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The family of n-bit Toffoli gates, with the two-bit Toffoli gate as the figurehead, are of great interest in
quantum information as they can be used as universal gates and in quantum error correction, among other
things. We present a single-step implementation of arbitrary n-bit Toffoli gates (up to a local change of basis),
based on resonantly driving a single qubit that has a strong Ising coupling to n other qubits. The setup in the
two-qubit case turns out to be identical to the universal Barenco gate. The gate time and error are, in theory,
independent of the number of control qubits, scaling better than conventional circuit decompositions. We note
that our assumptions, namely, strongly coupling n + 1 qubits and a driving frequency that scales with n, may
break down for large systems. Still, our protocol could enhance the capabilities of intermediate-scale quantum
computers, and we discuss the prospects of implementing our protocol on trapped ions, Rydberg atoms, and
superconducting circuits. Simulations of the latter platform show that the Toffoli gate with two control bits
attains fidelities of above 0.98 even in the presence of decoherence. We also show how similar ideas can be used
to make a series of controlled-NOT gates in a single step. We show how these can speed up the implementation
of quantum error correcting codes and we simulate the encoding steps of the three-qubit bit-flip code and the
seven-qubit Steane code.
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I. INTRODUCTION

The n-bit Toffoli gates are a family of reversible logic
gates, where each gate has n control bits and one bit which
is inverted if the control bits are in the right state. The n-bit
Toffoli gates, and especially the two-bit Toffoli gate, simply
known as the Toffoli gate [1], are of great interest in the field
of quantum information [2]. The two-bit Toffoli gate, on its
own, is a universal gate in classical computing and together
with the Hadamard gate it constitutes a universal set of quan-
tum gates [2]. The n-bit Toffoli gates are further important
since they play a pivotal role in schemes for quantum error
correction [3,4], in fault-tolerant quantum computing [5,6],
and in Shor’s algorithm [7].

While high-fidelity quantum gates on one or two qubits
have been reported [8–12], accurate implementations of
multiqubit gates such as the Toffoli gate remain challenging.
In a conventional circuit decomposition, where the Toffoli
gate is performed as a sequence of one- and two-qubit gates,
it is known that at least five two-qubit operations are needed
to obtain a two-bit Toffoli gate. For larger n, these numbers
grow steeply: The n-bit Toffoli can be implemented with a
circuit of depth O(log(n)), requiring O(n) ancilla bits. If no
ancillas may be used, the number of controlled-NOT (CNOT)
gates is lower bounded at 2n, although the best known imple-
mentations require a quadratic number of CNOT gates [13].
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Circumventing this decomposition has also attracted sig-
nificant attention. Reference [14] considers a shorter cir-
cuit for the two-bit Toffoli gate by requiring one qutrit and
Refs. [15–17] implement a similar scheme, employing su-
perconducting transmon qubits or atoms in coupled cavities.
Other proposals rely on the properties of resonant driving,
such as the two-bit Toffoli gate using a modified Jaynes-
Cummings model [18] or other multiqubit gates in integrable
spin chains [19,20]. References [21–23] describe a Toffoli
gate for general n by exploiting the Rydberg blockade and
Ref. [24] proposes the same gate using trapped ions. Another
proposal for the two-bit Toffoli gate using the Rydberg atom
is based on Stark-tuned three-body Förster resonances [25].
A recent result in Ref. [26] addresses a driven two-bit Toffoli
gate for silicon spin qubits.

Here we present a simple single-step implementation of
the n-bit Toffoli gate for an arbitrary n. We require a strong
Ising-type coupling between a target qubit and n control qubits
and then apply a driving field to selectively invert the target
qubit. This results in an operation we call i-Toffoli, which
can be straightforwardly mapped into a conventional Toffoli
gate by demoting a single qubit to an ancilla. Surprisingly,
we find that the gate time and error do not increase with n
in theory, which beats previously known results. We critically
note that our assumptions may break down at larger system
sizes: We require an interaction between n qubits and a single
target, where the interaction strength should not decrease with
n. Moreover, the required driving frequency scales with the
number of qubits. Still, the protocol could greatly enhance the
capabilities of certain near-term quantum computers [27], and
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we perform a detailed study of its performance on supercon-
ducting circuits. Our simulations find that when decoherence
is neglected the fidelity is approximately constant above 0.995
and when decoherence is included the i-Toffoli attains fideli-
ties above 0.98 with up to five control qubits, for gate times of
50 ns. A similar driving approach allows a fanout gate, where
a CNOT gate takes place between a single control and n target
qubits. We discuss its application in error correction, where
qubits can be encoded in fewer steps.

Our proposal is closely related to previous work on mul-
tiqubit gates that exploit the Rydberg blockade interaction,
especially Ref. [21]. In contrast to such prior art, we do not
assume a perfect blockade interaction, but consider an Ising
model with finite interaction strength, allowing a rigorous
analysis of gate times and errors. Moreover, our broader per-
spective results in the same operation in fewer steps, without
restricting the study to a single platform.

The paper is organized as follows. In Sec. II we present a
simple Hamiltonian and show how it yields an n-bit Toffoli
gate. As an example we consider the n = 1 case, which turns
out to be identical to the universal Barenco gate. Then we
discuss the gate error and the asymptotic scaling. We also
discuss the effectiveness of the gate, exploring the important
n = 2 case as an example in Sec. II D. In Sec. III we explain
how to use the same ideas to implement a CNOT gate on
several qubits at the same time. We further, in Sec. IV, present
possible implementations of the gates using superconducting
circuits, Rydberg atoms, and trapped ions. In Sec. V we
combine the gates and show how to create a more efficient
quantum error correction by simulating the three-qubit bit-
flip correcting code and the Steane seven-qubit code using
our single-step gates. In Sec. VI we provide a summary and
outlook for future work.

II. IMPLEMENTATION OF SELECTIVE INVERSION

Consider n + 1 qubits, each with frequency ω j . All of the
qubits are connected with Ising coupling with strength Jjk as
described by the Ising Hamiltonian

ĤIsing = 1

2

n∑
j<k=0

Jjkσ
z
j σ

z
k , (1)

while the noninteracting part of the Hamiltonian is given as

Ĥ0 = −1

2

n∑
j=0

ω jσ
z
j , (2)

where σ x,y,z denote the Pauli operators. We denote the quan-
tum states in the computational basis by |x0, �x〉, where x0 ∈
{0, 1} represents the state of the zeroth qubit, which we will
call the target qubit, and �x ∈ {0, 1}n denotes the string of
states of the remaining qubits, which we call control qubits.
These states are eigenstates of H0 + HIsing, whose energies we
denote by Ex0,�x. We drive the zeroth qubit with a field of the
form

Ĥdrive = α0(t )σ x
0 + β0(t )σ y

0 . (3)

When the driving is included in the Hamiltonian the Hilbert
space decomposes into conserved subspaces, one for each �x.

Each of these subspaces is spanned by |0, �x〉 and |1, �x〉. We
define the energy gap between such two states, due to the Ising
interaction, as

��x = E0,�x − E1,�x + ω0

=
n∑

j=1

Jj0(−1)�x j , (4)

where �x j denotes the jth entry in the string of control qubit
states. Similarly, we define the mean energy as Ē�x = (E0,�x +
E1,�x )/2. The Hamiltonian of a given subspace is then

Ĥ�x = 1
2 (��x − ω0)σ z + α(t )σ x + β0(t )σ y + Ē�x12. (5)

Here 12 denotes the two-dimensional identity matrix.
We now consider the driving fields. In general, different

combinations of the driving fields α j (t ) and β j (t ) will lead
to the same result, and here we consider a balanced two
quadrature driving

α0(t ) = � cos[(�0 − ω0)t + θ ],

β0(t ) = � sin[(�0 − ω0)t + θ ], (6)

where �0 is the driving frequency up to the frequency of qubit
0, � is the Rabi frequency, and θ is the driving phase. We now
transform into the rotating frame using the transformation

Ûint(t ) = exp

⎛
⎝i

⎡
⎣Ĥ0 + 1

2
�0σ

z
0 +

∑
�x∈{0,1}n

Ē�x|�x〉〈�x|
⎤
⎦t

⎞
⎠. (7)

In this frame, for each subspace labeled by �x, the Hamiltonian
takes the form

Ĥ�x,I = δ�xσ
z
0 + �

(
σ x

0 cos θ + σ
y
0 sin θ

)
, (8)

where δ�x = (��x − �0)/2 defines the detuning. With the now
time-independent Hamiltonian we can calculate the time-
evolution operator for all two-dimensional subspaces

Û (t ) =
⊕

�x∈{0,1}n

(
12 cos v�xt − i

�σ · �v�x
v�x

sin v�xt

)
, (9)

where �σ = (σ x, σ y, σ z ) and

�v�x =
⎡
⎣� cos θ

� sin θ

δ�x

⎤
⎦, (10)

with v�x = |�v�x| being the length of the vector.
It follows from Eq. (9) that we have obtained selective

state inversion. In order to see this we consider the case were
the driving frequency is resonant with an energy gap of a
single subspace �x′, i.e., �0 = ��x′ , in which case we obtain
a rotation around a vector in the x-y plane, leading to a perfect
inversion at times T = (2m + 1)π/2� for m ∈ Z, where the
time-evolution operator of that subspace takes the form

Û�x′ (t = T ) = ±i(σ x cos θ + σ y sin θ ). (11)

The remaining off-resonant subspaces, i.e., assuming
|�| � |�0 − ��x|, evolve approximately as if no driving takes
place:

Û�x(t = T ) ≈ exp(−iδ�xσ
zt ). (12)
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Thus we conclude that if we set �0 = ��x′ we obtain an
inversion of the resonant subspaces, while the off-resonant
subspaces are not inverted.

Note that we do not require the Jjk’s to be equal, but we
do require them to be larger than the Rabi frequency, i.e.,
Jjk 	 �, to satisfy the off-resonance condition. We further
note that if instead of the two quadratures in Eq. (6) we had
used one quadrature driving, i.e., β(t ) = 0, we would have
had two driving fields of opposite sign:

α(t ) = 2�
(
ei(�0−ω0 )t + e−i(�0−ω0 )t

)
. (13)

When ω0 = 0, there would be two resonant subspaces in
which the zeroth qubit is inverted. This problem is fixed by
demanding a relatively large frequency of the zeroth qubit,
ω0 	 �. Moreover, in the case β = 0 the above results are
then no longer exact, but remain valid if the rotating-wave
approximation (��x,�0 	 �) applies.

A. Barenco gates

In classical reversible computing there is no two-qubit gate
which is both universal and reversible. However, in quantum
computing any entangling two-qubit gate is universal when
assisted by one-qubit gates [28,29]. Some two-qubit gates are
even universal on their own. The first two-qubit gates which
were shown to be universal were the family of Barenco gates
[30], and it turns out that our implementation above yields
exactly such gates for n = 1. Therefore, and for the sake of an
example, we discuss the n = 1 more in depth.

Consider the Hamiltonian Ĥ = Ĥ0 + ĤIsing + Ĥdrive for
n = 1. In this case the Hamiltonian splits up into two sub-
spaces {|00〉, |10〉} and {|01〉, |11〉}. We now transform into
the interacting picture using the transformation

Ûint = exp
[
Ĥ0 − δ1σ

z
1 + 1

2δ114 + �0σ
z
0σ z

1

]
, (14)

where δ1 is some detuning from the frequency of the control
qubit. Now if we require the driving to be on-resonance
with the target qubit, i.e., �0 = −J10, then the interacting
Hamiltonian takes the form

ĤI = δ1(|01〉〈01| + |11〉〈11|) + �(σ+e−iθ + σ−eiθ ). (15)

Exponentiating this to get the time-evolution operator, we
obtain

Û (t ) =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 eiδ1t cos �t −iei(δ1t−θ ) sin �t
0 0 −iei(δ1t+θ ) sin �t eiδ1t cos �t

⎤
⎥⎦,

(16)
which is identical to the family of Barenco gates.

As the Barenco gates are closely related to the Deutsch
gate, this begs the question whether our implementation yields
a Deutsch gate for n = 2. However, this turns out not to be the
case; there is a phase of i to differ.

B. The (n − 1)-bit Toffoli gate

To form an approximate Toffoli gate with n control qubits,
we choose the driving frequency �0 to be such that the zeroth
qubit flips if and only if all control qubits are in the state

•

≈
Û(2T )

•
•
•

H H

|0〉 |0〉

FIG. 1. Circuit that turns two applications of the i-Toffoli (here
indicated as the result of our protocol, with total time 2T = π/� and
arbitrary θ ) into a conventional Toffoli gate, at the cost of a single
ancilla.

|1〉, i.e., �0 = �11...1. Equations (11) and (12) suggest that we
have indeed obtained the aimed operation.

However, moving back from the rotating frame to the
laboratory frame using Û�x,lab = Û †

int(t )Û�x [see Eq. (7)],
we encounter two discrepancies: (i) the additional phases
exp(−iEx0,�xT ) accumulated on each computational basis state
due to ĤIsing and (ii) the additional phase −i in the resonant
subspace �x = 1 . . . 1 (note that this is not a global phase). Note
that such phases in the laboratory frame become relevant when
subsequent noncommuting operations are performed.

The 2n+1 different energies Ex0,�x can in general be hard
to compute for a large system. Undoing them may be even
harder. However, one can conceive various specific configu-
rations where resetting the phases is possible. In particular,
whenever the Ising couplings Jjk are symmetric under permu-
tations on the control qubits, then the evolution depends only
on the Hamming weight (the number of qubits in state |1〉)
of the control qubits, which we define as q = |�x|H . In such
cases, only n + 1 subspaces are unique, and hence only n + 1
relative phases have to be considered. Various techniques can
then be used to undo these dynamical phases. One example
is to choose a total gate time T such that all phases Ex0,�xT
become a multiple of 2π . For example, when all Jjk are integer
multiples of some energy scale J , then the values of Ex0,�x
are also integer multiples of 2J such that a total driving time
T = 2kπ/J (k ∈ N) gets rid of unwanted phases. Note that
random experimental imperfections in Jjk may still cause the
fidelity of such phase recurrences to be affected. A different
strategy is to invert the sign of all Jjk halfway through the
protocol [20]. This undoes the accumulated phases, although
care has to be taken to also change the phase θ of the resonant
driving fields such that the previously caused rotation on the
zeroth qubit is not counteracted.

Assuming that we removed the phases due to ĤIsing, e.g.,
by transforming into the frame rotating with ĤIsing, we turn
to removing the phase −i. This phase is a result of evolution
by a Hamiltonian with trace 0, which generates unitaries with
determinant 1. We will refer to the operation that acts as −iσ x

on the target if and only if all controls are in the state |1〉 as
the i-Toffoli. To turn this into a conventional Toffoli gate, we
propose the circuit in Fig. 1. Note that applying the resonant
operation twice leads to a phase −1 in the resonant subspace.
This is similar to a multiple-controlled-σ z gate except that the
sign is applied both when the target is in state |0〉 and when it
is in state |1〉. Hence, we obtain a multiple-controlled-σ z gate
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which applies a sign −1 to the control qubits if and only if
all these qubits are in the state |1〉. The state of the target is
unimportant, and we may just as well initialize it to |0〉 before
the protocol. Finally, the controlled-σ z gate is mapped to a
controlled-σ x gate by using two Hadamard gates; these can
be applied to any control qubit, which then takes the role of
target of the resultant (n − 1)-bit Toffoli gate.

C. Gate error and asymptotic scaling

Having dealt with the additional phases, we turn back to
Eq. (12), which we claim is a good approximation to the actual
evolution in Eq. (9). Surprisingly, the approximation error can
be expressed using analytical methods. To achieve this, we
assume a permutation symmetry between the control qubits
such that all couplings to the zeroth qubit are identical: J0,k =
J . In this case, the properties of each conserved subspace
depend only on the Hamming weight q of the controls. Using
subscripts to denote the subspace in which the result is valid,
we find that

�q = J (n − 2q). (17)

Choosing the subspace with weight q0 = n to be on-
resonance, the detuning per subspace becomes δ = J (n − q).
Finally, we set T = π

2�
such that the resonant subspace is

always completely inverted.
We can now calculate the accuracy of the approximation

in Eq. (12) compared to Eq. (9) as a function of the system
parameters. As metric, we consider the trace fidelity or matrix
inner product per subspace

Fq(Uq,Ugoal,q) = 1

dim(Uq)
|tr(UqU †

goal,q)|

= cos
(πγ

2

)
cos

(π

2

√
1 + γ 2

)

+ γ√
1 + γ 2

sin
(πγ

2

)
sin

(π

2

√
1 + γ 2

)
,

with γ = J (n−q)
�

. This result is plotted in Fig. 2(a) and is valid
for arbitrary n � 1. Clearly, the subspace with weight q = n −
1 is closest to resonance and therefore experiences the largest
error. In each subspace, the fidelity scales approximately as
1 − J2

�2 , indicating that a sufficiently small � (hence larger
gate time T ) can, in theory, result in an i-Toffoli of arbitrary
precision.

A metric for the overall gate fidelity uses a weighted sum
over all subspaces,

Ftr(U,Ugoal ) = 1

dim(U )

n∑
q=0

2Fq

(
n

q

)
.

For comparison with later results that involve decoherence, we
also introduce the process fidelity [2,31–33]

F̄ =
∫

dψ〈ψ |Û †
goalC(ψ )Ûgoal|ψ〉, (18)

where the integration is performed over all possible initial
states |ψ〉 and C is the quantum channel that implements
our protocol and outputs the resulting density matrix. In the
following, we use this process fidelity as our metric of gate

(a)

(b)

FIG. 2. (a) Inner product error for subspaces with various Ham-
ming weights. The error is seen to decay quadratically in J/�. Note
that the plot uses a log-log scale. (b) Process fidelity F̄ for various
values of J/� and for various system sizes. Both plots assume a
permutation symmetry between control qubits and that the resonant
subspace has weight q0 = n.

fidelity. In the special case that C is a unitary map, we can
recycle our previously found trace fidelity [31] using

F̄ = dim(U )F2
tr + 1

dim(U ) + 1
.

The theoretical process fidelity of our driven i-Toffoli gate
is plotted in Fig. 2(b) for varying n, where surprisingly the
fidelity improves with larger system sizes. We explain this
as follows. For any n, there are n subspaces that differ in
Hamming weight by 1 from the resonant subspace with q =
n, which are the least off-resonant. On the other hand, an
exponentially large number of subspaces have a much larger
off-resonance. Hence, the averaged error benefits more from
the many off-resonant subsystems when n increases.

Note that, in the above, we worked in the interaction
picture [Eq. (7)] such that the energies Ex0,�x dropped out. This
allowed us to focus purely on the driving error as a function of
J/�. In fact, this calculation allows any couplings Jjk between
the control qubits, as these are not relevant in the interaction
picture. Still, to make the i-Toffoli relevant to the laboratory
frame, any relative phases need to be canceled somehow.

The same derivation could be done for different definitions
of gate fidelity or error, such as the operator norm error we
discuss in Appendix C. This error considers only the worst
possible input state to our protocol, and indeed we find that
the error is independent of n because it is fully determined by
the subspace with weight q = n − 1.

Finally, we note that one might consider the case where
a subspace different from q0 = n is to be flipped. By choos-
ing the driving frequency � = J (n − 2q0), one will approx-
imately find the operation where the zeroth qubit is rotated
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if and only if the control qubits have weight |�x|H = q0. The
values n − q in the above results should then be replaced with
q0 − q.

The asymptotic scaling of our protocol is surprising: The
time required to perform our operation is independent of the
number of qubits, and the induced error is either constant or
(in the case of the trace fidelity) actually increases with a
larger system size. This is a great improvement over conven-
tional decompositions into one- and two-qubit gates, which
take at least O(log(n)) time and O(n) gates.

Still, a critical look should be taken at our assumptions.
First, strongly coupling n qubits to a single target qubit
would be challenging to realize in physical three-dimensional
space, as each of these n qubits would need to be sufficiently
close to the zeroth. Any realistic method to implement this
would probably set a maximum for n. Second, the oscillation
frequency ∼�0 for the resonant subspace q0 = n increases
linearly with n in our protocol. This may not be realistic,
and if one requires the frequency �0 to be bounded, then
the Hamiltonian energy scale needs to be scaled down by a
factor 1/n. This effectively causes all timescales to increase
by a factor n, retrieving an O(n) time protocol. Third, as
n increases so does the number of requirements. Evidently,
|�0 − ��x| 	 � is more difficult to fulfill for all subspaces,
except �x′, as the number of subspaces increases with n.

Thus it is clear that there is a limit on how large n can be.
However, it is difficult to predict how large as it will depend
on the given implementation.

D. Simulation of the two-bit i-Toffoli gate with decoherence

In order to illuminate the performance of the system in a
practical setting, we simulate our protocol for the i-Toffoli
gate under realistic decoherence for n = 2. We simulate the
system using the Lindblad master equation and the interaction
Hamiltonian of Eq. (8) using the QUTIP PYTHON toolbox [34].
The result is then transformed into the frame rotating with
the diagonal of the Hamiltonian, and then the average process
fidelity is calculated.

For all simulations we choose parameters which lie in
a realistic range for a superconducting circuit experiment.
However, our simulation is done for the general Hamiltonian
and is thus valid for any implementation with the same
parameters. In particular, we have J0k/2π = J/2π = 40 MHz
and all other couplings are zero, while we change the Rabi
frequency �/2π from 2 to 10 MHz. The average fidelity of
the simulation can be seen in Fig. 3 together with the gate
time. The figure shows the average fidelity both without any
decoherence and with decoherence times of T1 = T2 = 30 μs
[35], where T1 indicates the relaxation time and T2 indicates
the dephasing time. Without any decoherence we find that the
average fidelity increases asymptotically towards 1 as the driv-
ing decreases, with the only expense being an increase in gate
time. Since decoherence increases over time, a longer gate
time means lower fidelity, which is exactly what we observe
when including decoherence in the simulations. In this case
we find that the fidelity peaks just above 0.99 at J/� = 8,
which yields a gate time of T = 62.5 ns. This fidelity is
higher than any previously measured Toffoli gate fidelities
[25,36]. However, we note that the fidelity is dependent on

4 6 8 10 12 14 16 18 20
J/Ω

0.970

0.975

0.980

0.985

0.990

0.995

1.000

F̄

20

40

60

80

100

120

T
[n

s]

FIG. 3. Simulation of the two-bit i-Toffoli gate for different
values of the driving J . The straight red line indicates the gate time T
on the right y axis, while the blue lines indicate the average fidelity
on the left y axis. The dashed blue line is the average fidelity with a
decoherence time of T1 = T2 = 30 μs, while the solid line is without
decoherence.

the parameters J and �, and thus changing these will change
the fidelity. The oscillation of the average fidelity is due to a
small mismatch in the phase of the evolved state compared to
the desired gate, which disappears when J/� ∈ 2Z.

As an indication of the fidelity of a conventional Tof-
foli gate, we simulate the same protocol for time 2T (see
Fig. 1), resulting in still above 0.98 fidelity. An additional two
Hadamard gates should then still be applied, but we remain
agnostic to the errors these would introduce.

We investigate the peak fidelity of the n-bit i-Toffoli gate
as a function of the number of control qubits. This is done
by simulating the gate for different n but with J/� = 8 in all
cases. The result are shown in Fig. 4. We find that when we do
not include the decoherence of the qubits the average fidelity
[found using Eq. (18)] increases when there are more than two
control qubits and we stay above 0.995 in fidelity for all cases.
This is in agreement with the analytical result discussed in
Sec. II C. When decoherence is included the fidelity decreases
as the number of qubits increases, as one would expect. Thus
we conclude that the major contribution to error in the scheme
is the decoherence of the qubits.

FIG. 4. Average fidelity as a function of the number of qubits for
the n-bit i-Toffoli gate and the CNOTn gate. Simulations done with
noise have a decoherence time of T1 = T2 = 30 μs. All simulations
are done with J/� = 8, i.e., peak fidelity (cf. Fig. 3). Note that the
one-bit i-Toffoli and CNOT1 are the same gate, which is an example
of a Barenco gate.
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III. SINGLE-CONTROL MULTIPLE-INVERSION GATE

Multiple applications of a controlled-NOT gate on several
different qubits, with the same qubit controlling all the gates,
are essential in many aspects of quantum information, particu-
larly in error correction such as Shor’s code [2]. We therefore
present a scheme for implementing inverting multiple qubits
with the same control qubit in a single step. We will refer to
this scheme as a CNOTn gate.

Starting with n + 1 qubits, we employ the same overall
Hamiltonian as in Sec. II, Ĥ = Ĥ0 + ĤIsing + Ĥdrive, where Ĥ0

and ĤIsing are given in Equation (2) and (1), respectively, while
we require Jjk = 0 for k > 0. The driving Hamiltonian is now
given as

Ĥdrive =
n∑

j=1

[
α j (t )σ x

j + β j (t )σ y
j

]
, (19)

where the driving fields are given as in Eq. (6). This is
essentially the same system as in Sec. II but now with the
driving on what was before called the control qubits. We
therefore denote our quantum states in the same way as before,
|x0, �x〉; however, now we are interested in flipping the qubits
in the state �x conditional on the state of the zeroth qubit x0.
This means that the Hilbert space only decomposes into two
conserved subspaces, one spanned by {|0, �x〉} and one spanned
by {|1, �x〉}. We now transform into a rotating frame using the
transformation

Ûint(t ) = exp

⎛
⎝i

⎡
⎣Ĥ0 + 1

2

n∑
j=1

Jj0σ
z
j σ

z
0

⎤
⎦t

⎞
⎠. (20)

In this frame the Hamiltonian takes the form

ĤI =
n∑

j=1

�
{
σ x

j cos
[(

� j − Jj0σ
z
0

)
t + θ j

]

+ σ
y
j sin

[(
� j − Jj0σ

z
0

)
t + θ j

]}
, (21)

from which we see that we obtain selective inversion of the n
qubits, at time T = (2m + 1)π/2�, if we require � j = −Jj0.
The time-evolution operator takes the form

Û (t = T ) = |0〉〈0|0
n⊗

j=1

Î j

+ (−i)n|1〉〈1|0
n⊗

j=1

(
σ x

j cos θ j + σ
y
j sin θ j

)
,

(22)

where Î j is the identity of the jth qubit and |0〉〈0|0 and |1〉〈1|0
operate only on the zeroth qubit. We find that the phase (−i)n

on the inverting part of the operator is now dependent on the
number of target qubits. In this case, it is easily canceled by a
single-qubit phase gate of the form diag(1, in) on the control
qubit. Note that in the case of an even number of qubits the
phase is either ±1, which can be taken care of by choosing
the right phases θ j , in which case the single-qubit phase gate
is unnecessary.

Since the only difference between the Hamiltonian of the
CNOTn gate and the n-bit Toffoli gate in Sec. II is which qubits

are being driven, a numerical simulation of the CNOTn gate as a
function of the ratio J/� yields an average fidelity comparable
to the one for the n-bit i-Toffoli gate in Fig. 3. However, the
CNOTn gate has a slightly lower fidelity since more qubits
are now inverted. The peak average fidelity can be seen in
Fig. 4, where the average fidelity decreases as a function of the
number of qubits. This behavior is expected since the CNOTn

gate does not approximate the identity better for larger n. Note
that the one-bit i-Toffoli gate is the same as the CNOT gate,
which is why the average fidelities are identical in this case.
This is also the fidelity one gets when simulating the Barenco
gate in Sec. II A.

IV. EXPERIMENTAL IMPLEMENTATIONS

The ideas presented here are applicable in various quantum
information technologies. Our main focus is on supercon-
ducting circuits, which we discuss below and elaborate on in
Appendix A. We also discuss the prospects of implementing
our operation using Rydberg atoms and trapped ions.

A. Superconducting circuit implementation

An implementation of our n-bit Toffoli gate would re-
quire quite large longitudinal ZZ couplings, in the sense that
they must dominate over the transversal XX couplings. For
superconducting circuits this regime is within experimental
reach according to Ref. [37]. Inspired by the superconducting
circuit realizing the coherent quantum router in Ref. [38], we
propose to implement the n-bit Toffoli gate and the CNOTn

gate by connecting n transmon qubits [39,40] via Josephson
junctions (with as small a parasitic capacitance as possible) to
another transmon qubit, which we call the zeroth transmon, in
correspondence with naming of the qubits in Sec. II. Such a
circuit has the Hamiltonian

Ĥcirc = 1

2
�̂p T K−1 �̂p −

n∑
j=0

Ej cos ϕ̂ j −
n∑

j=1

Ez cos(ϕ̂0 − ϕ̂ j ),

(23)

where ϕ̂ j are the node fluxes and �̂p T = ( p̂0, p̂1, . . . , p̂n) are
the conjugate momenta, fulfilling the commutator relation
[ϕ̂ j, p̂k] = iδ jk , with δ jk the Kronecker delta. In addition, K
is the capacitance matrix of the circuit. Examples of circuits
and capacitance matrices, for n = 2 and 3, can be found in
Appendix A. The capacitive couplings, coming from the para-
sitic capacitances of the Josephson junctions, yield transversal
XX couplings between all the qubits in the model. We are
however not interested in these couplings, and thus we require
capacitances of the Josephson junctions to be much less than
the transmon capacitances, which will leave the capacitance
matrix being approximately diagonal, effectively suppress-
ing undesired transversal XX couplings between the control
qubits stemming from the capacitances. We further detune the
zeroth qubit from the control qubit such that the remaining
XX couplings are suppressed. This leaves only longitudinal
ZZ couplings as desired. When truncating the Hamiltonian in
Eq. (23) to an Ising-type model one reaches the nondriving
term of the Hamiltonian in Eq. (8). We obtain the driving
part of the Hamiltonian by applying a microwave field to the
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desired qubits, depending on whether we want to realize the
n-bit Toffoli gate or the CNOTn gate. A detailed calculation
going from the circuit design to the gate Hamiltonian can be
found in Appendix A.

B. Rydberg atoms

Ultracold atoms of the Rydberg type natively feature a
strong Ising-type interaction [41], making these a promising
platform for our protocol to be implemented. Various earlier
proposals for multiqubit operations based on the Rydberg
blockade interaction exist, such as Refs. [21,23,42,43], and
some of these have been experimentally tested [44,45]. The
specific Toffoli-type gates have never been implemented.
However, Refs. [46,47] perform detailed simulations of pre-
vious proposals for driven protocols for Toffoli gates in the
context of quantum algorithms, finding that the multiqubit
implementation may have advantages over a sequence of
one- and two-qubit gates. We hope that this motivates future
work to consider our protocol on a Rydberg atom quantum
computer in more detail.

C. Trapped ions

Trapped ions are very well suited to simulate the Ising
model with all-to-all connectivity. In these systems, linear
crystals of ions are held in electric traps, and for each ion,
two electronic states are chosen to form the qubit degree of
freedom. By coupling these qubits to motional states of the
ions using lasers, an effective interaction between the qubits
can be formed, which approximates the Ising model. The spin-
spin couplings can be made of the form Jjk ∝ 1/| j − k|α , with
α ∈ [0, 3] [48–51]. The choice α = 0 makes all interactions
equal, leading to a highly symmetric system for which the
energies Ē�x are efficiently calculated.

We identify various challenges for an implementation of
our gate using trapped ions. First, the amplitude of the Ising
interaction J is determined by the coupling strength of the
lasers to the motional excitation of the ions. However, to pre-
vent qubit-motion entanglement, this laser coupling has to be
rather weak, such that only virtual phonon excitation occurs
[48]. Typically, interaction strengths between the qubits lie in
the kilohertz range in these systems. Since our resonant field
on the ancilla must have an amplitude � that is even much
smaller than J , this leads to very long gate times, well beyond
a millisecond. To illustrate, a closely related experiment was
performed in Ref. [52]. Here, up to 18 ions are made to
approximate an Ising interaction, while at the same time a
resonant driving field is applied to all ions simultaneously.
The effective interaction strength J is indeed of the order of
a kilohertz, while the driving field amplitude is a fraction of
that. While this is sufficiently strong to identify transitions
for spectroscopic applications, the resulting evolution would
likely be too slow to perform a high-fidelity multiqubit gate.

Alternatively, we can tune the laser frequencies closer to
the eigenfrequencies of the ion motion such that the phonon
excitation is nondispersive [48]. In this situation, we would
have to choose the gate time and driving field such that the
phonon populations exactly return to their initial state at the
end of the gate sequence. This ensures that the qubit states get

disentangled from the ion motion. In this scheme, J is greatly
increased, and coupling strengths J in excess of 100 kHz can
be obtained [53]. However, the phonon numbers oscillate with
large amplitude during this type of gate sequence. Driving a
transition between the states |1, �x〉 and |0, �x〉 while these are
entangled to different phonon states introduces errors in the
final gate. In particular, disentangling the qubit and motional
states when also applying the driving field � is not trivial. It
is worth investigating whether newly developed techniques for
finding robust gate operations using pulse engineering could
be successfully applied to this problem [53–58]. Stroboscopic
techniques could also be used such that the driving field is
only applied at times when the qubit gets disentangled from
the motion [59]. We conclude that the indirect nature of the
trapped ion’s Ising interaction introduces several obstacles
that have to be bridged before our protocol could be competi-
tive with conventional gate decompositions.

V. APPLICATIONS IN QUANTUM ERROR CORRECTION

In this section we discuss how to use the results above
to create an efficient error correction code. We consider
the three-qubit bit-flip code [2] and the Steane seven-qubit
code [60,61]. We focus on bit flip rather than phase errors
in the three-qubit code, since the decay time for relaxation
is usually half the decay time for dephasing in the case of
transmons [40,62]. One can however easily change the code
into correcting phase errors by applying Hadamard gates
around the source of error [2]. This could be useful in an im-
plementation of a 0-π qubit, which has a long relaxation time
but a rather short dephasing time [63–65]. The three-qubit
code has previously been implemented using superconducting
circuits to a fidelity of 0.85 [16] and with trapped ions to a
fidelity of approximately 0.98 [66]. The Steane seven-qubit
code has been implemented with a state fidelity between 0.85
and 0.95 using trapped ions [67].

In the following all simulations are done without worrying
about the phase generated by the inverting, i.e., it is done
with the i-Toffoli gate, as it is irrelevant for the encoding.
The error correction codes is simulated using the Lindblad
master equation using the QUTIP PYTHON toolbox [34]. All
Ising couplings are assumed to be J/2π = 40 MHz.

A. Three-qubit bit-flip code

The original three-qubit bit-flip code works by first apply-
ing two CNOT gates before the error source and then two CNOT

gates after the error followed by a single two-bit Toffoli gate.
This means a total of five steps. However, using our results,
the code can be performed in merely three steps: apply a single
CNOT2 gate before the source of error, a single CNOT2 gate after
the error, and finally a single n-bit Toffoli gate. A quantum
circuit of the error correcting code can be seen in Fig. 5.

The first two qubits are initiated in the state |0〉, while the
third qubit is initiated in the normalized state

|ψ〉 = α|0〉 + β|1〉. (24)

The system is then operated as a CNOT2 gate by driving the first
two qubits with a Rabi frequency of � = J/8 for one period,
i.e., T = 50 ns. After this a bit-flip error might occur. This
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1 |0〉

E
R

R
O

R

•

2 |0〉 •

3 |ψ〉 • •

FIG. 5. Effective three-qubit error correction code using two
CNOT2 gates and a Toffoli gate. We label the top qubit 1, the middle
qubit 2, and the lowest qubit 3. Note that the figure is shown with
regular Toffoli gates, while our simulation is done with the i-Toffoli
gates; however, it does not change the result.

is followed by another driving of the two first qubits for one
period. Finally, the last qubit is driven for one period. All this
is done in 150 ns. By averaging over the Bloch sphere for the
input state |ψ〉 in Eq. (24) we find the average fidelity of the
code. In Fig. 6 we present the average fidelities for the three-
qubit error correction code for a single bit flip on the different
bits. From the simulation we see that the error is corrected
with a fidelity above 0.99.

B. Steane code

The Steane code is a bit more intricate than the three-qubit
code as it involves encoding on seven qubits. This is two more
than the minimum number of qubits needed for protection
against both bit-flip and phase errors [2], but it is the simplest
Calderbank–Shor–Steane (CSS) code (stabilizers built from
only either Z or X rotations) which protects against both
bit-flip and phase errors. The encoding scheme for the Steane
code can be seen in Fig. 7.

As the encoding scheme only uses CNOT2 and CNOT3 gates,
it is necessary to be able to perform gate operations on some
of the seven qubit but not all. This can be achieved in situ in
superconducting circuits by varying the magnetic flux through
the Josephson junctions which connects qubits which are
desired unconnected. An overview on how to connect the
seven qubits in the four steps of the encoding can be seen
in Fig. 8. Using the regular CNOT gate, the Steane encoding

0.0

0.5

1.0

(a)

|00〉|ψ〉 |01〉|ψ〉 |10〉|ψ〉 |11〉|ψ〉

(b)

0 1 2 3
0.0

0.5

1.0

(c)

0 1 2 3

(d)

t/T

F̄

FIG. 6. Average fidelity [Eq. (18)] of different states found by
simulating the quantum error correction code shown in Fig. 5 using
the gates developed in the previous sections: (a) no error, (b) error on
the first qubit, (c) error on the second qubit, and (d) error on the third
qubit.

(a) (b) (c) (d)

1 |+〉 •
2 |+〉 •
3 |+〉 •
Q |ψ〉 •
4 |0〉
5 |0〉
6 |0〉

FIG. 7. Encoding scheme for the Steane code. Qubit Q is initially
in state |ψ〉 and the circuit encodes it into a seven-qubit state using
one CNOT2 gate and three CNOT3 gates. The first three qubits are
prepared in the state |+〉 = (|0〉 + |1〉)/

√
2, while the last three

qubits are prepared in the state |0〉.

takes 11 steps, while with CNOTn gates it can be done in just
four steps.

Seven qubits are initialized, three in the state |+〉 = (|0〉 +
|1〉)/

√
2 and three in the state |0〉, while the last qubit is

prepared in the state of Eq. (24). The driving of the target
qubits is the same for all steps, yielding a total time of 4T for
the encoding. We average over the Bloch sphere for the input
state |ψ〉 in order to find the average fidelity. The fidelity is
found by taking the overlap between the seven-qubit output
state and the state α|0〉L + β|1〉L, where the expressions for
the two states |0〉L and |1〉L are the appropriate encoding states
for the Steane code, when the encoding is done with i-Toffoli
gates. We absorb the additional phases in that come with our
driven protocol into the definitions of |0〉L and |1〉L, as defined
in Appendix D. These additional phases do not change the
error correcting properties of the code.

FIG. 8. The four steps realizing the Steane code using CNOTn

gates. Green spheres (spheres with one connection) represent target
qubits, i.e., qubits on which the NOT operation is performed, blue
spheres (spheres with multiple connections) are control qubits, and
the yellow spheres (unconnected spheres) represents idle qubits. The
four steps (a)–(d) corresponds to the four gates in Fig. 7.
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FIG. 9. Simulation of the Steane encoding scheme seen in Fig. 7,
using CNOTn gates. The simulation is done for J/2π = 40 MHz. The
straight red line indicates the gate time T on the right y axis, while
the blue lines indicate the average fidelity on the left y axis. The
dashed blue line is the average fidelity with a decoherence time of
T1 = T2 = 30 μs, while the solid line is without decoherence.

The results of the simulation can be seen in Fig. 9. The
result is similar to the one presented in Fig. 3, however with
longer gate times and lower fidelities. When not considering
decoherence, the lower fidelity is also a result of the fact
that we need four gates, and thus the infidelities of all gates
accumulate. The fidelity peaks just below 0.9 when including
decoherence in the simulation, which is a lower number than
before because more qubits are subjected to decoherence. The
longer gate time is a result of the fact that we are now dealing
with four gates, compared to one in Fig. 3. However, this
is still a rather short time compared to if we had only used
two-qubit gates, which would increase the gate time by almost
a factor of 3.

VI. CONCLUSION AND OUTLOOK

We proposed a simple single-step implementation of n-bit
Toffoli gates, CNOTn gates, and the Barenco gate and showed
that these exhibit a high fidelity, with the main cause of
error being the qubits’ decoherence. These gates can easily be
transformed into CnZ or CZn gates by applying Hadamard gates
on the target qubits. While the difficulty of implementing
our gates does increase with n, we believe that our gates
can provide many advantages to certain types of quantum
computers, especially compared to rather deep equivalent
circuits built from one- and two-qubit gates.

As an example of an implementation of the gates for quan-
tum information processing we discussed superconducting
circuit design of the gates and possible implementation in

Rydberg atoms and trapped ions, though the idea is not limited
to these quantum information schemes. By simulating the
protocol we showed that the gates can easily be concatenated
into error correction codes. The gates proposed in this paper
are not limited to the three-qubit error correcting code or the
Steane code. They can be applied to numerous other codes
making them more effective. These results could enhance the
performance of near-term quantum computing experiments on
algorithms that require many Toffoli gates or same-control
CNOT gates.
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APPENDIX A: ANALYSIS OF THE SUPERCONDUCTING
CIRCUIT

Following the procedure of Refs. [68,69], we obtain the
Lagrangian from the circuit diagrams in Fig. 10

L = 2
n∑

i=0

Ciϕ̇
2
i + 2

n∑
i=1

Cz,i(ϕ̇i − ϕ̇0)2

+
n∑

i=0

Ei cos ϕi +
n∑

i=1

Ez,i cos(ϕ0 − ϕi ), (A1)

where ϕ̂i are the node fluxes across the Josephson junctions
of the respective qubits. The first two terms come from
the capacitors and are interpreted as kinetic terms, and the
remaining terms come from the Josephson junctions and are
interpreted as potential terms. The n indicates the number of
blue transmon qubits on the circuit diagram, i.e., in Fig. 10(c)
n = 2.

The Lagrangian can be rewritten into the Hamiltonian
in Eq. (23) doing the usual Legendre transformation. The
capacitance matrix in the two-bit case is then [Fig. 10(c)]

K =
⎡
⎣C0 + Cz,1 + Cz,2 −Cz,1 −Cz,2

−Cz,1 C1 + Cz,1 0
−Cz,2 0 C2 + Cz,2

⎤
⎦, (A2)

while in the three-bit case [see Fig. 10(d) for a circuit diagram
of the three-bit case] it becomes

K =

⎡
⎢⎣

C0 + Cz,1 + Cz,2 + Cz,3 −Cz,1 −Cz,2 −Cz,3

−Cz,1 C1 + Cz,1 0 0
−Cz,2 0 C2 + Cz,2 0
−Cz,3 0 0 C3 + Cz,3

⎤
⎥⎦, (A3)

and so on for higher n. The typical transmon has a charging
energy much smaller than the junction energy and therefore

the phase is well localized near the bottom of the potential.
We can therefore expand the potential part of the Hamiltonian
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FIG. 10. Implementation of the (a) two-bit and (b) three-bit i-Toffoli gates in superconducting circuits, with the green spheres (ω0)
representing the target qubit and the blue spheres representing the control qubits. Also shown are (c) and (d) the superconducting circuits
yielding the models in (a) and (b), respectively. The different parts of the system are colored according to their role, as per (a) and (b).

to fourth order

U (ϕ) =
n∑

i=0

Ei

[
1

2
ϕ2

i − 1

24
ϕ4

i

]

+
n∑

i=1

Ez,i

[
1

2
(ϕi − ϕ0)2 − 1

24
(ϕi − ϕ0)4

]

=
n∑

i=0

Ei

[
1

2
ϕ2

i − 1

24
ϕ4

i

]

+
n∑

i=1

Ez,i

[
1

2

(
ϕ2

i + ϕ2
0 − 2ϕiϕ0

)

− 1

24

(
ϕ4

i + ϕ4
0 − 4ϕ3

i ϕ0 + 6ϕ2
i ϕ

2
0 − 4ϕiϕ

3
0

)]
.

By collecting terms we can write the full Hamiltonian as

H =
n∑

i=0

[
1

2
EC

i p2
i + 1

2
EJ

i ϕ2
i − 1

24
EJ

i ϕ4
i

]
+

n∑
i=1

(K−1)(i,0) pi p0

+
n∑

i> j=1

(K−1)(i, j) pi p j +
n∑

i=1

Ez,i

[
−1

4
ϕ2

i ϕ
2
0 − ϕiϕ0

+ 1

6

(
ϕ3

i ϕ0 + ϕiϕ
3
0

)]
,

where the effective energy of the capacitances is EC
i =

(K−1)(i,i)/8. Note that there is a capacitive coupling between
all of the qubits regardless of whether there actually is a
capacitor between them. The effective Josephson energies

are

EJ
i = Ei + Ez,i for i = 0, (A4a)

EJ
0 = E0 +

n∑
i=1

Ez,i. (A4b)

We now do the canonical quantization ϕi → ϕ̂i and pi →
p̂i, requiring that [ p̂i, ϕ̂ j] = iδi j . This allows us to change into
ladder operators

ϕ̂i =
√

ζi

2
(b̂†

i + b̂i ), p̂i = i√
2ζi

(b̂†
i − b̂i ), (A5)

with impedance ζi =
√

(K−1)(i,i)/EJ
i , and the Hamiltonian

takes the form

Ĥ =
n∑

i=0

[√
8EC

i EJ
i b̂†

i b̂i − EC
i

12
(b̂†

i + b̂i )
4

]

− 1

2

n∑
i=1

(K−1)(i,0)√
ζiζ0

(b̂†
i − b̂i )(b̂

†
0 − b̂0)

− 1

2

n∑
i> j=1

(K−1)(i, j)√
ζiζ j

(b̂†
i − b̂i )(b̂

†
j − b̂ j )

+
n∑

i=1

Ez,i

{
− 1

24
ζiζ0(b̂†

i + b̂i )
2(b̂†

0 + b̂0)2

− 1

2

√
ζiζ0(b̂†

i + b̂i )(b̂
†
0 + b̂0)

+ 1

24
[ζi

√
ζiζ0(b̂†

i + b̂i )
3(b̂†

0 + b̂0)

+ ζ0

√
ζiζ0(b̂†

i + b̂i )(b̂
†
0 + b̂0)3]

}
.
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If the anharmonicities αi = EC
i /2 of the qubits are sufficiently

large, we can justify projecting the Hamiltonian into the
lowest two eigenstates of each qubit

Ĥ = −1

2

n∑
i=0

ωiσ
z
i + 1

2

n∑
n=1

Jz
i σ

z
i σ z

0

+ 1

2

n∑
i=1

Jx
i (σ+

i σ−
0 + σ−

i σ+
0 )

+ 1

2

n∑
i = j=1

Jx
i j (σ

+
i σ−

j + σ−
i σ+

j ), (A6)

where we have neglected terms that do not conserve number
excitation, such as σ±

i σ±
j (this is the rotating-wave approx-

imation). We note that the first term is the desired nonin-
teracting Hamiltonian and the second term is the desired
Ising coupling term. The qubit frequencies and the coupling
strengths are given as

ωi =
√

8EC
i EJ

i + 1

2
EC

i + 1

6
Ez,iζiζ0 for i = 0, (A7a)

ω0 =
√

8EC
0 EJ

0 + 1

2
EC

0 + 1

6

n∑
i=1

Ez,iζiζ0, (A7b)

Jz
i = − 1

12
Ez,iζiζ0, (A7c)

Jx
i = (K−1)(i,0)√

ζiζ0
− Ez,i

√
ζiζ0 + 1

4
Ez,i(ζi + ζ0)

√
ζiζ0, (A7d)

Jx
i j = (K−1)(i, j)√

ζiζ j
. (A7e)

If we operate in the weak-coupling regime for the transver-
sal couplings Cz,i � C0,Ci for all i, the detuning δi0 = ωi −
ω0 of the zeroth qubit compared to all other qubits becomes
much larger than the transverse couplings in Eq. (A7d). Using
the rotating-wave approximation, we can then ignore the first-
order excitation swaps between these qubits. In this case the
Hamiltonian takes the form

Ĥ = Ĥ0 + 1

2

n∑
n=1

Jz
i σ

z
i σ z

0 + 1

2

n∑
i = j=1

Jx
i j (σ

+
i σ−

j + σ−
i σ+

j ).

(A8)

The last term represents the cross couplings between the ith
and jth qubits for i, j = 1, 2, . . . , n. We get rid of this term as
we are in the weak-coupling limit Cz,i � Ci, which makes the
Hamiltonian take the desired form.

1. Driving term

We are now ready to consider the driving term Ĥdrive.
We drive the system capacitively, which yields the driving
Lagrangian

Ld = Cd

2
(ϕ̇i − φ̇i )

2, (A9)

which drives the ith qubit. We simply add such terms for each
qubit we wish to drive. The external driving field is given as

φi = A sin(�̃it + θ ), (A10)

where A is the amplitude of the driving, �̃i is the driving
frequency, and θ is the phase. We rewrite the driving terms
as

φi = A(cos θ sin �̃it + sin θ cos �̃it ),

where we have expanded the driving field in the in-phase
component and the out-of-phase component. Expanding the
parentheses of Ld yields

Ld = Cd

2
[ϕ2

i + φ̇2
i − 2ϕ̇iφ̇i], (A11)

where the first term is a kinetic term which can be absorbed
into the diagonal of the capacitance matrix, the second term is
some irrelevant offset term, and the last term is the interesting
term regarding the driving of the system. This alters the
conjugate momentum slightly

�p = K �̇ϕ + �̇φ, (A12)

where �ϕ is the vector of node fluxes and �φ is the vector of
driving terms. Doing a Legendre transformation, the kinetic
part of the Hamiltonian takes the form

Hkin = 1
2 ( �p − �̇φ)T K−1( �p − �̇φ)

= 1
2 [ �p T K−1 �p + �̇φ T K−1 �̇φ − �p T K−1 �̇φ − �̇φ T K−1 �p ].

The first term is the original kinetic term (with the added
driving capacitance), the second term is the irrelevant offset
term, and the last two terms are the driving terms yielding

Hd = −φ̇i(K
−1)(i,i) pi. (A13)

Doing the canonical quantization and changing into step
operators, we obtain

Ĥd = −iφ̇i
(K−1)(i,i)√

2ζi
(b̂†

i − b̂i ). (A14)

Truncating to a two-level model as above, we find

Ĥd = −φ̇i
(K−1)(i,i)√

2ζi
σ

y
i , (A15)

from which we realize that

βi(t ) = −A�̃i
(K−1)(i,i)√

2ζi
(cos θ cos �̃it − sin θ sin �̃it ),

(A16)

and if we choose θ = 0 and �̃i = ωi + �i we see that � =
−A�̃i(K−1)(i,i)/

√
2ζi. Note that we do not necessarily need

θ = 0 for the gate to work. In fact, it can be an advantage to
have an out-of-phase component in order to minimize leakage
to higher excited states, when the anharmonicity is small
using, e.g., pulse-shape engineering schemes [70–76].

APPENDIX B: REALISTIC PARAMETERS

Here we presents parameters for the circuit model in
Fig. 10(c), which yields the desired gate model of Fig. 10(a).
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TABLE I. Circuit and corresponding gate model parameters for possible Toffoli gates. Since the circuit parameter space is rather large, we
have several possible solutions; some, but far from all, possible solutions are show in the table. The different solutions are labeled and color
coded in the first column. The color coding corresponds to the simulation results seen in Fig. 11. Columns 2–7 show the circuit parameters for
the circuit in Fig. 10(c). Here E0, Ei, and Ez,i indicate the Josephson junction of the target qubit, the control qubits, and the coupling between
them, respectively; C0, Ci, and Cz,i indicate the capacitance of the target qubit, the control qubits, and the coupling between them, respectively.
Columns 8–12 shows the obtained gate parameters, which can be seen in Eq. (A7). Columns 13–16 show the quality parameters of the gate:
α0 and αi are the anharmonicities of the target and control qubits, respectively, while EJ

0 /EC
0 and EJ

i /EC
i are the ratios between the effective

Josephson energy and effective capacitive energy. The subscript i indicates i = 1, 2, i.e., the control qubits.

Circuit parameters Gate parameters Quality parameters

Solution E0 Ei Ez,i C0 Ci Cz,i ω0 ωi Jz
i Jx

i Jx
i j α0 αi

no. (2π GHz) (2π GHz) (2π GHz) (fF) (fF) (fF) (2π GHz) (2π GHz) (2π MHz) (2π MHz) (2π MHz) (%) (%) EJ
0 /EC

0 EJ
i /EC

i

1 20.05 1.26 33.28 15.83 37.84 0.04 30.9 12.8 −320.1 452.6 27.8 −2.0 −2.0 71.1 67.5

2 0.61 0.02 29.30 22.19 44.89 0.03 21.9 10.8 −287.2 5.7 14.9 −2.0 −2.0 68.0 68.0

3 33.65 1.27 28.70 15.37 43.40 0.03 32.0 11.1 −274.0 453.3 22.5 −2.0 −2.0 72.6 67.2

4 31.29 0.71 24.10 16.96 53.10 0.03 28.4 9.2 −233.0 254.9 16.7 −2.0 −2.0 69.9 68.0

5 4.95 1.20 21.94 27.06 57.03 0.05 17.9 8.5 −214.0 433.7 15.0 −2.0 −2.0 68.5 68.2

6 1.58 1.27 17.14 41.71 56.41 0.09 12.5 7.6 −177.1 474.8 14.6 −1.9 −2.2 77.5 53.7

7 39.72 0.11 18.27 17.83 71.69 0.03 26.9 6.8 −176.0 38.3 9.8 −2.0 −2.0 70.4 68.0

8 0.56 0.03 17.53 35.36 77.67 0.08 13.4 6.4 −172.2 12.4 13.1 −2.0 −2.0 65.3 70.5

9 45.01 1.22 16.13 17.72 76.22 0.02 27.1 6.4 −154.6 437.1 7.8 −2.0 −2.0 70.9 68.3

10 19.87 1.22 11.35 31.88 105.46 0.04 15.1 4.6 −109.1 437.3 4.8 −2.0 −2.0 70.2 68.4

11 57.40 1.25 7.45 19.24 153.26 0.01 24.9 3.2 −70.6 444.1 1.7 −2.0 −2.0 71.9 68.8

12 23.81 0.80 6.30 37.75 187.62 0.02 12.7 2.6 −60.1 287.2 1.0 −2.0 −2.0 71.0 68.9

13 58.41 0.09 3.85 21.01 338.06 0.00 22.7 1.4 −36.6 31.3 0.0 −2.0 −2.0 71.7 68.7

14 0.01 0.19 2.50 299.11 386.88 0.37 1.7 1.1 −25.8 71.1 1.3 −1.9 −2.2 77.5 53.7

The parameters are found by calculating the gate model
parameters in Eq. (A7) and then minimizing a cost function
which returns a low value when the requirements of the gate
model are met. The minimization is done with using the
simplex method, with randomized starting points, since many
solutions exists. In order to judge the quality of the circuit
parameters we also calculate the relative anharmonicity of the
two-level systems, i.e., the difference between the 01 and the
12 transitions, and the ratio between the effective Josephson
energy and the effective capacitive energy.

In order to simplify the numerical investigation we have
assumed that the parameters of the control qubits are iden-
tical. The parameters obtained are presented in Table I. As
expected, we see that the capacitance of the coupling Cz,i

should be low compared to the other couplings, as we wish
to operate in the weak-coupling regime. We note that we get
Ising couplings in the range |Jz| ∈ [25, 320] and in all cases
dominating the cross coupling Jx

i j . The swapping couplings
Jx

i are all several factors lower than the detunings �i0 =
|�i − �0|.

We simulate all of the gates in Table I and find that all
result in a maximum fidelity above 0.99, when the driving is
� = Jz

i /8. The average fidelity as a function of time can be
seen in Fig. 11.

APPENDIX C: ANALYTICAL TREATMENT OF
THE OPERATOR NORM

The operator norm of the difference of two matrices is
given by

Enorm(U,Ugoal ) = ‖U − Ugoal‖,

which returns the largest eigenvalue of U − Ugoal and hence
captures the worst-case error of our gate. In the case of
permutation symmetry among all work qubits, the expression
simplifies to

Enorm(U,Ugoal ) = max
q

‖Uq − Ugoal,q‖.

0 20 40 60 80 100
Time, t [ns]

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
id

el
it
y

FIG. 11. Average fidelity as a function of time for all the gate
configurations presented in Table I. All simulations are done at
a driving of � = Jz/8. The fidelity is expected to peak at T =
π/2�. The solid lines are simulations without decoherence, while
the dashed lines include decoherence. The gate with the lowest gate
time corresponds to gate 1 in Table I and so forth. The color of the
lines also corresponds to the colors in Eq. Table I.
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FIG. 12. Operator norm error Enorm,q contributions due to sub-
spaces with weights n − q = 1, . . . 4, at various protocol times. The
overall error Enorm for the whole gate is always the maximum and
hence is completely determined by q = n − 1.

For the case of the resonant Toffoli gate, we obtain the
following:

Ûq(T ) − Ûgoal,q(T )

= 12

[
− cos

(πγ

2

)
+ cos

(π

2

√
1 + γ 2

)]

+ iσ z
[

sin
(πγ

2

)
− γ√

1 + γ 2
sin

(π

2

√
1 + γ 2

)]

− i[cos(θ )σ x + sin(θ )σ y]
sin

(
π
2

√
1 + γ 2

)
√

1 + γ 2
. (C1)

From this expression we can efficiently calculate the exact
operator norm error in each individual weight-q subspace. The
results are shown in Fig. 12. It is clear that the most resonant
subspace, with q = n − 1, always contributes the largest error.
Therefore, the max operation can be dropped in Enorm, and we
find that operator norm error is actually independent of n. All
in all, we find that

E2
norm = 2 − 2 cos

(
Jπ

2�

)
cos

(
π

2

√
1 + J2

�2

)

− 2
J/�√
1 + J2

�2

sin

(
Jπ

2�

)
sin

(
π

2

√
1 + J2

�2

)
. (C2)

APPENDIX D: STEANE ENCODING STATES

We derive the two Steane encoding states |0〉L and |1〉L by
applying the CNOTn gates to the initial states

|+++0000〉 = 1

2
√

2
(|0〉 + |1〉)(|0〉 + |1〉)(|0〉 + |1〉)|0000〉

CNOT2−−−→ 1

2
√

2
(|0〉 + |1〉)(|0〉 + |1〉)(|0〉 + |1〉)|0000〉

CNOT3−−−→ 1

2
√

2
(|0〉 + |1〉)(|0〉 + |1〉)

× (|00000〉 + i|11101〉)

CNOT3−−−→ 1

2
√

2
(|0〉 + |1〉)(|000000〉

+ i|101011〉 + i(|011101〉 + i|110110〉))
CNOT3−−−→ |0〉L = 1

2
√

2
(|0000000〉 + i|0101011〉

+ i|0011101〉 − |0110110〉 + i|1000111〉
− |1101100〉 − |1011010〉 − i|1110001〉),

|+++1000〉 = 1

2
√

2
(|0〉 + |1〉)(|0〉 + |1〉)(|0〉 + |1〉)|1000〉

CNOT2−−−→ 1

2
√

2
(|0〉 + |1〉)(|0〉 + |1〉)(|0〉 + |1〉)|1110〉

CNOT3−−−→ 1

2
√

2
(|0〉 + |1〉)(|0〉 + |1〉)

× (|01110〉 + i|10011〉)

CNOT3−−−→ 1

2
√

2
(|0〉 + |1〉)(|001110〉 + i|010011〉

+ i(|100101〉 + i|111000〉))

CNOT3−−−→ |1〉L = 1

2
√

2
(−|0001110〉 − i|0010011〉

− i|0100101〉 + |0111000〉 − i|1001001〉
+ |1100010〉 + |1010100〉 + i|1111111〉).
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