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Sampling hypergraphs with given degrees
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Abstract

There is a well-known connection between hypergraphs and bipartite graphs, ob-
tained by treating the incidence matrix of the hypergraph as the biadjacency matrix of
a bipartite graph. We use this connection to describe and analyse a rejection sampling
algorithm for sampling simple uniform hypergraphs with a given degree sequence. Our
algorithm uses, as a black box, an algorithm A for sampling bipartite graphs with given
degrees, uniformly or nearly uniformly, in (expected) polynomial time. The expected
runtime of the hypergraph sampling algorithm depends on the (expected) runtime of
the bipartite graph sampling algorithm A, and the probability that a uniformly random
bipartite graph with given degrees corresponds to a simple hypergraph. We give some
conditions on the hypergraph degree sequence which guarantee that this probability is
bounded below by a constant.

Keywords: hypergraph, degree sequence, sampling, algorithm, Markov chain

1 Introduction

Hypergraphs are combinatorial objects which can be used to abstractly represent general
dependence structures, with applications in many areas including machine learning [28] and
bioinformatics [26]. We consider the problem of efficiently sampling simple, r-uniform hy-
pergraphs with a given degree sequence, either uniformly or approximately uniformly.

More precisely, a hypergraph H = (V,E) consists of a finite set V = V (H) = {v1, . . . , vn}
of nodes, and a multiset E = E(H) of edges, where each edge is a nonempty multisubset of
V . We say that H is simple if there are no repeated edges in E and no edge of E contains a
repeated node (so E is a set of subsets of nodes). For any node vi ∈ V , we define the degree
of vi by

di = degH(vi) = |{e ∈ E(H) : vi ∈ e}|,
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and write d = (d1, . . . , dn) for the degree sequence of H . For a positive integer r, we say
that H is r-uniform if every edge contains exactly r nodes, counting multiplicities when H
is not simple. We then write Hr(d) for the set of r-uniform simple hypergraphs with degree
sequence d. If there is a positive integer d such that di = d for all i ∈ [n], then we write
Hr(n, d) for the set of all r-uniform d-regular hypergraphs on n nodes, instead of Hr(d).

Recently, Deza, Levin, Meesum & Onn [13] proved that the construction problem for
simple 3-uniform hypergraphs is NP-hard. That is, given d it is NP-hard to decide whether
there exists a 3-uniform hypergraph with degree sequence d. This implies that it is not
possible to approximate |Hr(d)| efficiently in general, since approximate counting can dis-
tinguish 0 from a positive number. Moreover, hardness of construction also directly implies
that (approximate) uniform sampling is a difficult problem in general.

Arafat et al. [2] recently gave an algorithm to construct a non-simple hypergraph with
given degrees and edge sizes. Chodrow [9] considers Markov Chain Monte Carlo approaches
for generating such hypergraphs. We emphasize that throughout this work, we only consider
simple hypergraphs. To the best of our knowledge, the only rigorously-analysed algorithm
for this problem in the literature is the configuration model, see Section 2.2.

Our approach is based on the well-known connection between hypergraphs and bipartite
graphs. We first fix some notation for bipartite graphs and then explain this relation. A bi-
partite graph B = (X∪Y,A) consists of a bipartitionX = {x1, . . . , xn} and Y = {y1, . . . , ym}
of nodes, and an edge set A ⊆ X × Y = {{x, y} : x ∈ X, y ∈ Y }. For a pair of nonnegative
integer sequences d = (d1, . . . , dn) and r = (r1, . . . , rm), let B(d, r) be the set of all simple
bipartite graphs B such that

degB(xi) = di for all xi ∈ X, and degB(yj) = rj for all yj ∈ Y.

We say that (d, r) is the (bipartite) degree sequence of B. Note that B(d, r) = ∅ unless
∑n

i=1 di =
∑m

j=1 rj . If there is a fixed integer r such that rj = r for all j ∈ [m], then
we write B(d, r) instead of B(d, r), and we call such bipartite graphs half-regular. If in
addition d = (d, d, . . . , d) is regular then we write B(n, d, r). For any node v ∈ X ∪ Y , let
NB(v) = {w ∈ X ∪ Y : {v, w} ∈ A} be the neighbourhood of node v in B.

Every hypergraph H = (V,E) can be represented as a bipartite graph BH , as follows.
Fix a labelling of the edges of H , say E = {e1, . . . , em}, then let

X = V, Y = E and A =
{

{vi, ej} ∈ X × Y | vi ∈ ej

}

.

If H ∈ Hr(d) then B(H) ∈ B(d, r). Conversely, every bipartite graph B = (X ∪ Y,A)
corresponds to a hypergraph HB = (V,E), where V = X and

E = {NB(y) | y ∈ Y }.
Furthermore, HB is simple if and only if every node in Y has a distinct set of neighbours in
B; that is, if NB(yi) = NB(yj) implies i = j. If HB is simple then we say that the bipartite
graph B is H-simple.

Write B∗(d, r) for the set of all H-simple half-regular bipartite graphs, and define ϕ :
B∗(d, r) → Hr(d) as the canonical mapping that maps B to HB, as described above. We can
use rejection sampling to turn any sampling algorithm for B(d, r) into a sampling algorithm
for Hr(d), as follows:
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HypergraphSampling(d, r,A)
Input:Parameters (d, r);

algorithm A for sampling from B(d, r).
Begin

repeat
sample B from B(d, r) using A
until B is H-simple

output ϕ(B)
end.

Note that for all H ∈ Hr(d) we have |ϕ−1(H)| = m!, as there are m! distinct ways to label
the edges of H when H is simple. Hence, if A samples uniformly from B(d, r) then the
output of HypergraphSampling is uniform over Hr(d).

The expected number of times HypergraphSampling draws a sample from B(d, r),
using algorithm A, depends on the the proportion of bipartite graphs in B(d, r) which are
H-simple: that is, the ratio |B∗(d, r)|/|B(d, r)|. The goal of our work is to identify pairs
(d, r) for which |B(d, r)|/|B∗(d, r)| is bounded above by a polynomial in n. For such pairs, if
the output of A is close to uniform then this implies that the expected number of times we
run A before an H-simple element of B(d, r) is found is at most polynomial. This is made
more specific in the next subsection.

1.1 Our contributions

The total variation distance between two probability distributions σ, π on a set Ω is given
by

dTV (σ, π) =
1

2

∑

x∈Ω)

|σ(x)− π(x)| = max
S⊆Ω

|σ(S)− π(S)|. (1.1)

Suppose that the distribution of the output of algorithmA on B(d, r) is σB, and let σH be the
output of the algorithm HypergraphSampling. Then σH is a distribution on Hr(d) which
is obtained by setting H = ϕ(B) where B has distribution σB, conditioned on B ∈ B∗(d, r).
To make it clear which distribution we are using, we write Pσ for the probability mass
function of the distribution σ. Let πB be the uniform distribution on B(d, r), and let πH be
the uniform distribution on Hr(d).

A fully-polynomial almost uniform sampler (FPAUS) for sampling from a set |Ω| is an
algorithm that, with probability at least 3

4
, outputs an element of Ω in time polynomial in

log |Ω| and log(1/ε), such that the output distribution is ε-close to the uniform distribution
π on Ω in total variation distance: that is, dTV (σ, π) ≤ ε. If Ω = B(d, r) or Ω = Hr(d) then
log |Ω| = O(M logM): this follows from [18, Theorem 1.3], restated below as Theorem 4.1.
So an FPAUS for Hr(d) or B(d, r) must have running time bounded above by a polynomial
in dmax, n and log(1/ε).

The following result summarises the properties of HypergraphSampling (d, r,A) in
terms of the output distribution and runtime of A. The proof, which is fairly standard, is
presented in Section 3.
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Theorem 1.1. Suppose that n is a positive integer, d = (d1, . . . , dn) is a sequence of positive
integers, and r is a positive integer such that B∗(d, r) is non-empty.

(i) The output distribution σH of HyperGraphSampling satisfies

dTV (σH, πH) ≤ 3
2
· dTV (σB, πB)

PπB
(B∗(d, r))

.

(ii) The expected runtime of HypergraphSampling(d, r,A) is q(d, r) · τ(d, r), where
τ(d, r) is the (expected) runtime of algorithm A on B(d, r) and q(d, r)−1 = PσB

(B∗(d, r)).
Furthermore, the probability that HyperGraphSampling needs more than t q(d, r)
iterations of A before finding an element of B∗(d, r) is at most exp(−t) for any t > 0.

(iii) Suppose that dTV (σB, πB) ≤ ε and PπB
(B∗(d, r)) ≥ 1 − c0 for some ε ∈ (0, 1) and

c0 ∈ (0, 1− ε). Then

dTV (σH, πH) ≤
3ε

2(1− c0)

and the expected runtime of HypergraphSampling(d, r,A) is at most

(1− c0 − ε)−1 τ(d, r).

(iv) If A is an FPAUS for B(d, r) and the assumptions of (iii) hold, then we can trans-
form HypergraphSampling(d, r,A) into an FPAUS for Hr(d) by terminating after
⌈2(1− c0 − ε)−1⌉ calls to A and reporting FAIL.

We see from Theorem 1.1 that dTV (σB, πB) and PπB
(B∗(d, r)) are the two crucial quanti-

ties which control both the expected runtime of HypergraphSampling(d, r,A), and how
far the output varies from uniform. The first of these quantities is determined by the choice
of algorithm A. In our next two theorems, we provide a lower bound on PπB

(B∗(d, r)) when
d = (d, d, . . . , d) is regular, and give an asymptotic lower bound on this probability which
holds when d is irregular but sparse.

Remark 1.2. For Theorem 1.1(iv) to provide an FPAUS with an explicit upper bound on the
runtime, explicit bounds are needed on ε and c0. However, for Theorem 1.1(iii) it is enough
to know that sufficiently small values of c0, ε exist.

Theorem 1.3. Let n ∈ N, d ∈ N and r ≥ 3 so that m = nd/r ∈ N and
(

m
2

)

<
(

n
r

)

. Then

PπB
(B∗(n, d, r)) ≥ 1−

(

m

2

)(

n

r

)−1

.

Hence Theorem 1.1(iii) applies when
(

m
2

)

≤ c0
(

n
r

)

for some c0 ∈ (0, 1−ε), where dTV (σB, πB) ≤
ε.

Remark 1.4. When r ≥ 3 is a fixed constant, the lower bound in Theorem 1.3 is 1− o(1) if
d = o(nr/2−1).
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Theorem 1.5. Assume that for each positive integer n we have an integer r = r(n) ≥ 3
and a sequence d = d(n) = (d1, . . . , dn) of positive integers such that M =

∑n
i=1 di tends to

infinity with n. Suppose that r divides M for infinitely many values of n, and let m = M/r.
Assume that r2d2max = o(M) and let πB be the uniform distribution on B(d, r). Then

PπB
(B∗(d, r)) ≥ 1− nr drmax

M r
·
(

M/r

2

)(

n

r

)−1

· (1 + o(1)).

Writing m = M/r and d = M/n, wee see that Theorem 1.1(iii) applies when

(

dmax

d

)r (
m

2

)

≤ c0

(

n

r

)

(1.2)

for some c0 ∈ (0, 1− ε), where dTV (σB, πB) ≤ ε.

In the hypergraph setting, m is the number of edges and d is the average degree of any
hypergraph in Hr(d).

Remark 1.6. When r ≥ 3 is a fixed constant, the lower bound in Theorem 1.5 is 1− o(1) if
dmax = o(M1−2/r). Similarly, if r ≥ 3 is a fixed constant and d = O(dmax) then the lower
bound in Theorem 1.5 is 1− o(1) whenever d2 = o(nr−2), as in the regular case.

There are several algorithms A in the literature for efficiently sampling from B(d, r),
either uniformly or almost uniformly, under various conditions on d and r. These will be re-
viewed in Section 2.1, together with the properties of the resulting algorithm Hypergraph-

Sampling(d, r,A). In Section 2.2 we discuss the configuration model for hypergraphs, which
can be used as an expected polynomial-time sampling algorithm when rdmax = O(logn).

Then in Section 3 we provide a general framework which we use to analyse the algorithm
HypergraphSampling. In Section 4 we fill in the details for the regular regime (Theorem
1.3) and the irregular, sparse regime (Theorem 1.5).

2 Related work

2.1 Various bipartite sampling algorithms, and implications

In this section we describe several algorithms for efficient sampling from B(d, r), uniformly or
almost uniformly, under various conditions on d, r. We also apply Theorem 1.1 to describe
when HypergraphSampling(d, r,A) is an efficient algorithm for sampling from Hr(d)
(uniformly or near-uniformly), for each choice of A.

The first two algorithms mentioned below perform exactly uniform sampling from B(d, r).

(I) If rdmax ≤ C log n then the bipartite configuration model gives rise to an algorithm for
sampling (exactly) uniformly from B(d, r). But the bipartite configuration model is
equivalent to the configuration model for hypergraphs, described in Section 2.2, and so
there is no advantage to working in the bipartite graph setting when rdmax ≤ C log n.
(See Lemma 2.3).
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(II) Next suppose that (dmax + r)4 = O(M). Building on the work of [17, 24], Arman,
Gao and Wormald [3, Theorem 4] describe an algorithm which samples uniformly from
B(d, r) with expected runtime O(M). Note that dTV (σB, πB) = 0 as the output is
exactly uniform. Using this algorithm as A and applying Theorem 1.1, we see that
HypergraphSampling(d, r,A) performs exact sampling from Hr(d) with expected
runtime O(M) whenever (1.2) holds for some constant c0 ∈ (0, 1). In particular, this
holds whenever (d, r) are as described in Remark 1.6.

The next algorithm produces output which is asymptotically uniform, meaning that the
output distribution is only o(1) from uniform in total variation distance.

(III) If dmax+r = O(M1/4−τ ) for some positive constant τ then the algorithm from [3] can be
applied, as described in (II). An alternative is to use the sampling algorithm of Bayati,
Kim and Saberi [4, Theorem 1], which has expected runtime O(dmaxM) (see the proof
of [4, Theorem 1]). The output of this algorithm satisfies dTV (σB, πB) = o(1), where
this vanishing term depends only on n and cannot be made smaller by increasing
the runtime of the algorithm. Hence we can take ε = o(1) in Theorem 1.1, and
conclude that for this choice of A, the algorithm HypergraphSampling(d, r,A) has
expected runtime O(dmaxM) whenever (1.2) holds for some constant c0 ∈ (0, 1), and
the distribution of the output is within o(1) of uniform: that is, dTV (σH, πH) = o(1).

Remark 2.1. Although the Arman, Gao and Wormald algorithm applies for a slightly wider
range of values of (d, r), has a better expected runtime bound and performs exactly uniform
sampling, the Bayati, Kim and Saberi algorithm has one advantage: it is much easier to
implement. Indeed, Bayati, Kim and Saberi [4, Theorem 3] used sequential importance sam-
pling to give an algorithm which is close to an FPAUS, except that the runtime is polymial
in 1/ε, while in an FPAUS the dependence should be on log(1/ε). However, this algorithm
is valid only when dmax = O(M1/4−τ ) for some τ > 0 and no longer has the advantage of
simplicity, and so it is surpassed by the fast, precisely uniform sampling algorithm of Ar-
man, Gao and Wormald [3], described in (II) above. (Other authors, such as Chen et al. [8],
have used sequential importance sampling to sample bipartite graphs with given degrees,
but without rigorous analysis.)

Now we survey some algorithms which are FPAUSs for Br(d). Each can be used as A
to give an FPAUS for Hr(d), using Theorem 1.1(iv), so long as (1.2) holds (or

(

m
2

)

≤ c0
(

n
r

)

when d is regular) for some c0 ∈ (0, 1−ε). In all cases, the polynomial bound on the runtime
is quite a high-degree polynomial and is not believed to be tight. We do not always state
the runtime.

(IV) Jerrum, Sinclair and Vigoda [21] described and analysed a simulated annealing algo-
rithm which gives an FPAUS for sampling perfect matchings from a given bipartite
graph. As a corollary, they obtained an FPAUS for sampling bipartite graphs for given
degrees [21, Corollary 8.1]. Bezáková, Bhatnagar and Vigoda [5] adapted the algorithm
from [21] to provide a simplified FPAUS for B(d, r), valid for any (d, r), with running
time

O((nm)2M3∆ log4(nm/ε)),
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where n and m are the number of nodes in each part of the bipartition, and ∆ =
max{dmax, r}.

(V) Another well-studied Markov chain for sampling (bipartite) graphs with given degrees
is the switch Markov chain. It is the the simplest Markov chain which walks on the set
of all (bipartite) graphs with a given degree sequence, as it deletes and replaces only
two edges at a time. The chain has been used in many contexts, including contingency
tables [14], and was first applied to bipartite graphs by Kannan, Tetali and Vempala
[22]. The mixing time (runtime) of the switch chain has been shown to be polynomial
for various bipartite and general degree sequences, see for example [1, 10, 16, 19, 25].
If a Markov chain leads to an FPAUS then we say that the Markov chain is rapidly
mixing. In particular:

– Miklos, Erdős and Soukup [25] show that the switch Markov chain is rapidly mix-
ing for half-regular bipartite degree sequences (in which one part of the bipartition
has regular degrees). An explicit polynomial bound is not clearly stated.

– Cooper, Dyer and Greenhill [10] considered regular graphs and showed that the
switch chain is rapidly mixing on the set of all d-regular graphs, for any d = d(n).
Their analysis was extended by Greenhill and Sfragara [19] who adapted the
proof to sparse, irregular degree sequences. Neither of these works explicitly
treated bipartite graphs, though the arguments in both papers are simpler when
restricted to bipartite graphs. In Corollary A.3 we state an upper bound on
the mixing time of the switch chain on B(d, r) which arises from the arguments
of [10, 19] when 3 ≤ dmax ≤ 1

3

√
M . Specifically we show that in this range, the

switch chain gives an FPAUS with running time

∆10M7
(

1
2
M log(M) + log(ε−1)

)

where ∆ = max{dmax, r}.
– Jerrum and Sinclair [20] defined a notion of P-stability for degree sequences.

Roughly speaking, a degree sequence d is P-stable if small perturbations to d

only change the number of realisations (graphs with degree sequence d) by a small
amount. The notion of P-stable can be adapted to bipartite graphs. Amanatidis
and Kleer [1] defined a possibly stronger notion, strong stability, and showed that
the switch chain is rapidly mixing for any strongly stable degree sequence, and for
any strongly stable bipartite degree sequence. Erdős et al. [16] proved that the
switch chain is rapidly mixing for any P-stable class of bipartite degree sequences.

(VI) The Curveball chain [27] is another Markov chain for sampling bipartite graphs with
given degrees, in which multiple switches are performed simultaneously. Carstens and
Kleer [7] showed that the Curveball chain is rapidly mixing whenever the switch chain
is rapidly mixing.

7



Remark 2.2. We have focussed on uniform hypergraphs, but our approach can be adapted
to non-uniform hypergraphs. Given a vector r = (r1, . . . , rm) which stores the desired edge
sizes, let mℓ be the number of edges of size ℓ, that is,

mℓ = |{j ∈ [m] : rj = ℓ}|

for ℓ ≥ 2. Each hypergraph H on [n] with edge sizes given by r and with degree sequence
d corresponds to exactly

∏n
ℓ=2mℓ! bipartite graphs from B(d, r), as now we must restrict

to edge labellings e1, . . . , em so that |ej | = rj for j = 1, . . . , m. All of the bipartite graph
sampling algorithms mentioned in this section generalise to B(d, r), with the exception of
the result by Miklos, Erdős and Soukup regarding the switch chain for half-regular bipartite
graphs [25].

2.2 Sampling hypergraphs using the configuration model

To the best of our knowledge, the only rigorously-analysed algorithm for sampling hyper-
graphs with given degrees is the configuration model. The analogue of the configuration
model for hypergraphs has been used by various authors, for example, in the study of ran-
dom hypergraphs [12] and for asymptotic enumeration [15]. In the configuration model
corresponding to Hr(d) there are n objects, called cells, and the ith cell contains di (la-
belled) points. A configuration is a partition of the M =

∑n
i=1 di points into M/r parts,

each containing r points. A random configuration can be chosen in O(M) time. Shrinking
each cell to a node gives an r-uniform hypergraph which may contain loops (that is, an edge
containing a node more than once) or repeated edges. If the resulting hypergraph is not
simple then the configuration is rejected and a new random configuration is sampled. We
say that a configuration is simple if the corresponding hypergraph is simple.

Hence, the configuration model can be used for efficient sampling when the probability
that a randomly chosen configuration is simple is bounded below by the inverse of some
polynomial in n. This implies that the expected number of trials before a simple configuration
is found is at most polynomial.

It follows from asymptotic results of Dudek, Frieze, Ruciński and Šileikis [15] that when
d = (d, d, . . . , d) is regular, the expected number of trials before a simple configuration is
sampled is

exp
(

1
2
(r − 1)(d− 1) + o(1)

)

assuming that r = 3 and d = d(n) = o(n1/2), or r ≥ 4 and d = d(n) = o(n). (Asymptotics
are as n → ∞, restricted to values of n such that dn is divisible by r.) For irregular degrees,
let M2 = M2(d) =

∑n
j=1 dj(dj − 1). It follows from [6, Corollary 2.3] that the expected

number of trials before a configuration is sampled is

exp

(

(r − 1)M2

2M
+ o(1)

)

≤ exp
(

1
2
(r − 1)(dmax − 1) + o(1)

)

whenever r4d3max = o(M). Here r = r(n) and d = d(n) are such that r divides M for
infinitely many values of n. We collect these facts together into the following lemma.

8



Lemma 2.3. The configuration model gives an efficient algorithm for sampling uniformly
from Hr(d) whenever rdmax = O(logn). If rdmax ≤ C logn for some constant C > 0 then the
expected runtime of this algorithm for Hr(d) is O(nC M) = O(dmax n

C+1). If rd = o(log n)
then the expected runtime of this algorithm is O(M) = O(dmaxn). Note dTV (σH, πH) = 0 as
the output is exactly uniform.

Gao and Wormald [17] built on earlier work of McKay and Wormald [24] to give a fast
algorithm for exactly uniform sampling of d-regular graphs. Using a recent improvement
of Arman, Gao and Wormald [3], a uniformly random d-regular graph on n vertices can be
generated in expected runtime O(dn+ d4) whenever d = o(n1/2), and a random graph with
degree sequence d can be generated in runtime O(M) whenever d4max = O(M). It is likely
that this approach could be adapted to the problem of sampling hypergraphs uniformly.

3 Analysis of HypergraphSampling

First we prove Theorem 1.1.

Proof of Theorem 1.1. To prove (i), observe that by definition,

σH(H) =
∑

B∈ϕ−1(H)

PσB
(B | B ∈ B∗(d, r)) =

1

PσB
(B∗(d, r))

·
∑

B∈ϕ−1(H)

σB(B).

This equality also holds with σH, σB replaced by πH, πB, respectively. Since the set of all
preimages {ϕ−1(H) : H ∈ Hr(d)} forms a partition of B∗(d, r), and using the triangle
inequality, we have

dTV (σH, πH) =
1
2

∑

H∈Hr(d)

|σH(H)− πH(H) |

≤ 1
2

∑

H∈Hr(d)

∑

B∈ϕ−1(H)

∣

∣

∣

∣

σB(B)

PσB
(B∗(d, r))

− πB(B)

PπB
(B∗(d, r))

∣

∣

∣

∣

≤ 1
2

∑

B∈B∗(d,r)

∣

∣

∣

∣

σB(B)

PπB
(B∗(d, r))

− πB(B)

PπB
(B∗(d, r))

∣

∣

∣

∣

+ 1
2

∑

B∈B∗(d,r)

∣

∣

∣

∣

σB(B)

PσB
(B∗(d, r))

− σB(B)

PπB
(B∗(d, r))

∣

∣

∣

∣

≤ dTV (σB, πB)

PπB
(B∗(d, r))

+ 1
2
·
∣

∣

∣

∣

1

PσB
(B∗(d, r))

− 1

PπB
(B∗(d, r))

∣

∣

∣

∣

∑

B∈B∗(d,r)

σB(B)

≤ 3
2
· dTV (σB, πB)

PπB
(B∗(d, r))

,

The final inequality follows from applying (1.1) with S = B∗(d, r).
Next, (ii) is immediate as the number of times that HyperSampling calls A has a

geometric distribution with mean 1/q(n). Then, (1.1) implies that

q(d, r)−1 = PσB
(B∗(d, r)) ≥ PπB

(B∗(d, r))− ε,
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and (iii) follows.
Finally, suppose that A is an FPAUS for B(d, r) and (1.2) holds for some c0 ∈ (0, 1−ε). It

follows from (ii) and (iii) that the probability thatHypergraphSampling(d, r,A) performs
more than ⌈2(1 − c0 − ε)−1⌉ iterations of A is at most e−2 ≤ 1

4
. Therefore, terminating

HypergraphSampling(d, r,A) after this many calls to A gives an FPAUS for Hr(d). To
achieve a total variation of ε from HypergraphSampling(d, r,A), the algorithm A should
be given input ε′ = 2ε (1− c0)/3, by (i).

A general approach for bounding PπB
(B∗(d, r)) is given by the following lemma. The

constant c1 in Lemma 3.1 captures the maximum edge probability relative to the uniform
case (in which every neighborhood is equally likely). If c1 is large then some neighbourhoods
are much more likely under σB than they would be under the uniform distribution. The
extent to which the events “NB(y) = W” are negatively correlated, as y varies over Y for
fixed W ⊆ X , is described by the constant c2. Intuitively, if the degree sequence is close to
regular then we expect both c1 and c2 to be close to one.

Lemma 3.1. Suppose that d is a sequence of nonnegative integers such that B(d, r) is non-
empty, and that B = (X ∪ Y,A) ∈ B(d, r) is a random bipartite graph according to the
uniform distribution πB. Then, suppose that there are constants c1 and c2 such that for any
y, y′ ∈ Y and any subset W ⊆ X of size r,

PπB
(NB(y) = W) ≤ c1 ·

(

n

r

)−1

and
PπB

(NB(y
′) = W | NB(y) = W) ≤ c2 · PπB

(NB(y
′) = W).

Then

PπB
(B∗(d, r)) ≥ 1− c1c2

(

m

2

)(

n

r

)−1

.

Proof. Let B be an element from the set B(d, r) drawn uniformly at random, and let X{r}

be the set of all r-subsets of X . We omit the subscript πB on all following probabilities. For
1 ≤ k < ℓ ≤ m, we define the random variable

Zkℓ =

{

1 if NB(yk) = NB(yℓ)
0 otherwise,

for yk, yℓ ∈ Y , and we let

Z =
∑

1≤k<ℓ≤m

Zkℓ

be the random variable denoting the number of pairs of nodes (yk, yℓ) that have the same
neighborhood in B. Note that

P (B ∈ B∗(d, r)) = 1− P(Z ≥ 1). (3.1)
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Using the union bound over all possible pairs of nodes (yk, yℓ),

P(Z ≥ 1) ≤
∑

1≤k<ℓ≤m

P(Zkℓ = 1).

Likewise, for a fixed pair of nodes (yk, yℓ), applying the union bound over X{r} shows us that

P(Zkℓ = 1) ≤
∑

W∈X{r}

P(NB(yk) = NB(yℓ) = W).

Now, using the law of total probability,

P(Z ≥ 1) ≤
∑

1≤k<ℓ≤m

∑

W∈X{r}

P(NB(yk) = NB(yℓ) = W)

=
∑

1≤k<ℓ≤m

∑

W∈X{r}

P(NB(yk) = W | NB(yℓ) = W) · P(NB(yℓ) = W)

≤ c1c2

(

m

2

)(

n

r

)−1

. (3.2)

The proof is completed by combining (3.1) and (3.2).

4 Probability of H-simplicity

The expected running time of HypergraphSampling is governed by the runtime of al-
gorithm A and the probability that a randomly chosen element of B(d, r) is H-simple. In
Section 4.1 we provide an asymptotic estimate which holds when d is irregular and sparse. In
Section 4.2 we give a combinatorial argument for the case of d-regular r-uniform hypergraphs.
In particular, these sections yield Theorem 1.5 and Theorem 1.3, respectively.

4.1 Irregular, sparse degrees

In this section we prove a lower bound on the probability that a uniformly random graph
from B(d, r) is H-simple, using an asymptotic formula for irregular, sparse bipartite graphs.
Given a bipartite degree sequence (d, r), define Mk =

∑n
i=1(di)k and Rk =

∑m
j=1(rj)k, where

(a)b = a(a − 1) · · · (a − b + 1) denotes the falling factorial. Let R = R1 and M = M1, and
note that R = M for any graphical bipartite degree sequence. We also let dmax = maxi di
and rmax = maxj rj .

The following asymptotic enumeration result is a simpler, but weaker restatement of the
main theorem from [18], which is slightly stronger than that of McKay [23]. (It follows from
Theorem 4.1 that B(d, r) 6= ∅ when rmaxdmax = o(M2/3).)

Theorem 4.1. ([18, Theorem 1.3]) Suppose that M → ∞, and that for d = (d1, . . . , dn),
r = (r1, . . . , rm) are sequences of nonnegative integer functions of M which both sum to M .
If rmaxdmax = o(M2/3) then

|B(d, r)| = M !
∏n

i=1 di!
∏m

j=1 rj !
exp

(

− M2R2

2M2
+O

(

d2maxr
2
max

M

)

)

.

11



Using this enumeration result, we can prove the main result of this section. First some
useful identities which will be used in the proof without further comment: if |η| < 1 then
exp(η) = 1 +O(η) and (1 + η)−1 = 1 +O(η). Also observe that if r2 = o(M) then

M r

(M)r
≤ M r

(M − r)r
=
(

1− r/M
)−r

= exp
(

O(r2/M)
)

= 1 +O(r2/M). (4.1)

Theorem 4.2. Assume that for each positive integer n we have an integer r = r(n) ≥ 3
and a sequence d = d(n) = (d1, . . . , dn) of positive integers such that M =

∑n
i=1 di tends

to infinity with n. Assume that r2d2max = o(M) and let πB be the uniform distribution on
B(d, r). Then

PπB
(B∗(d, r)) ≥ 1− nr drmax

M r
·
(

M/r

2

)(

n

r

)−1

· (1 + o(1)).

Proof. Let m = M/r, which by assumption is an integer. Then, suppose that we have some
neighbourhood W ∈ X{r}, and two integers k, ℓ ∈ [m]. We will prove the desired result by
conditioning on the neighbourhoods of yk and yℓ being equal to W, at which point we can
apply Lemma 3.1. To do this, we first define two bipartite degree sequences (d ′, r′) and
(d ′′, r′′), as follows:

d ′
i =

{

di − 1 if xi ∈ W,
di if xi ∈ X \W,

and r′j =

{

0 if j = k,
r if j ∈ [m] \ {k},

and

d ′′
i =

{

di − 2 if xi ∈ W,
di if xi ∈ X \W,

and r′′j =

{

0 if j ∈ {k, ℓ},
r if j ∈ [m] \ {k, ℓ}.

We also extend the notation for M andM2 to d
′ and d

′′ by appending one or two dashes, and
likewise for R and R2. By assumption, r2d2max = o(M), which implies that rdmax = o(M1/2).
Hence, the conditions of Theorem 4.1 are satisfied, and we can approximate both |B(d, r)|
and |B(d ′, r′)|. Considering the ratio of these, since d ′

i = di whenever xi /∈ W, and r′j = rj
whenever j 6= k, many terms cancel, leading to

|B(d ′, r′)|
|B(d, r)| =

r!

(M)r
·
∏

xi∈W

di · exp
(

M2R2

2M2
− M ′

2R
′
2

2(M ′)2
+O(r2maxd

2
max/M)

)

. (4.2)

Next, by definition of M ′
2, we see that

M ′
2 = M2 −

∑

xi∈W

(di)2 +
∑

xi∈W

(di − 1)2 = M2 − 2
∑

xi∈W

(di − 1) = M2

(

1−O
(

rdmaxM
−1
2

))

.

Similarly,

M ′ = M − r = M
(

1−O
(

rM−1
))

, R′
2 = (r − 1)M ′ = R2

(

1− O
(

rM−1
))

.

Then

M2R2

2M2
− M ′

2R
′
2

2(M ′)2
≤ M2R2

2M2
− M2R2

2M2
·
(

1−O
(

rdmaxM
−1
2 + rM−1

))

12



= O
(

rdmaxR2M
−2 + rM2R2M

−3
)

= O

(

r2dmax

M

)

.

The final equality follows as M2 ≤ dmaxM and R2 = (r − 1)M . Therefore, combining the
above identities with (4.1) and (4.2) implies that

|B(d ′, r′)|
|B(d, r)| =

r!

M r
·
∏

xi∈W

di ·
(

1 + O(r2d2max/M)
)

. (4.3)

Next, observe that there is a bijective relationship between bipartite graphsB0 ∈ B(d ′, r′),
and bipartite graphs B ∈ B(d, r) such that NB(yk) = W, using the map B 7→ B0 = B \{yk}
which deletes vertex yk and reduces the degrees of each neighbour of yk by 1. Hence,

PπB
(NB(yk) = W) =

|B(d ′, r′)|
|B(d, r)| .

By assumption, r2d2max = o(M), so using (4.3) we find that

(

n

r

)

· PπB
(NB(yk) = W) ≤ nrdrmax

M r
· (1 + o(1)) . (4.4)

For future use, observe that (4.4) also holds with yk replaced by any y ∈ Y .
A similar result holds for the conditional edge probability from Lemma 3.1. First observe

that if d and r satisfy the conditions of Theorem 4.1 then so do d
′′ and r

′′. Hence, the same
argument that led to (4.3) gives

PπB
(NB(yℓ) = W | NB(yk) = W) =

|B(d ′′, r′′)|
|B(d ′, r′)|

=
r!

(M − r)r
·
∏

xi∈W

(di − 1) ·
(

1 +O(r2d2max/M)
)

.

We will divide this expression by the result of replacing yk with yℓ in (4.4), to obtain

PπB
(NB(yℓ) = W | NB(yk) = W)

PπB
(NB(yℓ) = W)

=
(M)r

(M − r)r
·
∏

xi∈W

(

1− 1

di

)

·
(

1 +O(r2d2max/M)
)

≤ (M)r
(M − r)r

·
(

1 +O(r2d2max/M)
)

= 1 + o(1),

using (4.1) and the assumption that r2d2max = o(M). From the above inequality and (4.4),
we can apply Lemma 3.1 with

c1 =
nrdrmax

M r
· (1 + o(1)) and c2 = 1 + o(1),

to complete the proof.
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4.2 Regular degrees

In this section we present a combinatorial argument to establish a lower bound on the
probability that a uniformly random graph from B(d, r) is H-simple, when d = (d, d, . . . , d)
is regular. We first prove a ‘sensitivity result’ for the set of all bipartite graphs with given
degrees. We show that adjusting the degrees on one side of the bipartition, to make them
closer to regular, can only increase the number of bipartite graphs. It is possible that this
result is known, though we could not find it in the literature. We give a proof in Section
4.2.1 for completeness.

Proposition 4.3. Let n,m ∈ N and let (d, r) be a bipartite degree sequence for the bipartition
X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Suppose that we have integers k, ℓ ∈ [n] such that
dk ≥ dℓ + 2 and define d

′ by

d′i =







di − 1 if i = k
di + 1 if i = ℓ
di if i ∈ [n] \ {k, ℓ}.

Then
|B(d, r)| ≤ |B(d′, r)|.

Using this proposition, we now prove Theorem 1.3.

Proof of Theorem 1.3. Let B = (X ∪ Y,A) ∈ B(n, d, r) so that all nodes in X are d-regular
and all nodes in Y are r-regular. Throughout the proof we let W ∈ X{r} be a fixed neigh-
bourhood of size r, and we consider two fixed nodes yk, yℓ ∈ Y .

We will prove the desired result by conditioning on the neighbourhoods of yk and yℓ
being equal to W, at which point we can apply Lemma 3.1. To do this, let U ∈ X{r} be any
r-subset of X . We will analyse

PπB
(NB(yk) = U | NB(yℓ) = W). (4.5)

Our goal will be to show that (4.5) achieves a minimum at U = W. Let △ denote the
symmetric difference operator. Given W = NB(yℓ), for any subset U ⊆ X{r} of size r, we
define a new bipartite degree sequence (dU , rU) by

dUi =







di − 2 if xi ∈ U ∩W
di − 1 if xi ∈ U △ W
di if xi ∈ X \ (U ∪W)

and rUj =

{

0 if yj ∈ {yk, yℓ}
r if yj ∈ Y \ {yk, yℓ} .

Now, when U ∈ X{r} and |U △ W| > 0, we can select a node xk ∈ U \W and xℓ ∈ W \ U ,
and create a new neighbourhood U ′ = (U ∪ {xℓ}) \ {xk}. Then, we see that dU

′
is equal to

dU whenever i /∈ {k, ℓ}, and that dU is a more locally balanced degree sequence than dU
′
.

Hence, dU
′
and dU satisfy the conditions of Proposition 4.3, and applying Proposition 4.3 we

conclude that
∣

∣

∣
B(dU ′

, rU ′

)
∣

∣

∣
≤
∣

∣B(dU , rU)
∣

∣.
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Since |U △ W| > 0 is at most 2r, we can repeat the above process a finite number of times
to conclude that for any U ∈ X{r},

∣

∣B(dW , rW)
∣

∣ ≤
∣

∣B(dU , rU)
∣

∣. (4.6)

Since
∣

∣B(dU , rU)
∣

∣

|B(d, r)| = PπB
(NB(yℓ) = W) · PπB

(NB(yk) = U | NB(yℓ) = W, )

the inequality in (4.6) implies that for any U ,W ∈ X{r}, we have

PπB
(NB(yk) = W | NB(yℓ) = W) ≤ PπB

(NB(yk) = U | NB(yℓ) = W). (4.7)

But X{r} has size
(

n
r

)

, so summing over all possible choices for U ∈ X{r} in (4.7) shows us
that (since the probabilities on the right must sum to unity)

PπB
(NB(yk) = W | NB(yℓ) = W) ≤

(

n

r

)−1

.

Since d and r are both regular, by symmetry every possible W ∈ X{r} is equally likely;
hence

PπB
(NB(yℓ) = W) =

(

n

r

)−1

.

Thus we can apply Lemma 3.1 with c1 = c2 = 1 to conclude that

PπB
(B∗(d, r)) ≥ 1−

(

m

2

)(

n

r

)−1

.

This completes the proof.

4.2.1 Sensitivity result for bipartite degree sequences

In this section we prove Proposition 4.3.

Proof of Proposition 4.3. We first define an equivalence relation on the graphical realizations
B ∈ B(d, r). Let

LB = {y ∈ Y : {xk, y}, {xℓ, y} ∈ E(B)}, that is, LB = NB(xk) ∩NB(xℓ).

We say that two bipartite graphs B,B′ are equivalent, denoted by B ∼ B′, if NB(xi) =
NB′(xi) for all xi ∈ X \ {xk, xℓ} and LB = LB′ . One interpretation of the equivalence class
of B is as follows. We first write B = D +B0 where B0 contains precisely the edges

⋃

i=k,ℓ

{{xi, y} ∈ E(B) : y ∈ Y \ LB},

that is, all the edges adjacent to xk or xℓ for which the endpoint in Y is not connected to
both xk and xℓ. We emphasize that xk and xℓ are fixed throughout the proof. The so-called
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base graph D then contains the remaining edges. The equivalence class SB ⊆ B(d, r) of B
is now given by B itself and all graphs B′ of the form

B′ = D +B′
0

where B′
0 has the same degree sequence as B0. Note that the degree of xk in B0 equals

degB0
(xk) = dk − |LB| and degB0

(xℓ) = dℓ − |LB|. All nodes in B0 with non-zero degree in
Y have degree 1.

Example 4.4. Consider the graph B in Figure 1 with degree sequence d = (1, 3, 5, 2) and
r = (3, 2, 1, 1, 2, 2). The decomposition into D + B0 is given in Figure 2. Here we have
LB = {1, 2}.

1 2 3 4 5 6

xk xℓ

Figure 1: The graph B.

1 2 3 4 5 6

xk xℓ

1 2 3 4 5 6

xk xℓ

Figure 2: The graphs D (left) and B0 (right) for B as in Figure 1.

1 2 3 4 5 6

xk xℓ

1 2 3 4 5 6

xk xℓ

1 2 3 4 5 6

xk xℓ

Figure 3: The three choices of B′
0 for B0 as in Figure 2.

There are three choices of B′
0 in this case, which are given in Figure 3 (depending on

which node gets connected to xk). This means that |SB| =
(

4
1

)

= 4. ◭

We next make some simple observations. Again remember that the definition of the base
graph and the equivalence class is depending on the fixed choice for k and ℓ.

Observation 4.5. Given a bipartite degree sequence (d, r) and base graph D of some B ∈
B(d, r), we can uniquely determine the equivalence class of the graph B (without knowing
B). Moreover, given an equivalence class S, we can find the common base graph D of all its
elements by taking the intersection of all graphs in S.
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Proof. Given the base graph D and sequence (d, r), we can uniquely determine the bipartite
degree sequence of B0 (but not B0 itself), and precisely for all graphs B′

0 with this bipartite
degree sequence, D+B′

0 is an element of SB. The second claim follows from the fact that for
any two graphs B,B′ ∈ S, we have LB = LB′ and NB(xi) = NB′(xi) for all i ∈ [n] \ {k, ℓ},
which implies that D ⊆ ∩B∈SB. To see equality, note that if some edge {xk, y} or {xℓ, y},
with y /∈ LB, is contained in some B ∈ S, there is always a realization B′ ∈ S that does not
contain it.

Because of Observation 4.5, we will label an equivalence class S according to its base
graph, and write S = S(D). Moreover, we write |LS(D)| for the common value of |LB| for all
B ∈ S(D).

Observation 4.6. If D is a base graph for some B ∈ B(d, r), then it is also a base graph
for some B ∈ B(d′, r).

Proof. This follows from the fact that, for a given B = D+B0 ∈ B(d, r), we can remove an
edge of the form {xk, y} from B0, and add the edge {xℓ, y} to B0. An edge of the form {xk, y}
always exists, as dk ≥ dℓ + 2. The edge {xℓ, y} does not exist in B by construction. To see
this, note that if also {xℓ, y} ∈ E(B), then we would have had y ∈ LB, which implies that
degB0

(y) = 0, as y would then have been connected to both xk and xℓ. It follows directly
that B′ = B − {xk, y} + {xℓ, y} ∈ B(d′, r). In particular, B′ has the same base graph as
B.

Now, in order to show that |B(d, r)| ≤ |B(d′, r)|, we consider a fixed base graph D of
some graph B ∈ B(d, r), and its equivalence class S(D). Let S ′(D) be the equivalence class
in B(d′, r) of the base graph D.

Example 4.4 (continued). For the base graph D as in Figure 2, the equivalence class
S ′(D) ⊆ B(d′, r), with d

′ = (1, 4, 4, 2) and r = (3, 2, 1, 1, 2, 2), is given by the graphs in
Figure 4. Note that |S ′(D)| =

(

4
2

)

= 6. ◭

1 2 3 4 5 6

x y

1 2 3 4 5 6

xk xℓ

1 2 3 4 5 6

xk xℓ

1 2 3 4 5 6

xk xℓ

1 2 3 4 5 6

xk xℓ

1 2 3 4 5 6

xk xℓ

Figure 4: The six graphs (B′
0)

′ so that D + (B′
0)

′ ∈ S ′(D) with D as in Figure 2.

For any base graph D corresponding to some equivalence class S(D) ⊆ B(d, r), we can
enumerate the equivalence class by a simple combinatorial argument. Recall that dk−|LS(D)|
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and dℓ − |LS(D)| are the degrees of xk and xℓ respectively, for any B0 with D +B0 ∈ S(D).
Then

|S(D)| =
(

dk + dℓ − 2|LS(D)|
dℓ − |LS(D)|

)

≤
(

dk + dℓ − 2|LS(D)|
dℓ + 1− |LS(D)|

)

=

(

(dk − 1) + (dℓ + 1)− 2|LS(D)|
(dℓ + 1)− |LS(D)|

)

=

(

d′k + d′ℓ − 2|LS′(D)|
d′ℓ − |LS′(D)|

)

= |S ′(D)|.

To produce the inequality, we have used that

(

α + β

β

)

≤
(

α + β

β + 1

)

for any α, β ∈ N such that α ≥ β + 2. The given constants satisfy this inequality by
assumption (see statement of Proposition 4.3). The penultimate equality follows from the
fact that |LS(D)| = |LS′(D)|. It then follows that

|B(d, r)| =
∑

S(D)

|S(D)| ≤
∑

S′(D)

|S ′(D)| = |B(d′, r)|

because of Observation 4.6 and the fact that the mapping that sends S(D) to S ′(D) is
injective. This last claim can be seen from the fact that given an equivalence class S ′, there
is a unique D so that S ′ = S ′(D), which is given by the intersection of all graphs in S ′, as
shown in Observation 4.5. This completes the proof of Proposition 4.3.
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A Mixing time bounds for the switch Markov chain

The switch Markov chain was analysed by Cooper, Dyer and Greenhill [10, 11] for regular
graphs, and by Greenhill and Sfragara [19] for irregular graphs that are relatively sparse.
Some situations which lead to additional factors in the mixing time bounds from [10, 11, 19]
do not arise in bipartite graphs, and so it is possible to improve the mixing time bounds
for bipartite graphs. To the best of our knowledge, these bounds have not been presented
elsewhere, so we write them down here. The proofs from [10, 11, 19] use the multicommodity
flow method, and are quite long and technical. We do not give full details, but rather explain
how the proofs from [10, 11, 19] can be adapted to the bipartite setting, and give the resulting
mixing time bounds. For all notation that is not defined, and all other missing details, we
refer the reader to [10, 11, 19].

We begin with regular bipartite graphs, where there are n nodes in each side of the
bipartition and all nodes have degree d. (We stress that this case is not particularly relevant
for the problem of sampling hypergraphs, unless the hypergraph is d-regular and d-uniform.)
For regular bipartite graphs, the bound on the bipartite switch chain is a factor of 1

32
d6n2

smaller than the general (not-necessarily-bipartite) case. (The constant factor 32 in Theorem
A.1 below arises since graphs in B(n, d, d) have 2n nodes.)

Theorem A.1. Let B(n, d, d) be the set of d-regular bipartite graphs with 2n nodes and a
given bipartition. Then the mixing time of the bipartite switch chain on B(n, d, d) satisfies

τ(ε) ≤ 32d17n6
(

2dn log(2dn) + log(ε−1)
)

.

Proof. Temporarily, write N = 2n, for ease of comparison with [10, 11]. The flow can be
defined in exactly the same way as in [10], though a shortcut edge will never be needed.
(Every circuit decomposes into 1-circuits.) Hence there will be at most 3 defect edges, two
labelled −1 and one labelled 2, all incident with the “start vertex” x0 of the 1-circuit. At
most two switches are needed to transform any encoding into a graph, and [10, Lemma
4] becomes |L(Z)| ≤ 2d4N3|B(n, d, d)|. (This is smaller by a factor of d2N2 than in the
non-bipartite case, essentially because we save one (-1)-switch in the worst case, which costs
d2N2.)

In the bipartite case, we save a factor of d4 compared with [11, Lemma 1] (which is a
correction of [10, Lemma 5]). This is because there can be at most 10 bad pairs in the
yellow-green colouring, not 14. Recall that each bad pair contributes a factor of d. (There
are at most 3 bad pairs from each defect edge, plus at most one additional bad pair from
wrapping around at x0. Alternatively, we no longer have a shortcut edge, which in [10, 11]
was responsible for up to 4 bad pairs, so 14 goes down to 10.)

Combining these effects, we save a factor of d6N2 compared to the mixing time from [11,
Theorem 1]. Note that we have ℓ(f) ≤ dN/2 and, as there are dn edges in any element of
B(n, d, d),

1/Q(e) ≤ 4

(

nd

2

)

|B(n, d, d)| ≤ 1
2
d2N2 |B(n, d, d)|,

which saves an additional factor of 1
2
compared with [10, 11].
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Let ∆ = max{dmax, rmax}. By adapting the analysis from [19], we can prove a bound in
the irregular case which is a factor of ∆4M2 smaller than in the general (not-necessarily-
bipartite) case.

Theorem A.2. Let B(d, r) be the set of all bipartite graphs with a given node bipartition,
degrees d on the left and degrees r on the right. Suppose that all degrees are at least 1 and
that 3 ≤ dmax, rmax ≤ 1

3

√
M . Then the mixing time of the bipartite switch chain satisfies

τ(ε) ≤ ∆10M7
(

1
2
M log(M) + log(ε−1)

)

.

Proof. We have 1/Q(e) ≤ M2 |B(d, r)| and ℓ(f) ≤ M/2, as in [19, Theorem 1.1]. Arguing
as above, the number of bad pairs is at most 10, not 14, saving a factor of ∆4. The main
thing is the critical lemma [19, Lemma 2.5], where we give an upper bound on the number
of encodings. We claim that

|L∗(Z)| ≤ 2M4|B(d, r)|
so long as ∆ ≤ 1

3

√
M , say.

In [19, Lemma 2.5], we only performed a (−1, 2)-switching if we had four defect edges.
This was to ensure that we definitely had a (−1)-defect edge incident with a 2-defect edge:
but when there is no shortcut edge, this is already guaranteed when we have three defect
edges. Therefore, letting

a = 2∆2M, b = 2∆2, c = 9
8
M2

be the upper bounds that we proved in [19, Lemma 2.5] on the various ratios, we obtain

|L∗(Z)| ≤ (1 + b+ c+ bc + c2 + ac) |B(d, r)|.

(The saving here is replacing bc2 by ac, and in omitting the terms involving b2 or abc or ac2,
which were needed in [19] to deal with the shortcut edge.) Using the bounds 3 ≤ ∆ and
∆2 ≤ M/9, we see that

|L∗(Z)| ≤ 2M4.

This is a factor of M2 smaller than the corresponding bound given in [19, Lemma 2.5], again
because (in the worst case) we save a (−1)-switch, which gives a ratio of 9

8
M2. Combining

this with the earlier saving of ∆4, we obtain the stated bound.

The following corollary is most relevant to sampling uniform hypergraphs with given
degrees. It follows directly from Theorem A.2 by considering a regular sequence r.

Corollary A.3. Let B(d, r) be the set of all bipartite graphs with a given node bipartition,
degrees d = (d1, . . . , dn) on one side and with m nodes of degree r on the other. Let M =
rm =

∑n
j=1 dj. Suppose that all degrees are at least 1 and that 3 ≤ dmax, r ≤ 1

3

√
M . Then

the mixing time of the bipartite switch chain satisfies

τ(ε) ≤ ∆10M7
(

1
2
M log(M) + log(ε−1)

)

where ∆ = max{dmax, r}.

22


	1 Introduction
	1.1 Our contributions

	2 Related work
	2.1 Various bipartite sampling algorithms, and implications
	2.2 Sampling hypergraphs using the configuration model

	3 Analysis of HypergraphSampling
	4 Probability of H-simplicity
	4.1 Irregular, sparse degrees
	4.2 Regular degrees
	4.2.1 Sensitivity result for bipartite degree sequences


	A Mixing time bounds for the switch Markov chain

