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27 Word count: 6685

28 Abstract

29 An emerging body of research is revealing the microbiota pivotal involvement in determining the 

30 health or disease state of several human niches, and that of vitamin D also in extra-skeletal regions. 

31 Nevertheless, much of the oral microbiota and vitamin D reciprocal impact in oropharyngeal 

32 squamous cell carcinogenesis (OPSCC) is still mostly unknown.

33 On this premise, starting from an in-depth scientific bibliographic analysis, this narrative literature 

34 review aims to show a detailed view of the state of the art on their contribution in the pathogenesis 

35 of this cancer type.

36 Significant differences in the oral microbiota species quantity and quality have been detected in 

37 OPSCC affected patients; in particular, mainly high-risk human papillomaviruses (HR-HPVs), 

38 Fusobacterium nucleatum, Porphyromonas gingivalis, Pseudomonas aeruginosa and Candida spp. 

39 seem to be highly represented. 

40 Vitamin D prevents and fights infections promoted by the above identified pathogens, thus 

41 confirming its homeostatic function on the microbiota balance. However, its antimicrobial and 

42 antitumoral actions, well-described for the gut, have not been fully documented for the oropharynx 

43 yet. 

44 Deeper investigations of the mechanisms that link vitamin D levels, oral microbial diversity and 

45 inflammatory processes will lead to a better definition of OPSCC risk factors for the optimization of 

46 specific prevention and treatment strategies.

47

48

49

50 Keywords: 

51 Bacterial, fungal and epitheliotropic viral oral pathogens, oral microbiota, oropharyngeal squamous 

52 cell carcinoma (OPSCC), vitamin D, health.
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53 INTRODUCTION

54 Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common malignancy in the 

55 world with 600,000 new cases/year [1]. Although it mainly affects older tobacco and alcohol users, 

56 in recent years its incidence is also increasing in young people due to changes in sexual habits that 

57 predispose to Human Papillomavirus (HPV) infection, mainly to its 16 genotype at high risk of 

58 transformation [2–4].

59 Although surgical and therapeutic treatments have improved the overall survival (OS) rate of 

60 patients (approximately 66% at 5 years) [5], the diagnosis is still late, making it necessary to 

61 develop more suitable prevention, diagnosis and treatment measures to better improve detection and 

62 life expectancy [6].

63 Recent growing evidences are increasingly highlighting the pivotal involvement of the microbiota 

64 in determining the healthy or disease status of several human districts, such as those mental, 

65 respiratory, cutaneous and hepatic [7,8], and that of the vitamin D in several extra-skeletal regions 

66 [9–13]. Therefore, research is redirecting its attention towards the deepening of the knowledge on 

67 these themes in order to evaluate their reciprocal relation and assess their possible use as potential 

68 prognostic biomarkers for prevention, diagnosis and prognosis of many tumor types, including that 

69 of the oropharynx [14]. 

70 On these bases, this narrative literature review aims to evidence the state of the art regarding oral 

71 microbiota and vitamin D contribution in the pathogenesis of oropharyngeal squamous cell 

72 carcinomas (OPSCC), in order to summarize and highlight how vitamin D prevents and opposes 

73 infections, and clarify its homeostatic function on the microbiota balance, its cellular effects on 

74 human oral cancer cells in in vitro studies, and HNSCC patients’ clinical features related with its 

75 deficiency, to better optimize specific prevention and treatment strategies in the near future. 

76

77

78
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79 METHODS 

80 By using the journal citation electronic databases of the MEDLINE U.S. National Library of 

81 Medicine (NLM) from PubMed, Scopus, Google Scholar, and the Cochrane Database of Systematic 

82 Reviews (CDSR), the following terms “oral microbiota”, “oral virota”, “virus”, “epitheliotropic 

83 virus”, “Human Papillomavirus (HPV)”, “Epstein-Barr virus (EBV)", “oral bacteriota”, “bacteria”, 

84 “Phylum Firmicutes”, “Phylum Fusobacteria”, “Phylum Bacteroidetes”, “Fusobacterium 

85 nucleatum”, “Porphyromonas gingivalis”, “Streptococcus mitis”, “Streptococcus salivarius”, “oral 

86 mycobiota”, “mycetes”, “Candida spp”, “tobacco”, “alcohol”, “head and neck squamous cell 

87 carcinoma (HNSCC)”,“oral squamous cell carcinoma (OSCC)”, “oropharyngeal squamous cell 

88 carcinoma (OPSCC)”, “tonsillar squamous cell carcinoma (TSCC)”, “oral cavity squamous cell 

89 carcinoma (OCSCC)”, “vitamin D3”, “vitamin D2”, “cholecalciferol”, “ergocalciferol”, “reactive 

90 oxygen species (ROS)”, “cytokines”, “IL-6”, “IL-1beta”, “CCL2”, “CXCL2”, “CXCL8”, “CSF3”, 

91 “precision medicine”, “immune system”, both in single and/or mutually combined, have been 

92 searched, by also using the MeSH vocabulary system, in titles and abstracts in order to find indexed 

93 most pertinent articles and reviews; only original researches published in peer-reviewed journals 

94 have been considered. The literature search has been limited to the scientific publications in English 

95 language of the last 15 years, from the beginning of January 2006 until the end of November 2020, 

96 since most of the articles on these topics have had a considerable and exponential increase in this 

97 time frame; 620 appropriate abstracts and full papers have been carefully read, screened and 

98 reviewed according to the selected and adopted inclusion and exclusion criteria reported in Figure 

99 1; therefore, one hundred and thirty-one have been finally selected, detailed, included and critically 

100 commented in the text.

101

102 NORMAL ORAL MICROBIOTA

103 More than 700 bacterial species populate the oral cavity [15], which is ideal for their growth due to 

104 its temperature (about 37°C), pH value (between 6.5 and 7.5), and presence of saliva that keeps 
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105 them hydrated and fed [15]. Fascinating is that each oral cavity niche is characterized by a peculiar 

106 microenvironment [16] that harbours a site-specific microbiota [15]. In particular, the tongue has the 

107 highest microbial diversity and contributes to the colonization of the other oral regions [15]. 

108 Regarding the salivary microbiota, it is mainly represented by Streptococcus, Prevotella and 

109 Veillonella genera, with no gender differences between males and females [16]. Interestingly, a 

110 similarity between salivary and oropharynx microbiota has been observed in relation to Firmicutes, 

111 Proteobacteria and Bacteroidetes (Figure 2), with each site dominated by distinct families within 

112 these phyla [16]. In particular, the prevalent microbes of the oropharynx are Streptococcus 

113 pyogenes, S. pneumoniae, Haemophilus influenzae and H. parainfluenzae (Figure 2), while S. 

114 faecalis, Eikenella corrodens, Enterobacteriaceae, Actinomyces, Lactobacilli, Veillonella and 

115 Treponema are dominant in the oral cavity [15]. Yokoyama and coll. have evidenced how bacteria 

116 can differ in in vivo and in vitro conditions, reinforcing the fact that many factors influence their 

117 behaviour [17]. Moreover, changes in the local environmental conditions can favour the increase of 

118 the disease potential aggressiveness of pathogenic bacteria [15]. 

119 Regarding the oral cavity, the bacterial genera present in healthy people are mainly Actinomyces, 

120 Capnocytophaga, Eikenella, Eubacteria, Fusobacterium, Haemophilus, Lactobacillus, Leptotrichia, 

121 Neisseria, Porphyromonas, Prevotella, Propionibacterium, Peptostreptococcus, Streptococcus, 

122 Staphylococcus, Veillonella and Treponema, with a predominance of communities belonging to 

123 Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria phyla [15,18]. 

124 This niche is also colonized by commensal epitheliotropic viruses such as HPVs, which have also 

125 been detected in gingival biopsies, reservoirs of the virus [19], and by non-pathogenic Candida spp 

126 yeast forms [20]. The dynamic balance between the oral microbiota components and the immune 

127 system is at the basis of the host oral health; therefore, when a reduction in their number and variety 

128 occurs, stronger pathogenic HPVs and C. albicans mold forms can become more prevalent and 

129 persistent [21,22].
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130 In such a context, the role of probiotics can be determinant for the prevention of such imbalances 

131 and crucial for a better prognosis in several diseases. For instance, since they can enhance the 

132 effectiveness of immunotherapies with based on the use of checkpoint inhibitors; as an example, the 

133 oral administration of Bifidobacteria can control the tumour growth with the same efficiency of PD-

134 L1 specific antibody therapy [23]. Moreover, probiotics can also reduce the mutagenic effects of 

135 harmful substances, by modulating the expression of proteins involved in cell proliferation, 

136 apoptosis, inflammation or immune system activation [24].

137

138 OROPHARYNGEAL SQUAMOUS CELL CARCINOMA (OPSCC) 

139 HNSCC accounts for about 5% of all human tumours and represents the sixth most common 

140 malignancy worldwide [1,25]. OPSCC, whose annual incidence is estimated to be around 230.000 

141 new cases in the world [26], is the most frequent histological type of HNSCC and originates from 

142 the epithelium covering the upper aero-digestive tract, which includes the sino-nasal cavities, the 

143 oral cavity, the oropharynx, the hypopharynx and the larynx [27]. Human Papillomavirus (HPV) 

144 infection. Moreover, it is showing an increased trend over the past 3 decades due to a rising rate in 

145 HPV infection [28], with high geographic heterogeneity of positive HNSCC affected cases that goes 

146 from about 50% in Europe to more than 70% in North America [29]. These different 

147 epidemiological data could be justified by some confounding factors, such as associated smoking 

148 and alcohol habits, different sampling methods and HPV infection detection modalities. As well 

149 known, the etiological role played by specific high-risk HPV (HR-HPV) genotypes in a subset of 

150 OPSCC is now well established [30]. HPV is in fact responsible for the most common sexually 

151 transmitted infections and can be detected in oral and oropharyngeal mucosa in about 7% of 14-69 

152 years old people, with a male/female ratio of 3:1. While in most cases mucosal HPV infection self-

153 clearances in 6-24 months, a persistence of HR-HPVs infection (especially of cancerogenic 16 and 

154 18 genotypes), which often occurs with an unbalanced microbiota, can ultimately lead to OPSCC 
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155 [31]. On the contrary, low-risk HPV are associated with benign lesions, such as mucosal 

156 oropharyngeal papillomas [31].

157 The tonsils and the base of the tongue are the most common involved sites, corresponding to about 

158 46% and 47% of OPSCC, respectively [31]. Patients with HPV-related OPSCC have a younger 

159 median age with a white males prevalence and show in most cases non-keratinizing, 

160 undifferentiated aspects with basaloid features, high propensity for neck metastases and different 

161 biologic behavior [31]. Neck metastases in HPV-positive subjects are characterized by an early 

162 onset and peculiar pathological features. Symptoms related to OPSCC are persistent sore throat, 

163 dysphagia, sensation of pharyngeal lump, ear pain and painless neck masses that frequently 

164 constitute an early sign of disease. HPV-positive OPSCC must be regarded as a distinct molecular 

165 and clinical-pathological entity related to HPV infection [28,30,32]; especially HPV16 genotype is 

166 estimated to be the main carcinogenic agent in upper airways [33–35]. The peculiar anatomical site 

167 of cancer onset, rich of lymphoid tissue (i.e. Waldeyer ring), probably explains the different patterns 

168 of immune response to tumor cells and the better prognosis of OPSCC. Moreover, HPV-related 

169 OPSCC is considered genetically distinct from tobacco-associated carcinomas with differentially 

170 expressed genes and lower mutational burden [33].  When conditions favour a microbiota depletion, 

171 HR-HPVs can become prevalent and inhibit the cellular response to stress, thanks to the action of 

172 their viral E6 and E7 oncoproteins, thus leading to DNA-damaged cells uncontrolled proliferation 

173 and to a higher risk of cancer onset and progression [21,30,34–36].

174 While sexual behaviors represent a specific risk factor for increasing HPV-related tumors, smoking 

175 and alcohol consumption are well-established conventional risk factors for OPSCC [37]. HPV-

176 positive OPSCC are more common among patients with a lower number of cumulative pack-year 

177 tobacco smoking and less alcohol consumption compared to HPV-negative ones [37].  

178 Prognostic factors and stratification risk. HPV status is considered an independent prognostic 

179 factor with better treatment responses, higher OS rates and persistence-free survival rates in HPV-
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180 positive compared to HPV-negative OPSCC. However, OS is reduced in HPV-positive smoking 

181 patients (considered cut-off < 10 pack-year) [38].

182 For HPV-related OPSCC, a new classification and a separate staging system have been established 

183 in the 8th edition of the American Joint Committee on Cancer-Tumor-Nodes-Metastasis (AJCC-

184 TNM), especially regarding nodal status [39]. The new staging system has been introduced in order 

185 to improve treatment strategies, especially for HPV-related OPSCC. According to observed survival 

186 data, OPSCC patients are categorized in three prognostic groups:  low, intermediate and high risk of 

187 death in relation to risk factors (HPV status, smoking and alcohol history, tumor and nodal stages) 

188 [38]. Three-years survival rates range from 46 to 93% [30]. From a clinical point of view, HPV-

189 related OPSCC are often diagnosed in early-moderate tumor stages of the disease, according to the 

190 new classification system, but with a high nodal spread. Nodal metastases frequently show cystic 

191 features at computed tomography scan and nuclear magnetic resonance imaging [30]. 

192 HPV-positive OPSCC have distinct risk factors profiles and oncological outcomes compared to 

193 HPV-negative cases. Favorable prognostic factors related to HPV infection are younger age, better 

194 performance status and smaller primary tumors [30].The well-recognized intrinsic high radio-

195 sensitivity of HPV-related OPSCC could be explained by specific molecular features such as the 

196 activation of wild-type p53, the downregulation of cyclin D1, the lack of EGFR amplification and 

197 differences in the tumor microenvironment (TME) [30,40–42]. A different tumor-infiltrating 

198 lymphocytes pattern with better recurrence-free survival has been described in HPV-positive 

199 OPSCC [32]. A high CD8+ T cell infiltration and an increased PD-1 expression are associated with 

200 improved survival rates in HPV-related tumors. The favorable outcomes of patients with HPV-

201 related OPSCC can be explained by a stronger immune response against these tumors [43]. A better 

202 knowledge of the interaction between HPV and the host’s immune system could improve treatment 

203 strategies with tailored oncological protocols [44]. Taken as a whole, HPV-related OPSCC 

204 distinguish for better oncological outcomes regardless of treatment strategy, since the 5-year 
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205 survival rates are of 75-80% and 45-50% in HPV-positive and HPV-negative tumors, respectively 

206 [38]. 

207 More recently, human microbiota perturbations, which also contribute to HPV infection and 

208 persistence [21], have earned a position of primary importance in several cancer types and also in 

209 immune and oral disorders. In the very last years, the first steps are moving towards knowledge of 

210 their involvement in the genesis and progression of OPSCC and new literature data are evidencing 

211 that during OPSCC development important dysbiosis occur [45]. To this regard, a peculiar role for 

212 vitamin D also in extra-skeletal regions has been suggested, even if its antimicrobial and 

213 antitumoral actions, well-described for the gut, have not been fully documented for the oropharynx 

214 yet [46–48]. 

215

216 ORAL MICROBIOTA AND OPSCC

217 As outlined, the balance in terms of number and variety of commensal and pathogenic bacterial 

218 strains is one of the factors that can significantly contribute to oral cancer development and 

219 progression. Some pathogens are involved in chronic inflammation through metabolic activities that 

220 lead to the production of sulphur compounds, acids and free radicals, thus inducing pro-tumorigenic 

221 damages [15,24]. Besides these, several other substances and mechanisms are involved in the 

222 initiation and progression of the oncogenic process: in fact, bacterial endotoxins, metabolic by-

223 products and increased enzymatic activities can lead to somatic mutations and signalling pathway 

224 alterations [49]. Moreover, inflammatory cells or cytokines, released in the tumour 

225 microenvironment (TME) in response to bacterial unbalance, can lead to the production of radical 

226 oxygen and nitrogen species, ending in DNA alterations [49]. Additionally, as observed in 2018 by 

227 Yost et al. assessed that the oral squamous cell carcinoma (OSCC)-associated microbiota secretome 

228 is enriched with pro-inflammatory molecules such as LPS, flagella and peptidases, while pro-DNA 

229 repair factors are absent [50]. In line with these findings, Hooper et al., via a Fluorescent In Situ 

230 Hybridization (FISH) analysis and a 16S rRNA sequencing of OSCC samples surface, revealed that 
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231 their microbiota was mainly composed of Clavibacter michiganensis, Fusobacterium naviforme, 

232 Ralstonia insidiosa and Prevotella spp. According to the authors opinion, the bacteria selection was 

233 driven by an acidic and hypoxic microenvironment. However, it remains unclear if this they didn’t 

234 clarify if this latter selection was a consequence or a leading factor for tumour development [51]. 

235 To aggravate the situation, some bacterial species such as Streptococcus salivarius, S. intermedius, 

236 S. mitis and non-pathogenic Neisseria subspecies, other than Candida spp., produce alcohol 

237 dehydrogenase, which, as a consequence of due to ethanol metabolism, is responsible for the 

238 production of carcinogenic molecules, such as acetaldehyde (ACH), hydroxyl ethyl- and hydroxyl-

239 radicals; these species among them are included (Figure 2) [24,52]. MoreoverIn fact, 

240 Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia and Aggregatibacter 

241 actinomycetemcomitans generate volatile sulphur compounds, such as the genotoxic and mutagenic 

242 agents hydrogen sulphide and methyl mercaptan, that induce chronic inflammation, cell 

243 proliferation, migration, invasion and tumour angiogenesis [15].

244 By focusing on the microbial communities that have been related to oral cancer, a very huge 

245 amount of papers and research approaches have been reported, thus revealing a quite complex, 

246 variegated and sometimes controversial scenario. As an example, the pilot study presented by Wolf 

247 et al., who compared the microbial species present in the saliva of oral cavity (OP)- and OP-SCC 

248 affected patients with those of healthy subjects, evidenced through a sequencing analysis, that an 

249 early high prevalence of Firmicutes was present has been observed earlier in tumour patients respect 

250 to the healthy group, although the importance of the result obtained must strongly be resized due to 

251 the limited sample size [14]. The review of La Rosa and colleagues identified, this time in a slightly 

252 larger number of cases, a panel of bacteria, including Capnocytophaga, Corynebacterium, 

253 Haemophilus, Oribacterium, Paludibacter, Porphyromonas and Rothia, to discern oral cavity (OC-

254 )/OP-SCC affected patients and healthy controls; in particular, Capnocytophaga gingivalis, 

255 Peptostreptococcus spp., P. gingivalis, Prevotella spp., and Streptococcus spp. were oral 

256 microorganisms the mostly associated with saliva samples from OSCC [24]. In another report 
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257 Streptococcus mutans, Lactobacillus fermentum, L. salivarius and L. rhamnosus have been 

258 described to be higher in OPSCC patients (Figure 2) [15]. More in general, Guerrero-Preston’s 

259 group found that the presence of Lactobacillus or the loss of Haemophilus, Neisseria, Gemellaceae 

260 or Aggregatibacter in saliva could be considered as a HNSCC biomarker; this is the first time that 

261 an association between Lactobacillus, tumour samples and advanced TNM stage has been 

262 evidenced. Moreover, by comparing the saliva microbiome of OPSCC and OCSCC patients with 

263 healthy controls, they showed that the relative abundance within the genera Streptococcus, 

264 Dialister, and Veillonella can be useful to discriminate tumoral from control samples; in addiction, 

265 cancer samples lost Neisseria, Aggregatibacter (Proteobacteria), Haemophilus (Firmicutes) and 

266 Leptotrichia (Fusobacteria) [49]. In another study, the same authors determined a decrease in 

267 Streptococcus and an increase in L. salivarius, L. fermentum, L. gasseri/johnsonii and L. vaginalis 

268 (Figure 2) with the progression of the TNM stage [53]. These authors are the few ones who reported 

269 observable oral microbiota differences potentially useful as oral cancer biomarkers. Yang et al. also 

270 showed how bacterial communities dynamically change during OCSCC progression; 5 major phyla 

271 differed among healthy and OSCC groups. Firmicutes were the dominant phylum in oral rinse 

272 samples (58.40% in healthy individuals, 59.65% OSCC stage 1, 59.76% OSCC stage 2 and 3, 

273 58.43% OSCC stage 4) with a relative abundance of 25% in tumour lesions and 35% in the saliva of 

274 OSCC patients. Other differences are that Moreover, stage 4 OSCC showed significantly more oral 

275 Fusobacteria than healthy individuals [54], as however also observed by La Rosa et al. also found 

276 that Fusobacteria are significantly higher in OCSCC [24].

277 Therefore, considering that each individual possesses his own characteristic oral microbiota and 

278 based on the approach of Zhang et al., that found significant microbiota differences between cancer 

279 sites and normal tissues [55], it will be likely possible to identify new markers for personalised 

280 treatment targets [55]. In particularfact, specific bacterial taxa, such as Veillonella, Fusobacterium, 

281 Prevotella, Porphyromonas, Actinomyces, Clostridium, Haemophilus, Enterobacteriaceae and 
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282 Streptococcus spp. are seem to be strongly related to oral cancer and epithelial precancerous lesions 

283 [56].

284 Oral microbiota and OPSCC risk factors. If on one side microbial communities can be altered by 

285 several factors such as age, pH, oxygen levels, nutrients, lifestyle as dietary habits, oral hygiene, 

286 tooth loss, periodontal disease, tobacco, alcohol consumption and HPV status [15,57,58], on the 

287 other hand the microbiota imbalance itself may facilitate HR-HPV infection and persistence [58].

288 These significant microbiota differences have been mainly detected in advanced stages of OPSCCs 

289 [59]. As an example, Guerrero-Preston and coworkers observed a significant presence of 

290 Gemellaceae and Leuconostoc in HPV-positive compared to HPV-negative HNSCC cases [49] and 

291 Banerjee and collaborators identified a specific microbial signature within OCSCC and OPSCC, 

292 using a pan-pathogen assay [60].  Interestingly, Lim et al. proposed a microbiota panel as a 

293 biomarker to predict OCSCC and OPSCC (in HPV-positive and -negative subsets) in a clinical 

294 setting. The authors observed that, based on the oral microbiota composition, it is possible to 

295 discriminate cancer patients from healthy subjects, with reported sensibility and specificity of 100% 

296 for OCSSC and 90% for OPSCC [61]. In HPV-positive oral cancer patients, members of 

297 Actinomyces, Granulicatella, Oribacterium and Campylobacter genera, as well as Veillonella 

298 dispar, Rothia mucilaginosa and Haemophilus parainfluenzae significantly increased, while 

299 Streptococcus anginosus, Peptoniphilus and Mycoplasma significantly decreased [57].

300 The virota has been also recently studied in early stages of tonsillar cancers (TSCC) and neck 

301 metastases by Carey and coll. [62]. Conversely, Lactobacillus, Bifidobacterium, Atopobium, 

302 Prevotella, Streptococcus and Veillonella genera increased, while Rothia, Neisseria and Lautropia 

303 significantly decreased [57]. The oral microbiota composition of smokers and non-smokers was 

304 analysed by Rodriguez-Rabassa and coll. in saliva samples [63]. Five phyla resulted most abundant 

305 in smokers: Proteobacteria (40%), Firmicutes (29%), Bacteroidetes (23%), Fusobacteria (5%) and 

306 Actinobacteria (2%), representing the 99% of the sequences found. In non-smokers, the most 

307 represented were Firmicutes (66%), followed by Bacteroidetes (16%), Actinobacteria (5%), 
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308 Fusobacteria (5%) and Proteobacteria (4%), representing the 96% of all sequences. At a genus 

309 level, Streptococcus resulted the most abundant in both groups (15% in smokers and 35% in non-

310 smokers) [63]. The authors also examined the expression patterns of pro- and anti-inflammatory 

311 cytokines, finding how IL-2, IL-4 and adrenocorticotropic hormone were significantly higher in 

312 smokers’ samples, while macrophage-derived chemokine, IL-5, IL-7, IL-10, insulin and leptin were 

313 down-modulated compared to non-smokers [63]. In another work, a higher abundance of F. 

314 nucleatum was detected in smokers [15]. Conversely, Fan and co-workers determined how, in the 

315 American population, the overall oral cavity microbiota composition differs based on alcohol 

316 consumption. In fact, a decreased abundance in Lactobacillales is associated to alcohol consumption 

317 and, thus, to a reduced capacity to metabolize ACH to less toxic forms. Alcohol impairs neutrophils 

318 function contributing to bacterial overgrowth, increased permeability, microbes penetration, and 

319 inflammatory cytokine production from monocytes, thus allowing microbial proliferation [64]. The 

320 assessment of the alterations in the oral microbial communities, at the time of diagnosis and during 

321 oncological treatments, may be therefore associated to oral tumor risk factors and therefore it was 

322 expected to be useful as a prognostic and surveillance biomarker [65].

323 HPV16 persistence has been often revealed in cancers of the tongue of non-smokers, non-drinkers 

324 OPSCC affected patients [16]. Since it is the prevalent genotype in 98% of the OCSCC/OPSCC 

325 [60], it could be used as a potential diagnostic and prognostic biomarker. Other HPV, such as 

326 genotypes 1, 2, 6b, 18, 26, and 34, have been less detected [60]. 

327 Epstein-Barr Virus (EBV) has been also retrieved in OCSCC [60]. Despite Broccolo et al. 

328 evidenced a HPV16/EBV coinfection in about 15–20% of HNSCC in the Italian population, HPV16 

329 appears to play a role mostly in OPSCC, while EBV in OCSCC [66]. HR-HPV oncoproteins can in 

330 fact initiate and/or amplify epithelial-mesenchymal transition (EMT) [67], the hallmark of cancer 

331 progression and metastasis [68], by cooperating with EBV (Figure 3). Regarding this last virus, its 

332 latent membrane protein 1 (LMP1) promotes cell growth, protects cells from apoptosis, enhances 

333 cell mobility, stimulates angiogenesis and matrix metalloproteinase (MMP)-9 expression and 
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334 downregulates E-cadherin expression, while LMP2A and EBNA-1 increase cells invasive/migration 

335 ability [68]. Differently from HPV-positive OPSCC affected patients, EBV status seems to show a 

336 statistically significant negative impact on their prognosis [69]. In fact, despite it generally causes 

337 benign lesions, it may be involved in lymphomas and malignancies of several different human sites, 

338 such as the oral niche. Thanks to its latency, persistence properties and ability to target B cells and 

339 keratinocytes of the head and neck region [70], it may immortalize them, thus acting as a tumour 

340 progression co-factor rather than a cancer initiator [71].

341

342 PERIODONTAL PATHOGENS AND ORAL CANCER 

343 By considering oral cancer affected patients with a history of periodontal disease, a significant 

344 increase in the genera Fusobacterium, Eikenella and Capnocytophaga and in the Leptotrichiaceae 

345 family has been detected [57]. In particular, P. gingivalis and F. nucleatum are noteworthy able to 

346 induce inflammatory cytokines production, cell proliferation, invasion, migration and inhibition of 

347 apoptosis, by causing host cell genomic alterations; moreover, they are both involved in chronic 

348 periodontitis which, in turn, correlates with malignant tumour development [15,56]. 

349 P. gingivalis is one of the Bacteroidetes phylum members able to convert ethanol into ACH and 

350 induce DNA damage, mutagenesis and epithelium hyperproliferation [72]. An association among 

351 increased risk of oro-digestive cancer mortality, severity of periodontal disease and its serum IgG 

352 levels has been found (Figure 3) by Ahn et al. [73]. P. gingivalis, together with F. nucleatum and 

353 the oral carcinogen 4-nitroquinoline-1-oxide, allows the transformation of OSCC and increases the 

354 signalling along the TLR2-IL-6-STAT3 axis [72,74–76]. In other experiments, human immortalized 

355 oral epithelial cells, persistently exposed to P. gingivalis at low multiplicity of infection, showed 

356 morphological changes, increased proliferation, migration and invasion [72]. In support of this 

357 evidence, several authors suggested that chronic periodontitis is one of the main factors that 

358 contributes to the metastatic progression of oral cancer in many oral cancer cells. Cho et al. since 

359 they observed that P. gingivalis-infected YD10B OSCC cells had an increased invasiveness and 
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360 EMT–like changes [77]. Other authors demonstrated that prolonged and repeated infection with P. 

361 gingivalis (twice a week for 5 weeks) enhanced the invasiveness of Ca9-22 OSCC cells through the 

362 acquisition of cancer stemness and EMT characteristics, while the short term infection determined 

363 morphologic changes (loss of adhesiveness and polygonal shape) in YD10B cells, expression of 

364 cancer stemness markers (CD44 and CD133) and EMT [77–79]. In YD10B cells, P. gingivalis also 

365 demonstrated to increase the expression of MMPs, main effectors of neighbouring tissues invasion 

366 [77,80] and to lead It leads to cytokines production, in particular of IL-8, by the epithelial cells, 

367 contributing to the inflammatory response (Figure 3) [72,77]. P. gingivalis stimulates ZEB1 

368 expression, that influences multiple stages of carcinogenesis, including such as the initial 

369 transformation, progression and EMT, thus leading to metastasis and resistance to therapy [81]. It 

370 upregulates the expression of B7-H1 and B7-DC on human cancer cells, favouring the production 

371 of IL-1, IL-6, IL-8 and tumor necrosis factor alpha (TNF-α) [15,72]. B7-H1 can also interact with 

372 PD-1 receptors on tumour infiltrating lymphocytes, by blocking their cytotoxic activity against the 

373 cancerous epithelial cells [72]. Park et al. showed how IgG against P. gingivalis and lower serum 

374 IL-6 levels positively correlate with the 5-years OS in OSCC patients, thus they might be accurate 

375 diagnostic/prognostic biomarkers for OSCC [82].

376 F. nucleatum triggers reactive oxygen species (ROS) generation leading to NADPH oxidase 

377 activation, in particular the NOX1 and NOX2 isoforms; interesting, IL-6, IL-8 and SOD2 gene 

378 expression increases in gingival fibroblasts after F. nucleatum infection [83]. F. nucleatum can 

379 induce cellular DNA damages, indicated by up-regulation of the DNA damage sensor histone 

380 variant γH2A.X [84]. 

381 In their meta-analysis, Bronzato et al. highlighted that Fusobacterium has 2.93-fold higher chance 

382 to be present in tumour lesions and a 6% higher abundance in HNSCC compared to non-tumoral 

383 areas. They assessed that it promotes OSCC cells proliferation and disrupts adherence junctions on 

384 human tongue dysplasia cells; in addition, it can favour C. albicans and P. gingivalis colonization 

385 (Figure 3) [85]. Recently and for the first time, F. nucleatum and P. aeruginosa have been assessed 
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386 as the 1st and 2nd  prevalent microorganisms in HNSCC, respectively (Figure 3) [85]. Since in 

387 oesophageal cancer tissues F. nucleatum has been associated with a shorter survival time, it has the 

388 potential to become a prognostic biomarker [86]. F. nucleatum is abundant in OSCC patients; 

389 MMP-9 and MMP-13, produced after its infection, together with IL-1a, IL-1b, IL-6, IL-8 through 

390 the NF-kB pathway, have been used in monitoring and detecting a metastatic phenotype (Figure 3) 

391 [4,77,88].

392 P. aeruginosa triggers DNA breaks in epithelial cells, thus causing chromosomal instability; this 

393 Gram-negative Proteobacteria member possesses LPS, flagella and exotoxin U, with potent pro-

394 inflammatory activities, that, like for F. nucleatum, result in neutrophils recruitment through NF-kB 

395 signalling pathway. It is also able to disrupt adherent junctions (Figure 3), even if its role in 

396 initiation and/or progression of OSCC has not actually been proved [87].

397 Candida spp. Subjects with Candida infection have a two-fold increased risk of developing cancer 

398 in mouth, tongue, oropharynx and oesophagus (Figure 3). Candida species are prevalent in oral 

399 cancer immunocompromised patients, due to the underlying disease and treatments [16,88]. 

400 Candida spp. cause systemic infections in about 74% of OSCC affected patients; the most frequent 

401 is C. albicans (84%), followed by non-albicans strains (23%) [88,89]. In particular, C. glabrata 

402 metabolizes ethanol to ACH, while other non-albicans strains degrade junctional and basement 

403 membrane proteins, such as fibronectin and claudins [88], with a proteolytic activity higher than 

404 that of C. albicans [88]. To this regard, fibronectin and claudins can be important predictive 

405 biomarkers for both metastatization and recurrence; in particular, CLDN4 is a potential marker for 

406 predicting the outcome of OSCC affected patients [88]. 

407 Subjects with higher microbial load and lower salivary flow had more Candida spp. growth, but 

408 without any association with a lower OS [89]. Moreover, healthy smokers possess a higher number 

409 of Candida spp. compared to non-smokers (28.2% and 13.3%, respectively) [89]. 

410 Human beta-defensin-2 (hBD-2) has a potent antimicrobial activity against C. albicans and its 

411 highest expression has been detected in lung, trachea and tonsils; in vivo it is also expressed in 
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412 TSCC and in oral epithelial cells [90]. C. albicans induces hBD-2 mRNA expression in a dose- and 

413 time-dependent manner; but its expression is lower in TSCC and OPSCC than in hyperplastic and 

414 healthy tonsils [90]. In the study from Bertolini et al., it has been shown that immunosuppression 

415 coupled with C. albicans colonization results in a bacterial dysbiosis which, in turn, promotes the 

416 fungal virulence [22]. In particular, Enterococcus, in a rate below 20% in healthy adults, increases 

417 up to 82% in chemotherapy-treated patients or with systemic disease. It has also been assessed that 

418 the immunosuppression type influences the state of dysbiosis associated with oral candidiasis [22].

419

420 PROINFLAMMATORY CYTOKINES AND OPSCC

421 A gene expression profile, conducted in three different OSCC cell lines by Rao et al., showed an 

422 up-regulation of genes involved in proliferation and angiogenesis, and a down-regulation of those 

423 ones involved in apoptosis regulation, tumour inhibition and keratinisation respect to human oral 

424 normal keratinocytes cells; also cytokines, such as IL-8, VEGF, EGFR, STAT CXCL10, CCL5, 

425 TGFB2, TNFSF10, as well as VEGF, are 4-fold up-regulated, suggesting that inflammation may 

426 play important roles in OSCC [91]. Regarding IL-10, its mRNA expression levels may also 

427 independently predict the survival and relapse rates of HPV-positive OSCC patients, thus 

428 emphasising its crucial role in the tumoral progression [92]. For IL-8, recognised as an autocrine 

429 regulator of OSCC growth and a cell mobility enhancer, an increase expression of its high and low 

430 affinity receptor CXCR1 and CXCR2 in oral cancer has been observed; therefore, this salivary 

431 cytokine has been proposed to be a discriminative biomarker for oral cancer [80]. 

432

433 VITAMIN D 

434 Vitamin D is a liposoluble steroid hormone, well known for its beneficial role in bone metabolism, 

435 calcium/phosphorus homeostasis maintenance and immune function [93]. Its antioxidant effect has 

436 been also investigated [94]. The vitamin D2 isoform (ergocalciferol) is produced in plants and 

437 yeasts and can be absorbed from the diet or introduced by supplementation; conversely, vitamin D3 
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438 (cholecalciferol) can be endogenously synthesized from 7-dehydrocholesterol in sunlight-exposed 

439 skin. Vitamin D2 and D3 are inactive pro-hormones, which require a two-step hydroxylation to be 

440 converted into a fully active vitamin D form. They are transformed in the liver into 25- hydroxy 

441 vitamin D (25[OH]D), which is further activated in the kidney to 1α,25 dihydroxy vitamin D 

442 (1,25[OH]2D, calcitriol). Calcitriol has high affinity for the vitamin D receptor (VDR), a nuclear 

443 steroid hormone receptor that regulates a variety of genes [95,96]. Bound to its receptor, vitamin D 

444 translocates into the nucleus, where, together with the nuclear accessory factor retinoid X receptor 

445 (RXR), binds to vitamin D response elements (VDREs) on DNA, resulting in a direct gene 

446 transcription activation [97,98].

447 VDR is also located in the cytosol, modulating vitamin D action via non-genomic mechanisms 

448 characterized by rapid activation of intracellular signaling molecules, including kinases, lipases, 

449 second messengers and Ca2+ and Cl- channels, with antiproliferative properties and by inducing 

450 apoptosis without gene transcription changes [93,99]. The VDR is also present in cancer cells, 

451 where it modulates target genes involved in cellular growth, differentiation and apoptosis [100], 

452 suggesting a pivotal role of vitamin D in cancer growth and progression [101,102].

453 In fact vitamin D, which is downregulated in tumor tissues, generally prevents cancer incidence and 

454 progression through the inhibition of cell proliferation, angiogenesis, metastasis and the induction 

455 of apoptosis and differentiation [17,18,19]. 

456

457 VITAMIN D AND OPSCC 

458 Meta-analyses of observational studies have shown a positive association between low blood 

459 25[OH]D levels and less survival of patients with cancer in several body sites such as colorectal, 

460 lung, breast, prostate, head and neck, esophageal, pancreatic, kidney, ovarian and hematologic ones 

461 [103].

462 The main vitamin D effects, that can be involved in the prevention of cancer incidence and 

463 progression, include the inhibition of cell proliferation, angiogenesis and metastasis and the 
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464 induction of apoptosis and differentiation [17,18,23]. A possible role for vitamin D in preventing 

465 cancer growth and progression is also suggested by the presence of VDR in cancer cells, in which it 

466 can modulate target genes involved in cellular growth, differentiation and apoptosis [100–102].

467 Regarding the possible association between vitamin D and HNSCC/OPSCC development, only few 

468 studies have been developed. According to the in vitro studies analyzed, vitamin D3 and 13-cis 

469 retinoic acid have been shown to have equipotent antiproliferative effects on tongue squamous cell 

470 carcinoma (SCC-25) cells [104]; 1,25[OH]2D has been shown to inhibit the OPSCC growth by 

471 upregulating the cell cycle inhibitor p18 expression [105]; moreover, several tumoral cells produce 

472 1,25[OH]2D to regulate their own growth [106]. To this regard, it has been recently demonstrated 

473 that OPSCC cells express high levels of cytochrome P450 2R1 (CYP2R1), which is involved in the 

474 conversion of inactive into active vitamin D [107]. Moreover, polymorphisms in CYP27B1 and 

475 CYP24A1 genes, other cytochrome P450 family members involved in vitamin D metabolism 

476 pathway, seem to affect susceptibility to OPSCC [108], while single nucleotide polymorphisms in 

477 the VDR gene have been associated to increase the risk of OPSCC [109].

478 With respect to the vitamin D effect on cancer patients, recently, the vitamin D status, intake, and 

479 metabolism have been considered associated with their outcome [47]. It has in fact been 

480 demonstrated that HNSCC patients with lower levels of vitamin D intake are at higher risk of 

481 recurrence, suggesting that vitamin D supplementation may be an appropriate intervention for 

482 recurrences prevention [46,110] and for OS improvement [103,110,111]. In addition, vitamin D 

483 supplementation in esophageal cancer patients has been associated with a longer disease-free 

484 survival [112], while in HNSCC patients with a higher or adequate pre-diagnostic plasma vitamin D 

485 concentration, it has been reported a notable risk decrease and an improved OS [113]. All these 

486 studies suggest a possible prognostic role for vitamin D in the HNSCC context.

487 Despite the known relation between human papillomavirus (HPV) and fundamental micronutrients, 

488 that one made by vitamin D to protect from viral infections, especially in oral cancer has not been 

489 clarified yet. A first study, conducted by Özgü E. et al, evidenced the inverse relation between 
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490 serum 25[OH]D levels and the cervicovaginal HPV infection in sexually active women., thus 

491 suggesting that low vitamin D levels could be one of the reasons for HPV persistence [114].

492 Additionally, vitamin D may also be inversely associated with lymphatic metastasis and a negative 

493 HPV status, already known to be a negative prognostic factor [46]. Moreover, the same authors 

494 have shown that a severe vitamin D deficiency alters intra- and peri-tumoral immune cell infiltrate 

495 levels, while vitamin D administration trigger the cytotoxic activity of patient’s NK cells [46]. 

496 1,25[OH]2D also modulates the levels of several cytokines in the plasma from patients with 

497 HNSCC [115]; this suggests a role for vitamin D in the immune system modulation, also supported 

498 by the evidence that it can favor antitumoral immune responses if used as adjuvant of immune 

499 therapies based on cetuximab and nivolumab [46].

500 Considering that other authors suggest that a clinically relevant protective effect of 25[OH]D on 

501 oral and OPSCC risk is unlikely and supplementation of the general population with 25[OH]D is 

502 not beneficial in preventing these cancer types [116], further research is needed to elucidate the 

503 potential effect of vitamin D on OPSCC progression. 

504

505 VITAMIN D, MICROBIOTA, PERIODONTAL PATHOGENS AND PROBIOTICS

506 Although a pivotal role for vitamin D in the intestinal homeostasis is well established, less is known 

507 regarding its importance in the oral compartment. The intestinal effect is exerted via many 

508 regulatory activities such as calcium and phosphate absorption, protection against infection, anti-

509 inflammatory action and modulation of the gut microbiota [48]. In fact, vitamin D ensures 

510 appropriate levels of antimicrobial peptides in the intestinal lumen [48] and the maintenance of the 

511 epithelial integrity by modulating the intracellular tight junctions (TJ), real barriers against toxins 

512 and enteric pathogens [117,118]. The importance of vitamin D/VDR signaling in intestinal 

513 homeostasis is also evidenced during the development of a chronic inflammatory state, when this 

514 signaling system is disrupted [119].

Page 20 of 47

URL: http://mc.manuscriptcentral.com/bmcb  Email: IMBY-peerreview@journals.tandf.co.uk

Critical Reviews in Microbiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

21

515 Vitamin D can directly control the immune system via the VDR in activated or naïve CD4 and CD8 

516 T cells, B cells, neutrophils, macrophages and dendritic cells [117]. In particular, CD4 positive IL-

517 17 or IL-10 producing T cells are common in the gut, where their balance is essential to maintain 

518 tolerance and immunity to the resident microbiota [120]. The 1,25[OH]2D_VDR_RXR complex 

519 downregulates IL-17 and -23 production, promotes IL-10 production in human B cells and increases 

520 chemotaxis and phagocytosis in the innate immune cells [117]. The microbiota also stimulates the 

521 maturation and differentiation of T and B cells and promotes IL-10-producing B-cells [121,122]. 

522 Therefore, vitamin D and gut microbiota are interdependent, since they control together the immune 

523 response of gut and intestinal eubiosis [123]. Interestingly, it has been reported that the expression 

524 and activity of VDR is under the control of short-chain fatty acids such as sodium butyrate 

525 produced by microbiota [124]. Butyrate has potent health-promoting effects, which results from the 

526 fermentation process of indigestible polysaccharides (fibers) from colon microbiota [125].

527 Overall, these evidences show the strong connection between vitamin D, immune system and gut 

528 eubiosis. Since an oral-gut microbiota axis does exist, as has been confirmed by several authors 

529 [126], and since vitamin D downregulates NF-kB signaling and proinflammatory cytokines 

530 production, protects TJ and inhibits MMPs in OSCC [127], it is reasonable to assume that it could 

531 also indirectly preserve oral eubiosis (Figure 3), as indeed pointed out by Robles-Vera et al. at least 

532 in rats [128].

533 Not much is known on the specific antimicrobial pathogens mechanisms of vitamin D, although 

534 some evidences are pointing out a possible indirect role in infection prevention, mainly due to its 

535 immune system regulatory capabilities. This is the case of the recent discoveries made by De 

536 Filippis et al. that have shown the growth- and adhesion-inhibitory effects of vitamin D towards 

537 oral pathogens such as P. gingivalis. This hormone inhibited human gingival epithelial (HGE) and 

538 periodontal ligament (HPL) cells infection through the modulation of hBD-3 and the reduction of 

539 TNF-α, IL-8 and IL-12 production [129].
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540 In a study from Nouari et al., authors have shown that the bioactive vitamin D3 isoform increases 

541 M1 monocytes-derived macrophage polarization and their protective phagocytotic and bactericidal 

542 activity towards P. aeruginosa, by exerting strong immunotherapeutic properties [130]. The 

543 antimicrobial properties of vitamin D, also due to its liposolubility, have been also demonstrated 

544 against C. albicans, without the severe side effects which are conversely exerted by Amphotericin 

545 B, the gold standard antifungal treatment [131].

546 Finally, in an in vitro F. nucleatum-driven colorectal carcinoma mice model, vitamin D 

547 supplementation has demonstrated to reduce cancer incidence [132]. In fact, the gastrointestinal 

548 niche is one of the most important target organs of vitamin D, as demonstrated by the local 

549 synthesis of 1,25[OH]2D and VDR expression in most gut cell types [48]. Moreover, subjects with 

550 higher 25[OH]D concentration has reduced relative amount of Firmicutes phylum and Clostridia 

551 class [133]. Finally, the oral vitamin D supplementation in healthy volunteers has decreased the 

552 relative amount of Escherichia, Shigella spp., Helicobacter spp. and Pseudomonas spp. [134]. 

553 While several studies have shown that certain pathogens downregulate VDR expression, while 

554 others can also cause its increase in the colon [135], probiotic treatment with L. plantarum and L. 

555 rhamnosus enhances the levels of VDR protein in human and mouse intestinal epithelial cells, and 

556 prevents Salmonella-induced colitis in wild-type mice, but not in VDR -/- mice [136].

557 In a multicentric study, double-blind, placebo-controlled, randomized, oral supplementation with 

558 probiotic L. reuteri NCIMB 30242 has improved circulating 25[OH]D levels relative to placebo 

559 [137]. 

560 All these evidences suggest that the role exerted by vitamin D on the oral cavity is most probably 

561 due to an indirect effect mediated by the immune system stimulation. Considering the positive 

562 effects of probiotics on vitamin D circulating levels, the supplementation of specific probiotic 

563 strains together with vitamin D may be valuable in deficient HNSCC affected patients.

564

565 CONCLUSION
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566 Overall, the different experimental study models found in the literature have evidenced the key role 

567 of some microorganisms in oropharyngeal tumorigenesis: both P. gingivalis and F. nucleatum 

568 induce an inflammatory state, together with P. aeruginosa, HPV-16 and Candida spp., reinforcing 

569 their link to several diseases of the oral niche. 

570 An important role for vitamin D is beginning to be glimpsed also in this specific context. In fact, 

571 oral pathogens presence seems to be mediated by extra-skeletal vitamin D effects, with eubiosis as a 

572 prerequisite for well-being, and dysbiosis as an antechamber for carcinogenesis. Nevertheless, up to 

573 now, while a direct vitamin D antimicrobial protective role in gut health has been already 

574 confirmed, it has not been fully recognized for the oropharynx yet.

575 Further and deeper functional characterization studies and investigations of the mechanisms and 

576 factors that condition microbial diversity in the oral niche are therefore required to i) fully 

577 understand how single or combined oral microbiota shifting and vitamin D levels influence cancer 

578 development and ii) better define the risk factors and the tumoral biomarkers useful to establish 

579 specific OPSCC prevention strategies and optimize clinical practice.
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614 ABBREVIATIONS 

615 ACH, Acetaldehyde; EBV, Epstein-Barr Virus; EMT, Epithelial-Mesenchymal Transition; FISH, 

616 Fluorescent In Situ Hybridization; HNSCC, Head and Neck Squamous Cell Carcinoma; HPV, 

617 Human Papillomavirus; HR-HPV, High-Risk HPV; IL, Interleukin; MMP, Matrix 
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618 Metalloproteinase; OCSCC, Oral Cavity SCC; OPSCC, Oropharyngeal SCC; OS, Overall Survival; 

619 ROS, Reactive Oxygen Species; RXR, Retinoid X Receptor; TJ, Tight Junctions; TME, Tumor 

620 Microenvironment; TNF-α, Tumour Necrosis Factor Alpha; TSCC, Tonsillar SCC; VDR, Vitamin 

621 D Receptor.
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1111 Figure legends

1112 Figure 1. Flow-chart of the criteria adopted for the narrative literature review.

1113 Figure 2. Healthy and tumoral oropharyngeal microenvironment.

1114 Figure 3. Microbial effects on oral epithelial cells and possible vitamin D-mediated 

1115 oropharyngeal cancer protection mechanisms. 
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Figure 1. Flow-chart of the criteria adopted for the narrative literature review. 
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Figure 2. Healthy and tumoral oropharyngeal microenvironment. 

113x115mm (300 x 300 DPI) 

Page 46 of 47

URL: http://mc.manuscriptcentral.com/bmcb  Email: IMBY-peerreview@journals.tandf.co.uk

Critical Reviews in Microbiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Figure 3. Microbial effects on oral epithelial cells and possible vitamin D-mediated oropharyngeal cancer 
protection mechanisms. 
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