
Surrogate-free machine learning-based organ dose

reconstruction for pediatric abdominal radiotherapy

M Virgolin1‡, Z Wang2‡, B V Balgobind2, I W E M van Dijk2,

J Wiersma2, P S Kroon3, G O Janssens3,4, M van Herk5, D C

Hodgson6, L Zadravec Zaletel7, C R N Rasch8, A Bel2, P A N

Bosman1,9, T Alderliesten2,8

1 Life Sciences and Health Group, Centrum Wiskunde & Informatica, the

Netherlands
2 Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam,

the Netherlands
3 Department of Radiotherapy, University Medical Center Utrecht, the Netherlands
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Abstract. To study radiotherapy-related adverse effects, detailed dose information

(3D distribution) is needed for accurate dose-effect modeling. For childhood cancer

survivors who underwent radiotherapy in the pre-CT era, only 2D radiographs were

acquired, thus 3D dose distributions must be reconstructed from limited information.

State-of-the-art methods achieve this by using 3D surrogate anatomies. These can

however lack personalization and lead to coarse reconstructions. We present and

validate a surrogate-free dose reconstruction method based on Machine Learning (ML).

Abdominal planning CTs (n = 142) of recently-treated childhood cancer patients were

gathered, their organs at risk were segmented, and 300 artificial Wilms’ tumor plans

were sampled automatically. Each artificial plan was automatically emulated on the

142 CTs, resulting in 42,600 3D dose distributions from which dose-volume metrics were

derived. Anatomical features were extracted from digitally reconstructed radiographs

simulated from the CTs to resemble historical radiographs. Further, patient and

radiotherapy plan features typically available from historical treatment records were

collected. An evolutionary ML algorithm was then used to link features to dose-

volume metrics. Besides 5-fold cross validation, a further evaluation was done on

an independent dataset of five CTs each associated with two clinical plans. Cross-

validation resulted in mean absolute errors ≤0.6 Gy for organs completely inside or

outside the field. For organs positioned at the edge of the field, mean absolute errors

≤1.7 Gy for Dmean, ≤2.9 Gy for D2cc, and ≤13% for V5Gy and V10Gy, were obtained,

without systematic bias. Similar results were found for the independent dataset. To

conclude, we proposed a novel organ dose reconstruction method that uses ML models

to predict dose-volume metric values given patient and plan features. Our approach is

not only accurate, but also efficient, as the setup of a surrogate is no longer needed.

Keywords: dose reconstruction, radiotherapy dosimetry, machine learning, plan
emulation, childhood cancer, late adverse effects
Submitted to: Phys. Med. Biol.
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1. Introduction

Patients undergoing radiotherapy (RT) are prone to develop radiation-related Adverse

Effects (AEs) (Birgisson et al 2005, van Dijk et al 2010, Cheung et al 2017). To

improve the design of future multi-modality treatments, clinicians are interested in

better understanding the relationship between radiation dose and onset of AEs. Modern

research efforts in this direction delve into dosimetric details, employing dose distribution

metrics to a specific organ (or sub-volume) as explanatory variables. Such rich

information is obtained by simulating the RT plan on 3D imaging of the patient (i.e.,

CT scans) with organ segmentations in a Treatment Planning System (TPS) (Donovan

et al 2007, Feng et al 2007, Bölling et al 2011).

Unfortunately, when so-called late AEs (onset can be decades after RT) need to

be studied, it is not always possible to straightforwardly obtain detailed information

on dose distributions (Birgisson et al 2005). For patients who underwent RT before

the use of planning CTs became commonplace (in the following, historical patients),

2D radiographs were used for treatment planning (e.g., this was the case until the

1990s in the Netherlands (van Dijk et al 2010)), meaning no 3D anatomical imaging

is available. Consequently, no simulations can be performed in a TPS to estimate

3D dose distributions for these patients (Stovall et al 2006, Verellen et al 2008, Ng

et al 2012). The information available for historical patients normally consists of what

was reported in treatment records, e.g., features of the patient such as age and gender,

and features of the plan such as prescribed dose, geometry of the plan, and the use of

blocks. Additionally, 2D radiographs can be available, from which information can be

gathered on the internal anatomy (mainly bony anatomy, as internal organs are normally

not clearly distinguishable), and on the plan configuration with respect to the patient’s

anatomy (Leisenring et al 2009, van Dijk et al 2010).

To improve the understanding of late AEs, recent research is striving to develop

increasingly accurate dose reconstruction methods, i.e., methods to estimate the 3D dose

distribution received by historical patients (Stovall et al 2006, Ng et al 2012, Xu 2014, Lee

et al 2015). State-of-the-art approaches employ phantoms, i.e., 3D surrogates of

the human anatomy upon which the RT plan can be simulated, to compute the

dose distribution. Phantoms exist in different forms: physical or virtual, made by

simple geometrical shapes or by adopting and morphing actual CT scans and organ

segmentations (Stovall et al 2006, Xu 2014, Lee et al 2015). Generally, phantoms are

built to represent average anatomies, for categories of patients (e.g., for a certain age

range), and are collected into so-called phantom libraries (Cassola et al 2011, Segars

et al 2013, Geyer et al 2014). Whenever dose reconstruction for a historical patient is

needed, the phantom that represents the category that the patient belongs to is retrieved

from the library and used as surrogate for simulation of the RT plan.

As the largest source of error related to phantom-based dose reconstruction comes

from the mismatch between the anatomy of the phantom and the true anatomy of

the patient (Bezin et al 2017), it is important to define the best way to match
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phantoms to patients. This issue is still under research, and different approaches employ

different heuristic matching criteria that are normally hand-crafted and based upon

statistics and guidelines drawn from large population studies (e.g., ICRP89, NANTHES)

(Valentin 2002, Cassola et al 2011, Segars et al 2013, Geyer et al 2014). However, the

use of heuristic matching criteria has been hypothesized to be too simplistic to capture

the high variability of internal human anatomy (de la Grandmaison et al 2001, Geyer

et al 2014, Xu 2014, Virgolin et al 2018b, Wang et al 2019). For example, a popular

phantom-based dose reconstruction approach uses solely age and gender for surrogate

matching (Howell et al 2019). Our group’s recent work focusing on Wilms’ tumor

(the most common type of kidney cancer for childhood cancer patients) irradiation

for pediatric patients showed that utilizing surrogate CTs using age- and gender-

based matching can lead to poor dose reconstruction quality in individual cases (Wang

et al 2018).

To improve the resemblance of a surrogate phantom, there have been efforts to

replace the normally hand-crafted heuristic matching criteria with data-driven decisions.

For example, statistical models inferred from CTs and 3D organ segmentations of adult

patients have been used to drive a deformable image registration procedure that adapted

3D organ segmentations to the 2D anatomy of a specific patient, given features of the

latter as measurable from 2D radiographs (Ng et al 2012, Mishra et al 2013). Using

a state-of-the-art Machine Learning (ML) algorithm, it has been shown that features

typically available for historical patients treated for Wilms’ tumor can be linked to

different 3D anatomy similarity metrics based on organ segmentations and CTs (Virgolin

et al 2018b). Our group recently proposed an automatic pipeline that uses ML to steer

the assembling of a new original anatomy based on 3D CTs and organ segmentations of

multiple patients using the features of a historical patient (Virgolin et al 2019, Virgolin

et al 2020b). However, it is important to realize that maximizing some form of overall

anatomical resemblance is difficult. Moreover, from the standpoint of optimizing dose

reconstruction accuracy, it can be considered sub-optimal for RT dosimetry purposes.

This is because in RT dosimetry, what part of anatomy is most meaningful largely

depends on the particular RT plan (Wang et al 2019).

To the best of our knowledge, although both patient anatomy and plan geometry

play a key role in determining dose-volume metrics for Organs At Risk (OARs), existing

dose reconstruction approaches focused solely on patient anatomy information, to obtain

a representative surrogate. Plan information is used only later, to calculate the dose on

the surrogate. The purpose of this article is to develop and validate an ML approach

to predict dose-volume metrics for OARs based on patient anatomy and plan geometry

information. Specifically, we propose to use ML to directly learn what dose-volume

metrics for an OAR are likely given information on the patient and on the plan,

without the need to select or craft any surrogate anatomy. We argue that this is

a sensible choice because ML can directly be trained upon what ultimately matters,

i.e., dose reconstruction accuracy. In this article we present our ML-based organ dose

reconstruction approach and its validation, that was performed on a relatively large
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dataset of artificial plans, as well as on a smaller dataset of clinical plans.

2. Materials & Methods

We considered pediatric flank RT, and in particular RT for Wilms’ tumor, as an

application for our dose reconstruction method, in continuity with our previous work.

The choice to focus on pediatrics is because children are the most prone to develop

late AEs (Cheung et al 2017), and are typically underrepresented in existing phantom

libraries (Xu 2014). Moreover, more than 85% of pediatric patients survives Wilms’

tumor five years or longer, but considerable chances of the onset of late AEs remain

(van Dijk et al 2010).

2.1. Patient data

To be able to create a ground-truth to learn dose-volume metrics from, CT scans were

needed. Hence, a total of 142 pediatric planning CTs were collected by involving

the following institutes (number of CTs in brackets): Amsterdam University Medical

Centers / Emma Children’s Hospital (n = 38), University Medical Center Utrecht /

Princess Máxima Center for Pediatric Oncology (n = 42), The Christie NHS Foundation

Trust (n = 33), Princess Margaret Cancer Centre (n = 18), and Institute of Oncology

Ljubljana (n = 11). Five further CTs were collected from the Amsterdam University

Medical Centers and kept aside to be used exclusively for an additional validation step

(Sec. 2.5).

The inclusion criteria were: patient age at scan acquisition between 1 to 8 years; the

CT field of view including a common abdominal region from the tenth thoracic (T10)

vertebral body to the first sacral (S1) vertebral body; presence of five lumbar vertebrae

(rare cases of patients with six exist); patient scanned in supine position; quality of

CT sufficient to perform organ segmentations. The patients underwent RT between

2002 and 2018, mostly but not exclusively for abdominal cancers. The median CT slice

resolution was 0.94× 0.94 mm, the median slice thickness was 3 mm.

As we focused on Wilms’ tumor treatment, four OARs were considered: the liver,

the spleen, the contralateral kidney (left or right, depending on the side of the tumor),

and the spinal cord (between T10 and S1). To provide accurate and consistent OAR

segmentations, we carefully prepared the OAR segmentations in all CTs (n = 142 + 5):

for 60 CTs, pre-existing clinical segmentations of OARs were manually improved and

approved (I.W.E.M. van Dijk, checked by B.V. Balgobind only for difficult cases). To

aid the manual segmentation of the OARs for the remaining CTs (n=87), the software

ADMIRE (research version 2.3.0) from Elekta (Elekta AB, Stockholm, Sweden) was

used to generate multi-atlas based automatic segmentations using the previous 60 CTs

as atlas. These segmentations were further manually checked slice-by-slice and possibly

adapted (Z. Wang, I.W.E.M. van Dijk), and finally checked and approved (I.W.E.M.

van Dijk, checked by B.V. Balgobind only for difficult cases). Some patients did not
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have both kidneys intact, due to nephrectomy prior to RT. The number of CTs that

had only a complete right kidney, only a complete left kidney, and two complete kidneys

were 36, 40, and 71, respectively.

2.2. Automatic generation of artificial Wilms’ tumor plans

A method to automatically generate historical-like abdominal flank irradiation plans

(i.e., artificial plans) for Wilms’ tumor treatment based on information visible on 2D

radiographs was created, in order to obtain large plan variations.

Figures 1(a) and 1(c) illustrate examples of actual historical plans on respective

historical radiographs. As can be observed from the examples, a typical historical flank

irradiation field is a rectangular area, with possible shielding blocks, that is located on

the right or on the left flank. Flank irradiation is done by beams from anterior-posterior

(AP) and posterior-anterior (PA) direction. Along right-left (RL), one field border is

located at the edge of the patient’s body contour, while the other is located as to include

the vertebral column (van den Heuvel-Eibrink et al 2017). In some cases, blocks were

placed to protect OARs from irradiation (Fig. 1(c)). In historical plans the isocenter

was positioned in the center of the treatment field that is projected on the coronal plane

(Fig. 1) and at the middle of the patient’s AP abdominal diameter.

To generate artificial plans, two reference digitally reconstructed radiographs

(DRRs) were considered, randomly selected from the data. One DRR was derived

from a CT of a 5-year old female patient without nephrectomy (ref 1 in Fig. 2), and the

other was derived from a CT of a 4-year old female patient with nephrectomy of the

left kidney (ref 2 in Fig. 2). Upon these two DRRs, boundaries defining plan variability

were identified by an experienced pediatric radiation oncologist (B. V. Balgobind), to

ensure that generated plans would appear to be reasonable according to historical clinical

guidelines. Note that historical clinical guidelines are slightly different from current

ones (e.g., currently the iliac crests should be safeguarded, unlike in Fig. 1(c)). Figure 2

shows two examples of landmark locations identifying possible plan variations, on the

two reference DRRs. Specifically, given the boundaries of possible isocenter positions

and field borders, plans with a rectangular field were generated by sampling uniformly

within those boundaries. For each plan generated, an additional version of that plan

including one block was generated as well. A block was simulated as the area in the

upper lateral corner enclosed by the border of the rectangular field and a line crossing

two randomly sampled endpoints. The endpoints were sampled from two regions roughly

covering the start and end points of rib 9 and rib 12 on the DRRs (regions indicated

by the green boxes in Fig. 2). This way, a sampled block covered part of the liver

(in right-sided plans) or part of the spleen (in left-sided plans). All plans consist of

two opposing and symmetrical beams in AP-PA directions irradiating one side of the

abdominal flank. Figures 1(b) and 1(d) illustrate two examples of sampled artificial

plans (without or with a block) on respective DRRs.

A total of 300 artificial plans were generated automatically, of which 150 without a
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Figure 1. (a) An actual hand-drawn plan on a historical radiograph with a rectangular

field (indicated by white corners). (b) An artificial plan with a rectangular field (in

white lines) plotted on the DRR of a recent patient. (c) An actual hand-drawn plan

on a historical radiograph with a rectangular field (in white bars) and an additional

block (outlined by dashed yellow lines) to spare part of the liver. (d) An artificial plan

plotted on the DRR of a recent patient with a rectangular field (in white bars) and an

additional block (obtained by multi-leaf collimators, outlined by yellow lines) to spare

part of the liver. For each plot, the isocenter is indicated by a red dot in the middle

of the field.

block, and 150 with a block. The random sampling of the plan side led to 142 left-sided

plans and 158 right-sided plans (roughly half-half). The same set of plan features used

in our previous work was considered to generate plans in DICOM RTPLAN format (e.g.,

gantry and collimator angles, isocenter location, field sizes) (Wang et al 2020).
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Figure 2. Examples of landmark locations to specify geometry variability of two types

of artificial plans (left-sided plans in the left figure and right-sided plans in the right

figure). Ref 1 is the DRR derived from the reference CT of a 5-year-old female patient

and ref 2 is the DRR derived from the reference CT of a 4-year-old female patient.

The box around the isocenter (IC) specifies the range of possible isocenter positions.

The vertical position of T1/T2 and of B1/B2 specify the lowest/highest position of the

upper and lower border of the field, respectively. The horizontal positions of R1/R2

and L1/L2 specify the rightmost/leftmost position of the right and left border of the

field, respectively. The isocenter and artificial field border positions were sampled

uniformly at random within the specified ranges. The green boxes indicate the regions

where two endpoints of a line representing a block border can be sampled. This line,

together with the upper and left/right field borders, encloses the block.

2.3. Generation of the dataset for ML

Figure 3 summarizes the pipeline used to generate the dataset for ML. Firstly, we

emulated each of the 300 artificial plans on each of the 142 CT scans by the automatic

plan emulation method proposed in our previous work (Wang et al 2020), leading to

a total of 42,600 emulations. The method automatically transfers a plan prepared on

one CT to another CT (with quality comparable to human experts), using landmark

detection upon the respective DRRs. Secondly, for each of the 42,600 plan emulations,

dose-volume metrics of interest (see Sec. 2.3.1) were collected for the different OARs by

use of our automatic dose computation pipeline (Wang et al 2020). The pipeline used

the collapsed cone dose calculation algorithm of Oncentra TPS (version 4.3, Elekta

AB, Stockhom, Sweden). Thirdly, features that are plausible to be available for typical

historical cases were collected from the anatomy of the included CTs as visible in the

respective DRRs, from the artificial plans, and from the relationship between anatomy

and plan geometry.

2.3.1. Response variables: dose-volume metrics To select dose-volume metrics to use as

response variables for ML, we considered metrics typically used to validate state-of-the-

art dose reconstruction approaches (Ng et al 2012, Lee et al 2015), and typically found
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Figure 3. Pipeline for data generation. Artificial plans are sampled automatically.

The explanatory and response variables are used as input to train the ML model. The

explanatory variables include features of the plan (e.g., isocenter location, field size),

patient features (e.g., age, nephrectomy), and features on the relationship between the

anatomy of the patient and the geometry of the plan (e.g., signed distance between the

2nd lumbar vertebra and the plan isocenter). The response variables are dose-volume

metrics for each OAR.

to be of clinical relevance in studies of AEs in adults (e.g., QUANTEC) (Leisenring

et al 2009, Bölling et al 2011, Emami et al 1991). Studies on dose-volume response

relationships for pediatric patients (so-called PENTEC studies (Constine et al 2019))

are currently limited.

This reasoning led us to consider mean organ dose (Dmean), two levels of percentage

of OAR volume receiving at least X Gy (V XGy), and the minimum dose received by the

maximally exposed 2 cubic centimeters of an OAR (D2cc), the latter being similar but

more robust than the maximum dose to a single point. Typically, V 5Gy and V 20Gy

are considered. However, instead of V 20Gy, we decided to use V 10Gy in this work since

our plans have a prescribed dose of 14.4 Gy (thus V 20Gy was always 0 for the OARs).

Regarding D2cc, we decided to include this metric because peak dose values to a small

OAR portion may be relevant to explain late AEs related to OARs that work in a serial

fashion (e.g., the spinal cord).

2.3.2. Explanatory variables: features of patients and plans To assess what information

can be available for historical patients, we considered the Dutch records of the Emma

Children’s Hospital/Academic Medical Center childhood cancer survivor cohort, who

underwent RT between 1966 and 1996 (van Dijk et al 2010). For this cohort, along

with historical patient records and treatment plan details, 2D coronal radiographs were
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consistently taken, hence providing partial information on the anatomy.

The complete set of features considered in this work is reported in Table 1. Note

the absence of height and weight (which are used by some phantom-based methods

(Geyer et al 2014)). For 12% of the patients, height and/or weight data were missing

and preliminary experiments using automatic imputation methods showed no benefit in

including them.

For the features related to anatomical geometry, anatomical landmarks from DRRs

were detected automatically using the landmark detection method in our previous work

(Wang et al 2020). Note that the landmarks concerned only bony anatomy because other

internal anatomy tissues are not reliably visible in historical radiographs. Importantly,

we normalized features related to measurements of anatomy and anatomy-plan geometry

configuration (e.g., rib-cage width, field sizes, distances between landmarks and the

isocenter) by the width and height of the respective DRR they were measured from

(after the DRRs were cropped to a same region of interest between T10 and S1). This

was done because when plans are emulated, they are scaled based on proportions derived

from the landmarks (Wang et al 2018, Wang et al 2020). Since differences in anatomy

solely due to overall anatomy scaling do not result in different dose-volume metric values,

these differences should not be accounted for by the explanatory variables (confirmed

in preliminary experiments).

The abdominal diameter in AP (DiamIC
AP) is the only anatomical feature not

measurable from DRRs generated along AP/PA direction. In historical RT, it was

measured using a ruler to determine the isocenter position along the AP axis, and was

subsequently reported in the records. For our cohort, DiamIC
AP was not reported in the

records because a CT scan was used for RT planning. We therefore measured DiamIC
AP

automatically on the CT scans, by using a pre-determined isocenter position of typical

abdominal flank irradiation plans. In particular, the intervertebral disk between the 1st

and the 2nd lumbar vertebra (L1 and L2) was used to determine the isocenter position

along the inferior-superior (IS) axis, and the center of mass of the kidney was used to

determine the isocenter position along the RL axis (as the aim of Wilms’ tumor plans

is to irradiate the renal fossa). For CTs including both kidneys, two DiamIC
AP were

measured, and the average was taken. Conversely, only one DiamIC
AP was measured for

CTs including a single kidney.

In our simulations we used for all artificial plans the same fractionation scheme (8

× 1.8 Gy), beam energy (6 MV), and prescribed dose (14.4 Gy at isocenter). These

settings are the most common in historical records, and are still valid in the current

Wilms’ tumor RT protocol (van den Heuvel-Eibrink et al 2017). Moreover, choosing

a specific prescribed dose (e.g., 14.4 Gy) does not limit generalizability, since the dose

distribution over the entire anatomy depends linearly on the prescribed dose. Thus,

if dose reconstruction for a historical case using a different prescription is needed, the

dose-volume metrics predicted by the models trained on plans with a 14.4 Gy prescribed

dose can be re-scaled.
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Figure 4. An example of the beam’s eye view of a plan plotted on a DRR with the

landmark locations used to compute the features concerning plan field configuration

on top of the patient’s anatomy. The plot next to the DRR illustrates how the block

is simulated by aligning the center of the leaves with the boundary of the block and

how the slope of an MLC-simulated block is calculated.

For both fields with and without a block, the features representing field sizes in

RL and IS directions (WField and LField) were set by simply considering the full

rectangular area (i.e., irrespective of blocking). For fields with a block, the slope

of the block (note that the block is formed by Multi-Leaf Collimators (MLCs)) and

the ratio between the blocked region and non-blocked region of the field (RatioBlock)

was computed. In addition, we considered features that relate to how the plan was

configured with respect to the patient’s anatomy, based on the position of the isocenter

and of the bony landmarks. For instance, ∆IC
RL(T10B) links the bottom of the T10

vertebra to the position of the isocenter in RL direction. Figure 4 shows an example

of the anatomical landmarks and plan geometrical borders used to calculate features

describing plan configuration with respect to the patient’s anatomy.

2.3.3. Dataset for supervised learning Features and dose-volume metrics were finally

collected in a dataset. The dataset corresponded to a 2D matrix, where the rows

represented patient-plan combinations, i.e., examples (n = 42, 600), and the columns

represented features (33) and response variables (4 for each OAR).

2.4. Machine learning

In the following sections we describe how ML was performed in terms of training and

validation on the artificial plans. We further introduce the ML algorithm adopted, and

describe an independent validation on clinical cases.
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Table 1. Description of the 33 features considered as explanatory variables for ML.

Feature name Origin Unit Description

Age Records years patient age at CT scanning

ArmsUp DRR yes/no whether the patient had arms in a raised position during scanning

DiamIC
AP Records cm patient AP diameter measured at isocenter

Nephrectomy Records yes/no whether the patient underwent nephrectomy

WRibR DRR cm width (in RL) of right-part of the rib cage (from vertebral column to location of right-most rib)

WRibL DRR cm width (in RL) of left-part of the rib cage (from vertebral column to location of left-most rib)

WVC DRR cm average vertebral column width

LVC DRR cm length (in IS) of the vertebral column from T11 to L4

WField Plan cm field width (in RL)

LField Plan cm field length (in IS)

FieldSide Plan right/left whether the plan concerns left-sided or right-sided flank irradiation

InterceptBlock Plan cm distance (in RL) between isocenter and block endpoint of the top field border

RatioBlock Plan % Area(Block)/Area(Rectangular field), 0 for block-free plans

SlopeBlock Plan - ∆L/∆W of the block (see Fig. 4); 0 for block-free plans

θC Plan ◦ angle of collimator system with respect to gantry system

∆IC
RL

(T10B) Plan + DRR cm RL distance between bottom of T10 and isocenter

∆IC
IS

(T10B) Plan + DRR cm IS distance between bottom of T10 and isocenter

∆IC
RL

(T12R) plan + DRR cm RL distance between right border of T12 and isocenter

∆IC
IS

(T12R) Plan + DRR cm IS distance between right border of T12 and isocenter

∆IC
RL

(T12L) Plan + DRR cm RL distance between left border of T12 and isocenter

∆IC
IS

(T12L) Plan + DRR cm IS distance between left border of T12 and isocenter

∆IC
RL

(L1B) Plan + DRR cm RL distance between bottom of L1 and isocenter

∆IC
IS

(L1B) Plan + DRR cm IS distance between bottom of L1 and isocenter

∆IC
RL

(L2R) Plan + DRR cm RL distance between right border of L2 and isocenter

∆IC
IS

(L2R) Plan + DRR cm IS distance between right border of L2 and isocenter

∆IC
RL

(L2L) Plan + DRR cm RL distance between left border of L2 and isocenter

∆IC
IS

(L2L) Plan + DRR cm IS distance between left border of L2 and isocenter

∆IC
RL

(L4B) Plan + DRR cm RL distance between bottom of L4 and isocenter

∆IC
IS

(L4B) Plan + DRR cm IS distance between bottom of L4 and isocenter

∆IC
RL

(RibR) Plan + DRR cm RL distance between location of right-most rib and isocenter

∆IC
IS

(RibR) Plan + DRR cm IS distance between location of right-most rib and isocenter

∆IC
RL

(RibL) Plan + DRR cm RL distance between location of left-most rib and isocenter

∆IC
IS

(RibL) Plan + DRR cm IS distance between location of left-most rib and isocenter

Abbreviations: R (in superscript): right, L (in superscript): left, RL: right-left, AP: anterior-posterior, IS:
inferior-superior, IC: isocenter, VC: vertebral column, W: width, L in LVC and LField : length.

2.4.1. Training and evaluation of ML models Since dose metrics are scalars, we treated

the learning problem as a regression problem. We trained a separate ML model for each

combination of dose-volume metric and OAR.

Preliminary analysis showed that right-sided plans and left-sided plans led to

markedly different distributions of possible dose-volume metric values for all OARs

except for the spinal cord. Thus, ML models were set to be composed of two sub-

models, each to be trained independently on a particular sub-set of the data based on

plan side (right or left).

The quality of the models was estimated with a 5-fold cross-validation. This means

that a random partition of 1/5th of the total number of patients and plans was held
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out (test set), and training was performed on the remaining data. Then, the prediction

error was measured on the test set. This process was repeated five times, each time

considering a different data partition for the test set. No patient nor plan that was in

the test set was included in the data at training time.

Each training step included hyper-parameter tuning by grid-search with internal 5-

fold cross-validation (upon the training set), as well as feature selection (which resulted

in eight features being systematically discarded, see the supplementary material A). For

each dose-volume metric k ∈ {Dmean , D2cc
, V

5Gy
, V

10Gy
}, the Root Mean Square Error

(RMSE) loss was used, i.e.,

RMSE(Y k, Ŷ k) =

√√√√1

ν

ν∑

i=1

(
Y k
i − Ŷ k

i

)2

, (1)

where Y k are the ground truth values and Ŷ k are the model predictions for the dose-

volume metric k, and ν is the total number of rows in the training set. The RMSE was

chosen to regularize ML, i.e., to penalize larger errors more (Bishop 2006).

To account for the stochastic nature of the ML algorithm employed (see Sec. 2.4.2)

and for the random partitioning of the data, the 5-fold cross-validation was repeated

ten times. The averages and standard deviations over the 5× 10 validation results (five

folds repeated ten times) were considered.

To put the results of ML into perspective, for each cross-validation, a baseline

prediction was considered that simply used the average dose-volume metric observed in

the training data. The Wilcoxon signed-rank test was used to assess whether the results

obtained by ML and by this baseline are significantly different (p-value < 0.05).

2.4.2. Machine learning algorithm The recently introduced Genetic Programming

version of the Gene-pool Optimal Mixing Evolutionary Algorithm (GP-GOMEA) was

considered as ML algorithm, as it was found to achieve competitive performance on a

variety of benchmark problems (Virgolin et al 2017, Virgolin et al 2020a), as well as in

previous work concerning radiotherapy (Virgolin et al 2018a, Virgolin et al 2019).

In addition, GP-GOMEA can perform symbolic regression, i.e., it can generate

a regression ML model in the form of a (symbolic) mathematical expression. GP-

GOMEA incorporates Information Theory methods that enable it to synthesize fairly

accurate expressions of particularly compact size, an aspect that makes these expressions

lightweight and fast to execute, and that can aid human-interpretability. Details on

the hyper-parameters (and their tuning) adopted in GP-GOMEA are described in the

supplementary material B.

2.5. Independent evaluation on clinical plans

As aforementioned, the 300 plans used to cross-validate our approach were generated

with an automatic sampling procedure (Sec. 2.2). To assess whether our results on
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artificial plans can be valid for clinically-used plans, we further evaluated our approach

on an independent dataset for which clinical plans were crafted manually.

For this validation, we trained ML models (as a reminder, one model per OAR

- dose-volume metric combination) on the dataset using the 142 CTs and the 300

artificial plans, and evaluated their prediction accuracy on a separate set of five CTs

each associated with two clinical plans. We gathered five clinical plans (three right-sided,

two left-sided) for these five CTs. Under the supervision of an experienced pediatric

radiation oncologist (B.V. Balgobind), two adapted versions of each plan were manually

created that both had the isocenter in the middle of the fields. In one plan no block was

used and in the other plan a block was introduced to protect part of the liver or spleen,

depending on the plan side. Training (including 5-fold cross-validation to determine the

best hyper-parameter settings) and validation were repeated ten times to account for

the stochastic nature of GP-GOMEA. Averages and standard deviations were computed

over these ten repetitions.

3. Results

3.1. Dose-volume metric data distribution

Among the 300 artificial plans, plan side and OAR type was found to influence the

distribution of a dose-volume metric considerably. To illustrate the effect of OAR type

and plan side on the dose, Figure 5 shows the distributions found for Dmean and D2cc for

the liver and the spleen, in case of left- and right-sided plans. For Dmean for the liver,

distributions approximately resembling the normal distribution were obtained (in case

of right-sided plans with particular high variance and long left tail). The distribution in

case of right-sided plans had a mean of 9.5 Gy (typically a major part of the liver was

in-field), the distribution in case of left-sided plans had a mean of 3.4 Gy (typically a

minor part of the liver was in-field). In terms of D2cc, for the liver we observed values

close to the prescribed dose (14.4 Gy) both in case of left- and right-sided plans. The

distributions of Dmean and D2cc for the spleen associated with the different plan sides

had more marked differences than the ones for the liver. In case of right-sided plans,

values close to 0 Gy were obtained for both metrics (typically the spleen was outside the

field). For left-sided plans, large values of Dmean were found to be much more frequent

than low values. The distribution of D2cc exhibited a peak around the prescribed dose.

For the contralateral kidney and for the spinal cord the distributions are similar for

both plan sides, as the contralateral kidney should be outside the field and the spinal

cord should be included within the field (according to protocol).

For all OARs, distributions obtained for V
5Gy

and V
10Gy

largely resembled the ones

obtained for Dmean. In fact, Pearson correlation coefficients above 98% were found

when comparing Dmean with V
5Gy

and V
10Gy

for almost all OARs. Smaller (yet still

large) correlation coefficients were found between Dmean and V
10Gy

for the left and right

kidney, with values of 96% and 91% respectively.
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Figure 5. Distributions for the liver and the spleen of Dmean and D2cc obtained by the

automatic plan sampling procedure used to generate artificial plans and by applying

the plans to the CT scans.
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3.2. Validation on artificial plans

For each considered OAR, the Mean Absolute Errors (MAEs) (and standard deviation)

at validation time for Dmean, D2cc, V 5Gy, and V 10Gy from the ten repetitions of the

5-fold cross-validation procedure using the artificial plans are reported in Table 2. We

further present the average decrease in MAE when using ML compared to when using

the baseline (i.e., the effect size), as well as the outcome of statistical significance tests

(Wilcoxon signed-rank) comparing ML to the baseline.

The errors for Dmean and D2cc were generally below 2 Gy, which corresponds to

approximately 14% of the prescribed dose of 14.4 Gy. For all OARs but for the spinal

cord, the plan side had considerable impact on the magnitude of the errors. As the

spinal cord in RL direction was in-field no matter the plan side, the MAEs of dose-

volume metrics predictions were found to be small: < 1 Gy for Dmean and D2cc, < 4%

for V 5Gy and V 10Gy. For OARs that were almost out-of-field, e.g., the spleen in case

of right-sided plans, small MAEs of Dmean were found (< 0.1 Gy), as very low values

were obtained across all patient-plan combinations (see Fig. 5). Note that in this case

(and also for the D2cc for the liver in both left- and right-sided plans), ML performs

significantly but not substantially better than the baseline.

For the liver in case of right-sided plans, and for the spleen in case of left-sided

plans, larger MAEs were found (liver: 1.7 Gy for Dmean, 12.1% for V 5Gy, 12.6% for

V 10Gy; spleen: 1.5 Gy for Dmean, 9.3% for V 5Gy, 10.7% for V 10Gy). These errors can be

attributed to the particular configuration of the position of these OARs and the field of

the plans.

Among the dose-volume metrics, D2cc for the (partly) in-field OARs had low

variability, with a D2cc close to the prescribed dose (14.4 Gy). For example, small

errors were obtained for the D2cc for the liver (< 0.4 Gy), as we consistently obtained

a large D2cc value for both left- and right-sided plans (see Fig. 5). In contrast, D2cc

was harder to predict when the OAR was contralateral to the plan side. The MAEs

obtained for D2cc for the spleen in case of right-sided plans was 1.6 Gy. This was 2.9

Gy for the left kidney, and 1.4 Gy for the right kidney.

The largest average error was found for D2cc for the left kidney, amounting to 20%

of the prescribed dose. For all dose-volume metrics for the right kidney, and for D2cc

for the spleen, we found that ML predictions were slightly worse compared to using the

baseline (note the negative effect sizes), but not significantly so. Lastly regarding the

kidneys, although errors in D2cc were relatively large, errors in V 10Gy were relatively

small (compared with V 10Gy for the other OARs). In fact, only a small percentage of

the contralateral kidney, from 0 to less than 3% typically received at least 10 Gy.

Although not reported in Table 2, we remark that the errors were found to be

unbiased: no systematic over- nor under-estimations of dose-volume metrics were found

on average, with the mean (non-absolute) error being close to zero for all metrics.
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Table 2. Mean test MAE ± standard deviation and effect size (in small font) against

the baseline (MAE of baseline - MAE of ML), of ten repetitions of 5-fold cross-

validation for each OAR and dose-volume metric on the artificial plans. Bold results

are significantly better than the baseline (the opposite is never found).

Side OAR Dmean [Gy] D2cc [Gy] V 5Gy [%] V 10Gy [%]

R
ig
h
t

(2
2
4
3
6

p
la

n
s) Liver 1.7± 0.2 0.7 0.2± 0.0 0.0 12.1± 1.5 5.1 12.6± 1.8 5.1

Spleen 0.1± 0.0 0.0 1.6± 0.5 −0.1 0.9± 0.2 0.0 0.4± 0.1 0.0

Left kidney 0.6± 0.5 0.1 2.9± 0.2 0.5 4.4± 0.5 0.1 2.5± 0.4 0.0

Spinal cord 0.4± 0.1 0.7 0.2± 0.0 0.0 3.2± 0.4 5.6 3.3± 0.4 5.8

L
e
ft

(2
0
1
6
4

p
la

n
s) Liver 0.8± 0.0 0.2 0.4± 0.1 0.0 5.8± 0.4 1.1 5.5± 0.3 1.4

Spleen 1.5± 0.2 0.7 0.3± 0.0 0.0 9.3± 1.1 5.2 10.7± 1.4 6.0

Right kidney 0.6± 1.0 −0.3 1.4± 0.4 −0.1 2.3± 1.4 −0.4 0.8± 0.7 −0.1

Spinal cord 0.4± 0.0 0.9 0.2± 0.0 0.0 3.1± 0.3 7.5 2.9± 0.3 7.4

3.3. Independent validation on clinical plans

Figure 6 and Figure 7 show, for each clinical case, the ground truth dose-volume metric

values and the predictions obtained by the ML models (trained on the artificial plans).

Results for Dmean and D2cc are presented in Figure 6, and results for V 5Gy and V 10Gy

are presented in Figure 7.

The errors in Dmean between predictions and ground truth values were generally low,

totalling an average of 1.0 Gy (with a range of 0.0-4.9 Gy) across all OARs. Compared

to the results obtained in the cross-validation using the artificial plans (Table 2), for the

liver in case of right-sided plans, the average error on the clinical plans was found to be

smaller (1.2 Gy vs. 1.7 Gy). Similar average errors in Dmean were found for the kidneys

(0.8 Gy vs. 0.6 Gy for the left kidney and 0.5 Gy vs. 0.6 Gy for the right kidney), the

liver in case of right-sided plans (1.0 Gy vs. 1.7 Gy), and the spinal cord (0.4 Gy vs. 0.4

Gy). Larger average errors in Dmean were found for the spleen (0.5 Gy vs. 0.1 Gy in case

of the right-sided plans and 3.6 Gy vs. 1.5 Gy in case of left-sided plans). The largest

error of 4.9 Gy was found for the spleen of case PL2B (1.9 Gy error found for the spleen

of case PL2), indicating that the impact of the block on the plan was not well modeled.

Furthermore, the error in spleen Dmean of PL1 and PL1B was large (2.8 Gy and 4.7 Gy,

respectively), indicating both field types (without and with a block, respectively) were

not well modeled for this case (see the discussion in Sec. 4).

Regarding D2cc, similar results to the ones obtained on artificial plans were found

for the spinal cord, where an average error of 0.1 Gy was obtained in D2cc (with a range

of 0.0-0.4 Gy). For the spleen of cases PR1 and PR1B, large errors in D2cc were found

(12.3 Gy on average), as ML predictions essentially wrongly represented the spleen to

be out-of-field. Whereas this was the case for PR2 and PR2B, and for PR3 and PR3B,

where small errors were obtained (1.1 Gy on average). Similarly, large errors in D2cc

were found in some cases for the contralateral kidneys (e.g., the left kidney: 5.1 Gy on

average, with a range of 0.5-7.6 Gy).



Surrogate-free machine learning-based organ dose reconstruction 18

Figure 6. Mean and standard deviation of predictions across ten repetitions for

the dose-volume metrics Dmean and D2cc of the ten clinical plans. A plan-patient

combination is encoded by color, and presence or absence of blocking is encoded by

marker shape. Note that different plots have different scales of the vertical axis. For

each case, the ground-truth dose-volume metric is indicated by a red square. In each

plot, the first six cases (white background, plan subscripts starting with ‘R’) are right-

sided plans, the last four cases (gray background, plan subscripts starting with ‘L’) are

left-sided plans.

Results for V 5Gy (average error 8% with a range of 0-35%) and V 10Gy (average error

7% with a range of 0-49%) mostly followed the trend of the errors for Dmean, as these

metrics were found to be correlated for most OARs.
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Figure 7. Mean and standard deviation of predictions across ten repetitions for

the dose-volume metrics V 5Gy and V 10Gy of the ten clinical plans. A plan-patient

combination is encoded by color, and presence or absence of blocking is encoded by

marker shape. Note that different plots have different scales of the vertical axis. For

each case, the ground-truth dose-volume metric is indicated by a red square. In each

plot, the first six cases (white background, plan subscripts starting with ‘R’) are right-

sided plans, the last four cases (gray background, plan subscripts starting with ‘L’) are

left-sided plans.
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4. Discussion

In this article we presented a new and different paradigm in organ dose reconstruction.

By leveraging the modeling power of ML, we showed how patient and plan features can

be used to predict organ dose-volume metrics directly, without the need of adopting

a surrogate anatomy. Once the ML models are trained, they can readily be used to

compute dose-volume metric predictions for a new historical patient and plan, by using

their features as input.

Key to obtaining a decent amount of data to perform ML were the collaboration of

five international institutes to gather pediatric patient CTs (147), the development of a

new automatic sampling procedure yielding artificial Wilms’ tumor RT plans, and the

creation of an automatic dose reconstruction pipeline to calculate the dose for all patient

and plan combinations. We validated our approach on 300 automatically generated

artificial plans, and on ten manually created clinical plans, to assess whether the results

of the validation on the artificial plans generalize well in practice. Our approach showed

promising levels of accuracy in dose reconstruction in both settings.

Errors were found to be overall similar between the validation on the ten clinical

plans and the validation on the artificial plans. However, for some metrics, errors

were larger for the ten clinical plans. This may be due to chance, because ten is a

small number to validate upon. Another possibility is that the artificial plan generation

method needs to be improved. Artificial plans were generated by sampling geometry

properties uniformly within predefined boundaries on two reference DRRs. Uniform

sampling might not be representative of the distribution clinical plans have. Moreover,

we consulted a single radiation oncologist to define clinically acceptable boundaries to

use in the sampling of artificial plans. Consulting multiple experts and allowing for

a larger variation might better help covering the extent of variation that is present in

historical plans (Sec. 2.2). For example, the isocenter locations of artificial left-sided

plans were never sampled below the 1st lumbar vertebra (see Fig. 2) and approximately

half of the Dmean values for the spleen in case of the artificial left-sided plans were close

to the prescribed dose (14.4 Gy, see Fig. 5), which means that the spleen was often

almost completely in-field in our artificially generated set of left-sided plans. When a

block was applied, only a small part of the spleen was spared. However, in clinical

practice, isocenter locations can be lower, and a larger part of the spleen might actually

be outside the field (see Fig. 8). This might explain the relatively large errors observed

in Figure 6 for PL1B and PL2B where the isocenter location is lower than the sampled

range. Ultimately, effort should be done to improve the sampling of artificial plans.

In the validation performed upon artificial plans as well as in the one performed

upon clinical plans, a main result that emerges is that dose-volume metrics for an organ

are hard to predict when, due to the field setup, it is unclear whether the OAR is

(partially) included in the field or not. For example, consider the D2cc as opposed to

the Dmean for the spleen for PR1 and PR1B in Figure 6: a tiny part of the spleen being

inside the field causes a large D2cc (wrongly predicted to be small), and small Dmean



Surrogate-free machine learning-based organ dose reconstruction 21

Figure 8. Effective field shape of plans PL1 (on the upper left), PL1B (on the upper

right), PL2 (on the lower left) and PL2B (on the lower right) plotted on top of the

associated DRR. The fields are placed lower than most of the sampled artificial plans

(see Fig. 2) and consequently a (large) part of the spleen (indicated by the light blue

contours) is outside the field (for PL1B and PL2B an even larger part of the spleen was

blocked).

(correctly predicted to be small). As experimentally observed in prior work (Virgolin

et al 2018b, Virgolin et al 2019), 2D bony anatomy provides only coarse information

on OAR shape and position even for ML algorithms (e.g., an MAE of 6.4 mm for the

prediction of the liver position along the IS axis was reported (Virgolin et al 2019)).

Yet, because bony anatomy is the only structure that is reliably visible in historical

radiographs, most of the anatomical features rely on it. Patients with similar anatomical

features derived from bony anatomy may have different OAR shape and position, and

thus different dose-volume metrics. Furthermore, impreciseness in feature values due to

e.g., uncertainties in landmark detection and plan emulation, aggravate the situation.
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Compared to conventional dose reconstruction methods (that use surrogate

anatomies and heuristics to decide what surrogate to use), we considered a relatively

large number of features: 33. Phantom-based methods consider, e.g., only age and

gender (Stovall et al 2006, Howell et al 2019), or gender together with height and

weight percentiles (Geyer et al 2014). However, if a 2D radiograph is available, the

added value of this information should be exploited. In our work, the majority of the

features we considered, i.e., 23 out of 33 (minus eight due to automatic feature selection,

see supplementary A), regarded patient anatomy as visible on a 2D radiograph, which

we simulated with DRRs. Our DRRs were generated in a conformal fashion, e.g.,

the abdomen was always fully included in RL direction. The automatic landmark

detection that was used to generate features expects this conformity to achieve precise

detection (Wang et al 2020). When dealing with actual historical radiographs, however,

several challenges need to be taken into account. For example, our automatic landmark

detection method requires further development to account for noise in the radiograph

(e.g., the presence of hand-writing on the radiograph). Moreover, educated guesses of

landmark locations may be needed in some cases, as some historical radiographs do not

include the entire abdomen (see Fig. 1(c)). Nevertheless, as long as the features are

somehow collected (e.g., manually), they can be used as input for the ML models to get

respective dose-volume metric predictions.

There are disadvantages of our approach compared to conventional dose

reconstruction methods that use surrogate anatomies beyond the need for patient

radiographs, which are not always available in retrospective data. In particular, a key

limitation is that ML models do not predict the entire 3D dose distribution an organ

receives, but only the metrics they were trained for. Potentially useful information to

link to AEs may be contained in 3D dose distributions. To predict 3D dose distributions,

the ML models would need to be trained to predict a 3D output. Surrogate-based

methods do allow to obtain the entire 3D dose distribution to an organ, since the

distribution can be visualized on the organ of the surrogate anatomy, after plan

simulation. However, considering the magnitude and variations of the errors of organ

mean dose obtained by conventional approaches (Wang et al 2018), it is questionable

whether the full 3D distribution will be sufficiently reliable. Our approach, as currently

proposed, can straightforwardly be extended to predict any (scalar) dose-volume metric

that is suspected to be useful to study AEs (it suffices to train ML on that metric).

Another limitation of our approach is that it does not take into consideration

uncertainties related to OAR motion. For validation, we aimed at reconstructing the

dose based on the particular snapshot of anatomy at the moment the CT (ground-truth)

/ respective DRR (to simulate historical radiographs) was taken. Yet, OAR motion plays

a key role in the uncertainty of organ positioning at the edge of the field, which can lead

to a discrepancy between the planned dose and the actual delivered dose. In RT practice,

radiation delivery is performed over a number of days, with fractionation schemes.

The OAR position can therefore vary (i.e., inter-fractional position variation). Intra-

fractional organ motion due to, e.g., respiration variation, contributes to the difference
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between planned dose and delivered dose as well (Huijskens et al 2015).

Lastly, a main limitation of our approach is that the ML models we generated are

specific to pediatric patients (1 to 8 years of age) and Wilms’ tumor RT plans: they can

only predict reliable dose-volume metrics of specific OARs they were explicitly trained

for. The RT plans we have sampled were also restricted to a standard AP-PA setup

without considering wedges, boost fields, or other radiation sources such as Cobalt-60.

Moreover, the predictions of the ML models (as well as the validation performed in this

study) are based on the dose calculation algorithm we adopted when preparing training

data, which has inaccuracies. Specifically, we used a collapsed cone algorithm available

in Oncentra TPS. Though good accuracy was reported in the in-field and near-field

region (< 5 cm from the field borders, achieves an error of 1-2% of the prescribed dose),

in low dose regions (10-15 cm from the field border) an underestimation of 10% of the

dose in the region was reported (Krieger and Sauer 2005). We remark that the OARs

we considered in this study were mostly within 5 cm near the field border (except for

the spleen in case of the right-sided plans). To make the method more general for

OARs far from field borders, more advanced Monte Carlo dose calculation algorithms

should be applied in future implementations. However, we believe that the core ideas

of our work can be replicated for other cohorts and other types of plans. Essentially,

as long as a sufficient number of anatomies and plans are collected or generated, and

a large number of dose reconstructions are performed to be used as examples, new ML

models can be trained to predict how the dose-volume metrics are linked to anatomy-

plan configurations. As was the case in our study, the collection and preparation of

sufficient data for ML is likely to be the largest required effort.

Our proposed approach presents several advantages compared to traditional dose

reconstruction methods. First of all, we found our validation results to compare

favorably with respect to our recent work considering dose reconstruction for a similar

childhood cancer cohort (Wang et al 2018). The work considered 31 patients aged 2 to

6, 12 Wilms’ tumor clinical plans, and a total of 50 dose reconstruction combinations,

which were performed by matching a surrogate CT based on age and gender. The

work reported an MAE for the Dmean for the liver of 1.6 Gy (average across both left-

and right-sided plans), and an MAE for the Dmean for the spleen of 2.6 Gy. For the

liver, we obtained an MAE of 1.3 Gy when validating on artificial plans, and of 1.1

Gy when validating on ten clinical plans. For the spleen, we obtained an MAE of 0.8

Gy on artificial plans, and of 1.7 Gy for the clinical plans. Furthermore, our ML-based

predictions resulted in much smaller variations. The inter-quantile range (25th to 75th

percentile) of the (non-absolute) prediction error of our previous work was 3.6 Gy for the

liver, and 4.7 Gy for the spleen (Wang et al 2018). On the artificial plans, we obtained

a range of 2.0 Gy for the liver, and of 1.2 Gy for the spleen. On the clinical plans,

the range for the liver was 1.9 Gy, and the one for the spleen was 2.2 Gy. We remark

that since the dose reconstruction accuracy is largely influenced by the particular plans

considered, these values may not be a fair comparison. We are currently working on

a multi-institute study to compare our approach with two state-of-the-art, phantom-
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based dose reconstruction approaches (Lee et al 2015, Howell et al 2019). In that study,

a same set of patients and plans will be used for validation.

Finally, a benefit of having ML models is that, once features are collected, they

can be used as inputs for the model to obtain the prediction of a dose-volume metric

immediately. Running a model on a computer simply means to follow the steps encoded

by the formula the model represents, which takes a few milliseconds. Conversely,

in a surrogate-based approach, the features are used to craft or select a surrogate

anatomy. Then, effort and time must be put to emulate the plan on the surrogate

anatomy, calculate the dose, and obtain the dose-volume metrics (Lee et al 2015, Howell

et al 2019, Wang et al 2020).

5. Conclusion

We presented the first surrogate-free organ dose reconstruction method based on ML.

Our method was enabled by the collection of large amounts of patient and CT data, and

the automatic generation of artificial plans and of dose distribution data. We assembled

a dataset of dose-volume metrics corresponding to features of patient anatomy and

plan geometry, and subsequently trained ML models to predict how features of patient

anatomy and of treatment plans influence dose-volume metrics. The predictions were

validated upon both artificial and clinical RT plans, and achieved good accuracy in both

cases.
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A. Feature selection

An automatic feature selection step was performed before training the ML models, as

follows.

(i) Compute the absolute Pearson correlation coefficient |ρ| between all pairs of features

based on the values of the training set.

(ii) If |ρ| > 0.95 (highly positive or negative correlation) between two features, discard

the second feature.

(iii) Repeat (ii) until no two features that have |ρ| > 0.95 remain.

Note that, at (ii), one could discard a feature at random. We systematically discarded

the second feature to obtain a deterministic outcome.

As explained in Section 2.4.1 of the manuscript, a model for the prediction of the

dose-volume metric of an organ was composed of two sub-models, trained independently

based on the side of the plan. We found that partitioning the dataset by plan side

does not influence feature selection significantly, i.e., the pairs of features that have

|ρ| > 0.95 remain the same. Figure 1 shows the value |ρ| between features across

the entire dataset (averaged between left- and right-sided plans). The following eight

features were systematically discarded in our experiments:

∆IC
RL(T12R) – highly correlated with ∆IC

RL(T10B) (and others);

∆IC
IS (T12R) – highly correlated with ∆IC

IS (T10B) (and others);

∆IC
RL(L2R) – highly correlated with ∆IC

RL(L1B) (and others);

∆IC
IS (L2R) – highly correlated with ∆IC

IS (L1B) (and others);

∆IC
RL(L2L) – highly correlated with ∆IC

RL(L1B) (and others);

∆IC
IS (L2L) – highly correlated with ∆IC

IS (L1B) (and others);

∆IC
RL(RibL) – highly correlated with ∆IC

RL(L1B) (and others);

∆IC
IS (RibL) – highly correlated with ∆IC

IS (L1B) (and others).
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Figure 1. Absolute Pearson correlation coefficient (|ρ|) between features (average

between left- and right-sided plans). Cells marked by a cross have |ρ| > 0.95 (excluding

cells in the diagonal).

B. Hyper-parameters of GP-GOMEA and their tuning

The hyper-parameters of GP-GOMEA are reported in Table 1. A short description

follows.

Tree height. GP-GOMEA encodes machine learning models with symbolic trees

(Virgolin et al 2017). In our case, trees were binary. The maximal tree height of a tree

limits how complex the encoded machine learning model can be. For instance, a tree

with height 2 can contain up to 7 nodes, a tree with height 4 can contain up to 31 nodes.

Larger trees can encode relatively complex models (but risk overfitting), smaller trees

can encode relatively simple formulas (but risk underfitting).

Evaluations limit. The evaluations limit is used to terminate GP-GOMEA. An

evaluation is the computation of the loss function of a model. Terminating early/late

can be useful to prevent overfitting/underfitting.
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Hyper-parameter Setting(s)

Tree height? {2, 3, 4}
Evaluations limit? {104, 105, 106}
Function set? {[+,−,×,÷p], [+,−,×,÷p, ·2,

√
| · |, sin, cos, exp]}

Interleaving generations g 6

Starting population size 500

Table 1. Hyper-parameters of GP-GOMEA and their settings. Starred hyper-

parameters are subject to grid-search tuning, using the settings reported within curly

braces.

Function set. The atomic components that can be instantiated as nodes can be

features (of Table 1 of the manuscript), random constants, or functions from a pre-

defined function set. Random constants are sampled uniformly at random between

{−ρ,+ρ}, where ρ := 5 × max(x), and x is the 2D matrix containing all numerical

feature values for all patients and plans (in the training set). We considered a simpler

function set of algebraic functions ([+,−,×,÷p]), and a more complex one including

trigonometric and transcendental functions ([+,−,×,÷p, ·2,
√
| · |, sin, cos, exp]}). More

complex functions can help fit the data better, at the risk of overfitting.

Interleaving generations & starting population size. Whereas typical GP algorithms

perform a single evolutionary run, GP-GOMEA uses a scheme of multiple runs of

increasing evolutionary budget. Larger-budget runs are started later in the scheme,

and executed in an interleaved fashion such that smaller-budget runs perform more

iterations (called generations) than larger-budget runs. The first run r1 uses the starting

population size and executes g generations before the next run r2 is started. The run

r2 has a population size that is double of that of r1 (1000), and performs 1 generation

every g generations of r1. The first time r2 has executed g generations, r3 is started,

with double the population of r2 (2000). Subsequently, r3 will execute 1 generation

every time r2 has executed g generations. If a run converges to all identical machine

learning models, then it is terminated. A run is also terminated if a larger-budget run

exists that has found a better machine learning model.

As shown in Table 1, we used a starting population size of 500 and a number

of generations for interleaving g = 6. These choices are based on what is reported

in our previous work (Virgolin et al 2020), except for the starting population size

(set to 50 in the article), as the article shows that runs with population sizes below

a thousand are typically terminated anyway within the first couple of minutes. Hence,

computations performed by those runs are essentially wasted. We set g = 6 because it

is the intermediate value (between 4 and 8) considered in our previous work (Virgolin

et al 2020), and because GP-GOMEA is fairly robust to the choice of g, i.e., the results

for g = 4 are similar to the ones of g = 6 and g = 8.
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