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Abstract. We consider the class of integer rectifiable currents without bound-
ary in Rn×R satisfying a positivity condition. We establish that these currents

can be written as a linear superposition of graphs of finitely many functions

with bounded variation.

1. Introduction and statement of the main result. It is well known that a
locally integrable function in Rn belongs to BVloc (the space of functions of locally
bounded variation) if and only if its subgraph has locally finite perimeter in Rn×R.
The connections between the analytic properties of u and the geometric properties
of its (sub)graph are well described, using the more powerful language of currents, in
[7, 4.5.9] or [8, 4.1.5]. Recall that currents provide a very natural setting to discuss
analytic problems with a geometrical content, and have been successfully used in
many areas. In particular, Giaquinta, Modica, and Souček introduced the notion of
Cartesian current and used it to attack many problems in the calculus of variations
(see the extensive monograph [8]) including non-linear elasticity, harmonic maps
between manifolds, relaxed energies, etc.

The aim of this paper is to show the representation of a suitable class of integer
rectifiable currents in Rn×R as the superposition of finitely many graphs (referred to
as “leaves”) of functions with bounded variation. In some sense this result has some
connections with Almgren’s theory [1], [2] (developed in arbitrary dimension and
codimension) of approximation, up to sets of small measure, of (minimal) currents
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by multi-valued Lipschitz graphs: here the regularity condition is weakened to BV ,
and this allows a complete description of the current, at least in codimension one,
as a multi-valued graph. We rely here on techniques of geometric measure theory,
especially the concept of BV maps and currents in metric spaces developed in
Ambrosio [3] and Ambrosio and Kirchheim [6].

We refer to the following section for the notation and state here the main result
of this paper. If u : Rn → R is a locally BV function, we denote by i(u) the
n-dimensional boundary-free current canonically associated with the graph of u in
Rn ×R, obtained (roughly speaking) by completion of the discontinuities of u with
vertical segments.

Theorem 1. Let T ∈ In(Rn+1) be an n-dimensional integer rectifiable current
in Rn+1 = Rn

x × Ry satisfying the zero-boundary condition ∂T = 0, the positivity
condition T dx ≥ 0 and the cylindrical mass condition

MBR(0)×R(T ) <∞ for every R > 0. (1)

Then, there exist a unique integer N and a unique family of functions
uj ∈ BVloc(Rn; R), 1 ≤ j ≤ N , satisfying

u1 ≤ u2 ≤ . . . ≤ uN , (2)

such that the given current T is the superposition of the canonical Cartesian currents
i(uj) associated with the functions uj, that is,

T =
N∑

j=1

i(uj). (3)

In addition, the following additivity property holds:

‖T‖ =
N∑

j=1

‖i(uj)‖. (4)

We call each function uj a leaf of the decomposition of T , and we refer to (3)
as the canonical leaf decomposition of T . Heuristically (4) follows from (3) because
all graphs have a common orientation in their intersection, so that no cancella-
tions occur; notice that the additivity property (4) does not hold for more general
decompositions which satisfy condition (3), but not the monotonicity assumption
(2).

For an application of this result we refer to [5], where a geometric approach to
tackle multi-dimensional scalar conservation laws is developed. Therein, solutions
are defined geometrically as currents, rather than as functions satisfying entropy
inequalities. The leaf decomposition is used to show the existence of entropy solu-
tions in this setting, as the superposition of graphs of classical entropy solutions.
(See [5] for details.)

2. Preliminaries and notation.

2.1. Currents. We denote by Dm(Rk) the space of m-dimensional currents in Rk,
that is the dual space of all linear and continuous functionals defined on the space
Dm(Rk) of all smooth and compactly supported differential m-forms. The space
Dm(Rk) is equipped with the usual weak-star topology induced by this duality. The
duality bracket between a current T ∈ Dm(Rk) and a form ω ∈ Dm(Rk) is denoted
by 〈T, ω〉.
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The boundary of a current T ∈ Dm(Rk) is the current ∂T ∈ Dm−1(Rk) defined
by

〈∂T, ω〉 = 〈T, dω〉, ω ∈ Dm−1(Rk),
where dω ∈ Dm(Rk) denotes the differential of the form ω ∈ Dm−1(Rk). If T ∈
Dm(Rk) and α ∈ Dh(Rk) for some h ≤ m, we denote by T α ∈ Dm−h(Rk) the
saturation of the current T with the form α, which is defined by

〈T α, ω〉 = 〈T, α ∧ ω〉, ω ∈ Dm−h(Rk).

The (local) mass of a current T ∈ Dm(Rk) is defined for every open set Ω ⊂ Rk

as
MΩ(T ) = sup

{
〈T, ω〉 : ω ∈ Dm(Rk), suppω ⊂ Ω, ‖ω‖ ≤ 1

}
.

If T has locally finite mass, the set function Ω 7→ MΩ(T ) is the restriction to
bounded open sets of a nonnegative Radon measure that we shall denote by ‖T‖,
so that ‖T‖(Ω) = MΩ(T ) for all bounded open sets Ω ⊂ Rk. Given a current
T ∈ Dm(Rk) with locally finite mass, there exists a unique (up to ‖T‖-negligible
sets) ‖T‖-measurable map ~T defined on Rk and with values in the set of m-vectors
such that ~T is a unit m-vector ‖T‖-almost everywhere and (here 〈·, ·〉 is the standard
duality between m-vectors and m-covectors)

〈T, ω〉 =
∫

Rk

〈~T (x), ω(x)〉 d‖T‖(x), ω ∈ Dm(Rk). (5)

Whenever (5) holds, we shall write T = ~T‖T‖.
We will be especially interested in the subclass Im(Rk) ⊂ Dm(Rk) of all m-

dimensional integer rectifiable currents T for which, by definition, there exists a
triple (M, θ, τ), where M ⊂ Rk is a countably H m-rectifiable set, θ : M → N \ {0}
is a locally integrable function and τ is a Borel orientation of M (i.e. a Borel map
x 7→ τ(x) = ξ1(x) ∧ . . . ∧ ξm(x) with values in unit and simple m-vectors whose
span is the approximate tangent space to M at x) such that T = τθH m M , or
equivalently ~T = τ and ‖T‖ = θH m M . We shall also write T = (M, θ, τ), and
we refer to M as the support of T and to θ as the multiplicity of T (both are
uniquely determined up to H m-negligible sets).

2.2. 0-dimensional integer rectifiable currents with finite mass. In this sec-
tion we consider a very special class of integer rectifiable currents, the 0-dimensional
ones with finite mass on the real line R. We denote by Ī0(R) the set of these cur-
rents and we notice that it consists of those currents that can be expressed as a
finite sum of Dirac masses with weight ±1. This means that every S ∈ Ī0(R) can
be written as

S =
l∑

j=1

σjδAj
,

where the Aj are (not necessarily distinct) points of R and σj = ±1. We will call
average of the current S ∈ Ī0(R) the integer

∑
j σj . For every h ∈ N we denote by

Ih
0 (R) ⊂ Ī0(R) the set consisting of all nonnegative 0-dimensional integer rectifiable

currents in R with average h:

Ih
0 (R) :=

{
S ∈ Ī0(R) : S =

h∑
j=1

δAj

}
; (6)

notice again that the points Aj ∈ R need not be distinct.
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On the set Ī0(R) we define

F(S) := sup
{
〈S, φ〉 : φ ∈ Lipb,1(R)

}
, S ∈ Ī0(R),

where Lipb,1(R) denotes the set of bounded real-valued Lipschitz functions defined
on R with Lipschitz constant less or equal than one. Notice that, if S ∈ Ī0(R) has
non-zero average, then obviously F(S) = +∞; on the other hand

F(S) ≤ MR(S) diam (suppS) < +∞

for all S ∈ Ī0(R) with zero average. It is also immediate to check that, for S =
δA − δB , we have F(S) = |A − B|. A generalization of this fact is given by the
following well-known lemma.

Lemma 1. If S and S′ ∈ Ī0(R) are of the form

S =
h∑

j=1

δAj
, S′ =

h∑
j=1

δBj
,

with A1 ≤ A2 ≤ . . . ≤ Ah and B1 ≤ B2 ≤ . . . ≤ Bh, then
h∑

j=1

|Aj −Bj | = F(S − S′). (7)

Proof. We give an elementary proof, which uses ideas from the theory of optimal
transportation (see [11]). We notice first that the inequality ≥ in (7) is an obvious
consequence of the inequality |Aj −Bj | ≥ |φ(Aj)− φ(Bj)| for all φ ∈ Lip1,b(R), so
we need only to build φ ∈ Lip1,b(R) such that

h∑
j=1

|Aj −Bj | ≤ 〈S − S′, φ〉. (8)

By the compactness of the support of S − S′, it suffices to construct a 1-Lipschitz
function φ with this property. To this aim, we first notice that the fact that the list
of the Aj ’s and of the Bj ’s are ordered implies

h∑
j=1

|Aj −Bj | ≤
h∑

j=1

|Aj −Bσ(j)| (9)

for any permutation σ of {1, . . . , h} (this can be seen by showing that the right
hand side does not increase if a permutation σ with Bσ(i) > Bσ(j) for some i < j
is replaced by another one σ̃ with σ̃(i) = σ(j), σ̃(j) = σ(i) and σ̃(k) = σ(k) for
k 6= i, j). More generally, one can use (9) and the fact that permutation matrices
are extremal points in the class of bi-stochastic matrices to obtain (the so-called
Birkhoff theorem, see [11])

h∑
j=1

|Aj −Bj | ≤
h∑

i,j=1

mij |Aj −Bi| (10)

for any nonnegative mij with
∑

imij =
∑

imji = 1 for all j = 1, . . . , h.
The minimization of the functional m 7→

∑
i,j mij |Aj −Bi| subject to the above

constraints on m is a (very) particular case of Monge-Kantorovich optimal transport
problem of finding an optimal coupling between S and S′ with cost function c(x, y) =
|x−y|. Kantorovich’s duality theory gives that the infimum of this problem, namely



LEAF SUPERPOSITION PROPERTY FOR CURRENTS 5∑
j |Aj − Bj |, is (see [11] again, where an explicit construction of the maximizing

φ is given)
max

φ∈Lip1(R)
〈S − S′, φ〉.

For every fixed h ∈ N we define

d(S, S′) := F(S − S′) = sup
{
〈S, φ〉 − 〈S′, φ〉 : φ ∈ Lipb,1(R)

}
, S, S′ ∈ Ih

0 (R),

which is easily seen to be a finite distance in Ih
0 (R) (indeed, since S and S′ belong

to the same set Ih
0 (R), the difference S − S′ has zero average).

2.3. Slices of a current. Given T ∈ In(Rn ×R) we consider the vertical slices of
T at x ∈ Rn,

Tx := 〈T, dx, x〉 ∈ I0(R),
see for instance [6], [10]. This family of currents is uniquely determined, up to
L n-negligible sets, by the identity

∫
Rn Tx dx = T dx, i.e.∫

Rn

〈Tx, ϕ(x, ·)〉 dx = 〈T dx, ϕ〉 (11)

for all ϕ ∈ C∞c (Rn × R). Furthermore, the masses of Tx are related to the mass of
T by ∫

Ω

MR(Tx) dx ≤ MΩ×R(T ) (12)

for all bounded open sets Ω ⊂ Rn. As a consequence, Tx ∈ Ī0(R) for L n-a.e. x ∈ Ω
whenever MΩ×R(T ) < +∞.

2.4. The current associated to the graph of a BV function. Recall that
u ∈ L1

loc(Rn) is said to be a locally BV function if its distributional derivative
Du = (D1u, . . . ,Dnu) is an Rn-valued measure with locally finite total variation in
Rn, and we shall denote by ‖Du‖ this total variation.

In this section we are going to describe how we can canonically associate to
u ∈ BVloc(Rn) a current i(u) ∈ In(Rn × R) with no boundary, finite mass on
cylinders Ω× R with Ω bounded, and satisfying

〈i(u), ϕdx〉 :=
∫

Ω

ϕ(x, u(x)) dx ∀ϕ ∈ C∞c (Rn × R). (13)

These two conditions are actually sufficient to characterize a unique current, see
step 5 of the proof of Theorem 1.

Geometrically, this current corresponds to the integration on the graph of u,
with the orientation induced by the map x 7→ (x, u(x)), and this description works
perfectly well when u ∈ C1. In order to define i(u) in the general case when
u ∈ BVloc, we first define the subgraph E(u) of u by

E(u) := {(x, y) ∈ Rn × R : y ≤ u(x)} .
It is well known that E(u) has locally finite perimeter in Rn × R (i.e. χE(u) ∈
BVloc(Rn × R)), so it has a measure-theoretic boundary (the set of points where
the density of E(u) is neither 0 nor 1), that we shall denote by Γ(u). De Giorgi’s
theorem on sets of finite perimeter ensures that Γ(u) is countably H n-rectifiable,
and that

DχE(u) = −νE(u)H
n Γ(u) (14)
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(the unit vector νE(u) is the so-called approximate outer normal to E(u)). Then,
we define

i(u) := (Γ(u), 1, τu), (15)
where τu is the unit n-vector spanning ν⊥E(u) (the approximate tangent space to
Γ(u)), characterized by

〈dx1 ∧ · · · ∧ dxn ∧ dy , τu ∧ νE(u)〉 ≥ 0.

Equivalently, invoking the relation (14), we can define

〈i(u), ϕdx〉 := −
∫

Rn×R
ϕdDyχE(u),

〈i(u), ϕd̂xj ∧ dy〉 :=
∫

Rn×R
ϕdDjχE(u), j = 1, . . . , n

(here d̂xj := (−1)n−jdx1 ∧ · · · ∧dxj−1 ∧dxj+1 ∧ · · · ∧dxn). In the case u ∈ C1(Rn),
using the area formula, it is easy to check that this definition coincides with the
geometric picture, and in particular that ∂

(
i(u)

)
= 0 and (13) hold. In the general

case both can be obtained, for instance, by approximation (notice that ui → u in
L1

loc implies E(ui) → E(u) in L1
loc and therefore weak convergence of the associated

currents).
We will need the following strong locality property of τu.

Lemma 2. Let u, v ∈ BVloc(Rn) with u ≥ v. Then τu = τv H n-a.e. on Γ(u)∩Γ(v).

Proof. It suffices to show that νE(u) = νE(v) H n-a.e. on Γ(u)∩Γ(v). It is a general
property of sets of finite perimeter E ⊂ Rn+1 that, for H n-a.e. w ∈ ∂∗E, the
rescaled sets (E − w)/r converge in L1

loc as r ↓ 0 to the halfspace having νE(w) as
outer normal. In our case, E(u) ⊃ E(v) because u ≥ v, so that all points w where
both (E(u)− w)/r and (E(v)− w)/r converge to a halfspace, the halfspace has to
be the same. This implies the stated equality H n-a.e. of the outer normals.

2.5. Metric spaces valued BV functions. We now recall the main features of
the theory of BV functions with values in a metric space, developed in Ambrosio
[3] and Ambrosio and Kirchheim [6]. Let (E, d) be a metric space such that there
exists a countable family F ⊂ Lipb,1(E) which generates the distance, in the sense
that

d(x, y) = sup
Φ∈F

|Φ(x)− Φ(y)|, x, y ∈ E.

We say that a function f : Rn → E is a function of metric locally bounded variation,
and we write f ∈MBVloc(Rn;E), if Φ◦f ∈ BVloc(Rn) for every Φ ∈ F and if there
exists a positive locally finite measure ν in Rn such that

ν ≥ ‖D(Φ ◦ f)‖ , Φ ∈ F .
The minimal ν such that the previous condition holds will still be denoted by
‖Df‖. It is possible to check that the class MBVloc(Rn;E) and the measure ‖Df‖
are independent of the choice of the family F .

We now consider the metric space (Ih
0 (R),d) previously defined. To every φ ∈

Lipb,1(R) we associate the map Φφ ∈ Lip1(Ih
0 (R)) defined by

Φφ(S) := 〈S, φ〉, S ∈ Ih
0 (R).

Indeed, it is immediate to check the Lipschitz continuity

|Φφ(S)− Φφ(S′)| = |〈S, φ〉 − 〈S′, φ〉| ≤ d(S, S′), S, S′ ∈ Ih
0 (R).
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By a standard density argument, it is possible to select a countable family F ⊂
Lipb,1(R) ∩ C∞(R) with the property that

d(S, S′) = sup
φ∈F

{〈S, φ〉 − 〈S′, φ〉} , S, S′ ∈ Ih
0 (R). (16)

Lemma 3. Let E and F be metric spaces. Then M ◦f ∈MBVloc(Rk;F ) whenever
f ∈MBVloc(Rk;E) and M : E → F is an L-Lipschitz function, and ‖D(M ◦ f)‖ ≤
L‖Df‖. Furthermore, MBVloc(Rk; R) coincides with BVloc(Rk).

Proof. Let φ ∈ Lipb,1(F ), g = M ◦ f and ψ = φ ◦M ; then ψ ∈ Lipb(E) and its
Lipschitz constant is less than L; as a consequence, ‖D(ψ ◦ f)‖ ≤ L‖Df‖. Since
ψ ◦ f = φ ◦ g we obtain that g ∈MBVloc(Rk;F ) and ‖Dg‖ ≤ L‖Df‖.
The inclusion BVloc(Rk) ⊂ MBVloc(Rk; R) is a simple consequence of the stability
of BV functions under left composition with Lipschitz maps; to prove the opposite
inclusion, let f ∈ MBVloc(Rk; R) and fix an open ball B ⊂ Rk; by definition all
truncated functions fa := −a∨ (f ∧ a) belong to BV (B) and ‖Dfa‖ ≤ ‖Df‖, since
we can see fa as the composition of f with the map ηa ∈ Lipb,1(R) defined as the
identity for x ∈ [−a, a], as the constant a for x > a and as the constant −a for
x < −a. Therefore, denoting by f̄a their averages in B, by Poincaré inequality
we obtain that fa − f̄a is bounded in L1(B). Thanks to the compactness of the
embedding of BV in L1, we can find a sequence ai → +∞ such that f̄ai converges
to some m ∈ R and fai

− f̄ai
converge in L1(B) and L n-almost everywhere to

g ∈ BV (B): if m ∈ R we immediately obtain that f = m+ g ∈ BV (B). If not, we
obtain that |f | = +∞ L n-almost everywhere, contradicting the assumption that f
is real valued.

3. Proof of the main theorem. This section is entirely devoted to the proof of
Theorem 1. We address separately the existence of the decomposition, its unique-
ness and the equality of the total variations. During the proof we will occasionally
use forms ω in Rn × R whose supports are not compact, but have a compact pro-
jection on Rn. Their use can be easily justified by a truncation argument, based on
the fact that the currents under consideration have finite mass on cylinders Ω× R
with Ω ⊂ Rn bounded.

3.1. Existence of a decomposition. We proceed in 5 steps.
Step 1. We begin by proving that there exists an integer N (depending on T

only) such that, for L n-a.e. x ∈ Rn, the slice Tx ∈ Ī0(R) is the sum of N Dirac
masses with unit weight: more precisely, for L n-a.e. x ∈ Rn there exist N real
values

u1(x) ≤ u2(x) ≤ . . . ≤ uN (x) (17)
satisfying

Tx =
N∑

j=1

δuj(x). (18)

We first show that Tx ≥ 0. Fix two nonnegative functions φ ∈ C∞c (R) and
ψ ∈ C∞c (Rn), and apply (11) with ϕ(x, y) = ψ(x)φ(y) to get∫

Rn

〈Tx, φ〉ψ(x) dx = 〈T dx, ϕ〉 ≥ 0,

since we assumed T dx ≥ 0. Hence, by the arbitrariness of ψ, we deduce that
〈Tx, φ〉 ≥ 0 for L n-a.e. x ∈ Rn. By a simple density argument we can obtain an
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L n-negligible set E independent of φ such that 〈Tx, φ〉 ≥ 0 for all φ ∈ C∞c (R) and
x ∈ Rn \ E. This proves that Tx ≥ 0 for all x ∈ Rn \ E.

Knowing that Tx ≥ 0, the mass of Tx is simply given by 〈Tx, 1〉 (notice that
this function is locally integrable by (12) and assumption (1), and takes L n-almost
everywhere its values in N because L n-almost all the slices are integer rectifiable).

We want to show that the map x 7→ 〈Tx, 1〉 is L n-equivalent to a constant in
Rn. Indeed, for every function ψ ∈ C∞c (Rn) we can compute (applying again (11))∫

Rn

〈Tx, 1〉
∂ψ

∂xi
(x) dx = 〈T dx,

∂ψ

∂xi
〉 = 〈T, d

(
ψd̂xi

)
〉 = 0,

since ∂T = 0. Hence we denote by N ∈ N the L n-a.e. constant value of 〈Tx, 1〉,
and we can obviously assume that N ≥ 1. In view of the representation (6), this
means that Tx ∈ IN

0 (R) for L n-a.e. x ∈ Rn. This leads us to the decomposition
(17)–(18).

Step 2. Next, we claim that the map

Rn → (IN
0 (R),d),

x 7→ Tx,

belongs to MBVloc(Rn; IN
0 (R)).

We proceed as in the proof of Theorem 8.1 of [6]. Recalling the definitions
and the discussion in Subsection 2.5, we only need to show that for every φ ∈
Lipb,1(R) ∩ C∞(R) the map

x 7→ 〈Tx, φ〉
belongs to BVloc(Rn), with a uniform (with respect to φ) control of the derivative.

For every ψ ∈ C∞c (Rn), applying once more (11) we compute∫
Rn

〈Tx, φ〉
∂ψ

∂xi
(x) dx = 〈T dx,

∂ψ

∂xi
φ〉 = 〈T, ∂ψ

∂xi
φdx〉 = (−1)n〈T, φ′ψ d̂xi ∧ dy〉,

using in the last equality the fact that ∂T = 0. Therefore, taking the modulus of
both sides, we obtain∣∣∣∣∫

Rn

〈Tx, φ〉
∂ψ

∂xi
(x) dx

∣∣∣∣ ≤ ∫
Rn

|ψ| dπ#‖T‖,

where π : Rn × R → Rn is the projection on the x variable. This implies that the
total variation of the distributional derivative of x 7→ 〈Tx, φ〉 satisfies

‖D〈Tx, φ〉‖ ≤ nπ#‖T‖.

Step 3. Given S ∈ IN
0 (R) of the form

S =
N∑

j=1

δAj , with A1 ≤ A2 ≤ . . . ≤ AN ,

let us prove that the map
(IN

0 (R),d) → R,
S 7→ AN ,

is 1-Lipschitz continuous.
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Let S ∈ IN
0 (R) be of the form above and S′ ∈ IN

0 (R) be of the same form

S′ =
N∑

j=1

δA′
j
, with A′1 ≤ A′2 ≤ . . . ≤ A′N .

Then

|AN −A′N | ≤
N∑

j=1

|Aj −A′j | = F

 N∑
j=1

δAj −
N∑

j=1

δA′
j

 = d(S, S′),

where we have used Lemma 1.

Step 4. Finally we claim that the map

x 7→ uN (x), Rn → R

belongs to BVloc(Rn).
We have already seen in Step 2 that the map

x 7→ Tx, Rn → IN
0 (R)

is MBVloc and in Step 3 that the map defined by

N∑
j=1

δzj
7→ max

1≤i≤n
zi, IN

0 (R) → R

is Lipschitz. Then, Lemma 3 yields that their composition, namely uN , belongs to
MBVloc(Rn; R), which is nothing but BVloc(Rn).

Step 5. Induction and conclusion of the proof.
Up to now we have selected the top leaf of the decomposition. Now define

T̂ = T − i(uN ).

It is readily checked that T̂ is an n-dimensional integer rectifiable current in Rn+1,
satisfying the zero-boundary condition, the positivity condition and the cylindrical
mass condition as in the statement of the theorem, and that for L n-a.e. x ∈ Rn we
have

T̂x = Tx − δuN (x) =
N−1∑
j=1

δuj(x).

Then, it suffices to apply againN−1 times the construction described in the previous
steps to deduce that all functions uj belong to BVloc(Rn) and, by construction,(
T −

∑N
j=1 i(uj)

)
dx = 0. Let now R := T −

∑N
j=1 i(uj) and let us prove that

∂R = 0 and R dx = 0 imply R = 0. Indeed, given ψ ∈ C∞c (Rn × R), let
ϕ(x, y) :=

∫ y

−∞ ψ(x, s) ds; then

0 = 〈∂R,ϕd̂xj〉 = 〈R, ∂ϕ
∂xj

dx+ ψdy ∧ d̂xj〉 = 〈R,ψdy ∧ d̂xj〉 ∀j = 1, . . . , n.

Finally, property (2) is a consequence of the choice we have done in (17).
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3.2. Uniqueness of the decomposition. The uniqueness of this decomposition
is immediate. Assume that we have two decompositions

T =
N∑

j=1

i(uj) =
M∑

j=1

i(vj),

with uj ∈ BVloc(Rn) for j = 1, . . . , N and vj ∈ BVloc(Rn) for j = 1, . . . ,M satisfy-
ing

u1 ≤ u2 ≤ . . . ≤ uN and v1 ≤ v2 ≤ . . . ≤ vM . (19)
For L n-a.e. x ∈ Rn the slice Tx satisfies

Tx =
N∑

j=1

δuj(x) =
M∑

j=1

δvj(x).

This immediately implies that N = M and, together with (19), that uj(x) = vj(x)
for L n-a.e. x ∈ Rn for every j = 1, . . . , N .

3.3. Equality of the total variations. We know that i(uj) = (Γ(uj), 1, τuj
), and

the locality property stated in Lemma 2 allows to find a Borel orientation τ of
Γ := ∪jΓ(uj) with the property

τ = τuj H n-a.e. on Γ(uj), for j = 1, . . . , N , (20)

since by construction the functions uj satisfy (2). Let us define θ(w) as the cardi-
nality of the set {j ∈ {1, . . . , N} : w ∈ Γ(uj)}; taking (20) into account, we have
then

〈T, ω〉 =
N∑

j=1

〈i(uj), ω〉 =
N∑

j=1

∫
Γ(uj)

〈τuj
, ω〉 dH n =

∫
Γ

θ〈τ, ω〉 dH n.

This proves that T = (Γ, θ, τ). As a consequence

‖T‖ = θH n Γ =
N∑

j=1

H n Γ(uj) =
N∑

j=1

‖i(uj)‖.
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