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Abstract

Block-based programming systems employ a jigsawmetaphor
to write programs. They are popular in the domain of pro-
gramming education (e.g., Scratch), but also used as a pro-
gramming interface for end-users in other disciplines, such as
arts, robotics, and configuration management. In particular,
block-based environments promise a convenient interface
for Domain-Specific Languages (DSLs) for domain experts
who might lack a traditional programming education. How-
ever, building a block-based environment for a DSL from
scratch requires significant effort.

This paper presents an approach to engineer block-based
language interfaces by reusing existing language artifacts.
We present Kogi, a tool for deriving block-based environ-
ments from context-free grammars. We identify and define
the abstract structure for describing block-based environ-
ments. Kogi transforms a context-free grammar into this
structure, which then generates a block-based environment
based on Google Blockly. The approach is illustrated with
four case studies, a DSL for state machines, Sonification
Blocks (a DSL for sound synthesis), Pico (a simple program-
ming language), and QL (a DSL for questionnaires). The
results show that usable block-based environments can be
derived from context-free grammars, and with an order of
magnitude reduction in effort.

CCSConcepts: • Software and its engineering→Visual

languages; Domain specific languages; Graphical user
interface languages.
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1 Introduction

Block-based environments have received much attention in
recent years due to their ease of use for non-programmers [6].
Block-based environments are visual programming envi-
ronments that use jigsaw-like blocks to represent language
constructs. Each language construct is represented using
different block-shapes with visual cues on the edges that
indicate how blocks can be connected.
For instance, the following shows a possible block-based

representation of an if-statement:

if {

}

The hole next to the if-level indicates the shape of expres-
sions that are allowed there, and the dent between the curly
braces indicates which kind of blocks can be nested under
the if-statement. The benefit of such an interface is a what-
you-see-is-what-you-get (WYSIWYG) programmer experi-
ence and the impossibility of syntax-errors [34, 38, 50, 53].
A block-based editor essentially is an editor to manipulate
the abstract syntax of a language. Thus, editing block-based
programs can be seen as a form of projectional editing.
Block-based environments have seen many uses in the

software engineering field [1, 2, 11, 37, 50, 51]. They have
also been widely investigated as educational tools [9, 13, 22,
25, 31, 46, 49]. However, developing block-based environ-
ments currently lacks solid engineering principles, which
leads to ad-hoc implementation using various technologies
and frameworks. As a result, the block-based language defi-
nition is hidden in arbitrary, general-purpose programming
code. Moreover, this hinders the reuse of existing language
artifacts, such as type checkers, interpreters, and compilers.

One way to ease the development of block-based environ-
ments is with libraries such as Google Blockly [36], Droplet [5],
or Open-Blocks [42]. Another way is to extend existing block-
based environments like Scratch [41], MITApp Inventor [37],
or Snap![33]. Many applications have been developed using
these two alternatives. For example, Zhou et al. [55] devel-
oped a block-based language for teaching Latin grammar
using Blockly. Likewise, Breuch et al. created Airblock [8]
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using Scratch to foster block-based programming and aero-
dynamics principles. However, although these libraries and
tools help in the development process of block-based en-
vironments, these solutions are still based on copying and
modifying existing low-level code.
In this paper, we present an approach, Kogi, to derive

block-based languages from declarative context-free gram-
mars, such as used in language workbenches like Rascal [29],
Spoofax [26], and Xtext [16]. This opens the possibility to
reuse existing grammars and language artifacts already de-
veloped using such language workbenches. Kogi is imple-
mented in Rascal. It reflectively transforms Rascal’s built-
in context-free grammars into an abstract representation
of block-based user-interfaces, which is then compiled to
Google Blockly [18] code. As a result, both existing and new
DSL implementations in Rascal can be provided with a block-
based interface with minimal effort.
The contributions of this paper can be summarized as

follows:

• We dissect the structure of block-based environments
and model it using an abstract grammar (Section 2).

• We present Kogi, a tool that analyzes context-free
grammars in Rascal and derives a block-based environ-
ment using Blockly’s API (Section 3). The implementa-
tion of Kogi, along with documentation and examples,
is available on Github1.

• We present how the simplification of a context-free
grammar impacts the complexity of the generated
block-based environment (Section 3).

• Kogi’s utility is demonstrated by generating block-
based interfaces for four languages: State machines,
Sonification Blocks, Pico, and QL (Section 4).

We conclude this paper with a discussion of further direc-
tions (Section 5), related work (Section 6), and concluding
remarks (Section 7).

2 Anatomy of Blockly

This section describes what a block-based environment is
and its parts.

A block-based environment is a visual programming envi-
ronment that uses blocks as language constructs. This paper
focuses on block-based environments that adopt the jigsaw
metaphor. One of the most known examples of this kind of
environment is Scratch [41]. Scratch is a platform that uses
a block-based environment for creating interactive stories,
games, and animations. However, there are many more ap-
plications of a block-based environment to a diverse range
of domains, including a wide range of domains such as aero-
dynamics [8], music [4], robotics [50], software engineer-
ing [1, 37], arts [45], and biology [17].
Looking at several block-based environments, we split

them into three components: a toolbox, a canvas, and an

1h�ps://github.com/cwi-swat/kogi

Figure 1. A block-based environment built with
Blockly [18].

Figure 2. Toolbox shelf [18].

execution pane. It is important to remark that the names of
these components vary from one block-based environment
to another. Figure 1 shows a typical example of a block-based
environment built using Blockly. The following subsections
explain each element in more detail, using Blockly derived
environments as a representative style.

2.1 Toolbox

The toolbox in a block-based environment is a group of
shelves (block categories) that contain all the language con-
structs of a block-based language (left view of Figure 1).
Each language construct is represented as a block (as the
if-statement shown in Section 1). A toolbox is often divided
into several shelves, with a specific label, color, and group
of language constructs (blocks). A shelf is used by develop-
ers to group language constructs according to some criteria.
From the end-user perspective, how the toolbox shelves are
organized is essential because it affords blocks’ discoverabil-
ity [23]. Figure 2 shows an example of how one of these
shelves look like.

2.2 Canvas

The canvas (middle view of Figure 1) is where the user creates
programs (scripts). Block-based programs are created by
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dragging and snapping blocks together from the toolbox
into the canvas [54]. The middle view of Figure 1 shows an
example of a script created using a block-based language.

2.3 Execution View

The execution view (right view in Figure 1) is often placed
next to the canvas view. This view is used mainly for two
tasks, to interact with the current script in the canvas (e.g.,
execute); and display the script’s execution output. The el-
ements of this view vary quite a lot, depending on the lan-
guage. For instance, as a result of computing scripts, some
environments produce animations (e.g., Scratch), while some
others do not display anything, but instead, they control ex-
ternal hardware (e.g., robots).

2.4 Blocks

The keystone of a block-based environment, as its name
suggests, are jigsaw-like blocks. A block is the atom of a
block-based language; it represents the language’s syntax.
Each block is a visual element that provides visual cues to
the user about the meaning of the block, how it can be in-
stantiated, and where it can be placed to create meaningful
block-based programs. Each block is different from another
in a block-based language, yet they have four typical ele-
ments: shape, label, color, and connections.
Following Blockly’s approach, a block is defined by five

elements, namely, their inputs, fields, connections, colors, and
tooltips.

2.4.1 Block Input. In a block-based environment, the block’s
input is the information required to define a block, meaning
it represents other blocks’ possible connections. A single
block might have one or more inputs, and each input is
represented with labels and fields that shows its possible
connections [19]. There are mainly three different types of
input, namely, value, statement, and dummy. The type of
input denotes the shape of each block. Furthermore, a block-
based environment allows developers to define how they
want to show the input fields; there are two types, exter-
nal (condition of the if block in Figure 3) inputs and inline

(condition of the if block in Figure 4).

if

Figure 3. If block with an external input value.

Value input. This element is used to stack blocks hori-
zontally. Thus, it is frequent to use them for defining expres-
sions. Value inputs are connected to the output connection

if if

Figure 4. If block that highlights the usage of an input value
block (left) as its first argument (condition of the if state-
ment) and a statement input (right) as its second argument
(body of the if statement).

of a value block. For instance, an if block condition (Fig-
ure 4) is represented using a value input, allowing Boolean
expression blocks to be snapped horizontally.

Statement input. It is used to stack blocks vertically. As
its name suggests, this type of block is used to represent
statements. For example, the body of an if-else statement
is represented with a statement input. Likewise, the block-
based representation of the if statement (Figure 4 - right)
uses a statement input. The red square denotes where the
following blocks can be snapped in.

Dummy input. It is mostly used for adding layout to the
blocks (e.g., adding labels or new lines). It does not create or
allow new block connections.

2.4.2 Fields. Fields are used within blocks to represent
input (literal) data from the user. There are different types
of fields, depending on their data types, and each of them
has different visual cues that help end-users fill in the right
information. Some of the most common field types are string,
numbers, images, dropdown lists, checkboxes, colors, and vari-

ables. However, block-based platforms allow developers to
create their custom fields.

2.4.3 Connections. The block’s connections offer a visual
cue to guide end-users to compose blocks to create meaning-
ful applications. Each block-based environment might have
slightly different ways of representing connections. In this
paper, we will illustrate this using Blockly’s UI. There are
three types of block connections: no connection, left output,
and top & bottom connection.

No connection. This connection means that the block
cannot be stacked to other blocks, yet this does not mean
that it cannot contain other blocks. An example of this type
of connection is shown in the if block in Section 1.

Le� output. This connection is visually represented as
a male jigsaw connector [20]. Blocks with a left output are
often used to create values, and they are connected to value

inputs. Blocks that produce an output cannot have a previous
nor next statement connection.
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Previous-next connection. There are three differentways
of using this connection. Developers can define the block
either with a previous connection, next connection, or both.
The previous connection in a block is represented with a
notch on its upper part. This notch enables it to be con-
nected to a stack of blocks. Moreover, the next connection is
represented with a bump at the block’s bottom to allow other
statement blocks to be stacked below it. Finally, blocks that
support both previous and next connections are represented
with both a notch and a bump in the upper and bottom parts,
respectively. Figure 4 presents an example of a block that
supports previous and next connections.

2.5 The Grammar of Blockly

In the above subsection, we have described the high-level
structure of Blockly workspaces. Here, we formalize the
structure of Blockly toolboxes (and some additional aspects)
in the form of an abstract grammar. Listing 1 shows the
Rascal Algebraic Data Type (ADT) Toolbox, capturing the
abstract structure of a Blockly toolbox.
A Toolbox consists of a list of Sections. Each Section has a

category name, a color, and contains a list of block types
(Block). A Block also has a name (e.g., “if-then”), a type name
(e.g., “Statement”), and a list of messages.

The remaining arguments of the Block constructor are
optional (because they have assigned a default value) and
are used to further configure the block type. For instance,
the Ref arguments configure the block’s connectivity, where
a Ref refers to another block-type (identified by name). The
extensions and mutator argument allows hooking into native
JavaScript code. The Boolean inputsInline toggles whether
input elements should be shown inline. The other arguments
should be self-explanatory.
The Message type captures the core syntactic mechanism

of a block. It contains a format string where %i indicates a
placeholder for every argument in the args list. For instance,
an if-statement could have the format string "if %1 {%2}",
with two arguments, one of type input (to enter a conditional
expression) and one of type statement to allow inserting a
body.

3 Kogi

3.1 Introduction

Kogi [32] is a tool for describing and deriving block-based
environments from context-free grammars using the Ras-
cal [29] metaprogramming language and the Blockly library.
In this section, we explain and illustrate how we derive a
block-based environment from a context-free grammar.

The left-hand side of Figure 5 shows a simple DSL gram-
mar for defining state machines, written using Rascal’s built-
in grammar formalism. It consists of a few rules introducing

data Toolbox = toolbox(list[Section] sections);

data Section

= section(str category, Color color, list[Block] blocks);

data Block = block(str name, str \type,

list[Message] messages, Ref output = none(),

Ref prev = none(), Ref next = none(),

Color color = none(), str tooltip = "",

str helpUrl = "", list[str] extensions = [],

str mutator = "", bool inputsInline = false);

data Message

= message(str format, list[Arg] args);

data Arg

= arg(str name, Type \type, Arg alt=none())

| none();

data Type

= value(list[str] check = [])

| statement(list[str] check = [])

| dummy()

| input(str text, bool spellcheck = true)

| dropdown(lrel[str, str] options)

| checkbox(bool checked = false)

| color(str color)

| number(num \value, Range range = none())

| angle(num angle)

| variable(str variable, list[str] variableTypes = [])

| date(datetime date)

| label(str text, str class = "")

| image(str src, int width, int height, str alt = "");

data Ref

= block(str \type) | none();

data Range

= range(num min, num max, num precision) | none();

data Color

= rgb(str rgb) | hsv(int hsv) | none();

Listing 1. Algebraic data type modeling Blockly toolboxes.

a nonterminal (e.g., Machine), where each rule consists of sev-
eral labeled productions (e.g., State has a single production,
labeled state). Nonterminals can be start nonterminals (e.g.,
Machine), context-free nonterminals (e.g., State), or lexical
nonterminals (e.g., Id). Rascal employs (generalized) scan-
nerless parsing, so there is no essential distinction between
context-free and lexical syntax, except in the way layout
(whitespace, comments, etc.) is handled.

Kogi exploits Rascal’s facilities for type reflection since
each nonterminal represents a type of a parse tree; it can be
applied to inspect and process grammars as values. A value
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start syntax Machine

= machine: "machine" Id name

State* states;

syntax State

= state: "state" Id id "{"

Trans* transitions

"}";

syntax Trans =

trans: "on" Id on "to" Id to;

lexical Id = id: [a-zA-Z]+;

on lock to locked

on open to opened

on close to closed

on unlocked to closed

state locked {

}

state opened {

}

state closed {

}

machine door

Figure 5. State machine grammar (left) and an example state
machine (right) using the Kogi generated block-based envi-
ronment.

representation of a type is acquired using the # operator. For
instance, consider the following Rascal snippet:

type[Machine] typeOfMachine = #Machine;

The variable typeOfMachine will contain a structured meta-
representation of the grammar defined in Figure 5, and will
have type type[Machine].

Note that a block-based editor essentially is a projectional
editor for manipulating the abstract syntax of a language.
However, for our purpose, the use of concrete syntax defini-
tions is essential, since the keywords, operators, parentheses,
etc. present in the grammar productions allow us to auto-
matically derive the format strings (see above) required to
render blocks in an informative way.
Kogi operates in three steps:

1. Analyze and preprocess a context-free grammar and
transform it into a value of type Toolbox;

2. Run customization code, if any, provided by the lan-
guage engineer, to supplant the result of step 1 with
additional information not present in the grammar
(e.g., colors, tooltips, etc.);

3. Generate Blockly code from the (possibly customized)
Toolbox value.

Below we discuss each step in more detail.

3.2 Preprocessing the Grammar

Kogi first normalizes the grammar to a more straightforward
form to facilitate the actual mapping to the Toolbox data type.
This consists of two steps:

• Eliminate disambiguation constructs: Disambiguation
using priority declarations or associativity, longest
match for identifiers, and keyword reservation are
irrelevant in a block-based editor, so we normalize the
grammar not to have such directives.

• Inline chain rules: Chain rules introduce additional
non-terminals that would introduce blocks that “do

Figure 6. Effect of chain rules (left) vs no chain rules (right).

nothing” except injecting one kind of element into the
type of another. We inline chain rules to prevent the
generation of such blocks, and remove nonterminals
that have become unreachable.

The most important step here is eliminating chain rules,
since it directly affects the usability of the generated en-
vironment. To illustrate the effect, consider the following
grammar:

start syntax A = p1: "a" a | p2: B;

syntax B = b: "b";

A has two productions (p1 and p2), and B has a single produc-
tion (b). Production p2 in A is a chain rule.

Therefore, we want to replace this production with B’s pro-
duction (b). Additionally, replacing production rules is not
enough, since it only replaces productions, but it does not re-
move unreachable productions from the start symbol. Hence,
after removing production rules, Kogi checks unreachable
nonterminal symbols; when Kogi finds an unreachable non-
terminal, it is deleted from the grammar (e.g., nonterminal B
becomes unreachable after removing production p2 from A).
The effect is illustrated in Figure 6. The chain rule block

is highlighted with a red square on the left-hand side of the
figure. The chain rule block links the nonterminal A with B.
After including B’s production directly into A, the environ-
ment is much simpler, as shown in the right-hand side of
Figure 6.

3.3 From Grammar to Toolbox

Kogi’s transformation between context-free grammars and
Toolbox is relatively straightforward, and can be summarized
as follows:

• Map every nonterminal N to a section named N and
category name N .

• Map every production (labeled l) of a nonterminal N
to a block in the N -section:
– name the block l
– set its type to N /l and let its output refer to N

– add a message with a format consisting of all literals
interleaved with %i placeholders for each non-literal
symbol between them.

– for each symbol Si in the production that is not a
literal, if it is a:

287



SLE ’20, November 16–17, 2020, Virtual, USA Mauricio Verano Merino and Tijs van der Storm

∗ lexical: if known, add an argument of the corre-
sponding type, otherwise use text; set output to
refer to type Si , and set inputsInline to true.

∗ list of S : schedule all S-blocks to have prev and
next to refer to S ; add a statement argument to the
l-block to get vertical nesting;

∗ nonterminal: add a value argument for horizontal
alignment, and a check for Si .

In other words, each nonterminal corresponds to a category,
and each production of a nonterminal ends up as a block type
in that category. Blocks are given a unique name based on
the nonterminal and production label. The format string of
messages is derived from the literals in the production, and
the argument list derives from the non-literal symbols, such
as lexicals, context-free nonterminals, and lists. Note that
list symbols (e.g., State*) trigger vertical stacking by setting
the prev and next references of the element type (e.g., State).
In terms of the example of Figure 5, the mapping of pro-

ductions to block types is shown in Table 1. The start symbol
Machine is mapped to a “top” block, indicated by the arc on
top, which means it cannot be nested inside any other block.

When a production contains a lexical element, Kogi applies
name-based heuristics to map a terminal symbol to one of the
built-in value blocks of Blockly. This heuristic is summarized
in Table 2. Blockly has different visual built-in fields for
different data types, such as numbers, strings, and images.
However, in context-free grammars, there are no constraints
for defining the terminal symbols of a language because they
are described using arbitrary regular expressions. Thus, Kogi
transforms every terminal symbol either into a value block
or an inline field. When the terminal symbol is one of the
built-in data types, Kogi creates an inline field, or a value
block otherwise. For instance, the lexical Id in Figure 5, is
used to capture identifiers. According to Table 2, it is mapped
into an inline field of type Id value.
To illustrate the usage of lists within a production rule,

consider the State production in Figure 5. This production
has several literals (state, {, and }, a single lexical element
(Id), and a list of transitions Trans). When Kogi finds a list or a
separated list2 it creates a statement block with both top and
bottom connections. As shown in Table 1, both Machine and
State blocks allow vertical nesting of states and transitions,
respectively.

3.4 Customization

Kogi transforms a context-free grammar to a Toolbox value,
which it then compiles to Blockly HTML and JavaScript.
However, not all relevant information for a usable block-
based environment is present in the grammar. Some aspects

2Separated lists are regular grammar symbols in Rascal; for instance {Stm

";"}* captures a list of zero or more statements (Stm), separated by semi-

colons. Since separators have no purpose in block-based environments,

Kogi treats separated lists as ordinary lists.

Table 1. Correspondence between productions and blocks.

Type Production Block

Machine "machine" Id State*

State "state" Id "{" Trans* "}"

Trans "on" Id "to" Id

Table 2. Heuristics to map lexical symbols to block shapes.

Lexical name Block

String value " lorem ipsum "

Id value

Integer value

Float value

Image value

Boolean value

Angle value

can be addressed through heuristics (e.g., color schemes to
choose colors for categories), but in the end, it is impor-
tant that language designers can customize the generated
environment.
However, the resulting environment might require a few

enhancements or changes depending on each use case. To
address this, Kogi also supports the customization of blocks.
The customization mechanism allows developers to adapt
both the language’s blocks and its toolbox.

The intermediate model described by the Toolbox type pro-
vides the entry point for such customization. Kogi first pro-
duces a default Toolbox, and then optionally, the language
designer can transform or change the toolbox structure ac-
cording to their wishes. For instance, to assign tool-tips and
colors, better labels, etc. And only then the Blockly JavaScript
code is generated.
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<block type="Machine/machine" id="*S8kNTF=$db4[yf36Gm;">

<field name="id">process</field>

<statement name="states">

<block type="State/state" id="LMF:#e+qE{[{`wk+VOGP">

<field name="id">idle</field>

<statement name="transitions">

<block type="Trans/transition" id="2=HGyRBknSM^0L3">

<field name="on">idle</field>

<field name="to">busy</field>

</block>

</statement>

</block>

</statement>

</block>

Listing 2. Blockly XML representation of a state.

3.5 Execution

Besides, to create a block-based UI for a language, Kogi also
allows users to reuse language components, such as parsers
and interpreters. To reuse these language components, Kogi
maps an XML representation of the programs, obtained di-
rectly from the block-based editor, to a native AST structure.
Because Kogi uses the names of nonterminals and produc-
tions label to define the toolbox, these names can again be
used to reflectively map this XML structure back to an AST
datatype that uses the same names.
For instance, a suitable abstract syntax definition for the

state machine example of Figure 5 would be:

data Machine = machine(str name, list[State] states);

data State = state(str id, list[Trans] transitions);

data Trans = trans(str on, str to);

Each type corresponds to a nonterminal, and each con-
structor to a named production. Lexicals are mapped to con-
structors with string arguments (str).
Listing 2 shows an (excerpt) of an XML AST returned by

the generated Blockly environment for the state machine
language of Figure 5. Using the names in the type and name

attributes, this can be transformed into a value of type (in
this case) State. Thus, the type value can be used by language
processors of the language.

4 Case Studies

We used Kogi to generate block-based environments for four
different languages, namely, the state machine language dis-
cussed above, Sonification Blocks, Pico, and QL. These lan-
guages were implemented using Rascal and are available on
GitHub 3. Below we briefly discuss the latter three languages.

3h�ps://github.com/cwi-swat/kogi-examples

Figure 7. Kogi block-based version of Sonification Blocks.

4.1 Sonification Blocks

Sonification Blocks [4] is a programming language for teach-
ing students basic concepts of sound production, program-
ming, and connection of data flows. This language is offered
as a custom-made block-based environment.

We have manually reverse engineered Sonification Blocks
and implemented a Rascal grammar that captures the lan-
guage’s syntax. Then this grammar was input to Kogi to cre-
ate the block-based environment shown in Figure 7. Figure 8
shows an original Sonification Blocks program compared to
the same program in the Kogi-generated environment.

It can be observed that both programs (Figure 8) are quite
similar. However, there are some differences. For instance,
the children of the run program block do not have the same
layout. The generated version rendered them in a single line.
Moreover, the connect block in the generated environment
does not allow the user to select a value from a dropdown
list; instead, it offers all the options as standalone blocks
(e.g., sine). The same difference is found in the last field
(named of the same block), in which users must write the
variable’s name manually. Finally, the images for waves and
spectrum are hard-coded in Kogi’s version, meaning that they
do not change as the user changes other values. While the
first differences could be considered cosmetic, the second
category is more significant, since the display of dynamic
sine waves is essential for the programmer experience.

As explained in Section 3.4, Kogi allows developers to cus-
tomize the generated block-based environment. Therefore,
we will customize the generated environment by changing
a block’s color and defining the toolbox categories. To cus-
tomize a block-based environment, developers must create
references to the blocks they want to customize and then
define the categories in which blocks will be grouped. Each
block is referenced by the production’s label. Listing 3 shows
how to customize the Sonification Blocks’ toolbox.
First, we create references to four blocks: initial, sound,

speaker, and slider. Based on these references, we change the
color of the initial block; the other blocks remain unchanged.
Moreover, we created three custom categories: Start, Con-
nection, and Sources. If a block is not assigned to any of the
custom-defined categories, Kogi sets them into anUnassigned
default category. The resulting custom Sonification Blocks
environment is shown in Figure 9.
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(a)

sine wave (spectrum: ) named my_sound speaker

sine wave (spectrum: ) named my_sound 440

wait 3 seconds

set parameters frequency of sound to be

connect to

run program

(b)

Figure 8. Original Sonification Blocks program [3] (a) and
Kogi version (b).

Toolbox customizeToolbox() {

// Blocks references

initial = block("initial", colour = hsv(360));

sound = block("sound");

speaker = block("speaker");

slider = block("slider");

// Toolbox sections

initSec = section("Start", hsv(90), [initial]);

connection = section("Connection", hsv(0), [sound]);

dataSource = section("Sources", hsv(200),

[speaker, slider]);

return toolbox([initSec, connection, dataSource]);

}

Listing 3. Customization of Sonification Blocks.

Figure 9. Customized version of Sonification Blocks.

4.2 Pico

Pico is a toy programming language, like the While lan-
guage, often used in programming language semantics text-
books. An implementation of Pico is available as part of the
Rascal standard library [39]. To create the block-based in-
terface for Pico, we used the existing Rascal grammar for
Pico, and used it as input to Kogi; the resulting environment
is shown in Figure 10. Kogi allows us to reuse existing lan-
guage components, not only the grammar for deriving the
block-based UI, but the interpreter for executing programs.

Figure 10. Block-based environment for Pico.

Figure 11. Block-based environment for QL.

4.3 QL

QL is a DSL for defining interactive questionnaires, and it
has been used to benchmark and evaluate language work-
benches [15]. QL is interesting to be used within a block-
based environment because it is not a programming lan-
guage, which means that the target users might be domain
experts who have limited or no programming experience.
Therefore, block-based environments could be more natural
to use for this kind of end-user [50, 52] due to the use of
natural language labels on blocks, colors, shapes, and the
interaction with the environment (drag and drop).
Rascal already had an implementation for QL; thus, we

used the existing implementation to obtain a block-based
syntax. We took QL’s concrete syntax in Rascal and used it
as input for Kogi. Figure 11 shows an example of a tax ques-
tionnaire defined using the generated block-based environ-
ment. In this example, a domain-expert could have defined
a simplified tax form with two questions, a single question
(hasSoldHouse), and a conditional question (sellingPrice).

4.4 Effort

To better understand the effort of developing block-based
environments, we measured the number of Source Lines of
Code (SLOC) for the generated environments. This includes
the number of SLOC of the grammar in Rascal and the num-
ber of SLOC of generated Blockly JavaScript and HTML. All
the SLOC measurements for the generated (and the manual
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implementation Sonification Blocks) of the environments
were done using SonarQube [43] and Cloc [14]. The SLOC for
the Rascal grammars were measured only with a configured
of Cloc so that it supports Rascal.
Table 3 shows the number of SLOC for each language’s

grammar, the number of generated SLOCs per block-based
environment, and the Sonification Blocks’ handwritten SLOC.
The first column shows the names of the considered lan-
guages. The next column has the number of grammar SLOCs
for each language; all the grammars were written using
Rascal’s syntax definition formalism. The following two
columns, Generated Blockly code andManual implementation,
contain the SLOC generated by Kogi for each environment
and the handwritten version of Sonification Blocks.
We only included the manual implementation of Soni-

fication Blocks because it is an existing block-based envi-
ronment [3], while the others were pre-existing languages,
implemented in Rascal, but without a manual implementa-
tion of a block-based environment. The Generated Blockly
code column is divided into two columns, with chain rules

and without chain rules. The first one represents the environ-
ment as-is, without removing chain rules and the latter is the
environment where chain rules and unreachable productions
are removed.

For each environment in Table 3, we calculated the number
of SLOC for HTML, JS, and Total. The HTML SLOC contains
a default web application in such language. Kogi’s generated
environment is a basic HTML app that loads required JS
libraries (e.g., Blockly) and creates a basic layout to display
the block-based environment and an XML representation
of the current block program. The HTML app contains the
definition of the toolbox as an embedded XML element.

The JS code represents the language blocks’ specifications
using Blockly’s embedded JSONDSL. The Total column is the
sum of the HTML and the JS columns. In general, the number
of HTML SLOC is smaller for the generated environment
than the JS SLOC because, as mentioned above, the HTML
app is rather basic, while the JS contains the definition of
all the blocks, and each block’s definition requires around
20–30 SLOCs.
When comparing the SLOC of the environments with

and without chain rules, some differences become apparent.
First, for the state machine language, there is no difference,
because there are no chain rules in the grammar. Comparing
the results of QL and Pico, however, there is a decrease in
the number of SLOC in the environments where chain rules
have been removed.

The results of Sonification Blocks, however, show a differ-
ent picture. In this case, the number of SLOC increases in the
environment without chain rules. This behavior is caused by
inlining chain rules: If a chain rule is used in multiple places
in the grammar, it will be inlined multiple times. As a result,
duplicate blocks are created in different categories.

4.5 Effect of Chain Rule Elimination

To evaluate the effect of chain rule elimination, we manually
calculated the number of toolbox categories and blocks per
language for both environments, the one that contains chain
rules (Standard grammar) and the other that does not contain
chain rules (Simplified grammar). Table 4 shows the results
for all the languages.
In the first row (State machines), as we saw in Table 3,

there is no difference between the two environments. As
we discussed in Section 3, removing chain rules might di-
rectly impact the number of nonterminals. This impact varies
depending on how the grammar was written; and the rela-
tionships between the nonterminals involved in a chain rule.
As we see from the data in Table 4, the number of categories
decreases in most languages (except in state machines were
no chain rules were found). Looking at the number of blocks,
in two (QL and Pico) out of the four cases, there was also
a reduction in the number of blocks. Nonetheless, in two
cases (State machines and Sonification Blocks), there was no
reduction nor increase in the number of blocks. As discussed
earlier, the state machine language does not have chain rules,
yet Sonification Blocks does have chain rules, as can be seen
in reducing the toolbox’ categories, but in the latter case,
additional, duplicated blocks were generated, which causes
the numbers to be the same.

4.6 Discussion

As we explained through the paper, Kogi uses Rascal as a
platform for developing and generating the resulting block-
based environments. This fact shows that using a Language
Workbench (LWB) syntax definition formalism is possible.
Moreover, as shown by Kogi, we can use these formalisms
for describing and creating block-based environments. For
instance, Kogi uses an existing LWB (Rascal) for the specifica-
tion of a block-based environment with Blockly as front-end.
The way Kogi does it is by using context-free grammars to
describe the language’s syntax, and deriving a block-based
environment from it. However, as observed in the generated
environments, they often require some adjustments. Particu-
larly, when comparing the generated version of Sonification
Blocks and its manual implementation, we notice that, as
expected, the latter contain some tweaks to improve the
user’s experience. This is a common trade-off between an
ad-hoc and a generated solution like the one offered by Kogi.
Since generated solutions might not fit all use cases, Kogi
offers some degree of block customization, as explained in
Section 3. For instance, in Sonification Blocks (Section 4), we
used Rascal for describing the language’s syntax; based on
this definition, we derived a block-based language (Figure 8).
Likewise, the specification of the language was done using
a context-free grammar. As we showed with the four case
studies, the information contained in context-free grammars
is expressive enough to create a block-based environment.
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Table 3. Lines of code (SLOC) numbers of Kogi generated environments (written and generated).

Languages
Grammar

(SLOC)

Generated Blockly code (SLOC) Manual Implementation

(SLOC)
With chain rules Without chain rules

HTML JS Total HTML JS Total HTML JS Total

State machine 15 35 112 147 35 112 147 -
Sonification 75 85 769 854 79 874 953 1752 536 2288
QL 54 69 811 880 64 733 797 -
Pico 39 55 408 463 52 389 441 -

Table 4. Number of categories and blocks per language.

Languages

Standard

grammar

Simplified

grammar

# Cats. # Blocks # Cats. # Blocks

State machines 3 3 3 3
Sonification 12 35 9 35
QL 6 31 5 28
Pico 7 15 6 14

Moreover, Kogi supports user-defined customization. Kogi’s
customization mechanism allows developers to make mod-
ifications at both the toolbox and the block level. The first
allows users to create their own set of toolbox categories
and group blocks within these categories, while the second
lets developers define or tweak single blocks for their needs.
Thus, Kogi’s customization mechanism allows developers to
adapt a generated solution to fit their needs.
As we observed in Table 4, eliminating chain rules in a

grammar reduces the number of toolbox’s categories and
blocks. However, a reduction in these numbers does not guar-
antee an improvement in the end-users’ editing experience.
We tried out both environments (with and without chain
rules), and often the environments with chain rules require
end-users to add extra blocks to their programs; further re-
search is needed to measure the impact of removing chain
rules in terms of the environment’s usability. Therefore, we
do not have enough quantitative or qualitative results to con-
clude that removing chain rules impacts these environments’
usability. Nonetheless, we noticed some differences in the
editing experience when we removed the ‘chain blocks‘ from
the block-based environment.

5 Further Directions

Block Grammars. Kogi applies heuristics to obtain a us-
able default Block layout based on the structure of a context-
free grammar. After mapping the grammar to the Toolbox

data type, language designers can customize some of the as-
pects to obtain a better user experience. Nevertheless, both
the heuristics and customization hooks are relatively limited

to the potential offered by block-based UIs. An interesting
direction to offer more flexibility to language designers is
then to explore a “native” grammar formalism for blocks,
where properties like orientation (vertical vs. horizontal),
inline rendering, colors, tool-tips, etc. are first-class citizens
in the grammar. Integration with a UI framework could even
allow the language designer to define custom “lexical” ele-
ments, to supplant the basic set offered by frameworks like
Blockly.

Hybrid Languages. Although Block-based languages have
the potential to lower the barrier to entry to programming for
end-users, at a certain level of detail, the block metaphor may
break down. For instance, expressions are a widely used and
well-known concept, and they are found in many languages.
Pasting together expressions (especially deeply nested ones)
in a block-based environment, however, can be tedious and
cumbersome.
A direction to explore would thus be to support hybrid

languages, where some constructs are block-based, but oth-
ers, such as the aforementioned expressions, are based on
parsing text-fields. In a sense, this is also how spreadsheets
work: The grid is a structured editor, but the formulas are
entered textually.
A further benefit of such hybrid editor could be that it

emphasizes the difference between programming and con-
figuration: Blocks for defining the high-level architecture
of a system by composing components (such as machines,
classes, entities, UIs, robots, etc.), – but using code editors
for low-level algorithmic details.

ErrorMarking. Block-based environments provide away
to specify a program without the possibility of making syn-
tax errors. However, most languages have consistency and
well-formedness checks that go beyond pure syntax, such as
type checking. Kogi-based editors support a level of reuse of
existing language components. However, for type checking
(or any kind of static analysis), this is currently limited to
printing out errors on the console. It would be interesting
to explore origin tracking [24, 48] techniques to allow high-
lighting such errors within the editor itself. For instance, by
propagating the node identities of the XML AST produced
by Blockly (as seen in Listing 2) to the native Rascal ASTs,
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and using those identities to render the errors in-place using
JavaScript.

Run-Time Support. Block-based syntax support (possi-
bly with error marking) is concerned with static aspects
of code. However, an important aspect, especially for end-
users, is being able to inspect and visualize executing code.
Many block-based environments (e.g., Scratch) are also live
programming languages, where dynamic inputs are entered
inside the IDE, and the dynamic execution can be started,
interrupted, restarted, inspect, etc. Such run-time feature
would require a deeper integration between the block-based
front-end and the internal structures (stack frames, heaps,
program counters, etc.) of the back-end. Further research
is needed to investigate how far such support is possible,
while still being able to reuse as much as possible of existing
language artifacts.

6 Related Work

Block-based environments can be considered a subclass of
the class of graphical or visual languages [12]. One of the
main motivations of graphical languages is to make program-
ming for beginners easier than text-based languages [27].
Kogi contributes to the research field of generating program-
ming environments [10, 15, 21, 28, 40, 44, 47]. In the litera-
ture, we found mainly two ways of developing block-based
environments: through libraries or extending existing block-
based environments.

Begel [7] created a graphical version of Logo, a computer
language developed in the 1960’s by Seymour Papert et al.,
with the aim of lowering the barrier to entry for learners. Val-
larte [42] designed and developed a framework for creating
graphical block programming systems through a specifica-
tion in XML format. Blockly [36] offers an API for creating
block-based UIs; they offer two APIs for the block’s defini-
tion, one in JavaScript, and the other using JSON.
Extending existing block-based environments is also a

common practice to develop block-based environments. Tamil-
ias et al. [46] extended Blockly@rduino to create B@SE, a
block-based environment to ease the transition from blocks
to text-based programming. Similarly, Nergaard [35] cre-
ated a block-based policy editor for XACML by extending
Scratch. Kyfonidis et al. [31] extended OpenBlocks to create
a block-based version of the C programming language.
Kurihara et al. [30] proposed a programming environ-

ment for visual DSLs that uses code generators. The code
generators are used to generate text-based code from the
block-based representation. Kogi offers a similar approach,
yet Kogi is integrated within an LWB, which lets developers
define all the language’s aspects. Moreover, Kogi supports
can be used to build block-based UIs on top of existing lan-
guages developed in a LWB; as a result, existing text-based
languages can benefit from having an additional block-based
UI.

7 Conclusions and Future Work

Block-based environments offer a different UI for interacting
with code, in which writing a program becomes a matter
of dragging and dropping jigsaw-like blocks. This type of
environment has become popular due to the benefits they
offer to end-users: no risk of syntax errors, easy discover-
ability, labels in natural language, etc. Moreover, this type
of environment is being used in different domains, ranging
from education to robot programming.

Nevertheless, the implementation of block-based languages
requires a lot of effort, because high-level language work-
bench support is currently lacking. Libraries like Blockly help
developers to create the front-end of block-based languages,
but still require low-level, framework-specific programming.
In this paper we have presented Kogi, as a step towards

first-class support for block-based language as part of lan-
guage workbenches (in this case Rascal) by deriving block-
based environments from context-free grammars. We have
analyzed the anatomy of block-based environments by dis-
secting Google’s Blockly framework (Section 2), and formal-
ized it as an abstract syntax for Blockly toolboxes. Kogi takes
a context-free grammar and transforms it to a Blockly AST
which is then compiled to the required Blockly JavaScript
code. The grammar is analyzed to obtain reasonable defaults
for the layout and categorization of the resulting blocks. To
improve the usability of the generated environment, Kogi
applies a number of simplifications to the grammar, to avoid
generation of spurious blocks types. Blockly-based environ-
ments export the program as an XML AST, which can be
mapped back to a native Rascal AST structure, which is suit-
able for further processing (interpretation, code generation,
etc.).

We have used Kogi to create block-based environments for
four languages, namely a DSL for State machines, an existing
language for sound configuration, Sonification Blocks, a DSL
for questionnaires QL, and a simple programming language,
Pico (Section 4). The generated environments are evaluated
in terms of effort (Section 4.4) and toolbox complexity (Sec-
tion 4.5).

Kogi represents the first step to integrate block-based syn-
tax with language workbenches. The resulting environments
are usable, and may be supported by (pre-)existing language
components. Nevertheless, further research is required to
provide amore native formalism to define, configure, and cus-
tomize block-based environments to offer maximal flexibility
to language designers, investigating hybrid environments
combining both block-based elements and textual syntax,
and how to support more dynamic aspects of a language,
such as debugging, providing dynamic inputs, and live pro-
gramming.
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