ

β
m − 2πl (45)

with
∑J

j=m e j = m, J ∈ N is the number of instantons. By calculating the saddle point
action [39], one can show that the quantity Zm/Z0 is proportional to δ J

� 1, where δ =

λ−
1
2 exp (−2Mr

√
λ), with λ≡ |M |/(πaM0)=3|M |/(πa)� 1. In this limit, we can take

m = 1 with J = 1 and equation (45) can be approximated φst
0 (τ )= 2πH(τ − τ1)− 2πτ/β −

δ0 + 2π(l0 − l) whose Fourier transform is

φst
0 (ω)=

2iπ

ω
eiωτ1 + (π(2βl +β − 2τ1)− δ0β)δω,0 (46)
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with l ≡ l0 − l. Due to the strong impurity potential, ϕ and φ0 can fluctuate under the condition
that ϕ +φ0 is strongly pinned. Such low energy fluctuations can be taken into account by
introducing the field ψ{

ϕ = ϕst +ψ,

φ0 = φst
0 −ψ.

(47)

The partition function becomes

Z1

Z0
= δ e

−
8πL
α2ugβ

∫ β
2

−
β
2

dτ1

∫
Dψ exp [−Sins] (48)

with

Sins =
1

2πgβ

∑
ω

(
4Lω2

α2u
|ψ(ω)|2 +

ω2

−
u
L +ω coth Lω

u

|φst
0 (ω)−ψ(ω)|

2

)
(49)

and integration over ψ gives

Z1

Z0
= δ e

−
8πL
α2ugβ

∫ β
2

−
β
2

dτ1 exp [−S̃ins] (50)

with

S̃ins =
2π

gβ

∑
ω 6=0

1

ε u
L +ω coth Lω

u

. (51)

In the previous expression ε = α2/4 − 1: if α = 2, ε = 0; if α = 4, ε = 3; remarkably no
contribution to S̃ins arises from the ω = 0 term. Using the definition (19) of the JC definition
one finds (more details are given in appendix B.1) for the high-temperature regime

IJ(χ)= δ
8e

α
e
−

8πL
α2ugβ

(
2π

eγ3β

) 2
g

sin
2χ

α
(52)

which is sinusoidal both in the 2π - and 4π -periodic case. Moreover, the ratio between the
4π -periodic critical current and the 2π -periodic critical one is much larger than 1. Keeping the
parity fixed, the critical current is reduced by the Coulomb interaction according to the power
2/g. In the low temperature regime one obtains

IJ(χ)= δ
8e

2
e−

2
g (γ+2 ln 2)

( πu

3L

) 2
g

sinχ (53)

for the 2π -periodic JC and

IJ(χ)= δ
8e

4

( πu

3L

) 2
g

sin
χ

2
(54)

for the 4π -periodic JC (even). As expected, the odd 4π -periodic current can be obtained by
translating the even 4π -periodic current of 2π . In the non-interacting case the 4π -periodic
current is larger than the 2π -periodic one, as in the transparent regime. The sinusoidal behavior
is a direct consequence of the strong barrier limit and it is not related to helical nature of the
weak link: Andreev reflections at S–2DTI interfaces are strongly suppressed with respect to
normal reflections induced by magnetic barriers. Interestingly, if the repulsive interaction is
strong, the 4π -periodic critical current is more robust with respect to the 2π -periodic because
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it lacks the exponential term exp[−2g−1(γ + 2 ln 2)], thus the ratio between the 4π -periodic JC
and the 2π -periodic one is bigger than 2. We note that the JC is unaffected by changing the
direction of the magnetization in the xy-plane because equations (52)–(54) do not depend on δ0.

Finally we point out that by varying the position of the barrier, keeping fixed the direction of
the magnetization in the xy-plane, different power laws are obtained. For example, if the barrier
is in L/2 of the weak link, one obtains 4/g instead of 2/g for both high and low temperature
regimes, i.e. in the middle of the junction the barrier acts stronger than at the interfaces.

3.3. Two impurities

Finally we discuss the case of two magnetic impurities at the S–2DTI interfaces, namely in
x = 0 and L . The two magnetizations, equal in magnitude, lying in the xy-plane and not
collinear, are taken into account by the Hamiltonian

HM =
|M |

πa
[cos(ϕ +φ0 + δ1)+ cos(ϕ +φL + δ2)] (55)

with φ0 ≡ φ(0, τ ) and φL ≡ φ(L , τ ), or equivalently

HM =
2|M |

πa
cos

(
ϕ +φ + δ

)
cos

(
φ̃

2
+
δ̃

2

)
(56)

with φ = 1/2 (φL +φ0), φ̃ = φL −φ0. The parameters δ1 and δ2 specify the angle of
magnetizations with respect to the y-axis, δ ≡ (δ1 + δ2)/2 and δ̃ ≡ δ2 − δ1, kFL has been chosen
proportional to π . The partition function takes the form

Zm =

∫
1ϕ=2πm

Dϕ
∫
Dφ

∫
Dφ̃ exp

[
S0,q + Seff

B + S3 + SM

]
, (57)

Seff
B is the effective action obtained by integrating out the bosonic modes away from x = 0 and

L of the Hamiltonian (56) [37]:

Seff
B = −

1

πgβ

∑
ω

J
−1
(ω)|φ(ω)|2 −

1

4πgβ

∑
ω

J̃ −1(ω)|φ̃(ω)|2 (58)

with

J (ω)=
1

ω
coth

Lω

2u
−

2u

Lω2
, J̃ (ω)=

1

ω
tanh

Lω

2u
(59)

and

S3 = −

∫ β

0
dτ

(
M

2
(∂τφ)

2 +
M̃

2
(∂τ φ̃)

2

)
(60)

provides the high frequency cut-off (M = 2/3≈ 2/1 and M̃ = 1/(23)= 1/(21)).
We proceed as in the single impurity problem and calculate the functional integral in the

semiclassical approximation. By introducing the fields
φr = ϕ +φ,

φR =
1

M + mL

(
mLϕ− Mφ

) (61)
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with mL = 4L/(α2πug). The saddle point for S0,q + S3 + SM leads to the equations

δSst

δφr
= −Mr∂

2
τφr −

2|M |

πa
sin
(
φr + δ

)
cos

(
φ̃

2
+
δ̃

2

)
= 0,

δSst

δφR
= −MR∂

2
τφR = 0,

δSst

δφ̃
= −M̃∂2

τ φ̃−
|M |

πa
cos

(
φr + δ

)
sin

(
φ̃

2
+
δ̃

2

)
= 0

(62)

with the boundary conditions φR(β)= φR(0)+ 2mπmL/(mL + M) and φr(β)= φr(0)+ 2πm,
where Mr = mL M/(mL + M) and MR = mL + M . In the strong barrier limit it is sufficient to
consider only m = 1. The instanton solutions take the formφ

st
(τ )= πH(τ − τ1)+πH(τ − τ2)+π(l1 + l2)−

2πτ

β
− 2πl − δ,

φ̃st(τ )= 2πH(τ − τ1)− 2πH(τ − τ2)+ 2π(l2 − l1)− δ̃

(63)

whose Fourier transform are
φ

st
(ω)=

π i

ω

(
eiωτ1 + eiωτ2

)
+
(
πlβ +πβ −πτ1 −πτ2 − δβ

)
δω,0,

φ̃st(ω)=
2π i

ω

(
eiωτ1 − eiωτ2

)
+ (2π l̃β + 2πτ2 − 2πτ1 − δ̃β)δω,0

(64)

with l̃ = l1 + l2 − 2l and l = l1 − l2. We substitute J (ω) and J̃ (ω) in the action S0,q + Seff
B and

we take into account the low energy fluctuations of ϕ +φ as in the single impurity problem by
introducing the auxiliary fields ψ , while φ̃ is kept strongly pinned. Integration over ψ gives two
contributions

S̃ins,ω =
2π

gβ

∑
ω 6=0

 2

ε u
L +ω coth Lω

2u

+
ε u

L + 2ω
sinh Lω

u

ω2 + εω u
L tanh Lω

2u

(1 − cosωτ)

 (65)

with τ ≡ τ2 − τ1, ε ≡ α2/2 − 2, for α = 2 one has ε = 0; while ε = 6 for α = 4; and

S̃ l̃
ins,0 =

1

4πgβ

(
2u

L

)
(2πτ + 2π l̃β − δ̃β)2. (66)

Integration over τ1 and τ2 or equivalently over τ = τ2 − τ1 and τ ′
= (τ1 + τ2)/2 gives

Z1

Z0
= δ e

−
8πL
α2ugβ β

∫ β
−β

dτ exp
[
−S̃ins,ω

]∑+∞

l̃=−∞
exp

[
−S̃ l̃

ins,0

]
∑+∞

l̃=−∞
exp

[
−S̃ l̃

ins,0

]∣∣∣
τ=0

(67)

with
+∞∑

l̃=−∞

exp
[
−S̃ l̃

ins,0

]
=

√
gL

2βu
θ3

(
πτ

β
−
δ̃

2
, e−

πgL
2βu

)
. (68)

From equation (19), in the high-temperature regime, the supercurrent (more details on the
calculations are given in appendix B.2)

IJ(χ)= δ
8e

α
e
−

8πL
α2ugβ

(
2π

eγ3β

) 4
g

β sin
2χ

α
(69)
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exhibits a power law in β whose exponent depends on the strength of the interactions and
it is unaffected by the angle δ̃ between the two magnetizations. In the opposite limit of low
temperatures the 2π -periodic JC

IJ(χ)= δ
8e

2
e−

4
g (γ+2 ln 2)

(
2πu

3L

) 4
g 2L

πu
4

2
g −1
η2(δ̃, g) sinχ (70)

shows a dependance on the angle δ̃ between the two magnetizations through the modulation
function

η2(δ̃, g)=

0
(

2π+δ̃
πg

)
0
(

2π−δ̃

πg

)
0
(

4
g

) = η2(−δ̃, g) (71)

with 0(x) the Euler–Gamma function. The modulating function has a minimum in δ̃ = 0, i.e.
the two magnetizations are parallel and maxima in δ̃ = ±π , i.e. the two magnetizations are
anti-parallel and exhibits a weak dependance on g.

The 4π -periodic JC is given by

IJ(χ)= δ
8e

4

(
2πu

3L

) 4
g gL

2u
4

2
g η4(δ̃, g) sin

χ

2
, (72)

where the modulation function η4(δ̃, g) can be expressed in terms of the Gaussian
hypergeometric function as

η4(δ̃, g)=

∑
s=±1

2F1

(
4
g ,

5
g + sδ̃

πg ; 1 + 5
g + sδ̃

πg ; −1
)

5π + sδ̃
= η4(−δ̃, g) (73)

which has a minimum in δ̃ = 0 and maxima in δ̃ = ±π .

4. Conclusions

In this paper we studied the parity-dependent JC in a S–2DTI–S junction if L � ξ taking into
account the Coulomb interaction. For transparent S–2DTI interfaces no significant corrections
arise with respect to the non-interacting case. When a single magnetic impurity whose
magnetization is collinear with the spin quantization z-axis, the JC is only shifted with respect
to the transparent regime. If the magnetization lies in the xy-plane, the current is sinusoidal and
is strongly renormalized by the interaction. In particular, for a single barrier at the S–2DTI
interface, the current is proportional to β−

2
g in the high temperature regime and to Ł−

2
g in

the low temperature regime. The 2π -periodic critical current is more suppressed by repulsive
interactions with respect to the 4π -periodic. If two impurities are present at the S–2DTI
interfaces new power laws are obtained. Remarkably in the low temperature regime both the 2π -
and 4π -periodic currents exhibit a dependance on the angle between the two magnetizations.
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Appendix A

In this appendix we calculate the effective bosonic action Seff
B in the single impurity problem.

Let us consider the Hamiltonian HB defined in equation (11) which can be written as

HB =
u

2

∫ L

0
dx

(
1

g
(∂xφ)

2 + g(∂xθ)
2

)
, (A.1)

where φ and θ are the bosonic modes of the fields8 and2 and the corresponding Lagrangian

L B =
∂HB

∂∂xθ
∂xθ − HB = −

1

2g

∫ L

0
dx

(
u(∂xφ)

2 +
1

u
(∂τφ)

2

)
. (A.2)

If L M is the Lagrangian of a magnetic impurity in x , the functional integral∫
Dφ exp

[∫ β
0 dτ (L(τ )+ L M(τ ))

]
can be simplified by integrating out the degrees of freedom

not involved by the Lagrangian L M [34, 38]:∫
Dφx DλDφ exp

[∫ β

0
dτ (L0(τ )+ L M(τ ))− iλ(τ)(φx(τ )−φ(x, τ ))

]
, (A.3)

where we have introduced the auxiliary fields λ(τ) and φx(τ ) whose Fourier series are λ(τ)=

1/β
∑

ω λ(ω) e−iωτ and φx(τ )= 1/β
∑

ω φx(ω) e−iωτ . Substituting in (A.3), we get∫
Dφx

∫
Dλ exp

[
−

i

β

∑
ω

λ(ω)φx(ω)

]∫
Dηq exp

 1

β

∑
ω

∑
q>0(

1

4πg

(
uq +

ω2

uq

)
|ηq(ω)|

2
−

√
π

Lq
λ(ω)ηq(−ω) cos qx

) (A.4)

with ηq(τ )= a†
q(τ )− aq(τ ), q =

πn
L , n ∈ Z, which can be integrated over ηq and then over the

auxiliary field λ, obtaining∫
Dφx exp

−
L

4πugβ

∑
ω

ω2∑
q>0

cos2 qx

1+ u2

ω2 q2

|φx(ω)|
2

 . (A.5)

As the sum on q can be exactly evaluated for an arbitrary x

π

L

∑
q>0

cos2 qx

1 + u2

ω2 q2
= −

π

2L
+
πω

4u

(
1 +

cosh Lω
u

(
1 −

2x
L

)
cosh Lω

u

)
coth

Lω

u
(A.6)

we derive the effective action Seff
B

Seff
B = −

1

2πgβ

∑
ω

ω2

−
u
L + ω

2

(
1 +

cosh Lω
u (1−

2x
L )

cosh Lω
u

)
coth Lω

u

|φx(ω)|
2 (A.7)

which exhibits a gap of the order u/L if ω→ 0 as a consequence of the finite size L of the
junction.

New Journal of Physics 15 (2013) 085025 (http://www.njp.org/)

http://www.njp.org/


16

Appendix B

In this appendix some details about the calculation of the partition function Z are given.

B.1. Single impurity problem

We consider the single impurity problem.
If the adimensional parameter A = βu/L is introduced, the action (51) takes the form

S̃ins =
4π

g

nmax∑
n>0

1

εA + 2πn coth 2πn
A

, (B.1)

where nmax =
β3

2π corresponds to the cut-off frequency 3. In the high temperature limit A � 1
and coth(2πn/A)≈ 1 +O(exp[−2πn/A]), one obtains

S̃ins ≈
2

g
ln

(
eγβ3

2π

)
+O(A), (B.2)

where γ is the Euler–Mascheroni constant. In the low temperature limit A � 1, equation (B.1)
can be written as

S̃ins =
2

g

∫ L3
u

0
dx

1

x coth x + ε
(B.3)

with x = Lω/u. If ε = 0, namely α = 2, the integral (B.3) can be exactly evaluated

S̃ins =
2

g

∫ L3
u

0
dx

tanh x

x
=

2

g
ln

(
L3

πu

)
−

2

g
ψ

(
1

2

)
, (B.4)

where ψ is the digamma function [32]. If ε = 3, namely α = 4, the integral (B.3) cannot be
exactly evaluated, but one gets

S̃ins −
2

g

[∫ L3
u

0
dx

tanh x

x

]
=

2

g

[∫ +∞

0

(
−

tanh x

x
+

1

x coth x + 3

)]
≈

−3.94

g
(B.5)

and the second integral can be numerically solved. Finally one gets 2g−1 ln[L3/(πu)] −

2g−1ψ(1/2)− 3.94g−1
≈ 2g−1 ln[L3/(πu)], because 2ψ(1/2)= −2γ − 4 ln 2 ≈ −3.92. The

calculation of the partition function follows straightforwardly from (48) because S̃ins does not
depend on τ1.

B.2. Double impurity problem

We focus on the double impurity problem. The total action S̃ins has two contributions given by
equations (65) and (66). Firstly we consider S̃ins,ω, namely equation (65), which can be written
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as S̃ins,ω ≡ S̃ins1,ω + S̃ins2,ω. In terms of the adimensional parameter A one has

S̃ins1,ω =
8π

g

nmax∑
n>0

1

εA + 2πn coth πn
A

, (B.6)

S̃ins2,ω =
4π

g

nmax∑
n>0

εA
2πn + 2

sinh 2πn
A

2πn + εA tanh πn
A

(
1 − cos

2πnτ

β

)
. (B.7)

In the high temperature limit A � 1 the dominant contribution to S̃ins,ω is given by
equation (B.6):

S̃ins1,ω ≈
4

g
ln

(
eγβ3

2π

)
+O(A) (B.8)

while S̃ins2,ω ∝O(A). Moreover
∑+∞

l̃=−∞
exp [−S̃ l̃

ins,0] ≈
√

g/A is independent on τ and δ̃. In
the low temperature limit A � 1, S̃ins1,ω can be exactly evaluated as in the single barrier case if
ε = 0 and one obtains S̃ins1,ω = 4g−1 ln[L3/(2πu)] − 4g−1ψ(1/2), while if ε = 6 one has the
approximated solution S̃ins1,ω = 4g−1 ln[L3/(2πu)].

Let us now consider the contributions to the partition function arising from S̃ins2,ω. In this
case one has to evaluate the integral (67) which can be cast in the form

e
βuδ̃2

2πgL

∫ β
2

−
β
2

dτ e−
βu

2πgL

(
2πτ
β

−δ̃
)2

exp
[
−S̃ins2,ω

]
(B.9)

because
∑+∞

l̃=−∞
exp [−S̃ l̃

ins,0] ≈ exp [− βu
2πgL (

2πτ
β

− δ̃)2].

If ε = 0, the action S̃ins2,ω can be analytically evaluated [32] as

S̃ins2,ω =
4

g

∫ +∞

0
dx

1 − cos xuτ
L

x sinh x
=

4

g
ln cosh

(πuτ

L

)
(B.10)

and from equation (B.9) with x = πuτ/L one finally gets

2L

πu

∫ +∞

0
dx cosh

(
2x δ̃

πg

)
cosh−

4
g x =

2L

πu
4

2
g −1
0
(

2π+δ̃
πg

)
0
(

2π−δ̃

πg

)
0
(

4
g

) . (B.11)

If ε = 6, S̃ins2,ω cannot be exactly evaluated. However, one can see from equation (65) that
dominant corrections to S̃ins2,ω with respect to the case ε = 0, are given by

2εu

Lg

∫ +∞

0
dω

1 − cosωτ

ω2
=
εuπ |τ |

Lg
(B.12)

and from equation (B.9) with x = πuτ/L , one obtains

2L

πu

∫ +∞

0
dx e−

6x
g cosh

(
2x δ̃

πg

)
cosh−

4
g x =

4
2
g gL

2u

∑
s=±1

2F1

(
4
g ,

5
g + sδ̃

πg ; 1 + 5
g + sδ̃

πg ; −1
)

5π + sδ̃
,

(B.13)

where 2F1 is the Gaussian hypergeometric function.
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