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Abstract: Multivariate analysis (MA) is becoming a fundamental tool for processing in an efficient 
way the large amount of data collected in X-ray diffraction experiments. Multi-wedge data 
collections can increase the data quality in case of tiny protein crystals; in situ or operando setups 
allow investigating changes on powder samples occurring during repeated fast measurements; 
pump and probe experiments at X-ray free-electron laser (XFEL) sources supply structural 
characterization of fast photo-excitation processes. In all these cases, MA can facilitate the extraction 
of relevant information hidden in data, disclosing the possibility of automatic data processing even 
in absence of a priori structural knowledge. MA methods recently used in the field of X-ray 
diffraction are here reviewed and described, giving hints about theoretical background and possible 
applications. The use of MA in the framework of the modulated enhanced diffraction technique is 
described in detail. 
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1. Introduction 
Multivariate analysis (MA) consists of the application of a set of mathematical tools 

to problems involving more than one variable in large datasets, often combining data 
from different sources to find hidden structures. MA provides decomposition in simpler 
components and makes predictions based on models or recovers signals buried in data 
noise. 

Analysis of dependency of data in more dimensions (or variables) can be derived 
from the former work of Gauss on linear regression (LR) and successively generalized to 
more than one predictor by Yule and Pearson, who reformulated the linear relation 
between explanatory and response variables in a joint context [1,2]. 

The need to solve problems of data decomposition into simpler components and 
simplify the multivariate regression using few, representative explanatory variables 
brought towards the advent of the principal component analysis (PCA) by Pearson and, 
later, by Hotelling [3,4] in the first years of the 20th century. Since then, PCA has been 
considered a great step towards data analysis exploration because the idea of data 
decomposition into its principal axes (analogies with mechanics and physics were noted 
by the authors) allows the data to be explained into a new multidimensional space, where 
directions are orthogonal to each other (i.e., the new variables are uncorrelated) and each 
successive direction is decreasing in importance and, therefore, in explained variance. 
This paved the way to the concept of dimensionality reduction [5] that is crucially 
important in many research areas such as chemometrics. 

Chemometrics involves primarily the use of statistical tools in analytical chemistry 
[6] and, for this reason, it is as aged as MA. It is also for this reason that the two disciplines 
started to talk since the late 1960s, initially concerning the use of factor analysis (FA) in 
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chromatography [7]. FA is a different way to see the same problem faced by PCA, as in 
FA data are explained by hidden variables (latent variables or factors) by using different 
conditions for factor extraction [8], while in PCA components are extracted by using the 
variance maximization as unique criterion. Since then, chemometrics and MA have 
contaminated each other drawing both advantages [9]. 

Multivariate curve resolution (MCR) [10] is a recent development consisting in the 
separation of multicomponent systems and able to provide a scientifically meaningful 
bilinear model of pure contributions from the information of the mixed measurements. 
Another data modeling tool is the partial least square (PLS) [11], a regression method that 
avoids the bad conditioning intrinsic of LR by projecting the explanatory variables onto a 
new space where the variables are uncorrelated each other, but maximally correlated with 
the dependent variable. PLS has been successfully applied in problems such as 
quantitative structure-activity vs. quantitative structure-property of dataset of peptides 
[12] or in the analysis of relation of crystallite shapes in synthesis of super-structures of 
CaCO3 through a hydrogel membrane platform [13]. 

Moreover, classification methods have been adopted in chemometrics since the 
beginning, mainly for pattern recognition, i.e., classification of objects in groups according 
to structures dictated by variables. Discriminant analysis (DA), PLS-DA [14], support 
vector machines (SM) [15] have been used for problems such as classification of food 
quality or adulteration on the basis of sensitive crystallization [16], toxicity of sediment 
samples [17] or in classification of biomarkers [18], gene data expression or proteomics 
[19] just to mention few examples. 

MA has been also used to improve the signal-to-noise ratio in measurements. 
Methods such as phase sensitive detection (PSD) have been developed and implemented 
for technical applications as in the lock-in amplifier, which amplifies only signals in phase 
with an internal reference signal. PSD has found a large applications in chemometrics 
connected to excitation enhanced spectroscopy, where it has been used to highlight 
excitation-response correlations in chemical systems [20]. Summarizing, although widely 
used in analytical chemistry, MA is less diffused in materials science and certainly under-
exploited in crystallography, where much wider applications are forecast in the next decade. 

The main multivariate methods, grouped according to their main field of application, 
are outlined in Figure 1. In the following, they are critically compared each other, with 
particular attention on the specificity of chemometric problems and applications to 
crystallography. In detail, the bad conditioning due to the high dimensionality and the 
concept of overfitting is analyzed and the needs and advantages in reducing the problem 
of dimensionality are discussed (Section 2.1); then, similar methods are put in comparison 
in the successive subsections: PCA vs. FA vs. MCR for dimensionality reduction (Section 
2.2), with particular attention to X-ray diffraction applications. In Section 3 we describe a 
new technique, called modulated enhanced diffraction (MED), which allows the 
extraction of signals from single components from complex crystal systems monitored by 
X-ray diffraction experiment, showing the convergence of PSD (a Fourier deconvolution 
approach) with standard and constrained (OCCR) PCA approaches. PCA, MCR and FA 
applications to the investigation of powder samples and single-crystal samples by X-ray 
diffraction are reviewed in sections 4 and 5, respectively. In detail, Section 4 is devoted to 
the main applications to kinetic (4.1) and quantitative analysis (4.2). Examples of these 
two main applications are given to highlight the wide potentialities of MA-based 
approaches. Section 5 describes the results and perspectives in single crystal diffraction, 
in details in solving the phase problem (Section 5.1) merging datasets (Section 5.2) and 
crystal monitoring (Section 5.3), exploiting the capability of MA methods in general and 
PCA in particular to highlight dynamic phenomena. 
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Figure 1. Schematic view showing main multivariate methods grouped according to their field of application. 

2. Multivariate Methods 
2.1. High Dimension and Overfitting 

MA provides answers for prediction, data structure, parameter estimations. In facing 
these problems, we can think at data collected from experiments as objects of an unknown 
manifold in a hyperspace of many dimensions [21]. In the context of X-ray diffraction, 
experimental data are constituted by diffraction patterns in case of single crystals or dif-
fraction profiles in case of powder samples. Diffraction patterns, after indexing, are con-
stituted by a set of reflections, each identified by three integers (the Miller indices) and an 
intensity value, while diffraction profiles are formed by 2ϑ values as independent variable 
and intensity values as dependent variable. The data dimensionality depends on the num-
ber of reflections or on the number of 2ϑ values included in the dataset. Thus, high-reso-
lution data contain more information about the crystal system under investigation, but 
have also higher dimensionality. 

In this powerful and suggestive representation, prediction, parameter estimation, 
finding latent variables or structure in data (such as classify or clustering) are all different 
aspects of the same problem: model the data, i.e., retrieve the characteristics of such a 
complex hypersurface plunged within a hyperspace, by using just a sampling of it. Some-
times, few other properties can be added to aid the construction of the model, such as the 
smoothness of the manifold (the hypersurface) that represents the physical model under-
lying the data. Mathematically speaking, this means that the hypersurface is locally ho-
meomorphic to a Euclidean space and can be useful to make derivatives, finding local 
minimum in optimization and so on. 

In MA, it is common to consider balanced a problem in which the number of variables 
involved is significantly fewer than the number of samples. In such situations, the sam-
pling of the manifold is adequate and statistical methods to infer its model are robust 
enough to make predictions, structuring and so on. Unfortunately, in chemometrics it is 
common to face problems in which the number of dimensions is much higher than the 
number of samples. Some notable examples involve diffraction/scattering profiles, but 
other cases can be found in bioinformatics, in study for gene expression in DNA microar-
ray [22,23]. Getting high resolution data is considered a good result in Crystallography. 
However, this implies a larger number of variables describing a dataset: (more reflections 
in case of single-crystal data or higher 2ϑ values in case of powder data). Consequently, it 
makes more complicated the application of MA. 

When the dimensionality increases, the volume of the space increases so fast that the 
available data become sparse on the hypersurface, making it difficult to infer any trend in 
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data. In other words, the sparsity becomes rapidly problematic for any method that re-
quires statistical significance. In principle, to keep the same amount of information (i.e., 
to support the results) the number of samples should grow exponentially with the dimen-
sion of the problem. 

A drawback of having a so much high number of dimensions is the risk of overfitting. 
Overfitting is an excessive adjustment of the model to data. When a model is built, it must 
account for an adequate number of parameters in order to explain the data. However, this 
should not be done too precisely, so to keep the right amount of generality in explaining 
another set of data that would be extracted from the same experiment or population. This 
feature is commonly known as model’s robustness. Adapting a model to the data too 
tightly introduces spurious parameters that explain the residuals and natural oscillations 
of data commonly imputed to noise. This known problem was named by Bellman the 
“curse of dimensionality” [5], but it has other names (e.g., the Hughes phenomenon in 
classification). A way to partially mitigate such impairment is to reduce the number of 
dimensions of the problem, giving up to some characteristic of the data structure. 

The dimensionality reduction can be performed by following two different strategies: 
selection of variables or transformation of variables. In the literature, the methods are 
known as feature selection and feature extraction [24]. 

Formally, if we model each variate of the problem as a random variable Xi, the selec-
tion of variables is the process of selecting a subset of relevant variables to be used for 
model construction. This selection requires some optimality criterion, i.e., it is performed 
according to an agreed method of judgement. Problems to which feature selection meth-
ods can be applied are the ones where one of the variables, Y, has the role of ‘response’, 
i.e., it has some degree of dependency from the remaining variables. The optimality crite-
rion is then based on the maximization of a performance figure, achieved by combining a 
subset of variables and the response. In this way, each variable is judged by its level of 
relevance or redundancy compared to the others, to explain Y. An example of such a fig-
ure of performance is the information gain (IG) [25], which resorts from the concept of 
entropy, developed in the information theory. IG is a measure of the gain in information 
achieved by the response variable (Y) when a new variable (Xi) is introduced into the 
measure. Formally: 𝐼𝐺(𝑌, 𝑋௜) = 𝐻(𝑌) − 𝐻(𝑌|𝑋௜) (1) 

being H() the entropy of the random variable. High value of IG means that the second 
term 𝐻(𝑌|𝑋௜) is little compared to the first one, 𝐻(𝑌), i.e., that when the new variable 𝑋௜ 
is introduced, it explains well the response 𝑌 and the corresponding entropy becomes 
low. The highest values of IG are used to decide which variables are relevant for the re-
sponse prediction. If the response variable is discrete (i.e., used to classify), another suc-
cessful method is Relief [26], which is based on the idea that the ranking of features can 
be decided on the basis of weights coming from the measured distance of each sample (of 
a given class) from nearby samples of different classes and the distance of the same sample 
measured from nearby samples of the same class. The highest weights provide the most 
relevant features, able to make the best prediction of the response. 

Such methods have found application in the analysis of DNA microarray data, where 
the number of variables (up to tenths of thousands) is much higher than the number of 
samples (few hundreds), to select the genes responsible for the expression of some rele-
vant characteristic, as in the presence of a genetic disease [27]. Another relevant applica-
tion can be found in proteomics [28], where the number of different proteins under study 
or retrieved in a particular experimental environment is not comparable with the bigger 
number of protein features, so that reduction of data through the identification of the rel-
evant feature becomes essential to discern the most important ones [29]. 

Feature extraction methods, instead, are based on the idea of transforming the varia-
bles set into another set of reduced size. Using a simple and general mathematical formu-
lation, we have: 
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ሾ𝑌ଵ, … , 𝑌௠ሿ் = 𝑓(ሾ𝑋ଵ, … , 𝑋௡ሿ்), 𝑚 ≪ 𝑛 (2) 

with the output set [Y1,…,Ym] a completely different set of features from the input 
[X1,…,Xn], but achieved from them. Common feature-extraction methods are based on lin-
ear transformation, i.e., 𝒀 = 𝐴𝑿, 𝑚 ≪ 𝑛 (3) 

where the variables are transformed losing their original meaning to get new characteris-
tics that may reveal some hidden structure in data. 

Among these methods, PCA is based on the transformation in a space where varia-
bles are all uncorrelated each other and sorted by decreasing variance. Independent Com-
ponent Analysis (ICA), instead, transforms variables in a space where they are all inde-
pendent each other and maximally not-Gaussian, apart for one, which represents the un-
explained part of the model, typically noise. Other methods, such as MCR, solve the prob-
lem by applying more complicated conditions such as the positivity of the values in the 
new set of variables or similar, so that the physical meaning of the data is still preserved. 
A critical review of dimensionality reduction feature extraction methods is in Section 2.2. 

PCA and MCR have an important application in solving mixing problems or in de-
composing powder diffraction profiles of mixtures in pure-phase components. In such 
decomposition, the first principal components (or contributions, in MCR terminology) 
usually include the pure-phase profiles or have a high correlation with these. 

2.2. Dimensionality Reduction Methods 
In Section 2.1, the importance of applying dimensionality reduction to simplify the 

problem view and reveal underlying model within data was underlined. One of the most 
common method to make dimensionality reduction is principal component analysis. 

PCA is a method to decompose a data matrix finding new variables orthogonal each 
other (i.e., uncorrelated), while preserving the maximum variance (see Figure 2). These 
new uncorrelated variables are named principal components (PCs). 

 
Figure 2. A set of data (blue dots) of three variables is represented into a 3D space. Data are mostly 
spread on the orange plane, with little departure from it. Principle component analysis (PCA) 
identifies the plane and the directions of maximum variability of data within it. 

PCA is then an orthogonal linear transformation that transforms data from the cur-
rent space of variables to a new space of the same dimension (in this sense, no reduction 
of dimension is applied), but so that the greatest variance lies on the first coordinate, the 
second greatest variance on the second coordinate and so on. From a mathematical view-
point, said X the dataset, of size N × P (N being the number of samples, P that of the vari-
ates), PCA decomposes it so that 
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𝑿 = 𝑻𝑾′ (4) 

with 𝑻 (of size N × P) the matrix of the principal components (called also scores), which 
are the transformed variable values corresponding to each sample and with 𝑾 (of size P 
× P) the matrix of the loadings, corresponding to the weights by which each original vari-
able must be multiplied to get the component scores. The matrix 𝑾 is composed by or-
thogonal columns that are the eigenvectors of the diagonalization [30] of the sample co-
variance matrix of 𝑿: 𝑿′𝑿 = 𝑾′𝚲𝑾 (5) 

In Equation (5), 𝚲 is a diagonal matrix containing the eigenvalues of the sample co-
variance matrix of 𝑿, i.e., 𝑿′𝑿. Since a covariance matrix is always semi-definite positive, 
the eigenvalues are all real and positive or null and correspond to the explained variance 
of each principal component. The main idea behind PCA is that in making such decom-
position, often occurs that not all the directions are equally important. Rather, the number 
of directions preserving most of the explained variance (i.e., energy) of the data are few, 
often the first 1–3 principal components (PC). Dimensionality reduction is then a lossy 
process, in which data are reconstructed by an acceptable approximation that uses just the 
first few principal components, while the remaining are neglected: 𝑿෡ ≈ 𝑻(𝟏:𝒔)𝑾′(𝟏:𝒔) (6) 

With 𝒔 the retained components (i.e., the first s columns of both the matrices) and 𝒔 ≪ 𝑷. 
Diagonalization of the covariance matrix of data is the heart of PCA and it is achieved 

by resorting to singular value decomposition (SVD), a basic methodology in linear alge-
bra. SVD should not be confused with PCA, the main difference being the meaning given 
to the results. In SVD the input matrix is decomposed into the product a left matrix of 
eigenvectors 𝑼, a diagonal matrix of eigenvalues 𝚲 and a right matrix of eigenvectors 𝑽, 
reading the decomposition from left to right: 𝒀 = 𝑼𝚲𝑽′ (7) 

SVD may provide decomposition also of rectangular matrices. PCA, instead, uses 
SVD for diagonalization of the data covariance matrix 𝑿′𝑿, which is square and semi-
definite positive. Therefore, left and right eigenvector matrices are the same, and the di-
agonal matrix is square and with real and positive value included. The choice of the most 
important eigenvalues allows the choice of the components to retain, a step that is missing 
from SVD meaning. 

Factor analysis is a method based on the same concept of PCA: a dataset is explained 
by a linear combination of hidden factors, which are uncorrelated each other, apart for a 
residual error: 𝑿 = 𝒍𝟏𝑭𝟏 + ⋯ 𝒍𝒏𝑭𝒏 + 𝜺 (8) 

FA is a more elaborated version of PCA in which factors are supposed (usually) to be 
known in number and, although orthogonal each other (as in PCA), they can be achieved 
adopting external conditions to the problem. A common way to extract factors in FA is by 
using a depletion method in which the dataset 𝑿 is subjected to an iterative extraction of 
factors that can be analyzed time by time: 𝑿(𝒌) = 𝑿(𝒌ି𝟏) − 𝒍𝐤𝑭𝐤. In FA, there is the clear 
intent to find physical causes of the model in the linear combination. For this reason, their 
number is fixed and independency of the factors with the residual 𝜺 is imposed too. It 
can be considered, then, a supervised deconvolution of original dataset in which inde-
pendent and fixed number of factors must be found. PCA, instead, explores uncorrelated 
directions without any intent of fixing the number of the most important ones. 

FA has been applied as an alternative to PCA in reducing the number of parameters 
and various structural descriptors for different molecules in chromatographic datasets 
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[31]. Moreover, developments of the original concepts have been achieved by introducing 
a certain degree of complexity such as the shifting of factors [32] (factors can have a certain 
degree of misalignment in the time direction, such as in the time profile for X-ray powder 
diffraction data) or the shifting and warping (i.e., a time stretching) [33]. 

Exploring more complete linear decomposition methods, MCR [8] has found some 
success as a family of methods that solve the mixture analysis problem, i.e., the problem 
of finding the pure-phase contribution and the amount of mixing into a data matrix in-
cluding only the mixed measurements. A typical paradigm for MCR, as well as for PCA, 
is represented by spectroscopic or X-ray diffraction data. In this context, each row of the 
data matrix represents a different profile, where the columns are the spectral channels or 
diffraction/scattering angles, and the different rows are the different spectra or profiles 
recorded during the change of an external condition during time. 

In MCR analysis, the dataset is described as the contribution coming from reference 
components (or profiles), weighted by coefficients that vary their action through time: 𝑿𝒊 ≈ 𝒄𝒊𝑺′𝒊 (9) 

With 𝒄𝒊 the vector of weights (the profile of change of the i-th profile through time) 
and 𝑺𝒊 the pure-phase i-th reference profile. The approximation sign is since MCR leaves 
some degree of uncertainty in the model. In a compact form we have: 𝑿 = 𝑪𝑺ᇱ + 𝑬 (10) 

MCR shares the same mathematical model of PCA, apart for the inclusion of a resid-
ual contribution 𝑬 that represents the part of the model we give up explaining. The algo-
rithm that solves the mixture problem in the MCR approach, however, is quite different 
from the one used in PCA. While PCA is mainly based on the singular value decomposi-
tion (i.e., basically the diagonalization of its sample covariance matrix), MCR is based on 
the alternating least square (ALS) algorithm, an iterative method that tries to solve condi-
tioned minimum square problems of the form: 

ሼ𝑪, 𝑺ሽ௢௣௧ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑪,𝑺 ቐ෍൫𝒙௜,௝ − 𝒄௜𝒔′௝൯ଶ + 𝜆 ቌ෍‖𝒄𝒊‖ଶ௜ + ෍ฮ𝒔௝ฮଶ௝ ቍ௜,௝ ቑ (11) 

The previous problem is a least square problem with a regularization term properly 
weighted by a Lagrange parameter 𝝀. The regularization term, quite common in optimi-
zation problems, is used to drive the solution so that it owns some characteristics. The 𝑳𝟐-
norm of the columns of 𝑺 or 𝑪, as reported in the Equation (11), is used to minimize the 
energy of the residual and it is the most common way to solve ALS. However, other reg-
ularizations exist, such as 𝑳𝟏-norm to get more sparse solutions [34] or imposing positiv-
ity of the elements of 𝑺 and 𝑪. Usually, the solution to Equation (11) is provided by iter-
ative methods, where initial guesses of the decomposition matrices 𝑺 or 𝑪 are substi-
tuted iteratively by alternating the solution of the least-square problem and the applica-
tion of the constraints. In MCR, the condition of positivity of elements in both 𝑺 or 𝑪 is 
fundamental to give physical meaning to matrices that represent profile intensity and 
mixing amounts, respectively. 

The MCR solution does not provide the direction of maximum variability as PCA. 
PCA makes no assumption on data; the principal components and particularly the first 
one, try to catch the main trend of variability through time (or samples). MCR imposes 
external conditions (such as the positivity), it is more powerful, but also more computa-
tionally intensive. Moreover, for quite complicated data structures, such as the ones mod-
eling the evolution of crystalline phases through time [35,36], it could be quite difficult to 
impose constraints into the regularization term, making the iterative search unstable if not 
properly set [37,38]. Another important difference between MCR and PCA is in the model 
selection: in MCR the number of latent variables (i.e., the number of profiles in which 
decomposition must be done) must be known and set in advance; in PCA, instead, while 
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there are some criterion of selection of the number of significative PC such as the Mali-
nowski indicator function (MIF) [39,40] or the average eigenvalue criterion (AEC) [41,42], 
it can also be inferred by simply looking at the trend of the eigenvalues, which is typical 
of an unsupervised approach. The most informative principal components are the ones 
with highest values. 

For simple mathematical models, it will be shown in practical cases taken from X-ray 
diffraction that PCA is able to optimally identify the components without external con-
straints. In other cases, when the model is more complicated, we successfully experi-
mented a variation of PCA called orthogonal constrained component rotation (OCCR) 
[43]. In OCCR, a post-processing is applied after PCA aimed at revealing the directions of 
the first few principal components that can satisfy external constraints, given by the 
model. The components, this way, are no longer required to keep the orthogonality. 
OCCR is then an optimization method in which the selected principal components of the 
model are let free to explore their subspace until a condition imposed by the data model 
is optimized. OCCR has been shown to give results that are better than traditional PCA, 
even when PCA produces already satisfactory results. A practical example (see Section 3) 
is the decomposition of the MED dataset in pure-phase profiles, where PCA scores, pro-
portional to profiles, may be related each other with specific equations. 

Smoothed principal component analysis or (SPCA) is a modification of common PCA 
suited for complex data matrices coming from single or multi-technique approaches 
where the time is a variable, in which sampling is a continuous, such as in situ experiment 
or kinetic studies. The ratio behind the algorithm proposed by Silvermann [44] is that data 
without noise should be smooth. For this reason, in continuous data, such as profiles or 
time-resolved data, the eigenvector that describes the variance of data should be also 
smooth [45]. Within these assumptions, a function called “roughness function” is inserted 
within the PCA algorithm for searching the eigenvectors along the directions of maximum 
variance. The aim of the procedure is reducing the noise in the data by promoting the 
smoothness between the eigenvectors and discouraging more discrete and less continuous 
data. SPCA had been successfully applied to crystallographic data in solution-mediated 
kinetic studies of polymorphs, such as L-glutamic acid from α to β form by Dharmayat et 
al. [46] or p-Aminobenzoic acid from α to β form by Turner and colleagues [47]. 

3. Modulated Enhanced Diffraction 
The Modulated Enhanced Diffraction (MED) technique has been conceived to 

achieve chemical selectivity in X-ray diffraction. Series of measurements from in situ or 
operando X-ray diffraction experiments, where the sample is subjected to a varying exter-
nal stimulus, can be processed by MA to extract information about active atoms, i.e., at-
oms of the sample responding to the applied stimulus. This approach has the great ad-
vantage of not requiring preliminary structural information, so it can be applied to com-
plex systems, such as composite materials, quasi-amorphous samples, multi-component 
solid-state processes, with the aim to characterize the (simpler) sub-structure comprising 
active atoms. The main steps involved in a MED experiment are sketched in Figure 3. 
During data collection of X-ray diffraction data, the crystal sample is perturbed by apply-
ing an external stimulus that can be controlled in its shape and duration. The stimulus 
determines a variation of structural parameters of the crystallized molecule and/or of the 
crystal lattice itself. These changes represent the response of the crystal, which is usually 
unknown. Repeated X-ray diffraction measurements allow to collect diffraction patterns 
at different times, thus sampling the effect of the external perturbation. In principle, the 
set of collected diffraction patterns can be used to detect the diffraction response to the 
stimulus. Offline data analysis based on MA methods must be applied to implement the 
deconvolution step, i.e., to process time-dependent diffraction intensities Ih measured for 
each reflection h to recover the time evolution of the parameters for each atom j of the 
crystal structure, such as occupancy (nj), atomic scattering factor (fj) and atomic position 
(rj). It is worth noting that in X-ray diffraction the measured intensities (Ih), representing 
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the detected variable, depend on the square of the structure factors Fh, embedding the 
actual response of the system. 

 
Figure 3. Main steps involved in a MED experiment. A perturbation is applied in a controlled way on a crystal sample, 
which responds by changing the crystal structural parameters in unknown way. Repeated X-ray diffraction measurements 
allow detecting the diffraction response, which can be properly analyzed through an offline process called deconvolution, 
to determine the variations in main structural parameters. 

Applications of MED are twofold: on one hand, the active atoms sub-structure can 
be recovered, so disclosing information at atomic scale about the part of the system chang-
ing with the stimulus, on the other hand the kinetic of changes occurring in the sample 
can be immediately captured, even ignoring the nature of such changes. 

To achieve both these goals, MA tools have been developed and successfully applied 
to crystallographic case studies. These methods, which will be surveyed in the next para-
graph, implement the so-called data deconvolution, i.e., they allow extracting a single 
MED profile out of the data matrix comprising the set of measurements. 

Deconvolution Methods 
The first deconvolution method applied to MED technique was sensitive phase detec-

tion (SPD). SPD is a MA approach widely applied since decades to spectroscopic data (mod-
ulation enhanced spectroscopy—MES), which can be applied to systems linearly respond-
ing to periodic stimuli. SPD projects the system response from time domain to phase domain 
by using a reference periodic -typically sinusoidal- signal, through the following Equation: 

𝒑(𝒙, 𝝋) = 𝟐𝑵 ෍ 𝒚𝒊(𝒙)𝒔𝒊𝒏 ൬𝟐𝑲𝝅𝑵 𝒊 + 𝝋൰𝑵
𝒊ୀ𝟎  (12) 

where φ is the SPD phase angle, yi(x) are the n measurements collected at the time i, and 
k is the order of the demodulation. The variable x can be the angular variable 2ϑ in case 
of X-ray powder diffraction measurements or the reflection h in case of single-crystal dif-
fraction data. Equation (12) represents a demodulation in the frequency space of the system 
response, collected in the time space. Demodulation at k = 1, i.e., at the lower frequency of 
the reference signal, allows the extraction of kinetic features, involving both active and 
silent atoms; demodulation at k = 2, i.e., at double the lower frequency of the reference 
signal, allow to single out contribution from only active atoms. This was demonstrated in 
[35] and comes from the unique property of X-ray diffraction that the measured intensities 
Ih depends on the square of the structure factors Fh. A pictorial way to deduce this property 
is given in Figure 4: silent and active atoms respond in a different way to the external 
stimulus applied to the crystal. This can be parameterized by assigning different time de-
pendences to their structure factors, respectively FS and FA. For sake of simplicity, we can 
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assume that silent atoms do not respond at all to the stimulus, thus FS remain constant 
during the experiment, while active atoms respond elastically, thus FA has the same time 
dependence of that of the stimulus applied (supposed sinusoidal in Figure 4). In these 
hypotheses, the diffraction response can be divided in three terms, the first being constant, 
the second having the same time dependence of the stimulus, the third having a doubled 
frequency with respect to that of the stimulus and representing the contribution of active 
atoms only. PSD performed incredibly well for the first case study considered, where the 
adsorption of Xe atoms in an MFI zeolite was monitored in situ by X-ray diffraction, by 
using pressure or temperature variations as external stimulus [48,49]. However, it was 
immediately clear that this approach had very limited applications, since very few sys-
tems, only in particular conditions, have a linear response -mandatory to apply PSD for 
the demodulation- to periodic stimuli, and it is easier to apply non-periodic stimuli. 

 
Figure 4. Pictorial demonstration of the possibility to extract information of active atoms only in a MED experiment. The 
crystal system is divided in silent (S) and active (A) atoms, depending on how they respond to an external stimulus ap-
plied. The diffraction response measured on the X-ray detector can be divided in two contributions from S and A atoms. 
This give rise to three terms, the first being constant in time, the second having the same time-dependence of the stimulus, the 
third varying with double the frequency of the stimulus and representing the contribution of active atoms only. 

A more general approach would allow coping with non-periodic stimuli and non-
linear system responses. To this aim, PCA was applied to MED data, with the underlying 
idea that in simple cases, the first principal component (PC1) should capture changes due 
to active and silent atoms, the second principal component (PC2) should instead capture 
changes due to active atoms only. In fact, if the time-dependence of the contribution from 
active atoms can be separated, i.e., 𝑭𝑨(𝒕) = 𝑭𝑨 ∗ 𝒈(𝒕), then the MED demodulation shown 
in Figure 4 can be written in a matrix form: 

𝑰𝒉 = (𝟏 𝒈(𝒕) 𝒈(𝒕)𝟐) ∗ ቌ 𝑭𝑺𝟐𝟐𝑭𝑨𝑭𝑺𝐜𝐨𝐬(𝝋𝑨 − 𝝋𝑺)𝑭𝑨𝟐 ቍ (13) 

By comparing Equation (13) with Equation (12) it can be inferred that PCA scores 
should capture the time-dependence of the stimulus, while PCA loadings should capture 
the dependence from the 2ϑ or h variable of the diffraction pattern. In particular, we ex-
pect two significant principal component, the first having 𝑻𝟏 = 𝒈(𝒕)  and 𝑾𝟏 =𝟐𝑭𝑨𝑭𝑺𝐜𝐨𝐬(𝝋𝑨 − 𝝋𝑺) , the second having 𝑻𝟐 = 𝒈(𝒕)𝟐  and 𝑾𝟐 = 𝑭𝑨𝟐 . Notably, constant 
terms are excluded by PCA processing, since in PCA it is assumed zero-mean of the data 
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matrix columns. An example of deconvolution carried out by PCA, which is more 
properly referred to as decomposition of the system response, is shown in Figure 5, consid-
ering in situ X-ray powder diffraction data. The PC1 scores reproduce the time depend-
ence of the applied stimulus, whereas PC2 scores have a doubled frequency. PC1 loadings 
have positive and negative peaks, depending on the values of the phase angles 𝝋𝑨 and 𝝋𝑺, while PC2 loadings have only positive peaks, representing the diffraction pattern from 
active atoms only. 

 
Figure 5. Example of PCA decomposition applied to in situ X-ray powder diffraction data. Scores 
(a) and loadings (b) of the first principal component (PC1); scores (c) and loadings (d) of the second 
principal component (PC2). A sinusoidal stimulus was applied during the in situ experiment. 

In this framework, a rationale can be figured out, where the PC1 term is like the k = 1 
PSD term and the PC2 term is like the k = 2 PSD term. This correspondence is strict for 
systems responding linearly to periodic stimuli, while for more general systems PCA is 
the only way to perform decomposition. This new approach was successfully applied to 
different case studies [50,51] outperforming the PSD method. 

Another important advancement in MED development was to introduce adapted 
variants of existing MA methods. In fact, PCA decomposition cannot be accomplished as 
outlined above for complex systems, where several parts (sub-structures) vary with dif-
ferent time trends, each of them captured by specific components. A signature for failure 
of the standard PCA approach is a high number of principal components describing non-
negligible data variability, and failure to satisfy two conditions for PC1 and PC2, descend-
ing from the above-mentioned squared dependence of measured intensity from structure 
factors. In the standard PCA case, PC2 loadings, which describe the data variability across 
reflections (or 2ϑ axis in case of powder samples), are expected to be positive, given the 
proportionality with squared structure factors of only active atoms. Moreover, PC1 and 
PC2 scores, which describe the data variability across measurements, are expected to fol-
low the relation: 𝑻𝟐 =  (𝑻𝟏)𝟐 (14) 

as changes for active atoms vary with a frequency doubled with respect to that of the stimulus. 
A MA approach adapted to MED analysis has been developed, where constraints on 

PC2 loadings and on PC1/PC2 scores according to Equation (14) are included in the PCA 
decomposition. This gave rise to a new MA method, called orthogonal constrained com-
ponent rotation (OCCR), which aims at finding the best rotations of the principal compo-
nents determined by PCA, driven by figure of merits based on the two MED constraints. 
The OCCR approach allows overcoming the main limitation of PCA, i.e., to blind search-
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ing components that are mutually orthogonal. It has been successfully applied to charac-
terize water-splitting processes catalyzed by spinel compounds [43] or to locate Xe atoms 
in the MFI zeolite to an unprecedented precision [50]. 

A further advancement in the route of routinely applying PCA to MED was done in 
[51,52], where the output of PCA was analytically derived, and expected contribution to 
scores and loadings to specific changes in crystallographic parameters have been listed. 
This would make easier the interpretation of the results of PCA decomposition. 

4. Applications in Powder X-ray Diffraction 
X-ray powder diffraction (XRPD) offers the advantage of very fast measurements, as 

many crystals are in diffracting orientation under the X-ray beam at the same time. A 
complete diffraction pattern at reasonable statistics can be acquired in seconds, even with 
lab equipment and such high measurement rates enable the possibility to perform in situ 
experiments, where repeated measurements are made on the same sample, while varying 
some external variable, the most simple one being time [53]. On the other hand, the con-
temporary diffraction from many crystals makes it difficult to retrieve structural infor-
mation about the average crystal structure by using phasing methods. In this context, MA 
has great potential, since it allows extracting relevant information from raw data, which 
could be used to carry out the crystal structure determination process on subset of atoms, 
or to characterize the system under study without any prior structural knowledge. Some 
specific applications of MA on powder X-ray diffraction are reviewed in the following 
sections. The two main fields of applications are the extraction of dynamic data (Section 
4.1) in a temporal gradient and qualitative and quantitative analysis (Section 4.2) in pres-
ence of concentration gradients. 

4.1. Kinetic Studies by Single or Multi-Probe Experiments 
The advent of MA has also revolutionized kinetic studies based on in situ powder X-

ray diffraction measurements. Several works have used MA to extract efficiently the reac-
tion coordinate from raw measurements [54–56]. Moreover, in a recent study of solid-state 
reactions of organic compounds, the classical approach of fitting the reaction coordinate 
by several kinetic models has been replaced by a new approach, which embeds kinetic 
models within the PCA decomposition [57,58]. The discrimination of the best kinetic 
model is enhanced by the fact that it produces both the best estimate of the reaction coor-
dinate and the best agreement with the theoretical model. MCR-ALS is another decompo-
sition method that had been employed in the last few years in several kinetic studies on 
chemical reactions [59–61]. 

MA is even more powerful when applied to datasets acquired in multi-technique ex-
periments, where X-ray diffraction is complemented by one or more other techniques. The 
MA approach allows, in these cases, to extract at best the information by the different 
instruments, probing complementary features. In fact, the complete characterization of an 
evolving system is nowadays achieved by complex in situ experiments that adopt multi-
probe measurements, where X-ray measurements are combined with spectroscopic 
probes, such as Raman FT-IR or UV-vis spectroscopy. In this context, covariance maps 
have been used to identify correlated features present in diffraction and spectroscopic 
profiles. Examples include investigations of temperature-induced phase changes in spin 
crossover materials by XRPD/Raman [36] perovskites by combining XRPD and pair dis-
tribution function (PDF) measurements [62], characterization of hybrid composite mate-
rial known as Maya Blue performed by XRPD/UV-Vis [63] and metabolite-crystalline 
phase correlation in wine leaves by XRPD coupled with mass spectrometry and nuclear 
magnetic resonance [64]. 

To highlight the potentialities of the application of PCA to unravel dynamics from in 
situ X-ray diffraction studies, a recently published case study [52] is briefly described. In 
this paper, the sedimentation of barium sulfate additive inside an oligomeric mixture was 
studied during polymerization by repeated XRPD measurements with a scan rate of 
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1°/min. The kinetic behavior of the sedimentation process was investigated by processing 
the high number (150) of XRPD patterns with PCA, without using any prior structural 
knowledge. The trend in data can hardly be observed by visual inspection of the data 
matrix (Figure 6a), as the peak intensity does not change with a clear trend and their po-
sitions drift to lower 2ϑ values during the data collection. PCA processes the whole data 
matrix in seconds, obtaining a PC that explains the 89% of the system’s variance (Figure 
6b). The loadings associated to this PC resemble the first derivative of an XRPD profile 
(Figure 6c), suggesting that this PC captured the changes in data due to barite peak shift 
toward lower 2ϑ values. In fact, PCA, looking for the maximum variance in the data, ba-
sically extract from the data and highlight the variations of the signal through time. PCA 
scores, which characterize in the time domain the variations in data highlighted by load-
ings, indicate a decreasing trend (Figure 6d). In fact, the peak shift is strongly evident at 
the beginning of the reaction, with an asymptotic trend at the end of the experiment. 
Scores in Figure 6d can thus be interpreted as the reaction coordinate of the sedimentation 
process. In ref. [52], the comparison of PCA scores with the zero-error obtained by 
Rietveld refinement confirmed that the dynamic trend extracted by PCA is consistent with 
that derived from the traditional approach. However, the time for data processing (few 
seconds with MA, few hours with Rietveld Refinement) makes PCA a very useful com-
plementary tool to extract dynamic and kinetic data while executing the experiment, to 
check data quality and monitor the results without a priori information. 

 
Figure 6. In situ analysis of sedimentation data for barite additive in an oligomeric mixture during gelation time; 150 
measurements were collected during the experiment, covering the angular range of the three more intense peaks of barium 
sulfate XRPD profile; (a) Analyzed data matrix; (b) scree plot; (c) loadings plot; (d) score plot. 
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4.2. Qualitative and Quantitative Studies 
Having prompt hints about main trends in data is beneficial in many applications 

and can facilitate subsequent structural analysis. Qualitative and/or quantitative analysis 
on sets from X-ray powder diffraction profiles can be achieved by both FA [65,66] and 
PCA, particularly from the score values of the main components. This approach is com-
mon in the -omics sciences in the analytical chemistry field. Euclidean distances in PC 
score plots can be calculated to obtain also a semi-quantitative estimation between groups 
or clusters [67,68]. In fact, the arrangement of representative points in the scores plot can 
be used to guess the composition of the mixture. An example of application of this ap-
proach is given in Figure 7. Figure 7a reports the original X-ray diffraction data collected 
on pure phases (A, B, C), the binary mixtures (AB, BC, AC) 50:50 weight and ternary mix-
ture ABC prepared by properly mixing calcium carbonate (A), acetylsalicylic acid (B) and 
sodium citrate (C). PCA analysis was carried out and the corresponding PC scores (Figure 
7b) and loadings (Figure 7c) are reported. It is evident that the PCA scores are sensible to 
%weight of the samples since they form a triangle with the monophasic datasets (A, B, C) 
at the vertices, the binary mixtures (AB, BC, AC) in the middle of the edges and the ternary 
mixture ABC in its center. All the possible mixtures are within the triangle, in the typical 
representation of a ternary mixture experimental domain. PCA recognizes the single-
phase contributions by the PC loadings, containing the XRPD pattern features, high-
lighted in Figure 7c. PC1 loadings have positive peaks corresponding to phases B and C, 
and negative ones to phase A. PC2 loadings show positive peaks corresponding to phase 
B and negative ones to phase C, while phase A has a very moderate negative contribution, 
being located close to 0 along the PC2 axis in Figure 7b. 

 
Figure 7. Original data (a), PC scores (b), PC loading (c) and calculation of Euclidean distances from PC scores (d) from X-
ray powder diffraction data by ternary mixtures. Data points A, B, and C correspond to powder diffraction profiles from 
monophasic mixtures, data points AB, AC and BC to binary mixtures and ABC to a mixture containing an equal amount 
of the three crystal phases. 
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PCA scores in Figure 7b can be exploited to perform a semi-quantitative analysis, 
since the above described dependence of the topology of data points in the scores plot is 
related to the composition. The procedure is easy for binary and ternary mixtures where 
a 2D plot (Figure 7b) can be exploited to calculate Euclidean distances (Figure 7d) and 
thus compositions (Table 1). For instance, the A phase amount within the ABC mixture, 
identified by the F score in Figure 7d, is given by the ratio AJ/AC. Given any score in the 
triangle, the corresponding phase amounts can be calculated accordingly. The comparison 
between compositions (Table 1) from PC scores (not requiring a priori information) and 
multilinear regression, exploiting the knowledge of profiles of the pure phases, is impres-
sive and very promising for wide applications in quality control where solid mixtures are 
involved. Quantification errors can occur if data are not perfectly positioned in the trian-
gle, such as the AC mixture in Figure 7b that is slightly out of the polygon. In such case, 
the sum of the estimated phase amounts can exceed or in general be different from 1 as a 
result of the unrealistic negative quantification of the third phase B. Deviations from unity 
of the sum of estimated phase amounts can be used as indicator of systematic errors, due 
for example to the presence of amorphous content in the samples, phases with different 
X-ray absorption properties or missing phases in the model [69]. 

The approach can be extended to more than 3 phases. With four phases, the analysis 
can still be carried out graphically, even if a 3D plot is necessary, with increased difficul-
ties in its representation and analysis. The graphical approach is of course impossible to 
represent without simplification or projections with 5 or more phases. In these cases, a 
non-graphic and general matrix-based approach can be used, as proposed by Cornell [70]. 

Quantitative analysis from raw data (Figure 6a) can be carried out exploiting a dif-
ferent approach, i.e., using least-squares calculations. Each individual experimental pat-
tern is fitted by using a linear regression model: 

𝑦(𝑥) = ෍ 𝑎௜𝑦௜(𝑥) + 𝑏(𝑥)ே
௜ୀଵ  (15)

where i = 1, …, n runs for all the crystal phases present in the sample, 𝑦௜(𝑥) is the experi-
mental profiles of the i-th pure crystal phases and 𝑏(𝑥) is the background estimated from 
the experimental pattern. 

Table 1. Results of the quantification of the phases in polycrystalline mixtures represented in Fig-
ure 6 by PCA scores and multilinear regression. 

Sample 
Geometric Estimation from PC Scores Regression 

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3 
0 1.00 0.00 0.00 1.000 0.000 0.000 
1 0.00 1.00 0.00 0.000 1.000 0.000 
2 0.00 0.00 1.00 0.000 0.000 1.000 
3 0.53 0.49 0.00 0.538 0.462 0.000 
4 0.58 0.00 0.53 0.507 0.000 0.493 
5 0.00 0.51 0.49 0.000 0.522 0.478 
6 0.45 0.28 0.27 0.425 0.301 0.274 

The weight fraction can be derived from the coefficients 𝑎௜ estimated from the fitting 
procedures. This approach is followed by the RootProf program, where it can be also used 
in combination with a preliminary PCA step aiming at filtering the experimental patterns 
to highlight their common properties [69]. Results obtained by the PCA + least squares 
approach have been compared with those obtained by supervised analysis based on PLS 
for a case study of quaternary carbamazepine-saccharin mixtures monitored by X-ray dif-
fraction and infrared spectroscopy [71]. 
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As a final note concerning recent developments in this field, the deep-learning tech-
nique based on Convolutional Neural Network (CNN) models has been applied for phase 
identification in multiphase inorganic compounds [72]. The network has been trained us-
ing synthetic XRPD patterns, and the approach has been validated on real experimental 
XRPD data, showing an accuracy of nearly 100% for phase identification and 86% for 
phase-fraction quantification. The drawback of this approach is the large computational 
effort necessary for preliminary operations. In fact, a training set of more than 1.5 × 106 
synthetic XRPD profiles was necessary, even for a limited chemical space of 170 inorganic 
compounds belonging to the Sr-Li-Al-O quaternary compositional pool used in ref [72]. 

5. Applications in Single-crystal X-ray Diffraction 
Single-crystal diffraction data are much more informative than X-ray powder diffrac-

tion data as highlighted by Conterosito et al. [52], as they contain information about the 
intensity of each diffraction direction (reflection), which is usually enough to obtain the 
average crystal structure by phasing methods. By contrast, the measurement is longer 
than for powder X-ray diffraction, since the crystal must be rotated during the measure-
ment to obtain diffraction conditions from all reflections. For this reason, radiation dam-
age issues can be very important for single-crystal X-ray diffraction, and in fact this pre-
vents carrying out in situ studies on radiation-sensitive molecules, as often observed in 
organic and bio-macromolecular systems. MA can still be useful for single crystal diffrac-
tion data, since it helps in solving specific aspects that will be highlighted in the following 
paragraphs. Regarding MED applications, it is worth mentioning that single-crystal X-ray 
diffraction has an intrinsic advantage over powder X-ray diffraction, related to the effect 
of lattice distortions during measurements: in a powder diffraction pattern a change of 
crystal cell parameters manifest itself in a shift in peak positions, which is usually com-
bined with changes in peak shape and height due to variations of the average crystal struc-
ture. The combined effect of lattice distortions and structural changes makes difficult to 
interpret MA results. In a single-crystal pattern, the intensity of individual reflections is 
not affected by crystal lattice distortions, and crystal cell parameters are determined by 
indexing individual patterns measured at different times, so that they are not convoluted 
with structural variations. 

5.1. Multivariate Approaches to Solve the Phase Problem 
As noticed by Pannu et al. [73], multivariate distributions emerged in crystallography 

with the milestone work by Hauptman and Karle [74], dealing with the phase problem 
solution. The phase problem is “multivariate” by definition because the phases of the re-
flections, needed to solve a crystal structure, are in general complex numbers depending 
on the coordinate of all atoms. In other words, the atomic positions are the random varia-
bles related to the multivariate normal distribution of structure factors. After these con-
siderations, statistical methods like joint probability distribution functions were of para-
mount importance in crystallography in general [75] developing direct methods, used for 
decades, until today, for crystal structure solution [76]. Despite these premises, the meth-
ods more diffused in analytical chemistry such as PCA were rarely exploited to solve the 
phase problems. The more closely related approach is that of maximum likelihood, ex-
ploited to carry out the structure solution and heavy-atom refinement. In the framework 
of the isomorphous replacement approach [77] the native and derivative structure factors 
are all highly correlated: to eliminate this correlation, covariance is minimized [73,78,79]. 
PCA in a stricter sense was used to monitor protein dynamics in theoretical molecular 
dynamics [80] and in experimental in situ SAXS studies [81] and recently in in situ single 
crystal diffraction data [51]. Even if much less applications of PCA to in situ X-ray single 
crystal with respect to powder diffraction data can be found, a huge potential of applica-
tion also in in situ single crystal diffraction is envisaged in the next decades. 
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5.2. Merging of Single-Crystal Datasets 
A common problem in protein crystallography is to combine X-ray diffraction da-

tasets taken from different crystals grown in the same conditions. This operation is re-
quired since only partial datasets can be taken from single crystals before they get dam-
aged by X-ray irradiation. Thus, a complete dataset (sampling the whole crystal lattice in 
the reciprocal space) can be recovered by merging partial datasets from different crystals. 
However, this can be only accomplished if merged crystals have similar properties, i.e., 
comparable crystal cell dimensions and average crystal structures. To select such crystals, 
clustering protocols have been implemented to identify isomorphous clusters that may be 
scaled and merged to form a more complete multi-crystal dataset [82,83]. MA applications 
in this field have a great potential, since protein crystallography experiments at X-ray free-
electron laser (XFEL) sources are even more demanding in terms of dataset merging. Here 
thousands to millions of partial datasets from very tiny crystals are acquired in few sec-
onds, which needs to be efficiently merged before further processing may get structural 
information [84]. 

5.3. Crystal Monitoring 
Crystal recognition is a key step in high-throughput Protein Crystallography initia-

tives, where high-throughput crystallization screening is implemented, which demand 
for the systematic analysis of crystallization results. 42 diffraction datasets related to pro-
tein crystals grown under diffusion mass-transport controlled regime have been analyzed 
by PCA to determine possible trends in quality indicators [85]. In reference [86] neural 
networks were used to assess crystal quality directly from diffraction images, i.e., without 
using quality indicators. More recently, CNN has been used to efficiently and automati-
cally classify crystallization outputs by processing optical images [87]. The training has 
been accomplished by using nearly half a million of experiments across a large range of 
conditions stored in the framework of the machine recognition of crystallization outcomes 
(MARCO) initiative from different proteins and crystallization conditions. The resulting 
machine-learning scheme was able to recapitulate the labels of more than 94% of a test set, 
which represents a benchmark for actual attainable accuracy for uncured datasets. The 
MA performances could be enhanced by complementing optical microscopy with UV 
measurements or second-order nonlinear optical imaging of chiral crystals (SONICC), or 
by using time course information, as each crystallization experiment records a series of 
images taken over times [88]. Moreover, the possibility of classifying crystallization im-
ages in terms of crystals, precipitate and clear drop can be used to identify pathways for 
optimization [89]. The application of this approach to large libraries of historical data may 
therefore reveal patterns that guide future crystallization strategies, including novel 
chemical screens and mutagenesis programs. 

6. Conclusions and Perspectives 
Multivariate methods in general and PCA approach in particular are widely used in 

analytical chemistry, but less diffused in materials science and rarely used in X-ray dif-
fraction, even if their possible applications have been envisaged already in the 50s of the 
last century [74], in relation to the phase problem solution. More systematic MA applica-
tions in Crystallography started appearing in the literature since about 2000 on and in the 
last two decades some groups started working with a more systematic approach to ex-
plore potentialities and limitations of multivariate methods applications in crystallog-
raphy, focusing the efforts mainly in powder diffraction data analysis. Among the various 
approaches, multilinear regression and PCA are the main methods showing huge poten-
tialities in this context. 

Two main fields of application are envisaged: e.g., fast on-site kinetic analysis and 
qualitative/semi-quantitative analysis from in situ X-ray powder diffraction data. In de-
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tails, MA has the ability to extract the dynamics in time series (i.e., in measurements mon-
itoring the time evolution of a crystal system) or qualitative and quantitative information 
in concentration gradients (i.e., in samples showing different composition). Typically, the 
presented methods have the advantages, with respect to traditional methods, of needing 
no or much less a priori information about the crystal structure and being so efficient and 
fast to be applied on site during experiment execution. The main drawbacks of MA ap-
proaches lie on the fact that they exploit data-driven methods and do not claim to provide 
physical meaning to the obtained results. Outputs from PCA, MCR or FA, if not properly 
driven or interpreted may lead to wrong or unreasonable results. 

Applications in single crystal diffraction started appearing in the last years and huge 
potentialities are foreseen, especially in serial crystallography experiments where the data 
amount is very large and unfeasible for the traditional approaches. Crystal monitoring 
and dataset merging are the more promising approaches in single crystal diffraction, 
where huge potentialities are envisaged. Kinetic analysis in singles crystal diffraction is 
also envisaged as a possible breakthrough field of applications, since the evolution of 
source and detectors suggest for the next decade a huge growth, as seen for in situ powder 
diffraction in the last decades of the 20th century. MA methods can for sure play a key 
role, because the huge amount of data make the traditional approaches unfeasible. 

This review is centered on PCA, MCR, FA and PSD since they are the approaches 
employed in X-ray diffraction data analysis in the last decade. However, also other MA 
approaches have many potentialities in the field and wait to be tested on X-ray diffraction 
data. Statistical methods have revolutionized the field in the past, producing disrupting 
advances in the crystal structure determination of small molecules and biological macro-
molecules. We expect to be close to a similar turning point regarding applications of arti-
ficial intelligence to solve complex problems related to basic crystallography, such as 
merging thousands of datasets from different crystals or finding phase values to diffrac-
tion amplitudes starting from random values. Neural networks have a great potential to 
tackle these problems and accomplish the non-linear deconvolution of multivariate data, 
provided a proper training is given. 

The spread of use of MA methods is intimately connected with availability of soft-
ware with friendly graphic interfaces available to scientific community. Programs like 
RootProf [90] or MCR-ALS 2.0 toolbox [91] have contributed to this goal, making MA 
available to scientists carrying out X-ray diffraction studies. 

The possibility of exploiting automated processes—highly demanding in terms of 
computational resources, but very fast and with minimal user intervention—is highly at-
tractive both for industrial applications, where X-ray diffraction is used for quality control 
and monitoring of production processes, and in fundamental research applications, where 
extremely fast data analysis tools are required to cope with very bright X-ray sources and 
detectors with fast readouts. 
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