
Erasable PUFs: Formal Treatment and Generic Design

Chenglu Jin
New York University

Brooklyn, New York, USA
chenglu.jin@nyu.edu

Wayne Burleson
University of Massachusetts Amherst

Amherst, Massachusetts, USA
burleson@umass.edu

Marten van Dijk
CWI Amsterdam & University of Connecticut

Amsterdam, Netherlands
marten.van.dijk@cwi.nl

Ulrich Rührmair
LMU München & University of Connecticut

Munich, Germany
ruehrmair@ilo.de

ABSTRACT

Physical Unclonable Functions (PUFs) have not only been sug-
gested as new key storage mechanism, but Ð in the form of so-
called łStrong PUFsžÐ also as cryptographic primitives in advanced
schemes, including key exchange, oblivious transfer, or securemulti-
party computation. This notably extends their application spectrum,
and has led to a sequence of publications at leading venues such as
IEEE S&P, CRYPTO, and EUROCRYPT in the past [3, 6, 10, 11, 29, 41].
However, one important unresolved problem is that adversaries
can break the security of all these advanced protocols if they gain
physical access to the employed Strong PUFs after protocol com-
pletion [41]. It has been formally proven [49] that this issue cannot
be overcome by techniques on the protocol side alone, but requires
resolution on the hardware level Ð the only fully effective known
countermeasure being so-called Erasable PUFs [36]. Building on
this work, this paper is the first to describe a generic method how
any given silicon Strong PUF with digital CRP-interface can be
turned into an Erasable PUF. We describe how the Strong PUF can
be surrounded with a trusted control logic that allows the blocking
(or łerasurež) of single CRPs. We implement our approach, which
we call łGeniePUFž, on FPGA, reporting detailed performance data
and practicality figures. Furthermore, we develop the first compre-
hensive definitional framework for Erasable PUFs. Our work so
re-establishes the effective usability of Strong PUFs in advanced
cryptographic applications, and in the realistic case adversaries get
access to the Strong PUF after protocol completion.

CCS CONCEPTS

· Hardware → Integrated circuits; · Security and privacy →
Embedded systems security.

KEYWORDS

Physical Unclonable Functions (PUFs), PUF Re-Use Model, Erasable
PUFs, Reconfigurable PUFs, GeniePUFs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASHES’20, November 13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8090-4/20/11. . . $15.00
https://doi.org/10.1145/3411504.3421215

ACM Reference Format:

Chenglu Jin, Wayne Burleson, Marten van Dijk, and Ulrich Rührmair. 2020.
Erasable PUFs: Formal Treatment and Generic Design. In 4th Workshop on

Attacks and Solutions in Hardware Security (ASHES’20), November 13, 2020,

Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3411504.3421215

1 INTRODUCTION AND OVERVIEW

1.1 PUFs and Their Differing Applications

The last years have witnessed an increasing interest in directly
leveraging the physical properties of computer hardware for cryp-
tographic and security purposes. One prime example are so-called
Physical Unclonable Functions (PUFs), which exploit the natural
manufacturing variations arising in most modern hardware systems
[14, 24, 30].

In their early days, PUFs were predominantly seen as a novel tool
for physical key storage and system identification. To start with,
so-called Weak PUFs [35] (for example SRAM PUFs [17], transistor-
based PUFs [24], diode-based PUFs [19], or DRAM PUFs [52]) were
suggested as source of system-specific keys in hardware that had no
non-volatile memory (NVM) on board. This successively established
Weak PUFs as viable, arguably more secure alternative to classical
NVMs in key storage applications [18, 22, 25, 26, 43].

In addition, so-called Strong PUFs [35] (such as Arbiter PUFs
[45] and optical PUFs [30]), were proposed for new types of remote
identification protocols [30]. In these schemes, a randomly chosen
subset of PUF Challenge Response Pairs (CRPs) is directly sent
in the clear and unencrypted in each protocol run, proving the
identity of the PUF-holder to a remote party. Fresh CRPs have to
be employed in each execution, necessitating a large CRP-space of
the underlying Strong PUF. Interestingly, the use of Strong PUFs
here leads to new hardware and new cryptographic protocols. In
both cases, Weak and Strong PUFs empower electronic systems
to identify themselves without having classical, permanent digital
keys on board. This notable fact has created sustainable research
interest in the security community ever since.

In recent years, an important second research strand on PUFs
has evolved, however, which reaches strictly beyond the above key
storage or identification scenarios. In this second avenue, solely
Strong PUFs [35] 1 are employed as łcryptographic primitivež in

1Weak PUFs [35] are not suited for the application as cryptographic primitive in
advanced protocols in the above sense: This scenario inevitably requires a large,
inexhaustible CRP space with many possible challenges, numerically unpredictable
responses, and a publicly accessible CRP-interface of the PUF, where every protocol

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/385866424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

110100101

EVE

Strong

PUF

Figure 1: The most general setting for the application of

Strong PUFs in cryptographic protocols: All participants are

connected pairwise via a binary channel, and via a separate

physical channel over which physical objects like Strong

PUFs can be sent. Eve can access both the physical and bi-

nary channels alike.

advanced schemes like key exchange (KE), bit commitment (BC),
oblivious transfer (OT), or secure multi-party computation (SMC)
[6, 29, 32]. It turned out that all these tasks can solely be built on
Strong PUFs and their features, without employing any additional
security assumptions. This makes Strong PUFs a novel, indepen-
dent fundament for cryptography: Their security is based on their
assumed physical unclonability and numeric unpredictability of
their responses, not on the purported intractability of number theo-
retic problems, such as the factoring or discrete logarithm problems.
The resulting Strong PUF protocols are hence resilient against a
potential advent of quantum computing, and so in line with recent
efforts in post-quantum cryptography [8]. As mentioned earlier,
this research thread on advanced Strong PUF protocols has led
to publications at leading venues of the theoretical cryptography
community, including IEEE S&P, CRYPTO, EUROCRYPT, or TCC
[3, 6, 10, 11, 29, 41].

The communication scenario of said protocols is similar to classi-
cal, token-based cryptography [31], as depicted in Figure 1: Several
parties are connected via (i) a digital channel, over which binary
messages can be sent, and (ii) a physical channel, over which real,
physical objects (like Strong PUFs) can be transferred. The adver-
sary Eve has potential access to both channels. Since a Strong PUF’s
challenge-response interface is by definition publicly accessible
[35], Eve and all other protocol participants can query the Strong
PUF for any CRPs of their choice during their respective access
periods to the PUF Ð while not being able to read out the Strong
PUF’s CRP-space completely, as it is too large [35]. We stress that
the physical transfer of Strong PUFs can often be accomplished
naturally and with surprisingly little effort: Whenever a customer
carries a bank card plus Strong PUF from terminal to terminal in
his wallet; whenever an electronic hardware is shipped from a man-
ufacturer to an end consumer; or when a mobile device such as a
laptop or smartphone is carried around and connects to different

participant and also adversaries can apply challenges and read-out responses freely
[6, 29, 32] Ð or, in one term, a Strong PUF [35].

base stations; an automatic and implicit physical transfer of objects
(and potentially of PUFs) takes place. Taken together, the future
of Strong PUFs as cryptographic primitive seemed bright both in
practice and theory, promising a broad spectrum of applications.

1.2 PUF Re-Use and Relevance of Erasable
PUFs

These bright hopes were partly dashed when a class of simple, yet
efficient attacks on advanced Strong PUF protocols was discovered:
The so-called łPUF Re-Use Modelž or łPost-Protocol Access Modelž

[41]. It realistically assumes that in almost all practical use cases, the
same Strong PUF will be re-employed in more than one protocol
run. Adversaries may thus gain physical access to the PUF not
just during a run, but also after the run has been completed. As
Strong PUFs by definition possess a publicly accessible, unprotected
CRP-interface [35], such "post-protocol access" allows the read-out
of any CRPs of the adversary’s choice. This potentially includes
CRPs that had been employed earlier by other parties, provided
that the respective challenges are, or have become, known to the
adversary. Post-protocol access can hence retrospectively allow
attacks on previous protocol executions. Unfortunately, this simple
attack method has proven effective on all currently known Strong
PUF based KE, OT, or SMC schemes [41, 49].

We would like to stress that the PUF Re-Use Model differs funda-
mentally from the trivial case of a Weak PUF whose responses have
been exposed to the adversary. Please recall the strict differences
between Weak PUFs and Strong PUFs [35] in this context: Weak
PUFs inherently are based on the hypothesis that their responses re-
main internal and unknown to adversaries forever. Exposing these
responses hence trivially breaks security. With Strong PUFs, more
or less the converse holds: Their CRP-interface by definition is
designed to be public from the start. They should hence intuitively
withstand any adversarial access to their CRP-interface, including
the post-protocol access assumed in the PUF Re-Use Model Ð but
actually cannot, as it turns out [36, 41, 49].

This leads to the question whether new protocols for KE, OT,
or SMC could be designed that evade the above issues. Unfortu-
nately, it was formally proven [49] that any standard Strong PUFs,
whose responses are unaltered and can still be read out during post-
protocol access, are not useful in building secure KE, OT, or SMC
schemes. This implies that the problems arising from post-protocol
access must be solved on a hardware level Ð not on a protocol level.
They must be overcome by devising novel physical types of PUFs,
which can alter some of their CRPs for good [49].

The above discussion could be interpreted as suggesting so-called
Reconfigurable PUFs [12, 20, 23, 53] in order to resolve the issues
of post-protocol access. Please recall that by definition [20], all
of their responses can be randomly altered in one single step by
a simple reconfiguration operation. However, complete, general,
and non-selective reconfigurability is not what we need in our
context: For illustration, consider the setting depicted in Figure 1.
Let us assume that different cryptographic protocols are being run
between multiple parties in this setting, using the same PUF. Some
of these parties will have measured CRP-lists of this PUF earlier.
Fully reconfiguring the entire PUF implies that all of these lists
become obsolete, however. They would have to be measured anew.

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

22

This implies that the reconfigured PUF needs to physically return
to all respective parties, which is highly inefficient and impractical.

In sum, this renders Erasable PUFs (and their finegrained, gran-
ular erasability on a single CRP-level) the only known possibility

[49] to fully restore the usability of Strong PUFs in advanced cryp-
tographic protocols (such as KE, OT, or SMC) in the most general
usage scenarios [36, 41].

1.3 Related Work and Fundamental Challenges

Despite their abovementioned relevance, no fully viable Erasable
PUF candidates have been devised to this date. The deeper reasons
are some non-trivial, quite fundamental challenges in Erasable PUF
design: Recall that Erasable PUFs are a subclass of Strong PUFs, i.e.,
they must possess a very large number of possible inputs, and a
complex, numerically hard-to-predict input-output behavior [35].
However, essentially all known Strong PUF architectures, such
as Arbiter PUFs [45] and optical PUFs [30], realize this feature
by a complex interplay of many system-internal components in
the response generation. If a single response shall be altered ir-
recoverably in such a construction, at least one of these internal
components must be modified. This will alter the targeted response;
but it will also inevitably affect many other responses as well! For
example, modifying a single scattering element in an optical PUF,
or changing a single runtime delay in an Arbiter PUF, will necessar-
ily influence many CRPs Ð not just one. This complicates or even
disables finegrained erasure operations on a single CRP level.

The only known Erasable PUF candidate prior to our work
was based on a large, monolithic crossbar architecture [36]. It car-
ries diodes with random current-voltage characteristics at each of
its nanoscale crosspoints [36]. This design, known as SHIC PUF
[37], leads to a very large number of completely and information-
theoretically independent CRPs. By intentionally overloading a
selected diode, a breakthrough could be induced at any given cross-
point, effectively łerasingž the PUF-response deduced from this
crosspoint without affecting other responses [36].

However, one substantial problem with this existing construc-
tion, which the authors of [36] did not mentioned, is that after
breakthrough, the rectification rates of the broken diodes are not
high enough to guarantee a fully functional read-out procedure
in the large monolithic crossbar in the future. Concretely, it is re-
ported [36] that the rectification rates drop from 107 to as low as
102 after breakthrough. This means that additional parasitic paths
will arise in the large monolithic structures with every new break-
down, quickly disabling exact future read-out operations after an
increasing number of erased responses.

Other publications that are directly related to our work include
the following: Firstly, the already mentioned Reconfigurable PUFs
[12, 20, 23, 53], which pursue a reconfiguration of the entire PUF
with all its CRPs. However, this global reconfigurability leads to the
protocol and efficiency issues that we described already in Section
1.2. This renders Reconfigurable PUFs not well applicable in our
situation. Secondly, Controlled PUFs [13, 15] have some aspects in
common with our architectures, as they also employ a trusted logic
around a standard PUF in order to realize novel security features.
However, their design goals and envisaged applications vastly differ
from ours [13, 15]: For example, standard Controlled PUFs assume

the secret storage and error correction of several earlier response
values inside the trusted computing base (TCB) of the Controlled
PUF. This is contrary to our approach, which does not induce any
secrets inside the TCB and surrounding control logic of our Erasable
PUF constructions.

1.4 Our Contributions

Within the above research landscape, we make the following novel
contributions:

• We develop a formal, but easily comprehensible new frame-
work for PUF definitions, and give the first formal defini-
tions of Erasable PUFs. Our treatment could potentially help
coining a novel, easily accessible, yet precise style in any
future PUF-related definitions. Furthermore, we lead some
first proofs on the exact relation between Strong PUFs and
Erasable PUFs in our framework.

• Our erasable PUF design is generic in the sense that it can
turn any given integrated Strong PUFwith a digital challenge-
response interface into an Erasable PUF. We therefore call
our design łGeniePUFž for Generic Erasable PUF. We also
proved łGeniePUFž is a secure Erasable PUF, given that its
underlying PUF is a secure Strong PUF.

• On the technical side, the GeniePUF approach uses red-black
tree and authenticated search tree techniques in untrusted
memory, while storing a public, i.e., non-secret, but authen-
ticated root hash inside its Trusted Computing Base (TCB).
The root hash’s length is independent of the number of al-
ready erased CRPs.

• We implement our approach on Zynq FPGA, reporting de-
tailed performance and practicality figures. We show that a
CRP erasure operation takes no more than 18 𝜇𝑠 and 10 𝜇𝑠 for
the hardware TCB and software interface, respectively, even
if 100,000 CRPs have been erased previously as an example
case. This time only rises mildly even for larger erased CRP
sets.

1.5 Organization of This Paper

Section 2 presents a novel definitional framework for Erasable PUFs
and the first formal Erasable PUF definitions. OurGeneric Erasable
PUFs (GeniePUFs), which are based on programmable logic and
authenticated tree structures, are discussed in Section 3. Section 4
shows the security and practicality of the GeniePUF construction,
with a concrete cryptographic application (i.e., their use on bank
cards/smart cards in communication terminals). Finally, the paper
concludes in Section 5.

2 A FORMAL FRAMEWORK FOR ERASABLE
PUFS

2.1 Basic Aspects of (Strong) PUFs

While their challenge-response behavior can be, and actually often
is, modeled mathematically, PUFs in the end are physical objects.
It thus makes sense to start our definitional framework by a few
basic, mostly physical aspects.

Definition 1 (PUFs). A PUF 𝑃 is a physical system that can be
stimulated with so-called challenges 𝑐𝑖 from a challenge set 𝐶𝑃 ⊆

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

23

{0, 1}𝑘 , upon which it reacts by producing corresponding responses
𝑟𝑖 from a response set 𝑅𝑃 ⊆ {0, 1}𝑚 . Each response 𝑟𝑖 shall depend
on the applied challenge, but also on manufacturing variations in 𝑃

that are practically unclonable with currently existing technology.
The tuples (𝑐𝑖 , 𝑟𝑖) are usually called the challenge-response pairs
(CRPs) of 𝑃 . If required, we explicitly write 𝑟𝑃𝑐𝑖 or 𝑟

𝑃
𝑖
for denoting

the response of 𝑃 to challenge 𝑐𝑖 .

We comment that it seems necessary to stipulate that PUF-
responses must depend on unclonable manufacturing variations
in the PUF: Only this feature distinguishes PUFs from a piece of
standard, digital hardware implementing a pseudo-random func-
tion, say. Furthermore, the definition implicitly assumes that any
potentially noisy PUF-responses can be stabilized via suitable error-
correcting means. This allows regarding the PUF’s behavior as a
function 𝐹𝑃 mapping challenges to responses, and to consider fixed
CRPs (𝑐𝑖 , 𝑟𝑖), with 𝑟𝑖 = 𝐹𝑃 (𝑐𝑖). Making this assumption is in accor-
dance with the PUF-literature, and also strongly simplifies our later
treatment: It allows us to talk about a single, fixed response (after
error correction) to a given challenge.

Let us next define secure Strong PUFs, one of the main PUF-
subtypes. For simplicity, hereinafter, we will use łstrong PUFž to
represent łsecure strong PUFž defined in Definition 2.

Definition 2 (Secure Strong PUFs). Let 𝑃 be a PUF and A be an
adversary. 𝑃 is called a (𝑘, 𝑡att, 𝜖)-secure Strong PUF with respect
to A if A has a probability of at most 𝜖 to łwinž the following
security game:

SecGameStrong (𝑃,A, 𝑘, 𝑡att):

(1) The PUF 𝑃 is handed over to A, starting the game. 2

(2) A is allowed to conduct physical actions and to carry out
numeric computations, potentially exploiting his physical
access to 𝑃 . These actions and computations are limited by
the laws of physics and by A’s individual capabilities and
equipment.

(3) At an adaptive point in time of A’s choice, A hands back 𝑃
(or whatever physically remains of it). 2, 3

(4) Then for 𝑗 = 1, . . . , 𝑘 , the following loop is repeated:
(a) A challenge 𝑐 𝑗 from 𝑃 ’s challenge space 𝐶𝑃 is chosen

uniformly at random.
(b) 𝑃 and 𝑐 𝑗 are handed over to A. 2

(c) A is allowed further physical actions and numeric compu-
tations, with the exception of asking 𝑃 for the response of
𝑐𝑖 for 1 ≤ 𝑖 ≤ 𝑗 . These actions and computations are again
limited by the laws of physics and by A’s capabilities and
equipment.

(5) A chooses to guess a response for one of the challenges

𝑐 𝑗 , i.e., he outputs a tuple (𝑗∗, 𝑟
𝑗∗

guess), with 1 ≤ 𝑗∗ ≤ 𝑘 and

𝑟
𝑗∗

guess ∈ 𝑅𝑃 , and the game ends. 2

A "wins" the game if:

2 We assume that the physical handover procedures in Step 1 and Step 3, as well as the
choice and presentation of 𝑐 𝑗 in Step 4, are carried out in negligible time compared to
the rest of the security game, i.e., we model them to take time of 0 sec, not causing
any additional delays.
3 Note that A may have potentially physically altered or even destroyed 𝑃 .

• A has made an output (𝑗∗, 𝑟 𝑗
∗

guess) and 𝑟
𝑗∗

guess is equal to the

correct response of 𝑃 on challenge 𝑐 𝑗
∗
, i.e.,

𝑟
𝑗∗

guess = 𝑟𝑃
𝑐 𝑗

∗ .

• The cumulative time that has elapsed in Step 2 and in the 𝑘
repetitions of Step 4c within the loop does not exceed 𝑡att.

In all of this, the probability 𝜖 is taken over the random choice of
all the 𝑐 𝑗

∗
, and over all random procedures that A employs in the

security game. ■

Notice that adversaryA may have been lucky in thatA queried
PUF 𝑃 for some challenge 𝑐 𝑗 before it was given to A in Step 4b
(after which A is not allowed to query 𝑐 𝑗 any more). Let 𝛼 be the
fraction of all challenge-response pairs that can be retrieved from 𝑃

within time 𝑡att in Step 2 (we chooseA not to do anything in Step 4c
for each iteration). Then, the probability that one of 𝑐 𝑗 corresponds
to one of the retrieved challenge-response pairs in Step 2 is equal
to 1 − (1 − 𝛼)𝑘 . If this happens, then A wins the game, since he
knows the response and therefore can predict the response. This
shows that 𝜖 ≥ 1 − (1 − 𝛼)𝑘 . For large challenge-response spaces,
𝛼 is small such that 1 − (1 − 𝛼)𝑘 ≈ 𝛼 · 𝑘 and 𝜖 ≥ 𝛼 · 𝑘 .

Proposition 1 (Strong PUFs for Different Sizes of 𝑘). Let 𝑃 be a
PUF and𝑘 ≤ 𝑘 ′. For everyA that wins SecGameStrong (𝑃,A, 𝑘, 𝑡att),
there is another adversaryA ′ who performs the same actions asA
(plus some dummy waiting operations) and that wins
SecGameStrong (𝑃,A ′, 𝑘 ′, 𝑡 ′att), where 𝑡

′
att is equal to 𝑡att plus the

time cost for the dummy waiting operations.

Proof. Without adding extra adversarial capabilities or time
complexity, any adversary A can be modified to an adversary
A ′ who is like A but does not to do anything in Step 4c for it-
erations 𝑗 = 𝑘 + 1, . . . , 𝑘 ′ and chooses to select 𝑗∗ in the range
1 ≤ 𝑗∗ ≤ 𝑘 in Step 5. This reduces SecGameStrong (𝑃,A, 𝑘, 𝑡att) to
SecGameStrong (𝑃,A ′, 𝑘 ′, 𝑡 ′att). □

Our definition is a simplified, perhaps more easily accessible ver-
sion of the existing, game-based Strong PUF definitions [2, 34, 40].
These usually employ multiple parameters to define Strong PUF se-
curity [2, 34]; we reduce this to merely three characteristic figures,
namely the attack time 𝑡att, the size 𝑘 of the subset of challenges
for which an adversary needs to predict one of its responses, and
the adversarial guessing probability 𝜖 . We do not employ physical
Turing machines as the formal model of computation for the adver-
sary, since this can lead to intricate definitions [33]. Furthermore,
we do not consider infinite families of PUFs as in [2, 6], avoiding an
asymptotic treatment with its associated pitfalls and issues [34, 40].
Instead, we assume that one specific adversary A with certain
(assumed) abilities is under consideration. Finally, our definition
does not suppose an information-theoretic security of the Strong
PUF, as some earlier works did [6]: The reason is that most Strong
PUFs (such as the Arbiter PUF and variants thereof) do not possess
information-theoretic, but only computational security, as all the
existing modeling attacks show in passing [38, 39]. (Recall that in
these modeling atacks, a small set of CRPs is collected in order to ex-
trapolate the PUF’s behavior on other CRPs; this would be provably
impossible if all CRPs were information-theoretically independent.)

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

24

Overall, we hope that our definition strikes a good balance between
formal rigour and accessibility.

2.2 Erasable PUFs

Loosely speaking, Erasable PUFs are Strong PUFs (see Definition 2
and [16, 35]) with one extra property: Users can select an arbitrary
challenge 𝑐erase ∈ 𝐶𝑃 , and apply a łsecure erasure operationž ER

for this challenge to the PUF. This operation shall irrecoverably
łerasež the single CRP (𝑐erase, 𝑟erase) from the PUF, without affecting
any other CRPs. More precisely speaking, the erasure operation
should affect or alter the original response 𝑟erase in such a way that
adversaries later cannot recover 𝑟erase with a probability better than
random guessing, while all other responses shall remain unchanged.
The erasability operation shall be applicable 𝑘 times, ideally for
values of 𝑘 that reach up to the size of the entire challenge space
𝐶𝑃 of the Erasable PUF.

This leads to the following two definitions.

Definition 3 (Erasure Operations for PUFs). An erasure operation
ER for a PUF 𝑃 is a specific physical or logical process that takes
as input the PUF 𝑃 and a challenge 𝑐erase ∈ 𝐶𝑃 , and produces as
output a related PUF 𝑃 ′ with the following properties:

• 𝑃 ′ has the same challenge set as 𝑃 .
• For all challenges 𝑐 ≠ 𝑐erase, 𝑃 ′ has a functional challenge-
response behavior, and the responses of 𝑃 and 𝑃 ′ to 𝑐 are
equal, i.e., 𝑟𝑃

′

𝑐 = 𝑟𝑃𝑐 .

• The response of 𝑃 ′ to challenge 𝑐erase is altered or affected
in a certain fashion that is specific to ER; for example, ER
may routinely overwrite the original response 𝑟erase by a "0",
a "1", or by a fault symbol "⊥".

Any PUF 𝑃 to which its erasure operation ER has been applied 𝑘
times may be denoted as 𝑃 (𝑘) , with 𝑃 (0) being the original PUF
𝑃 . For any PUF 𝑃 (𝑘) , the set of challenges for which the erasure
operation has been applied to 𝑃 since its fabrication, is denoted by
E(𝑃 (𝑘)). ■

Note that the above definition does not say anything about ded-
icated security aspects, such as the irrecoverability of erased re-
sponses; this is taken care of next.

Definition 4 (Secure Erasable PUFs). Let 𝑃 be a PUF with erasure
operation ER, 𝑘 be a positive integer, and A be an adversary. 𝑃 is
called a (𝑘, 𝑡att, 𝜖)-secure Erasable PUF with respect to A if A has a
probability of at most 𝜖 to łwinž the following security game:

SecGameErasable (𝑃,A, 𝑘, 𝑡att):

(1) The PUF 𝑃 is handed over to A, starting the game. 2

(2) A is allowed to conduct physical actions and to carry out
numeric computations, potentially exploiting his physical
access to 𝑃 . These actions and computations are limited by
the laws of physics and by A’s individual capabilities and
equipment.

(3) At an adaptively selected point in time of A’s choice, he
hands back 𝑃 (= 𝑃 (0) , see Definition 3). 2

(4) Then for 𝑗 = 1, . . . , 𝑘 , the following loop is repeated:

(a) A challenge 𝑐 𝑗erase is chosen uniformly at random from𝐶𝑃 ,

and the CRP (𝑐
𝑗
erase, 𝑟

𝑗
erase) is erased from the PUF 𝑃 (𝑗−1) .

This creates a PUF 𝑃 (𝑗) . 2

(b) 𝑃 (𝑗) and 𝑐 𝑗erase are handed over to A. 2

(c) A is allowed to conduct physical actions and to carry
out numeric computations, possibly exploiting his phys-
ical access to 𝑃 (𝑗) . These actions and computations are
again limited by the laws of physics and byA’s individual
capabilities and equipment.

(5) A chooses to guess one of the previously erased responses,

i.e., he outputs a tuple (𝑗∗, 𝑟
𝑗∗

guess), with 1 ≤ 𝑗∗ ≤ 𝑘 and

𝑟
𝑗∗

guess ∈ 𝑅𝑃 , and the game ends. 2

A "wins" the game if:

• A has made an output (𝑗∗, 𝑟 𝑗
∗

guess) and 𝑟
𝑗∗

guess is equal to the

original response of 𝑃 on challenge 𝑐 𝑗
∗

erase, i.e., if

𝑟
𝑗∗

guess = 𝑟𝑃
𝑐
𝑗∗

erase

.

• The cumulative time that has elapsed in Steps 2 and in the 𝑘
repetitions of Step 4c within the loop does not exceed 𝑡att.

In all of this, the probability 𝜖 is taken over the random choice of all

the 𝑐 𝑗
∗

erase, and over all random procedures that A employs in the
security game. ■

The security game of Definition 4 specifies a rather strong attack
scenario: Overall 𝑘 randomly chosen CRPs are successively erased
from the PUF, while the adversary has access for time periods of
his adaptive choice before any erasures have taken place, and also
once after every single erasure operation was conducted.

Similar to Definition 2, Definition 4 deliberately is non-asymptotic,
and considers only a single PUF with respect to a given adversary
A and its capabilities (please compare the discussion following
Definition 2). Similar to Proposition 1, we can prove:

Proposition 2 (Erasable PUFs for Different Sizes of 𝑘). Let 𝑃 be a
PUF with erasure operation and let 𝑘 ≤ 𝑘 ′. For every A that wins
SecGameErasable (𝑃,A, 𝑘, 𝑡att), there is another adversaryA ′who
performs the same actions as A (plus some dummy waiting oper-
ations) and that wins SecGameErasable (𝑃,A ′, 𝑘 ′, 𝑡 ′att), where 𝑡

′
att

is equal to 𝑡att plus the time cost for the dummy waiting operations.

This implies that in order to be a (𝑘, 𝑡att, 𝜖)-secure Erasable PUF,
the erasure operation must work securely for any 𝑖-element subset
E ⊆ 𝐶𝑃 of size smaller than or equal to 𝑘 . 𝑘 so becomes one of
several quality measure of Erasable PUFs Ð the larger 𝑘 , the better.
As before, the definition was designed in order to strike a good
balance between accessibility and formal rigor.

As already mentioned, Erasable PUFs are a sub-class of Strong
PUFs, i.e., every Erasable PUF is also a Strong PUF automatically.
This intuitive fact is in agreement with our above framework, as
proven formally in the next theorem. It tells us that every Erasable
PUF (according to Definition 4) is also a Strong PUF (according to
Definition 2) with respect to the same adversary.

Theorem 1 (Erasable PUFs are Strong PUFs). Let 𝑃 be a (𝑘, 𝑡att, 𝜖)-
secure Erasable PUF with respect to some adversary A. Then 𝑃 is
a (𝑘, 𝑡att, 𝜖)-secure Strong PUF with respect to the same adversary
A.

The proof of Theorem 1 is given in Appendix C.1. This concludes
our formal definitional framework and treatment of Erasable PUFs.

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

25

The next section will deal with the first practically viable and also
generic silicon implementation strategy for Erasable PUFs.

3 GENERIC ERASABLE PUF DESIGN

3.1 Basic Idea and Overview

The most straightforward approach for implementing Erasable
PUFs would presumably consist of the following steps: (i) Take
an arbitrary silicon Strong PUF with digital challenge-response
interface. (ii) Surround it by a trusted control logic that guards the
application of challenges and the collection of responses. (iii) Keep
a public, but authenticated LIST of all CRPs that have been declared
łerasedž earlier. (iv) Whenever a new challenge 𝑐𝑖 is applied, the
control logic compares 𝑐 to LIST, and blocks it from application if
𝑐𝑖 has been declared łerasedž earlier.

There is one obvious issue with the above implementation strat-
egy, though: The entire LIST needs to be an authenticated part
of the TCB, in the sense that it must be unalterable for external
adversaries. At the same time, however, LIST will grow larger, as
more CRPs are declared erased. This implies that the size of the TCB
grows with the number of declared CRPs, with the latter potentially
growing rather large over the lifetime of the Erasable PUF. This is
obviously undesirable.

In this section, we therefore devise and implement a construc-
tion that keeps the size of the TCB constant over the lifetime of
the Erasable PUF, regardless of how many CRPs have already been
erased. We show that by combining authenticated search trees [7]
and red-black trees [9], LIST can be authenticated by a public,
merely constant-length string RootHash, which does not grow
as more CRPs are erased. RootHash is stored inside the TCB of the
Erasable PUF, where it does not need to be kept secret, but only
needs to be protected against adversarial manipulation of its value
(i.e., it merely needs to be authentic, not secret). At the same time,
LIST may be stored in public, untrusted memory. We also describe
how LIST and RootHash can be updated efficiently whenever new
challenges are declared łerasedž. Our basic approach of read-out
and erasure are illustrated in Figure 2 and 3, respectively.

The described approach has several upsides: Firstly, it transforms
any given Strong PUF into an Erasable PUF, being łgenericž in
this sense. Secondly, its assumption of a public, but authenticated
piece of data is long established in the PUF area, being similar to the
authenticated, public helper data required in the error correction
of Weak PUFs [35]. Thirdly, also the presumption of a surrounding,
trusted control logic (or TCB) is long accepted in the field: Please
recall that it is a standard ingredient of Controlled PUFs [13, 15].
Finally, as already indicated, our construction does not require
any digital secret keys in the TCB. This makes it an advantageous,
generic method for Erasable PUF design. We will unfold its full
details over the next subsections, calling it Generic Erasable PUF
(GeniePUF).

3.2 Read-Out Mechanism of the GeniePUF

Given the basic approach of Figure 2, we need to describe two
operations in order to fully specify our GeniePUF construction:
Firstly, how CRPs can be read out from the GeniePUF; secondly,
how CRPs can be erased from it. Both will be accomplished in
this and the next subsection. We emphasize that our read-out and

1/47

Challenge ci

Response ri
or “ERASED”
or “ ”

Red-Black-Tree
(RBT)

Red-Black Tree
Interface PROOF

ci

Trusted Computing Base
of GeniePUF

Public, Untrusted
System Part

Underlying
Strong PUF

USER

Control Logic.
Stores RootHash

Figure 2: Schematic illustration of the read-out mechanism

of GeniePUFs (compare Scheme 1), differentiating between

the public, untrusted system part (blue) and the trusted com-

puting base of the GeniePUF (green).

erasure procedures heavily rely on authenticated red-black trees
[9]; readers who are not familiar with this technique can turn to
Appendix A and B to obtain all relevant knowledge in a compact
form.

Let us then turn to the read-out mechanism of the GeniePUF. As
mentioned above, the LIST that contains all CRPs that have been de-
clared łerasedž earlier is implemented by a RBT, and is stored in pub-
lic, untrusted memory (see Figure 2). The much shorter RootHash
of the RBT, on the other hand, is stored within the Trusted Com-
puting Based (TCB) of the GeniePUF in order to authenticate the
entire RBT. If some USERwants to obtain CRPs from the GeniePUF,
the following steps are executed:

Scheme 1: Reading CRPs from GeniePUFs (Figure 2)

(1) The USER sends a challenge 𝑐𝑖 to the Control Logic (CL) of
the GeniePUF, which is part of the GeniePUF’s TCB.

(2) The CL passes on 𝑐𝑖 to the RBT interface, which belongs to
the public, untrusted system part.

(3) The RBT interface checks if 𝑐𝑖 is in the RBT, and generates
a PROOF whether 𝑐𝑖 is in the RBT (łproof of existencež) or
whether it is not in the RBT (łproof of non-existencež). Subse-
quently, PROOF is sent over from the RBT to the CL. The
detailed procedure of proof generation and the format of the
PROOF is given in Scheme 4 in the Appendix.

(4) The CL verifies the PROOF of existence or non-existence.
The procedure of proof verification is presented in Scheme 5
in the Appendix.
• If the PROOF is a valid proof of non-existence, the CL

applies 𝑐𝑖 to the Strong PUF, which is part of its TCB. It
passes the obtained response 𝑟𝑖 on to the USER.

• If the PROOF is a valid proof of existence, then CL denies
access to the PUF and outputs łERASEDž to the USER.

• If the PROOF (either non-existence proof or existence
proof) is invalid, then CL outputs ł⊥ž to the USER.

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

26

3.3 Erasure Mechanism of the GeniePUF

The mechanism for Erasing CRPs in the GeniePUF is again built on
the basic functionality of our underlying authenticated data struc-
ture, namely red-black trees (RBTs). In a nutshell, anyone can erase
CRPs from the GeniePUF, by sending an łErase 𝑐𝑖 ž command to the
Control Logic (CL) of the GeniePUF. Subsequently, the challenge
𝑐𝑖 is added to the LIST, or in our case, to the RBT, thus declaring it
łERASEDž. More precisely, the following procedure takes place:

Scheme 2: Erasing CRPs from GeniePUFs (Figure 3)

(1) The USER sends an łErase 𝑐𝑖 ž command to the CL.
(2) The CL passes on this command to the RBT interface.
(3) The RBT interface performs the same operations as step 3 in

Scheme 1. Besides, if 𝑐𝑖 is not in the RBT, the interface will
also attach the information about how the RBT might rotate
its structure (denoted as RotInfo). RotInfo will be sent over
together with PROOF to theCL. Notice that this computation
does not include computing updated hashes which RBT will
receive from CL in Step 5. 4

(4) Similar to step 4 in Scheme 1, the CL first verifies the PROOF.
• If the PROOF is a valid proof of non-existence, the CL

starts performing the erasure operation for 𝑐𝑖 . All neces-
sary tree structure updates, if happen in the RBT, can be
replicated by CL with RotInfo. Knowing the updated tree
structure and the hash values of all the nodes that require
an updated hash, which are all contained in PROOF, the
CL is able to compute the new hash values of all the nodes
in PROOF, including a new RootHash. TheCL updates the
RootHash in the TCB, sends the USER an łOKž message,
replies all the NewHash to the RBT interface.

• If the PROOF is a valid proof of existence, the CL replies
łOKž to the USER.

• If the PROOF is invalid, then CL outputs ł⊥ž to the USER.
(5) Upon receiving the NewHash, the RBT interface updates

the hashes in the RBT and completes an erasure request to
GeniePUF.

4 SECURITY AND PRACTICALITY OF OUR
DESIGN

4.1 Security of Our Construction

Informally speaking, and in a nutshell, the security of Scheme 1
depends on the following assumptions:

• Adversaries cannot circumvent the Control Logic (CL), ap-
plying their own challenges directly to the underlying Strong
PUF, reading out the corresponding responses 𝑟𝑖 .

• Adversaries cannot modify the CL, for example such that it
cannot correctly verify the validity of PROOF. In particular,
the implementation of the hash function 𝐹Hash must remain
correct and unchanged.

• Adversaries may read the stored RootHash, but not modify
it. It is public, but authentic.

4As a self-balancing binary search tree, a RBT will adjust (rotate) its tree structure
to maintain the balance of itself, when it is unbalanced. Detailed description of the
rotations can be found in [9], and examples can be found in Appendix B.

1/47

Red-Black-Tree
(RBT)

RBT
Interface

PROOF, RotInfo
Erase ci

Trusted Computing Base
of GeniePUF

Public, Untrusted
System Part

Underlying
Strong PUF

Control Logic.
Stores RootHash

Update RBT

Challenge ci
“Ok”
or “ ”

USER

NewHash

Figure 3: Schematic illustration of the erasure mechanism

of GeniePUFs (compare Scheme 2), differentiating between

the public, untrusted sytem part (blue) and the trusted com-

puting base of the GeniePUF (green).

• The employed hash function 𝐹Hash must be collision resis-
tant.

Under these prerequisites, adversaries cannot read out CRPs that
have successfully been declared łERASEDž earlier, and which are
part of the LIST (i.e., of our RBT).

Furthermore, the required security feature of the "Erase" com-
mand is that a malicious RBT interface, or an adversary who in-
tercepts the communication between the RBT interface and the
CL, cannot send a Proof that is accepted by the CL, while it does
not relate to an updated RBT that contains all previously erased
challenges. As before, this is achieved by the collision resistance of
the employed hash function 𝐹Hash.

Let us start our more formal analysis of the GeniePUF construc-
tion with stipulating some terminology.

Definition 5 (GeniePUFs Based on a Given PUF 𝑃). Let 𝑃 be a
PUF with a digital challenge-response interface. Then we use the
term GeniePUF(𝑃) to denote the Erasable PUF that is obtained by
utilizing 𝑃 within the construction detailed in Section 3. That is,
briefly speaking, GeniePUF(𝑃) denotes the PUF obtained from 𝑃

by:

• Surrounding 𝑃 with some trusted logic that guards access
to 𝑃 ’s CRP-interface, and that implements the operations of
the TCB, including the verification of PROOF and the access
control of 𝑃 .

• Storing RootHash inside this trusted logic.
• Storing LIST outside the trusted logic.

It is inherently assumed in the GeniePUF(𝑃) construction that:

• The adversary can access LIST and can actively overwrite
and modify it.

• The adversary can read RootHash, but cannot modify it.
• The adversary cannot tamper with the functionality of the
PUF-surrounding trusted logic. E.g., he cannot access the

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

27

CRP-interface of the PUF 𝑃 directly, circumventing the con-
trol logic. Or he cannot modify the erasure or read-out func-
tionalities implemented by the trusted logic.

• The employed hash function is collision resistant. ■

The next theorem states and proves the security of this construc-
tion under the above assumptions.

Theorem 2 (Security of GeniePUF(𝑃)). Let 𝑃 be a PUF with chal-
lenge set 𝐶𝑃 . Let A be an adversary for GeniePUF(𝑃) who is mod-
eled by Definition 5. Then GeniePUF(𝑃) is (𝑘, 𝑡att, 𝜖 + 𝜌)-secure
Erasable PUF with respect to A if the following two conditions
hold:

(1) A cannot compute in time 𝑡att with probability ≥ 𝜌 a col-
lision (𝑥1, 𝑥2) for the employed hash function 𝐹Hash, i.e.,
𝐹Hash (𝑥1) = 𝐹Hash (𝑥2) and 𝑥1 ≠ 𝑥2 (𝜌 is called the collision
probability).

(2) PUF 𝑃 is a (𝑘, 𝑡att, 𝜖)-secure Strong PUFwith respect to adver-
sary A’ that is constructed from A in the following fashion:
A’ acts exactly like A, but (i) all requested erasure oper-
ations are discarded, (ii) whenever a PROOF is computed,
then such a PROOF is ignored (and not communicated to 𝑃),
and (iii) any attempt by A to read state in RBT or control
logic CL is replaced by dummy observations.

The proof sketch of Theorem 2 is presented in Appendix C.2.

Security against Physical Attacks. The following analysis builds
on the taxonomy of secrets in security hardware introduced in [42].
Firstly, using the nomenclature of [42], there obviously are no
łpermanentž or łnon-volatilež digital secrets inside the TCB or the
RBT interface. This implies that the GeniePUF design is immune to
any attacks stealing such digital secrets, including side channels [44]
or probing attacks [50]. Depending on the employed underlying
Strong PUF, other secrets may be contained in the GeniePUF: If an
iPUF is used, as in our example, the physical runtime delays in the
iPUF will constitute łpermanent physical secretsž, again using the
language of [42]. Furthermore, the digital values in the latches at
the end of the single Arbiter PUFs within the iPUFs will constitute
so-called ł volatile digital secretsž [42]. Finally, the digital signals
entering the XOR gate in the lower layer of the iPUF will constitute
łtransient digital secretsž according to [42]: Knowing the value of
these signals, the attackers can successively learn the individual,
single Arbiter PUFs in the structure, and subsequently break the
entire iPUF.

Still, these permanent physical and volatile and transient digi-
tal secrets will arguably be harder to extract from hardware than
standard, permanently stored digital keys. To start with, if the used
iPUF is made large enough, it will be practically infeasible to extract
these runtimes via machine learning techniques. To this end, please
compare [51], where the limit of successful machine learning is
found to be around 10 parallel, XORed Arbiter PUF of length 64
in the lower iPUF layer. Furthermore, it will be very difficult to
physically extract the runtime delays physically in practice, albeit
not impossible [46]. Also reading out the content of the latches or
the transient signals entering the XOR gate during the operation of
the iPUF appears complicated and more intricate than reading out
a standard, permanently stored digital key from NVM.

Figure 4: Latency of the software interface (SW) and hard-

ware TCB (HW) of GeniePUF for a reading or erasure oper-

ation.

Considering active attacks, launching fault injection attacks on
control logic or RootHash [4] could possibly attack our GeniePUF
construction. Still, it would violate one of our security assumptions,
which assumes the RootHash and the control logic are tamper
resistant.

Denial of Service Attacks. By manipulating the RBT (LIST) or
a PROOF, an attacker can launch denial of service attacks to our
GeniePUF. However, we would like to argue in this case that as a
physical object defined in Definition 1, a PUF just like any other
piece of hardware can never be secure against physical denial of ser-
vice attacks: The adversary can always physically alter or damage
the PUF or hardware under consideration when he holds physical
possession of it. One more subtle attack can be to act as a normal
user and erase a large number of challenges from the GeniePUF, in
the hope that a large RB tree can make a legitimate user’s evalua-
tion overwhelmingly slow. However, thanks to our red black tree
structure, this attack can never be efficient and effective, because
the attacker has to erase 𝑁 challenges to slow down the evaluation
process by 𝑙𝑜𝑔(𝑁) times.

4.2 Practicality and Performance Figures of
Our Construction

Our above GeniePUF architecture has been implemented on Xilinx
Zynq FPGA with a so-called Interpose PUF or iPUF [28] as its un-
derlying PUF. Interpose PUFs are constructed from Arbiter PUFs
of variable length, and consist of several parallel layers of these
Arbiter PUFs, similar to the well-known XOR Arbiter PUF archi-
tectures [45]. The 64-bit Interpose PUF chosen for our specific
implementation contains a 64-bit Arbiter PUF in its top layer and
a 65-bit 9-XOR Arbiter PUF in its lower layer. 5 Due to the fixed
length of the inputs to the hash function of the resulting GeniePUF,

5At the time of our implementational work, this size of the iPUF was considered
secure; we remark that this no longer holds due to some recent advances in iPUF
modeling attacks [47, 51]. But since our GeniePUF technique is generic, it could also be
implemented with larger iPUF sizes that are secure, or with alternative future secure
implementations of Strong PUFs, of course.

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

28

GeniePUF

GeniePUF

GeniePUF

Figure 5: One concrete application example of GeniePUFs:

A user Alice carries around a token with a GeniePUF, em-

ploying it in 𝑘 potentially untrusted terminals. This allows

identification (ID), key exchange (KE) and oblivious trans-

fer (OT) protocols between the terminals or PUF/token on

the one hand, and the central authority on the other hand.

After any KE and OT protocols, the erasure functionality of

the GeniePUF must be used in order to prevent attacks [41].

we decided to build a hash function from AES-128 in the Davies-
Meyer construction [1, 27] with 64-bit collision resistance for the
GeniePUF.

We measured the performance of our proof-of-concept imple-
mentation for reading and erasing CRPs. Figure 4 shows how the
latency of hardware TCB and software interface grow with respect
to the number of previously erased CRPs (the size of LIST). The
frequency of the ARM processor and the FPGA fabric in the Zynq
system are 666 MHz and 100 MHz, respectively. In Figure 4, it
clearly shows that the latency grows logarithmically with respect
to the number of previously erased CRPs. This is consistent with the
complexity analysis of the search operation in a red-black tree. In
concrete numbers, the latency is on the order of a few ten microsec-
onds for both software interface and hardware verifier, even if the
size of LIST has grown above 100,000, which is far beyond its prac-
tical need. In case multiple CRPs are needed in one authentication,
one can divide the entire challenge space into disjoint subsets, and
implement a challenge expansion function to derive all challenges
in one subset from one seed challenge. After verifying that the seed
challenge is not erased, the TCB can allow the whole challenge
subset to be queried to the PUF. This method avoids repeated RB
tree insertions for single authentication, and this also enables the
erasure of multiple challenges by erasing one seed challenge.

4.3 Applications of Erasable PUFs

As depicted in Figure 5, we choose a bank card like scenario, in
which a token carrying a GeniePUF is used in 𝑘 terminals in se-
quence. We imagine that between the terminals or the PUF/token
on the one hand, and some central authority (CA) or bank head-
quarters (HQ) on the other hand, cryptographic protocols are run,
which are all based on this PUF. Structurally similar communica-
tion settings would occur in many other applications: If payments
are being made at various shop terminals by a consumer’s smart
phones, if access cards are used in order to gain entry to different
facilities, or if smart phones enroll in different cells of a network,
just to name a few examples. In all of these scenarios, Erasable PUFs

might be used beneficially. We stress that some of the terminals may
be controlled by the adversary (while it is not known, of course,
which of them are infiltrated and which are not). This means that
adversaries can gain access to the PUF between protocol runs.

The run PUF-protocols shall include simple, plain CRP-based
identification, as first proposed in [14, 30], KE as first suggested
in [6, 33, 48], and OT as first put forward in [6, 32]. Their com-
pletion enables identification and secure communication between
the terminals and PUF-carrying token on the one hand, and the
CA or bank HQ on the other hand. It also allows any secure-two
party computations or zero-knowledge proofs between these par-
ties (which can be built on OT, as long known [21]). The exact
identification, KE and OT schemes based on Erasable PUFs usable
in this context are exactly like the existing Strong PUF based ID
[30], KE [6, 33, 48] or OT [6, 32] schemes from the literature Ð with
one twist: At the end of the KE and OT scheme, all CRPs employed
in the protocol must be erased from the PUF in a final step. This
ensures the long-term security of KE and OT [41, 49]. At the end of
the identification protocol, no further steps need to be added, since
no long-term confidentiality is required there.

5 SUMMARY AND FUTUREWORK

PUFs have enjoyed the intense attention of the security community
for around one and a half decades by now. While their main appli-
cations initially consisted of key storage and system identification,
a no less interesting second research strand has evolved in recent
years: So-called Strong PUFs have been suggested as cryptographic
primitive in advanced protocols such as key exchange (KE), bit
commitment (BC), oblivious transfer (OT), or secure multiparty
computation (SMC).

One fundamental and unresolved problem in the area is the re-
use of employed PUFs in multiple protocol runs, however. While
such re-use appears imperative from an economic and efficiency
perspective, it creates severe security issues [41]: All abovemen-
tioned KE, OT, and SMC protocols can be broken in such a scenario.
It can be formally proven [49] that this issue cannot be overcome
by additional protocol or software steps alone. Instead, it requires
resolution on the hardware level and a novel PUF-type, so-called
Erasable PUFs. By definition, they allow that single CRPs can be
łalteredž or łerasedž for good, without affecting any other CRPs.

This paper now for the first time proposes a fully viable con-
struction for Erasable PUFs, which in addition is generic, i.e., which
can turn any Strong PUF with a digital challenge-response inter-
face into an Erasable PUF. In greater detail, our approach named
łGeniePUFž is based on a trusted control logic that surrounds the
given Strong PUF. This comes at the price of extending the trusted
computing base of the system, now including the PUF’s control
logic. This might seem unusual at first sight. On the other hand,
the same approach has long been accepted in the PUF-area in other
contexts, for example in the construction of so-called Controlled
PUFs [13]. Furthermore, our GeniePUFs require a public, but au-
thenticated piece of information accompanying the PUF. Again,
this assumption might appear exotic at first glance, but has long
been introduced and accepted in the standard key derivation from
Weak PUFs. Overall, our construction hence rests on previously
known and somewhat principles within the PUF-area. Also the use

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

29

of a hash function in connection with PUFs, even inside the TCB
(which makes things more tedious) has been used before us, namely
in the context of Controlled PUFs [13].

We also to our knowledge presented the first formal definitional
framework for Erasable PUFs. Using a parametric, non-asymptotic
style of definitions, not considering infinite PUF-families, but single
PUFs and their properties, we tried to clearly define our objects
of study. Compared to other approaches, the compact and semi-
formal style of our framework makes it easily accessible, also for
non-theorists. Our hope is that this might allow the definitions
(and similar, future ones that might adopt their style) to act as link
between PUF-theorists and PUF-practitioners. We also proved the
relationship between strong PUFs and erasable PUFs (GeniePUFs).
In that, we tried to demonstrate how one can reason somewhat
formally and rigidly about security while using our semi-formal
definitional framework.

Future Work. We believe that various future research opportunities
arise from our work. Starting with the practical and implemen-
tational side, further optimization of our logical Erasable PUFs
together with prototyping in FPGAs and ASICs seems a worth-
while endeavour. Other Strong PUFs than the iPUF [28] can be used
in connection with the generic GeniePUF technique. On the theory
side, our novel definitional framework will first of all hopefully
spark a new style of easily acccessible, intuitive PUF-definitions in
follow-up works. Secondly, follow-up theory works could utilize
Erasable PUFs in advanced protocols, in which PUFs can indeed be
securely re-used, going beyond the original set-up and communi-
cation model of [6]. Formalizing and proving the security of such
new schemes, for example in the universal composition framework
(compare [6]), appears interesting for future theory papers.

ACKNOWLEDGMENTS

Chenglu Jin was supported by NSF award CNS 1617774, NYU CCS,
and NYU CUSP. Wayne Burleson was supported by NSF/SRC grant
CNS-1619558. Marten van Dijk was supported by NSF award CNS
1617774. Ulrich Rührmair acknowledges support by BMBF-project
QUBE and by BMBF-project PICOLA. Finally, we would like to
thank the reviewers for their very valuable comments!

REFERENCES
[1] AES, NIST. 2001. Advanced encryption standard. Federal Information Processing

Standard, FIPS-197 12 (2001).
[2] Frederik Armknecht, Daisuke Moriyama, Ahmad-Reza Sadeghi, and Moti Yung.

2016. Towards a unified security model for physically unclonable functions. In
Cryptographers’ Track at the RSA Conference. Springer, 271ś287.

[3] Saikrishna Badrinarayanan, Dakshita Khurana, Rafail Ostrovsky, and Ivan Vis-
conti. 2017. Unconditional UC-secure computation with (stronger-malicious)
PUFs. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer, 382ś411.

[4] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. 2012.
Fault injection attacks on cryptographic devices: Theory, practice, and counter-
measures. Proc. IEEE 100, 11 (2012), 3056ś3076.

[5] Rudolf Bayer. 1972. Symmetric binary B-trees: Data structure and maintenance
algorithms. Acta informatica 1, 4 (1972), 290ś306.

[6] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. 2011.
Physically uncloneable functions in the universal composition framework. In
Advances in Cryptology CRYPTO 2011. Springer, 51ś70.

[7] Ahto Buldas, Peeter Laud, and Helger Lipmaa. 2000. Accountable certificate man-
agement using undeniable attestations. In Proceedings of the 7th ACM conference
on Computer and communications security. ACM, 9ś17.

[8] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta,
Ray Perlner, and Daniel Smith-Tone. 2016. Report on post-quantum cryptography.
US Department of Commerce, National Institute of Standards and Technology.

[9] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al.
2001. Introduction to algorithms. Vol. 2. MIT press Cambridge.

[10] Dana Dachman-Soled, Nils Fleischhacker, Jonathan Katz, Anna Lysyanskaya, and
Dominique Schröder. 2014. Feasibility and infeasibility of secure computation
with malicious PUFs. In Advances in Cryptology CRYPTO 2014. Springer, 405ś420.

[11] Ivan Damgård and Alessandra Scafuro. 2013. Unconditionally secure and uni-
versally composable commitments from physical assumptions. In International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, 100ś119.

[12] Ilze Eichhorn, Patrick Koeberl, and Vincent van der Leest. 2011. Logically re-
configurable PUFs: Memory-based secure key storage. In Proceedings of the sixth
ACM workshop on Scalable trusted computing. ACM, 59ś64.

[13] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. 2002.
Controlled physical random functions. In Computer Security Applications Confer-
ence, 2002. Proceedings. 18th Annual. IEEE, 149ś160.

[14] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. 2002.
Silicon physical random functions. In Proceedings of the 9th ACM conference on
Computer and communications security. ACM, 148ś160.

[15] Blaise Gassend, Marten van Dijk, Dwaine Clarke, Emina Torlak, Srinivas Devadas,
and Pim Tuyls. 2008. Controlled physical random functions and applications.
ACM Transactions on Information and System Security (TISSEC) 10, 4 (2008), 3.

[16] Charles Herder, Meng-Day Yu, Farinaz Koushanfar, and Srinivas Devadas. 2014.
Physical unclonable functions and applications: A tutorial. Proc. IEEE 102, 8
(2014), 1126ś1141.

[17] Daniel E Holcomb, Wayne P Burleson, and Kevin Fu. 2007. Initial SRAM state as
a fingerprint and source of true random numbers for RFID tags. In Proceedings of
the Conference on RFID Security, Vol. 7.

[18] Daniel E Holcomb, Wayne P Burleson, and Kevin Fu. 2009. Power-up SRAM state
as an identifying fingerprint and source of true random numbers. IEEE Trans.
Comput. 58, 9 (2009), 1198ś1210.

[19] C Jaeger, M Algasinger, U Rührmair, G Csaba, and M Stutzmann. 2010. Random
pn-junctions for physical cryptography. Applied Physics Letters 96, 17 (2010),
172103.

[20] Stefan Katzenbeisser, Ünal Kocabaş, Vincent van Der Leest, Ahmad-Reza Sadeghi,
Geert-Jan Schrijen, and Christian Wachsmann. 2011. Recyclable pufs: Logically
reconfigurable pufs. Journal of Cryptographic Engineering 1, 3 (2011), 177ś186.

[21] Joe Kilian. 1988. Founding crytpography on oblivious transfer. In Proceedings of
the twentieth annual ACM symposium on Theory of computing. ACM, 20ś31.

[22] Sandeep S Kumar, Jorge Guajardo, Roel Maes, Geert-Jan Schrijen, and Pim Tuyls.
2008. The butterfly PUF protecting IP on every FPGA. In 2008 IEEE International
Workshop on Hardware-Oriented Security and Trust. IEEE, 67ś70.

[23] Klaus Kursawe, Ahmad-Reza Sadeghi, Dries Schellekens, Boris Skoric, and Pim
Tuyls. 2009. Reconfigurable physical unclonable functions-enabling technol-
ogy for tamper-resistant storage. In Hardware-Oriented Security and Trust, 2009.
HOST’09. IEEE International Workshop on. IEEE, 22ś29.

[24] Keith Lofstrom, W Robert Daasch, and Donald Taylor. 2000. IC identification
circuit using device mismatch. In 2000 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers (Cat. No. 00CH37056). IEEE, 372ś373.

[25] Roel Maes, Vincent Van Der Leest, Erik Van Der Sluis, and Frans Willems. 2015.
Secure key generation from biased PUFs. In International Workshop on Crypto-
graphic Hardware and Embedded Systems. Springer, 517ś534.

[26] Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede. 2012. PUFKY: A
fully functional PUF-based cryptographic key generator. In International Work-
shop on Cryptographic Hardware and Embedded Systems. Springer, 302ś319.

[27] Alfred J Menezes, Paul C van Oorschot, and Scott A Vanstone. 1996. Handbook
of applied cryptography. CRC press.

[28] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mahmood, Ul-
rich Rührmair, and Marten van Dijk. 2019. The Interpose PUF: Secure PUF
Design against State-of-the-art Machine Learning Attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems (2019).

[29] Rafail Ostrovsky, Alessandra Scafuro, Ivan Visconti, and Akshay Wadia. 2013.
Universally composable secure computation with (malicious) physically unclone-
able functions. In Advances in CryptologyśEUROCRYPT 2013. Springer, 702ś718.

[30] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. 2002. Physical
one-way functions. Science 297, 5589 (2002), 2026ś2030.

[31] Radia J Perlman and Stephen RHanna. 2001. Methods and systems for establishing
a shared secret using an authentication token. US Patent 6,173,400.

[32] Ulrich Rührmair. 2010. Oblivious transfer based on physical unclonable functions.
In Trust and Trustworthy Computing. Springer, 430ś440.

[33] Ulrich Rührmair. 2011. Physical Turing Machines and the Formalization of
Physical Cryptography. IACR Cryptology ePrint Archive 2011 (2011), 188.

[34] Ulrich Rührmair, Heike Busch, and Stefan Katzenbeisser. 2010. Strong PUFs:
models, constructions, and security proofs. In Towards hardware-intrinsic security.
Springer, 79ś96.

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

30

[35] Ulrich Rührmair and Daniel E Holcomb. 2014. PUFs at a glance. In Proceedings
of the conference on Design, Automation & Test in Europe. European Design and
Automation Association, 347.

[36] Ulrich Rührmair, Christian Jaeger, and Michael Algasinger. 2011. An attack on
PUF-based session key exchange and a hardware-based countermeasure: Erasable
PUFs. In Financial Cryptography and Data Security. Springer, 190ś204.

[37] Ulrich Rührmair, Christian Jaeger, Matthias Bator, Martin Stutzmann, Paolo Lugli,
and György Csaba. 2011. Applications of high-capacity crossbar memories in
cryptography. Nanotechnology, IEEE Transactions on 10, 3 (2011), 489ś498.

[38] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, and
Jürgen Schmidhuber. 2010. Modeling attacks on physical unclonable functions. In
Proceedings of the 17th ACM conference on Computer and communications security.
ACM, 237ś249.

[39] Ulrich Rührmair and Jan Sölter. 2014. PUF modeling attacks: An introduction and
overview. In 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 1ś6.

[40] Ulrich Rührmair, Jan Sölter, and Frank Sehnke. 2009. On the Foundations of
Physical Unclonable Functions. IACR Cryptology ePrint Archive 2009 (2009), 277.

[41] Ulrich Rührmair and Marten van Dijk. 2013. Pufs in security protocols: At-
tack models and security evaluations. In Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 286ś300.

[42] Ulrich Rührmair. 2020. SoK: Towards Secret-Free Security. In 2020 Workshop on
Attacks and Solutions in Hardware Security (ASHES@ CCS 2020).

[43] Peter Simons, Erik van der Sluis, and Vincent van der Leest. 2012. Buskeeper
PUFs, a promising alternative to D flip-flop PUFs. In 2012 IEEE International
Symposium on Hardware-Oriented Security and Trust. IEEE, 7ś12.

[44] François-Xavier Standaert. 2010. Introduction to side-channel attacks. In Secure
integrated circuits and systems. Springer, 27ś42.

[45] G Edward Suh and Srinivas Devadas. 2007. Physical unclonable functions for
device authentication and secret key generation. In Proceedings of the 44th annual
Design Automation Conference. ACM, 9ś14.

[46] Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry Ne-
dospasov, Clemens Helfmeier, Christian Boit, and Helmar Dittrich. 2014. Physi-
cal characterization of arbiter pufs. In Cryptographic Hardware and Embedded
SystemsśCHES 2014. Springer, 493ś509.

[47] Johannes Tobisch, Anita Aghaie, and Georg T Becker. [n.d.]. Combining Opti-
mization Objectives: New Machine-Learning Attacks on Strong PUFs. ([n. d.]).

[48] Pim Tuyls and Boris Škorić. 2007. Strong authentication with physical unclonable
functions. In Security, Privacy, and Trust in Modern Data Management. Springer,
133ś148.

[49] Marten van Dijk and Ulrich Rührmair. 2012. Physical unclonable functions
in cryptographic protocols: Security proofs and impossibility results. IACR
Cryptology ePrint Archive 2012 (2012), 228.

[50] Huanyu Wang, Domenic Forte, Mark M Tehranipoor, and Qihang Shi. 2017.
Probing attacks on integrated circuits: Challenges and research opportunities.
IEEE Design & Test 34, 5 (2017), 63ś71.

[51] Nils Wisiol, Christopher Mühl, Niklas Pirnay, Phuong Ha Nguyen, Marian Mar-
graf, Jean-Pierre Seifert, Marten van Dijk, and Ulrich Rührmair. 2020. Splitting
the interpose PUF: A novel modeling attack strategy. IACR Transactions on
Cryptographic Hardware and Embedded Systems (2020), 97ś120.

[52] Wenjie Xiong, André Schaller, Nikolaos A Anagnostopoulos, Muhammad Umair
Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser, and Jakub Szefer. 2016. Run-
time accessible DRAM PUFs in commodity devices. In International Conference
on Cryptographic Hardware and Embedded Systems. Springer, 432ś453.

[53] Le Zhang, Zhi Hui Kong, Chip-Hong Chang, Alessandro Cabrini, and Guido
Torelli. 2014. Exploiting process variations and programming sensitivity of
phase change memory for reconfigurable physical unclonable functions. IEEE
Transactions on Information Forensics and Security 9, 6 (2014), 921ś932.

A BACKGROUND ON AUTHENTICATED
SEARCH TREES AND RED-BLACK TREES

An authenticated search tree was introduced in [7] as an undeniable
attester. In the context of our GeniePUF, an untrusted Red-Black
Tree (RBT) interface is used, which manages LIST of size𝑛. It takes a
challenge as input, and generates a proof of non-existence/existence
of this challenge in LIST. Notice that, the length of the proof is only
O(𝑙𝑜𝑔(𝑛)) long. Upon receiving the non-existence/existence proof,
the TCB around the PUF can then verify the proof by checking
against a constant-sized (O(1)) root hash stored in the TCB. This
root hash does not need to be kept secret, i.e., it can be known to ad-
versaries; it must merely be secure against alteration or overwriting
by adversaries.

To further improve the performance of an authenticated search
tree in the worst case scenario, where a standard search tree will
become extremely unbalanced, we merge a red-black tree (RB
tree) [5, 9] with the authenticated search tree in the untrusted
memory. In short, a red-black tree is one self-balancing binary
search tree structure [5, 9], which checks and balances the depth of
the tree after every node insertion and deletion. Hence, a Red-Black
tree can guarantee searching in O(𝑙𝑜𝑔(𝑛)) time in the average and
the worst scenario, where 𝑛 is the total number of nodes in the
tree [9].

In the following, wewill describe the necessary procedures of our
authenticated red-black trees (e.g., we only describe node insertion,
not deletion, because in the GeniePUF application, LIST can only
grow). In particular, we present the high level idea of the following
basic schemes of our combined tree structure to prepare the readers
for understanding this paper.

An authenticated search tree is sorted according to the challenges
stored in each node, and it is constructed in such a way that each
node consists of a unique challenge 𝑐𝑖 in the LIST and a hash value
ℎ𝑖 = 𝐹Hash (𝑐𝑖 , 𝑙𝑒 𝑓 𝑡 (𝑐𝑖).ℎ𝑎𝑠ℎ, 𝑟𝑖𝑔ℎ𝑡 (𝑐𝑖) .ℎ𝑎𝑠ℎ), where 𝑙𝑒 𝑓 𝑡 (𝑐𝑖) .ℎ𝑎𝑠ℎ
and 𝑟𝑖𝑔ℎ𝑡 (𝑐𝑖).ℎ𝑎𝑠ℎ are the hash values stored in the left or right
child of node 𝑐𝑖 , respectively. The hash values of the children of the
bottom leaves are considered to be 0 by default. An example tree
structure is shown in Figure 6.

Scheme 3: Searching for a Challenge 𝑐𝑖 in a RBT

(1) The RBT interface receives a challenge 𝑐𝑖 .
(2) The RBT interface searches for 𝑐𝑖 , using the RBT as an ordi-

nary binary search tree.
(3) In the end, it results in two cases:

• If 𝑐𝑖 is found, then a pointer to the node associated with
𝑐𝑖 is returned.

• If the binary search for 𝑐𝑖 within RBT reaches a leaf node,
where no challenge is stored, then the interface returns a
pointer to the parent node of the leaf node. (This parent
node is the lowest node in the tree whose child 𝑐𝑖 would
have supposed to be, if 𝑐𝑖 was part of the RBT.) In the
example in Figure 6, the returned pointer will be pointing
to the node containing 𝑐4.

Scheme4: Generating a PROOF of Existence/Non-Existence

of a Challenge 𝑐𝑖 in a RBT

(1) After a search for 𝑐𝑖 , as described in Scheme 3, is completed
in the LIST (either found or not found), the RBT interface
gets a node in the tree from the search procedure. It sets this
node as the starting node of the PROOF.

(2) The interface adds the challenge of the starting node and
the hash values stored in the children nodes of the starting
node into the PROOF. Again, taking the example of Figure 6,
the information added is 𝑐4 and the hash values of its two
children (two 𝑛𝑖𝑙 nodes).

(3) Then the RBT interface fetches the challenge of the node and
the hash value in the sibling node of each node along the path
in the tree from the starting node to the root of the tree to
generate the completed PROOF of non-existence/existence

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

31

c0, h0 = H (c0, h1, h2)

c3, h3 = H (c3, 0, 0) c4, h4 = H (c4, 0, 0) c5, h5 = H (c5, 0, 0)

c1, h1 = H (c1, h3, h4) c2, h2 = H (c2, h5, 0)

cnew

Figure 6: Proof construction in an authenticated search tree. Suppose that one needs to prove that 𝑐𝑛𝑒𝑤 does not exist in the

authenticated search tree (containing 𝑐0 to 𝑐5). For example, the dashed node shows the location where 𝑐𝑛𝑒𝑤 is supposed to be.

The green information is included in the proof of non-existence for 𝑐𝑛𝑒𝑤 . Note that the hash value stored in the left child of

𝑐4 is also needed in the proof, but it is omitted in the diagram, because it is a 𝑛𝑖𝑙 node in the tree.

11

2 14

151 7

5 8

4

11

2 14

151 7

5 8

4

11

7 14

152 8

51

4

7

2 11

141 5 8

4 15

Case 1

Case
 2

Case 3

Z

Z

Z
Z

Y

Y

Y

(a) (b)

(c) (d)

Figure 7: Insertion of a new node 4.

of 𝑐𝑖 . E.g., adding (𝑐1, ℎ3) and (𝑐0, ℎ2) into the PROOF, as
shown in Figure 6.

(4) It returns the completed PROOF.

The proof construction process is also illustrated in Figure 6.

Scheme 5: Verifying a PROOF of Existence/Non-Existence

(1) All the proofs generated by the RBT interface have to be
verified by the trusted control logic CL. After a proof is
received, the CL checks the starting node first. If it is a proof
of non-existence, the CL checks whether the left/ right child
of the starting node is a leave node based on whether 𝑐 is
smaller/ greater than the challenge in the starting node. In
the case of an existence proof, the CL verifies the order of
the two children and the starting node. If any of the above
check failed, return ł⊥ž.

(2) Then the CL hashes every node from the starting node of the
proof all the way to the root, using the challenge value of
each node and their sibling hash values provided in the proof.
The order of left and right child is determined by comparing
two consecutive challenges in the PROOF. The final result
is RootHash’.

(3) Check if RootHash’ = RootHash stored in the TCB:

• If yes, we conclude that the PROOF is a valid proof. Based
on whether its an existence proof or a non-existence proof,
we conclude whether 𝑐𝑖 is in the LIST or not.

• If no, the PROOF is considered as invalid, and we con-
clude that either the LIST or the RBT Interface has been
tampered with by an attacker.

Scheme 6: Adding a New Challenge 𝑐𝑖 to the RBT

(1) In the case that a new challenge 𝑐𝑖 needs to be added to the
LIST, the RBT interface first proves that 𝑐𝑖 is not in the LIST
using the above schemes.

(2) If the non-existence of 𝑐𝑖 gets accepted by the verifier, then
𝑐𝑖 is added as a child of the node returned by the search
procedure.

(3) After insertion, a red-black tree fix-up is triggered. It may
rotate the structure of the tree to re-balance it. More details
about the red-black tree fixup can be found in the example
in the Appendix B and [9].

(4) After fix-up, a newRootHashwill be generated by the trusted
control logic CL according to the fixup information of the
tree and the proof of non-existence used in Scheme 3.

Note that, based on the way the authenticated search tree is
constructed and verified, its security solely relies on the collision
resistance of the underlying hash function.

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

32

B EXAMPLE ROTATION OF AN
AUTHENTICATED RB TREE

Figure 7 depicts an example of consecutive operations in Red-Black
Tree Insert-Fixup, see [9]. (a) A new node 4 is inserted. The dashed
path in (a) is PROOF. All of the information in nodes 5, 7, 2 and
11 are included in PROOF, together with the hash values of nodes
8, 1 and 14, called the sibling’s hash values. In order to verify non-
existence, we need to reconstruct the root hash using PROOF and
compare with the trusted root hash stored in the TCB. In addition,
we need to check whether new node 4 is added at the correct
location, which means 2 < 4 < 5, and node 5 has no left child. Here,
case 1 in [9] applies, so node 5 and 7 are recolored but the structure
remain the same.

There are six possible cases in a RB tree fixup, in which only case
2, 3, 5 and 6 in [9] will rotate the structure of the tree; this example
shows three cases (the other three cases are similar in that they are
mirrored versions of the three in the example). In (b),(c) and (d),
the nodes in dashed blocks are the nodes which hash values need
to be updated; the transition from (b) to (c) is a rotation and the
transition from (c) to (d) is a rotation. Note that, PROOF already
provides all the information needed for updating these hash values.
In this example, in order to compute the hash of node 2, 7 and 11
in (d), we need the hash value of node 5, which was updated in
case 1 during the transition from (a) to (b), and the hash values of
nodes 1, 8 and 14, which are exactly the sibling’s hash values that
are contained in PROOF.

C PROOFS OF THEOREMS

In the following proofs we assume that ignoring operations or
communication does not increase the original execution time 𝑡att
of an adversary.

C.1 Proof of Theorem 1

Proof. We will show the contraposition of the above statement,
assuming that 𝑃 is not an (𝑘, 𝑡att, 𝜖)-secure Strong PUF with respect
to some adversary A.

By Definition 2, this implies that there exists an adversaryA who
is capable of winning the security game SecGameStrong (𝑃,A, 𝑘, 𝑡att)

of Definition 2 with probability greater than 𝜖 . This, in turn, means
that A can predict the correct response to one out of 𝑘 uniformly
randomly chosen challenges 𝑐 𝑗 ∈ 𝐶𝑃 with probability greater than
𝜖 , whereby the time that A requires for his physical actions and
numeric computations does not exceed 𝑡att.

We notice that the very same adversaryA will also win the secu-
rity game SecGameErasable (𝑃,A, 𝑘, 𝑡att) with probability greater
than 𝜖 . The reason for this is that the execution of the security

game SecGameErasable (𝑃,A, 𝑘, 𝑡att) with 𝑐 𝑗 = 𝑐
𝑗
erase is identical

to the execution of the security game SecGameStrong (𝑃,A, 𝑘, 𝑡att)

because adversary A in SecGameErasable (𝑃,A, 𝑘, 𝑡att) never at-

tempts to query an erased challenge 𝑐 𝑗 = 𝑐
𝑗
erase. This implies that

𝑃 is not a (𝑘, 𝑡att, 𝜖)-secure Erasable PUF, completing our contrapo-
sition argument. □

C.2 Proof Sketch of Theorem 2

Proof Sketch. Let A be any adversary that is modeled by Def-
inition 5. We define a series of games that reduce

SecGameErasable (𝑃,A, 𝑘, 𝑡att),

with probability of winning denoted by 𝜖erase, to

SecGameStrong (𝑃,A ′, 𝑘, 𝑡att),

where 𝜖 is the probability of winning as stated in the theorem.
We first modify SecGameErasable by assuming an adversary

A0 who is like A but who cannot produce a valid PROOF for an
invalid claim that a challenge was not erased in its interactions
with GeniePUF(𝑃). We call this new game SecGameErasable0 and
denote the probability of winning this game by 𝜖0. By the implicit
assumptions on the capabilities of the adversary in Definition 5,
we know that the control logic CL and PUF 𝑃 cannot be modified.
Therefore, the only way to produce a valid PROOF for an (erased)
challenge 𝑐 in RBT is to find a collision for the hash function. By
Theorem 1 in Section 6.2 of [7], the probability of finding a valid
PROOF is at most 𝜌 . This shows that

𝜖erase ≤ 𝜖0 + 𝜌.

Not being able to provide a valid PROOF for an invalid claim
in SecGameErasable0 means that the GeniePUF(𝑃) does not pro-
duce responses for erased challenges. This is similar to the same

game SecGameErasable0 where in Step 4a only a challenge 𝑐 𝑗erase
is chosen at random but not erased, and with the restriction that
the adversary is not allowed to query 𝑐 𝑗erase after 𝑐

𝑗
erase is given to

the adversary in Step 4b. We call this game SecGameErasable1. We
now define A1 as adversary A0 by discarding any erasure oper-
ations which A0 asks for in Step 2 or Step 4c (these operations
cannot lead to feedback from GeniePUF(𝑃) which contains predic-
tive information that can be used in Step 5). For A1, we can now
conclude that game SecGameErasable1 has winning probability 𝜖1
for which

𝜖0 = 𝜖1 .

Notice that SecGameErasable1 does not implement any erasure
operations. Because SecGameErasable1 disallows querying any of

the 𝑐 𝑗erase after being selected in Step 4a and communicated to A1

in Step 4b of game SecGameErasable1, we know that the control
logic CL of GeniePUF(𝑃) simply provides direct access to 𝑃 for
the queries by A1. Therefore, the control logic of GeniePUF(𝑃)
provides direct access to 𝑃 in SecGameErasable1 and provides no
other functionality. This means SecGameErasable1 results directly
in a game for PUF 𝑃 where we have conceptually stripped away
the control logic of GeniePUF(𝑃).

Unrolling all the steps in SecGameErasable1 for 𝑃 shows its
equivalence with SecGameStrong. We now defineA ′ asA1 where
any attempt by A1 to read state in RBT or control logic CL is
replaced by dummy observations. For A ′, we may now conclude
that SecGameStrong has winning probability

𝜖1 = 𝜖.

By combining all inequalities and equations we have

𝜖erase ≤ 𝜖 + 𝜌.

□

Session 1: PUFs and Beyond ASHES '20, November 13, 2020, Virtual Event, USA

33

	Abstract
	1 Introduction and Overview
	1.1 PUFs and Their Differing Applications
	1.2 PUF Re-Use and Relevance of Erasable PUFs
	1.3 Related Work and Fundamental Challenges
	1.4 Our Contributions
	1.5 Organization of This Paper

	2 A Formal Framework for Erasable PUFs
	2.1 Basic Aspects of (Strong) PUFs
	2.2 Erasable PUFs

	3 Generic Erasable PUF Design
	3.1 Basic Idea and Overview
	3.2 Read-Out Mechanism of the GeniePUF
	3.3 Erasure Mechanism of the GeniePUF

	4 Security and Practicality of Our Design
	4.1 Security of Our Construction
	4.2 Practicality and Performance Figures of Our Construction
	4.3 Applications of Erasable PUFs

	5 Summary and Future Work
	Acknowledgments
	References
	A Background on Authenticated Search Trees and Red-Black Trees
	B Example Rotation of an Authenticated RB Tree
	C Proofs of Theorems
	C.1 Proof of Theorem 1
	C.2 Proof Sketch of Theorem 2

