
Asymptotically Good Multiplicative LSSS
over Galois Rings and Applications

to MPC over Z/pk
Z

Mark Abspoel1(B), Ronald Cramer1,2, Ivan Damg̊ard3, Daniel Escudero3,
Matthieu Rambaud4, Chaoping Xing5, and Chen Yuan1

1 Centrum Wiskunde and Informatica (CWI), Amsterdam, The Netherlands
abspoel@cwi.nl

2 Mathematisch Instituut, Leiden University, Leiden, The Netherlands
3 Aarhus University, Aarhus, Denmark

4 Telecom Paris, Institut Polytechnique de Paris, Paris, France
5 School of Electronic Information and Electric Engineering,

Shanghai Jiaotong University, Shanghai, China

Abstract. We study information-theoretic multiparty computation
(MPC) protocols over rings Z/pk

Z that have good asymptotic communi-
cation complexity for a large number of players. An important ingredient
for such protocols is arithmetic secret sharing, i.e., linear secret-sharing
schemes with multiplicative properties. The standard way to obtain these
over fields is with a family of linear codes C, such that C, C⊥ and C2 are
asymptotically good (strongly multiplicative). For our purposes here it
suffices if the square code C2 is not the whole space, i.e., has codimension
at least 1 (multiplicative).

Our approach is to lift such a family of codes defined over a finite field
F to a Galois ring, which is a local ring that has F as its residue field
and that contains Z/pk

Z as a subring, and thus enables arithmetic that
is compatible with both structures. Although arbitrary lifts preserve the
distance and dual distance of a code, as we demonstrate with a counterex-
ample, the multiplicative property is not preserved. We work around this
issue by showing a dedicated lift that preserves self-orthogonality (as well
as distance and dual distance), for p ≥ 3. Self-orthogonal codes are mul-
tiplicative, therefore we can use existing results of asymptotically good
self-dual codes over fields to obtain arithmetic secret sharing over Galois
rings. For p = 2 we obtain multiplicativity by using existing techniques of
secret-sharing using both C and C⊥, incurring a constant overhead. As a
result, we obtain asymptotically good arithmetic secret-sharing schemes
over Galois rings.

With these schemes in hand, we extend existing field-based MPC pro-
tocols to obtain MPC over Z/pk

Z, in the setting of a submaximal adver-
sary corrupting less than a fraction 1/2− ε of the players, where ε > 0 is
arbitrarily small. We consider 3 different corruption models. For passive
and active security with abort, our protocols communicate O(n) bits per
multiplication. For full security with guaranteed output delivery we use
a preprocessing model and get O(n) bits per multiplication in the online

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 151–180, 2020.
https://doi.org/10.1007/978-3-030-64840-4_6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/385866422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_6

152 M. Abspoel et al.

phase and O(n log n) bits per multiplication in the offline phase. Thus,
we obtain true linear bit complexities, without the common assumption
that the ring size depends on the number of players.

1 Introduction

A secret-sharing scheme is a mathematical object that disperses a secret element
into n shares. Combined, the shares determine the secret, but individual shares,
and limited subsets of them, contain no information about the secret. In linear
secret-sharing schemes (LSSS), given several secret-shared elements, linear oper-
ations on the secrets correspond to linear operations on the shares. LSSS are the
cornerstone of information-theoretic multiparty computation (MPC) protocols,
but they also have applications in other domains of cryptography.

LSSS and MPC are typically defined over finite fields (e.g., the secret and the
shares are elements of the same finite field), which have a rich algebraic structure.
A natural question is whether we can extend some of these techniques to other
structures, such as rings Z/pk

Z where k > 0 is an integer and p is a prime. This
question is not only motivated in theory: some results [3,18] show that MPC
over Z/2k

Z with k = 32 or k = 64 can offer many practical benefits compared to
fields, partly due to the compatibility of binary arithmetic in modern hardware.
Feasibility of LSSS and MPC over these rings, as well as theoretical benefits,
were already demonstrated back in 2003 based on black-box secret sharing [14].

Recently, MPC directly over these rings has been shown, in both the cryp-
tographic dishonest majority setting [12] as well as the information-theoretic
setting [2], by extending and generalizing existing techniques over fields. Both of
these approaches use a single LSSS defined over Z/pk

Z: additive secret sharing
and a variant of Shamir’s secret sharing, respectively. It is natural to wonder
whether techniques for other LSSS can be extended to these rings, to obtain
desirable properties such as good asymptotic complexity.

In this work, we study the lifting of linear codes defined over finite fields
to Galois rings, which are a natural generalization of both finite fields and our
rings of interest Z/pk

Z. In a way, Galois rings are analogues of finite fields:
informally, a Galois ring is to Z/pk

Z, what a finite field is to the prime field Fp.
Therefore, to extend existing techniques over finite fields to work over Z/pk

Z,
it is necessary to consider Galois rings. As shown in Sect. 3, lifting preserves
the essential properties of linear codes (distance, dual distance) that make them
suitable as LSSS.

However, extending the theory of LSSS to Galois rings is not straightforward,
due to the reduced structure and the presence of non-invertible elements. Thus, a
priori it is not clear if properties of LSSS over fields carry over when considering
these constructions over Galois rings. The above leads to the following question:
Can we obtain “good” LSSS over a Galois ring? More precisely, we focus on
realizing families of LSSS indexed by n, the number of shares, with privacy and
reconstruction thresholds arbitrarily close to n/2, and with the information rate
tending to a positive constant. The most widely known construction of LSSS

Asymptotically Good Multiplicative LSSS over Galois Rings 153

over fields, Shamir secret sharing, does not satisfy the rate condition as it is
based on polynomial interpolation and therefore the shares have to be at least
log(n) in length. This issue was addressed over fields in the work of [10], using
non-trivial results on random codes.

The above question is relevant for MPC that is asymptotically optimal, i.e.,
secure multiplication that has a total communication complexity linear in the
number of players [16]. For information-theoretic MPC we typically care about
arithmetic secret-sharing schemes, or synonymously, LSSS with multiplicativity:
given two secret-shared elements, their product is a linear function of the pairwise
products of shares. However, as we shall demonstrate with a counterexample in
Sect. 3, multiplicativity does not directly lift.

True linear complexity is hard to achieve, and in fact conjectured to be
impossible in the maximal adversary case n = 2t+1 for the single-circuit setting.1

Many state-of-the-art protocols such as [5,21] state a linear complexity, but the
complexity is given in the number of field elements communicated. If the field is
fixed and the number of players tends to infinity, this obscures a log(n) factor in
the bit-complexity of the protocol. Over fields, this asymptotic factor does not
affect the complexity for practical ranges of parameters, since the field size is
usually much larger than the number of players. However, for our rings Z/pk

Z

this issue is more pressing, since the comparable requirement is that p > n rather
than pk > n [2], thus leading to a log(n) factor immediately if for example p = 2.
Removing this log(n) overhead is thus worthwhile and in fact highly desired,
since it would achieve a constant complexity per party: even if more parties join
the computation, the communication per party does not increase.

1.1 Our Contributions

We show that some of the results for LSSS over a finite field F also hold over
a Galois ring R that contains F as a residue field, by arbitrarily lifting the
associated code over F to R, and showing that certain relevant properties are
preserved.

First, in Sect. 3, we show that we can obtain explicit good families of linear
codes over Galois rings. In what follows, R is a large enough Galois ring.

Theorem 1 (informal). There exists an explicit family of R-linear codes over
R with |R| = Oε(1) such that its relative distance is at least 1

2 − ε and relative
dual distance is at least 1

2 − ε. In particular, there exists an explicit family of
self-dual codes over R with relative distance at least 1

2 − ε.

It is well-known that any linear code over a field with good parameters
yields a good linear secret-sharing scheme [25], and it is straightforward to show
this also holds over Galois rings. However, to get the arithmetic secret-sharing
schemes that we need, we also need good parameters for the square of the code.

1 LSSS with these parameters are equivalent to MDS codes, hence if the MDS con-
jecture if true, then the field size has to grow with the number of players. When
evaluating a circuit multiple times in parallel, this can be mitigated [9].

154 M. Abspoel et al.

We demonstrate with a counterexample that these parameters are not preserved
by arbitrary lifts.

We work around this issue by showing a dedicated lift for p > 2 that preserves
self-orthogonality in Sect. 3.1. For p = 2 we secret-share elements using both C
and C⊥, at the expense of increasing the share size by a factor of two. Both of
these approaches rely on techniques from [13] to obtain arithmetic secret sharing
via a code and its dual, and we demonstrate in Sect. 4 that these extend to Galois
rings. We capture the asymptotic result in the following theorem.

Theorem 2 (informal). There exists a family of R-arithmetic secret-sharing
schemes Σ1, Σ2, . . . over R with |R| = Oε(1) such that the number of players
n(Σi) → ∞, and the schemes have t(Σi) ≥ (1/2 − ε)n(Σi)-privacy and r(Σi) ≥
(1/2 − ε)n(Σi)-reconstruction.

To illustrate the power of our results on arithmetic secret sharing, we apply
them to the problem of communication-efficient honest-majority MPC over
Z/pk

Z. This problem has only recently been studied in [2], but the authors were
more concerned with feasibility rather than achieving optimal communication
complexity. In particular, their protocol is based on the (no longer state-of-the-
art) protocol of [4], which has O(n2 log(n)) complexity in the number of parties.
Here, the log(n) factor comes from polynomial interpolation, as discussed above.
Plugging in our LSSS we immediately remove this log(n) factor and obtain true
quadratic complexity for the adversary regime of t < (1/2 − ε)n, analogously to
the work of [10] over fields.

We further improve the complexity, for three different regimes:

1. (Section 5) For passive security, we present a protocol that obtains an amor-
tized communication complexity of O(n) bits per multiplication gate.

2. (Section 6) For active security with abort, we present a protocol with an
amortized communication complexity of O(n) bits per multiplication gate.

3. (Section 7) For full active security with guaranteed output delivery, we obtain
an amortized communication complexity of O(n log(n)) bits for the offline
phase and O(n) bits for online phase. This solves the open problem from [2].

The last protocol is the most involved, since we adapt the protocol of [6]
to work over Galois rings. Here we achieve linear complexity only in the online
phase, as we still rely on polynomial interpolation to efficiently verify multipli-
cation triples in the preprocessing phase. This matches the state-of-the-art over
fields until the very recent result of [22]. However, since their protocol also uses
the constructions of [6], our techniques can be combined with theirs to achieve
linear complexity for the preprocessing phase.2

1.2 Overview of Our Techniques

We mainly use elementary (arbitrary) liftings from codes C over a finite field F to
a Galois ring that contains F as its residue field, and Z/pk

Z as a subring. This way
2 Ignoring terms that are sublinear in the circuit size.

Asymptotically Good Multiplicative LSSS over Galois Rings 155

we leverage results from codes over fields directly. For example, since there exist
explicit families of codes with asymptotically good distance and dual distance
over a finite field F, we also obtain explicit families of codes with asymptotically
good distance and dual distance over R.

Once we obtain arithmetic secret sharing over R we can use it to get MPC
over Z/pk

Z. Our general template to obtain an MPC protocol is to first develop
protocols over R itself, and since Z/pk

Z is a subring of R, we can supply inputs
in Z/pk

Z and then evaluate a circuit over R to securely obtain the correct output
in Z/pk

Z
3,4

Our passively secure protocol over R follows the template of [17], which
consists of preprocessing so-called “double-sharings” and then using them to
compute secure multiplications in the online phase. Since our construction of
arithmetic secret sharing does not come directly from a code, we abstract the
underlying technique to work on arbitrary arithmetic secret-sharing schemes.
We do not have access to Vandermonde matrices over R directly, but we fix this
by moving to an extension of Galois rings without amortized overhead using the
“tensoring trick” from [9] together with the interpolation theorems from [2].

To get our actively secure protocol with abort, we make the simple but
powerful observation that our protocol above is already actively secure up to
additive attacks, i.e., the only attack that an adversary may carry out is to add
a chosen value to the outputs of multiplications that is independent of the inputs.
We obtain our actively secure protocol with abort by compiling our passively
secure protocol with the recent work of [3], preserving linear complexity.5

Finally, for our actively secure protocol with guaranteed output delivery we
use our arithmetic secret-sharing scheme as a building block and extend the
protocol of [6], which is defined over a field in the t < n/2 regime. We show the
check of authentication tags generalizes to our setting, and show how to compute
the authentication tags (based on “twisted sharings”) using our secret-sharing
scheme. We also adapt the batch verification of triples.

1.3 Related Work

Honest majority MPC over rings has been already studied in [14] via black-box
secret sharing, but their computational overhead is rather large. This problem
was not revisited until very recently, with the work of [2], which presented effi-
cient constructions using Galois rings, showing their potential benefits in the
3 One may think initially that R is more general than Z/pk

Z and thefore computation
over Z/pk

Z is implied trivially by computation over R by taking the degree of the
extension to be 1. However, note that the degree of the extension is constrained to
be Ω(logp(ε

−1)), which is constant for a fixed ε > 0, but it is not necessarily equal
to 1.

4 For passive security the condition on the inputs is trivial to satisfy, but for active
security some extra check needs to be added, which was already addressed in [2] for
the case of Galois rings.

5 Although their compiler is described for Z/pk
Z, it also applies to arbitrary Galois

rings.

156 M. Abspoel et al.

theory of MPC. They provide a protocol for multiplication with O(n log n) bits
of total communication per gate, for the t < n/3 setting. This log(n) factor
comes from using Shamir’s scheme, and removing it requires codes with good
distance of the square, or asymptotically good families of reverse multiplication-
friendly embeddings, which as we illustrate in Example 2 are out of reach of our
elementary lifting methods. Both were very recently claimed by [15], and illus-
trated with protocols for the t < n/3 setting. The tools developed in the present
work enable up to honest majority, so are therefore complementary. Also, the
recent work of [3] considers honest majority MPC over Z/2k

Z, but they achieve
only security with abort and they do so with a communication complexity of
O(n log(n)) for both online and offline phases.

On the other hand, there are several other works in the context of honest-
majority MPC over fields. We have already mentioned the work of Ben-Sasson
et al. [6], that proposes a protocol in the honest-majority setting with guaranteed
output delivery and near-linear communication complexity, and constitutes the
basis of our protocol in Sect. 7. More recently, the protocol of [22] improves upon
the protocol in [6] by introducing a novel method for verifying the correctness of
multiplication triples. In the setting of security with abort the line of research
is richer, with many protocols proposed in the last few years that aim at pro-
viding concrete practical efficiency. For example, an efficient general compiler
from active security up to additive attacks to active security is presented in [11],
which improves upon the methods built in [24]. The work of [26] also improves
upon [24] by extending it using similar ideas as the batch triple check presented
in [6]. Also, very recently, an efficient method to achieve actively secure three
party computation was presented [8], building on top of the distributed zero
knowledge proof techniques introduced in [7]. Although the authors of this work
do consider an extension of their protocol to the ring Z/2k

Z, but it is unlikely
to be efficient in practice as they make use of a Galois ring of a degree that is
roughly equal to the security parameter.

2 Preliminaries

2.1 Linear Codes over Finite Fields

Let Fq be the finite field with q elements, and let F
n
q be the Fq-vector space

consisting of n copies of Fq. A code C ⊆ F
n
q is a set of row vectors in F

n
q . The

rate of C is defined as logq |C|
n . For a vector x = (x1, . . . , xn) its Hamming weight

is the number of nonzero coordinates: wH(x) = |{i ∈ [n] | xi �= 0}|, where we
write [n] := {1, . . . , n}. If y = (y1, . . . , yn) ∈ F

n
q is another vector, the Hamming

distance between x and y is the number of coordinates in which they differ
d(x,y) = |{i ∈ [n] | xi �= yi}| = wH(x − y). The minimum distance of a code C
is defined as d(C) = minx�=y∈C d(x,y).

In the following, let C ⊆ F
n
q be a linear subspace; we then say C is a linear

code. The dimension of C is the dimension of C as a vector space. If C has
k = dim(C) and d = d(C), we say C is a [n, k, d]-linear code over Fq. A matrix

Asymptotically Good Multiplicative LSSS over Galois Rings 157

G is a generator matrix for C if its rows form a basis for C. The dual code of
C is defined as C⊥ = {x ∈ F

n
q | ∀y ∈ C : xyT = 0}. One can see that C⊥ is a

linear code with dimension n − dimFq
(C). The dual distance of C is defined as

the minimum distance of C⊥, and is denoted as d⊥(C).
In this paper, we are mostly concerned with the minimum distance d and

dual distance d⊥ of a linear code C. For applications to secret sharing, we want
both of these to be large, since they imply (n−d+1)-reconstruction and (d⊥−1)-
privacy for secret-sharing scheme associated to the code. There is a large body
of works dedicated to determining the achievable distance and dual distance of
a code. In this work, we are particularly interested in the asymptotic behavior
of d and d⊥. To characterize this asymptotic behavior, we look at the relative
distance δ = d

n and relative dual distance δ⊥ = d⊥
n .

Definition 1. A family C1, C2, . . . of linear codes over a fixed finite field, where
each Ci has parameters [ni, ki, di] and dual distance d⊥

i , is said to have relative
distance δ and relative dual distance δ⊥ if the following holds:

1. lim
i→∞

ni = ∞

2. lim inf
i→∞

di

ni
≥ δ, lim inf

i→∞
d⊥

i

ni
≥ δ⊥.

We stress that we study this asymptotic behaviour only for a family of codes
defined over the same finite field.

In general, there are two ways to construct a family of codes with large
relative distance and relative dual distance. One way is through a random argu-
ment that gives a family of codes reaching the Gilbert-Varshamov bound. For
a finite field Fq with q < 49, this Gilbert-Varshamov Bound is the best lower
bound known. When q ≥ 49 is a square, there exists an explicit construction
of algebraic geometric codes outperforming the random codes, i.e., there exists
a family of algebraic geometric codes attaining the celebrated Vlăduţ-Drinfeld
bound [19]. We skip the details of these codes and refer the interested reader to
[28]. The family of algebraic geometric codes attaining the celebrated Vlăduţ-
Drinfeld bound meets the following condition.

Proposition 1. Let q be any prime power. Then there exists an explicit family
of codes over a fixed finite field Fq2 with relative distance δ and relative dual
distance δ⊥ as long as δ and δ⊥ satisfy

δ + δ⊥ ≤ 1 − 2
q − 1

. (1)

A similar result holds for self-dual codes [27], i.e., there exists an explicit
family of self-dual codes reaching the Vlăduţ-Drinfeld bound.

Proposition 2. Let ε > 0 be any small constant. Then, for any q ≥ 2/ε there
exists an explicit family of codes over a fixed finite field Fq2 such that its relative

158 M. Abspoel et al.

distance δ ≥ 1
2 − ε and its relative dual distance δ⊥ ≥ 1

2 − ε. Moreover, there
exists an explicit family of self-dual codes over a fixed finite field Fq2 with relative
distance δ ≥ 1

2 − ε.

2.2 Galois Rings

Galois rings are a natural analogue to finite fields: roughly, Galois rings are to
Z/pk

Z what finite fields are to prime-order fields Fp. As such, these rings have
rich structure and they share many properties with finite fields. In fact, Galois
rings are a strict generalization of finite fields, since setting k = 1 one obtains
exactly the finite fields.

Definition 2. Let p be a prime number and let k be a positive integer. Let
g(Y) ∈ (Z/pk

Z)[Y] be a monic polynomial such that its reduction modulo p is
an irreducible polynomial in Fp[Y]. The ring

R := (Z/pk
Z)[Y]/ (g(Y))

is called a Galois ring.

Proposition 3. R has the following properties:

1. It is a local ring, i.e. it has a unique maximal ideal (p) � R. We have that
R/(p) ∼= F := Fph , where h denotes the degree of g.

2. The Lenstra constant of R is ph, which gives the maximum number of interpo-
lation points in Shamir’s (because the pairwise differences must be invertible)

3. For any prime p, positive integer k, and positive integer h there exists a Galois
ring as defined above, and any two of them with identical parameters p, k, h
are isomorphic. We may therefore write R = GR(pk, h).

4. If e is any positive integer, then R is a subring of R̂ = GR(pk, h · e).
There is a polynomial ĝ ∈ R[X] that is irreducible modulo p, such that
R̂ = R[X]/(ĝ(X)). There is a natural R-module isomorphism Re → R̂.

Remark 1. Also, we have a natural ring embedding Z/pk
Z ↪→ R, given by map-

ping x �→ x mod g(Y). Moreover, there is another way to uniquely represent the
elements of R. Since R/(p) ∼= F, let ξ be a non-zero element of order ph − 1 in
R and define the subset

I = {0, 1, ξ, . . . , ξph−2} ⊂ R . (2)

Then, any element a ∈ R can be uniquely written as

a = a0 + a1p + a2p
2 + · · · + ak−1p

k−1 where a0, . . . , ak−1 ∈ I .

This decomposition also allows us to define “division by powers of p”. Indeed,
notice that given an element a = a0 + a1p + a2p

2 + · · · + ak−1p
k−1 ∈ R and a

positive integer u, we have that pu divides a if and only if ai = 0 for all i < u.
If this is the case, we then define a/pu := au + au+1p + · · · + ak−1p

k−u−1 ∈

Asymptotically Good Multiplicative LSSS over Galois Rings 159

GR(pk−u, h); notice that a/pu ≡ au (mod p). If u is maximal and a is non-zero
in R, then a/pu ∈ R∗.

Finally, Item 1 of Proposition 3 gives rise to the canonical map π : R → F

(“reduction modulo p”), which we shall frequently use. It is easy to see that π|I
is bijection, and in particular we have a one-to-one correspondence between I
and Fph . Given x ∈ R we shall also write x = π(x).

3 Codes over Galois Rings

In this section, we show how to obtain codes over Galois rings. Although there
is a large body of works dedicated to linear codes, most of it only deals with
codes over finite fields. For the purpose of asymptotically good secret-sharing
schemes, we need a family of codes over Galois rings whose rate and relative
distance tends to a positive constant.

We obtain such codes by arbitrarily lifting linear codes defined over some
finite field F, such as the ones from Proposition 1, to a Galois ring whose residue
field is F. We show that the lifted codes have at least the same distance and
dual distance as the original codes, hence using Proposition 1 we obtain a good
family of codes over Galois rings of arbitrary characteristic pk.

For the particular case of self-orthogonal codes defined over a field of charac-
teristic �= 2, we give an explicit lift that preserves self-orthogonality in Sect. 3.1.
Self-orthogonal codes satisfy a multiplicative property that is needed for arith-
metic secret sharing. In Sect. 4 we show how to extend existing techniques to
obtain multiplication for p = 2, but this comes at the cost of doubling the share
size.

Let R = GR(pk, h) be a Galois ring with residue field F = Fph . We define
a linear code C of length n over R to be a free R-submodule of Rn. We define
its dimension as dim(C) = rankR(C). Recall the canonical homomorphism π :
R → F. For convenience we will also write π for the induced map on vectors or
matrices defined over R, and write x := π(x) for x ∈ Rn and M = π(M) for a
matrix M over R.

Proposition 4. Let C be a linear code over R. Then the following statements
hold:

1. rankR C = dimF C, where C = π(C) ⊆ F
n is the reduction of C modulo p.

2. If c �= 0 ∈ C we may write c = pmy, for 0 ≤ m < k and π(y) �= 0 ∈ C.

Proof. Let us prove the first claim. Since C ⊆ Rn is a linear code, it has an
R-basis e1, . . . , et ∈ Rn. Then, it is clear that C is an F-linear code spanned by
π(e1), . . . , π(et). If we can show that π(e1), . . . , π(et) are linearly independent
over F, then we are done. Assume this is false, so there exist λ1, . . . , λk ∈ F not
all equal to 0 such that

∑t
i=1 λiπ(ei) = 0. Let λ′

i = π−1(λi) ∈ I ⊆ R, then it
holds that

∑t
i=1 λ′

iei ∈ pR, since

π

(
t∑

i=1

λ′
iei

)

=
t∑

i=1

λiπ(ei) = 0.

160 M. Abspoel et al.

It follows that
∑t

i=1 pk−1λ′
iei = 0 and pk−1λ′

1, . . . , p
k−1λ′

t are not all zero. This
contradicts the claim that e1, . . . , et form a basis of C.

We turn to the second claim. Let G be a t × n matrix over R whose rows
form a basis e1, . . . , et of C. We may represent C = {xG : x ∈ Rt}. We call
G the generator matrix of C, which gives a linear isomorphism between Rt and
C. Let c = xG be any nonzero codeword in C. Since G is an isomorphism, x is
also a nonzero vector. By Remark 1, we write x = pmx1 with 0 ≤ m < k and
x1 �= 0 ∈ It. This follows that c = pmx1G. Let y = x1G and the desired result
follows as π(y) = π(x1)π(G) ∈ C is a nonzero codeword. ��
Lemma 1. Let C ⊆ Rn be a linear code. We have d(C) ≥ d(C).

Proof. Let G be the generator matrix of C. Since C is a linear code, it suffices
to bound the weight of its codewords. For any c �= 0 ∈ C, by Proposition 4 we
can write c = pmy for some y �= 0 ∈ C and m < k. Note that y is a nonzero
codeword of C. Thus, wH(c) ≥ wH(y) ≥ d(C). The proof is completed. ��
Example 1. It is hopeless to control the minimum distance without the
freeness assumption. Consider the code C := 〈(1, 1, . . . , 1)〉 of two ele-
ments code over (F2)n, with distance n. We can lift the code to Z/22Z as
C := 〈(1, 1, . . . , 1), (2, 0, . . . , 0)〉 which is non-free, because of the bad element
(2, 0, . . . , 0). Then d(C) = 1 � d(C) = n.

Like for codes over a field, we can similarly define the dual code over R. The
dual code of C is defined as C⊥ = {c ∈ Rn | cyT = 0 for all y ∈ C}.

Lemma 2. Assume that C ⊆ Rn is a t-dimensional R-linear code. Then, C⊥ ⊆
Rn is a (n − t)-dimensional R-linear code. Moreover, the minimum distance of
C⊥ is lower bounded by the minimum distance of the dual code of C.

Proof. Let G be the generator matrix of C. Every element in C⊥ is a solution
to the linear equation GxT = 0 over R, and vice versa. This implies that C⊥ is
the kernel ker(G) of the R-linear map GxT . The image im(G) of GxT is C, a
free module of Rn with rank t. The homomorphism theorem of modules states
that Rn/ ker(G) ∼= im(G). Thus, the kernel is also free and has rank n − t. By
our definition, ker(G) is a linear code of dimension n − t over R.

It remains to lower bound the minimum distance of C⊥. Given any codeword
c �= 0 ∈ C⊥, we have GcT = 0. Moreover, by Remark 1, we can write c = pmy
for 0 ≤ m < k and y �= 0 ∈ It. Reducing modulo p gives GyT = 0 over Fph . This
implies that y is a nonzero codeword in the dual code of C. Then, the desired
result follows. ��

We now define the square of a linear code C over R. Given x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Rn denote their componentwise (Schur) product as x ∗ y =
(x1y1, . . . , xnyn) ∈ Rn. The square code C∗2 is defined as spanR{x ∗ y ∈
Rn | x,y ∈ C}. We emphasize that this square code C∗2 is an R-module but
not necessarily a free R-module. We say C is t-strongly multiplicative if the

Asymptotically Good Multiplicative LSSS over Galois Rings 161

minimum distance d(C), its dual distance d⊥(C) and the distance of the square
d(C∗2) are at least t.

One may wonder whether strong multiplication is preserved when lifting.
Unfortunately, our next example shows that we can have poor distance of the
square code C∗2 even if C

∗2
is a square code with large distance.

Example 2. Let C1 and C2 be linear code over Fph such that C∗2
1 and C∗2

2 have
distance d1 and d2 respectively. Let S = GR(p3, h) and C be a code over S
defined as C =

{(
π−1(c1), p π−1(c2)

) ∣
∣ c1 ∈ C1, c2 ∈ C2

}
. It is clear that C =

{(c1, 0) | c1 ∈ C1} whose square code has minimum distance d1. On the other
hand, since C∗2

2 has distance d2, let y2 ∈ C∗2
2 be a codeword with weight d2.

Then, we have that (0, p2π(y2)) ∈ C∗2, and therefore the minimum distance of
C∗2 is at most d2. The desired result follows if we pick d2 to be a small number
and d1 to a big number.

Unlike the distance and dual distance of the lifted code, strong multiplication
does not automatically carry over. We now give a brief argument for uniformity,
which shall be important when using our codes for secret sharing later on.

Lemma 3. Let C ⊆ Rn be a submodule, and let U ⊆ [n] be an index set with
|U | ≤ d(C⊥) − 1. Then the projection CU of C onto the coordinates of U equals
the whole space R|U |.

Proof. We argue by contradiction. Note that CU is also an R-module, so we may
write CU =

∑t
i=1 Rxi with t ≤ |U |. Here, CU may be non-free. Let M be an

t × |U | matrix whose rows are x1, . . . ,xt. Recall M = π(M) is the reduction of
M modulo p.

We first show that if |CU | < R|U |, then the rank of M is less than |U |. It
is obvious if t < |U |. When t = |U |, since |CU | < R|U |, x1, . . . ,xt are linearly
dependent over R. Therefore, there exist λ1, . . . , λt ∈ R, not all equal to 0, such
that

∑t
i=1 λixi = 0. Let m be maximal such that pm divides all of λ1, . . . , λt.

Then, we have
∑t

i=1
λi

pm xi = 0. This implies that
∑t

i=1 π(λi

pm)π(xi) = 0 over
F where π(λ1

pm), . . . , π(λt

pm) ∈ F are not all zero. Therefore, π(x1), . . . , π(xt) are
linearly dependent and the rank of M is less than |U |.

Let cT be the nonzero solution to McT = 0 over F. Then, we have
Mpk−1π−1(c)T = 0 over R. Extend pk−1π−1(c)T to a vector c′ in Rn by setting
i-th component with i /∈ U to be zero. Clearly, c′ is a codeword of the dual code
C⊥. However, wH(c′) = wH(c) ≤ |U | and a contradiction occurs. ��

3.1 Constructing a Self-orthogonal Code over R

By a judicious choice of lift, we show that for p ≥ 3 we can preserve self-
orthogonality of a code over F when lifting to R.

Theorem 3. Assume that there is a [n, t, d] self-orthogonal code C over the
finite field Fph with dual distance d⊥ and p ≥ 3. Then, there is a [n, t, d] self-
orthogonal code Ck with dual distance d⊥ over the Galois ring GR(pk, h) for

162 M. Abspoel et al.

any positive integer k. Moreover, given an explicit generator matrix of C the
generator matrix of Ck is explicit.

Proof. We lift the self-orthogonal code C increasing k step by step. For each
step, we specify the lifted code by its generator matrix. Define Rk := GR(pk, h).
By Definition 2, Rk contains Z/pk

Z as a subring, and its residue field is Fph .
Our first step is to lift self-orthogonal code from Fph to R2 = GR(p2, h). Let

C be an [n, t, d] self-orthogonal code over Fph and G =
(
I A

)
6 be the generator

matrix of C. Due to the bijection between I and Fph , we could find a matrix
G =

(
I A

)
with G ∈ π−1(G) whose entries are in I. Self-orthogonality of C

implies that

GGT = AAT + I = A × A
T

+ I = 0 (mod p).

That means that all the entries in GGT are elements in the ideal pR. By
Remark 1, we can find a matrix S1 over I such that I + AAT = pS1 (mod p)2.
It is clear that we can choose S1 to be symmetric. Note that 2 is a unit in Rk

as p �= 2 and we can define A1 = A + 2−1pS1A. Let G1 =
(
I A1

)
and let C1 be

the code whose generator matrix is G1. Obviously, G1 is defined over R2. Next,
we show that C1 is indeed a self-orthogonal code over R2. To see this, we have

G1G
T
1 = I + AAT +

p

2
(S1AAT + AAT S1)

= pS1 +
p

2
S1(pS1 − I) +

p

2
(pS1 − I)S1

= pS1 − pS1 = 0 (mod p2).

The first equality follows from the fact that S1 is a symmetric matrix. It remains
to bound the minimum distance of C1. Observe that the reduced code of C1 is
C. By Lemma 1, the distance of C1 is lower bounded by that of C. We can
apply the same argument to its dual distance by observing that the generator
matrix of C⊥

1 is
(−AT

1 I
)
, whose reduction modulo p, the matrix

(−AT I
)
, is the

generator matrix of C⊥, and therefore C1 is free. Now, C2 is a self-orthogonal
code over R2 satisfying all the claims in our theorem. In a same manner, we can
the lift code C2 to a code C3 over R3. By induction, we obtain a code Ck over
Rk for any k ≥ 1 satisfying all the claims in our theorem. ��

Note that a self-dual code is also a self-orthogonal code. Theorem 3 together
with Proposition 2 gives the following.

Corollary 1. Let ε > 0 be any small constant, k any positive integer and ph ≥
4
ε2 be any square with p an odd prime. Then there exists an explicit family of
self-dual codes over Galois ring GR(pk, h) with relative distance δ ≥ 1

2 − ε.

6 We use bar notation to represent the fact that these matrices are defined over Fph .

Asymptotically Good Multiplicative LSSS over Galois Rings 163

3.2 Code and Dual Code over R

In our last subsection, we constructed a self-orthogonal code C over the Galois
ring GR(pk, h) with p ≥ 3, by lifting a self-orthogonal code over the finite field
Fph . We may use these to construct an arithmetic secret-sharing scheme, as we
will see in Section 4. However, our technique only works for p ≥ 3, and of course
especially for MPC purposes the case p = 2 is also very interesting. The existence
of asymptotically good self-orthogonal codes over these rings is not yet known.
To get around this obstacle, we replace the self-orthogonal code with code and
its dual code in our secret-sharing scheme. This will incur the cost of doubling
the share size, and hence doubling the communication complexity of the MPC
protocols build on top of it.

The following is dedicated to lifting a code together with its dual code from
the finite field Fph to the Galois ring GR(pk, h). Our lifting technique maintains
the minimum distance of our code and its dual code.

Theorem 4. Assume that there is a [n, t, d] linear code C over the finite field
Fph with dual distance d⊥. Then, there is a [n, t, d] linear code Ck with dual
distance d⊥ over the Galois ring GR(pk, h), for any integer k. Moreover, the
generator matrices of Ck and its dual code are explicit as long as the generator
matrix of C is explicit.

Proof. Let G and H be the generator matrix and parity check matrix, respec-
tively, of C. Note that H is also the generator matrix of C⊥, the dual code of
C over Fph . We have GHT = 0 (mod p) and thus GHT = pM (mod p2), for
some matrix M defined over Fph . Since G is a generator matrix of C, its rank is
t. There exists (n − t) × n matrix A1 such that GAT

1 = −M (mod p). It follows
that G(H + pA1)T = GHT + pGAT

1 = 0 (mod p2).
Let C2 be the linear code over GR(p2, h) with generator matrix G. We claim

that the dual code C⊥
2 of C2 has generator matrix H + pA1. By Lemma 2, the

dual code C⊥
2 has dimension n−t. To see this, we first note that H+pA1 has rank

rankF
ph

(H) = n− t due to Proposition 4. Moreover, any codeword generated by
H + pA1 is a solution to Gx = 0 over R2 since G(H + pA1)T = 0 (mod p2).

These two facts lead to the conclusion that H + pA1 is indeed the genera-
tor matrix of C⊥

2 over GR(p2, h). The distance and dual distance comes from
Lemma 1 and Lemma 2. In the same manner, one can show that Ck is a linear
code over GR(pk, h) with generator matrix G for any k ≥ 1. In the meantime, by
Lemma 1 the minimum distance and dual distance of Ck are lower bounded by
d and d⊥ respectively. The dual code of Ck is specified by its generator matrix
H + pA1 + · · · + pk−1Ak−1. ��

Theorem 4 combined with Proposition 2 gives the following result.

Theorem 5. Let ε > 0 be any small constant and ph ≥ 4
ε2 be any square. There

exists an explicit family of codes over the Galois ring GR(pk, h) with relative
distance δ ≥ 1

2 − ε and relative dual distance δ⊥ ≥ 1
2 − ε for any integer k.

164 M. Abspoel et al.

4 Arithmetic Secret-Sharing over Galois Rings

In this section we construct an arithmetic secret-sharing scheme over a Galois
ring R starting from an R-linear code C together with its dual C⊥, by extending
techniques from [13]. In this section, let R = GR(pk, h), and suppose C ⊆ Rn+1

is a linear code with distance d and dual distance d⊥. We first provide a brief
overview of the techniques, before fixing the slightly heavier notation in Sect. 4.1
that we use to write the protocols in the remaining sections of this paper.

As for nomenclature, note that the difference between arithmetic and linear
secret sharing is that the former is an LSSS with multiplication. We say an
LSSS has multiplication if there exists a multiplication operator ∗ on shares,
such that given secrets x and y with respective share vectors (x1, . . . , xn) and
(y1, . . . , yn) then the product x · y is linearly determined by the ∗-products of
shares x1 ∗ y1, . . . , xn ∗ yn. Here we are explicit about the operator ∗ because
in the arithmetic secret-sharing scheme that we construct, the shares are not
elements of R, but rather each share is given by 2 elements in R. These pairs of
R-elements form an R-algebra with the operator ∗, which we define below.

Informally, a secret-sharing scheme has t-privacy if for any share vector, any
t coordinates are independent of the secret, and it has r-reconstruction if any r
coordinates of a share vector jointly determine the secret. For a full formalization
of an arithmetic secret-sharing scheme over R, we refer to the full version of our
paper [1].

Via Massey’s construction [25] we may obtain an LSSS from a code over
a field with good parameters, and this generalizes to Galois rings, as follows.
To share s ∈ R, we sample a codeword c = (s, c1, . . . , cn) ∈ C uniformly at
random and let ci be the i-th share. Due to properties of the dual distance
d⊥, we can show that for any subset T ⊆ [n] with |T | ≤ d⊥ − 2 and s ∈ R,
{(ci)i∈T : (s, c1, . . . , cn) ∈ C} = R|T |. This implies (d⊥ − 2)-privacy. From the
minimum distance of C it follows that the LSSS has (n − d + 1)-reconstruction.

To use a secret-sharing scheme for MPC, we need the multiplicative property.
The LSSS constructed above has multiplication if and only if its square code C∗2

has minimum distance d(C∗2) ≥ 1. Unfortunately, the codes from Theorem 5
do not satisfy this property. However, by simultaneously secret-sharing values
in C and in the dual code C⊥, we can obtain multiplication with the following
construction from [13].

To secret-share s ∈ R, we sample a codeword x = (s, x1, . . . , xn) ∈ C and
a codeword y = (s, y1, . . . , yn) ∈ C⊥ uniformly at random. The i-th share is
now a pair (xi, yi). The privacy of this scheme is min{d − 2, d⊥ − 2} and it
is min{n − d + 1, n − d⊥ + 1}-reconstruction. Now suppose we have another
secret-shared element u ∈ R shared as x′ = (u, x′

1, . . . , x
′
n) ∈ C and y′ =

(u, y′
1, . . . , y

′
n) ∈ C⊥. For the product su, we see that

∑n
i=1 xiy

′
i = −su (and also∑n

i=1 yix
′
i = −su).

Asymptotically Good Multiplicative LSSS over Galois Rings 165

4.1 Formalization

We now formalize the scheme and define the notation which we shall use in the
remaining sections. Recall C is of length n+1. Let C̃ ⊆ Rn denote the projection
of C onto its last n coordinates, and similarly for C̃⊥ ⊆ Rn. Let ψ : C̃ → R be
the R-module homomorphism given by ψ(x1, . . . , xn) = x where x ∈ R is the
unique element such that (x, x1, . . . , xn) ∈ C. Note that this map is well-defined
if d ≥ 2. Similarly define ψ′ : C̃⊥ → R as (x′

1, . . . , x
′
n) �→ x′. We equip R ⊕ R

with the product (a, b)
 (c, d) = (ad, bc); this defines an R-algebra which we
denote A.

Consider the R-submodule of An given by

D = {((x1, x
′
1), . . . , (xn, x′

n)) | x ∈ C̃,x′ ∈ C̃⊥, ψ(x) = ψ′(x′)} ⊆ An,

and define the map ψ : D → R by ((x1, x
′
1), . . . , (xn, x′

n)) �→ ψ(x)(= ψ′(x′)).
We may think of D as the space of consistent sharings, and ψ as the map that
reconstructs the secret. For s ∈ R we write [s] to denote an element of D that
maps to s under ψ.

When we use the secret-sharing scheme in the protocol, we also occasionally
need to operate on publicly known values. Let θ ∈ ψ−1(1) ⊂ D be a fixed
publicly known sharing of 1 ∈ R. A public value x ∈ R can be associated with
the canonical sharing xθ ∈ D.

Now consider the R-module homomorphism φ : Rn → R given by φ(x) =
−∑n

i=1 xi. Define the R-submodule of An given by

M = {((x1, x
′
1), . . . , (xn, x′

n)) : φ(x) = φ(x′)} ⊆ An,

which intuitively corresponds to redundant additive shares. The reason why we
have the redundancy will be made clear in a moment, but at a high level it exists
due to the fact that additive shares of the product of two [·]-shared secrets can
be obtained in two different ways. As we did with D, we define the R-module
homomorphism φ : M → R given by ((x1, x

′
1), . . . , (xn, x′

n)) �→ φ(x)(= φ(x′)),
and for s ∈ R we write 〈s〉 to denote an element of M that maps to s under φ.

For x,y ∈ An we define x ∗ y as the point-wise product of these vectors
(under the product in A, which is
). We define

D∗2 = spanR{x ∗ y | x,y ∈ D} ⊆ An,

which corresponds at a high level to the operations we performed in the previous
paragraphs to obtain additive shares of the product of two secrets.

Proposition 5. Let x,y ∈ D. Then x ∗ y ∈ M and moreover φ(x ∗ y) =
ψ(x) · ψ(y).

Proof. Write (xi, x
′
i) and (yi, y

′
i) for the i-th entry of x and y, respectively, for

i = 1, . . . , n. The i-th entry of x∗y is (xiy
′
i, x

′
iyi), via the
-product. There exists

(x0, x1, . . . , xn) ∈ C and (y′
0, y

′
1, . . . , y

′
n) ∈ C⊥, hence

∑n
i=1 xiy

′
i = −x0y

′
0 =

−ψ(x)ψ(y′). Similarly, there exists (x′
0, x

′
1, . . . , x

′
n) ∈ C and (y0, y1, . . . , yn) ∈

C⊥, hence
∑n

i=1 x′
iyi = −x′

0y0 = −ψ(x′)ψ(y). The claim follows. ��

166 M. Abspoel et al.

In terms of shares, we may write the proposition above as [x] ∗ [y] = 〈x · y〉.
We obtain the following properties.

Theorem 6. The scheme above (n − d + 2)-reconstruction and (d(C
⊥

) − 2)-
privacy.

Proof. ψ is a well-defined R-module homomorphism. Also ψ is surjective, since
by Lemma 3 the projection of C onto the zero-th coordinate (corresponding
to the secret) is surjective. The map φ : D∗2 → Z is surjective and satisfies
ψ(x ∗ y) = ψ(x)ψ(y).

If U ⊆ {0, . . . , n} is an index set of cardinality d(C
⊥

) − 2 then projecting
C onto {0} ∪ U is uniform by Lemma 3, and privacy follows. If x ∈ D has
xU = 0 for |U | = n − d + 2 then since the only codeword in C with weight
≤ n− (n− d+2)+1 = d− 1 is 0, we have ψ(x) = 0, and reconstruction follows.
��

As a corollary, by instantiating these codes with the ones we obtained in
Corollary 1, we get our main result.

Theorem 7. Let ε > 0, and let h be an integer such that ph ≥ 4
ε2 . Then there

exists a family of R-ASSS Σ1, Σ2, . . . with R = GR(pk, h), such that the number
of players n(Σi) → ∞, and the schemes have t(Σi) ≥ (1/2 − ε)n(Σi) privacy
and r(Σi) ≥ (1/2 − ε)n(Σi) reconstruction.

5 Passive Security

In this and the upcoming sections, we fix ε > 0 and consider the Galois ring R
of degree h = Ω(logp(ε−1)) over Z/pk

Z. We consider the family of LSSS over R
from Theorem 7. We reuse the notation from Sect. 4.1: fixing n ∈ N, we denote
by [x] the shares of a secret element x ∈ R, and each of these shares belong to
the share space A = R2. We denote by 〈x〉 shares under the “square” secret-
sharing scheme, and recall that given [x] and [y], the parties can perform local
computation on their shares to obtain 〈x · y〉, and we denote this by 〈x · y〉 =
[x] ∗ [y]. Whenever we say that parties reconstruct a secret [x] (or 〈x〉), we mean
that the parties send their shares to P1, who uses the reconstruction function to
compute x and then sends x to all other parties.

To get a passively secure protocol with perfect security we use the standard
approach in MPC of preprocessing some data that can be used to handle multi-
plication gates efficiently. We follow the template from [17], except that instead
of using Reed-Solomon codes, which would lead to a complexity of O(n log(n)),
we use our linear secret-sharing scheme [·], allowing us to obtain complexity
linear in the number of players.

The techniques from [17] consist, in general, of four main phases:

1. The parties generate “random double-sharings” in a preprocessing phase.
2. The parties use the preprocessed material to distribute inputs.

Asymptotically Good Multiplicative LSSS over Galois Rings 167

3. The parties compute the circuit in a gate-by-gate basis. Addition gates are
computed locally. Multiplication gates make use of the double-sharings.

4. The output wires are reconstructed towards the parties.

Most of these techniques extend seamlessly to the R setting. The biggest issue
lies in the generation of the random double-sharings, which uses a Vandermonde
matrix in order to achieve linear complexity, and although these matrices do
exist over R = GR(pk, h) if h = Ω(log(n)) [2], our goal here is to avoid this
overhead. In Sect. 5.1, we show how to get around this issue by moving to a
Galois ring extension.

The protocol we describe in the next few subsections proves the following
theorem.

Theorem 8. For every n, p, k ∈ N, with p a prime, for every ε > 0 and for every
arithmetic circuit C over R = GR(pk, h) with h = Ω(logp(ε−1)), there exists an
n-party MPC protocol that securely computes C against an unbounded semi-
honest adversary corrupting up to t <

(
1
2 − ε

) · n players with a communication
complexity of O(k · log p · h · |C| · n).

For constant p, k, ε, and by embedding Z/pk
Z in R, we obtain the following as

a simple corollary.

Theorem 9. For every n ∈ N and for every arithmetic circuit C over Z/pk
Z

there exists an n-party MPC protocol that securely computes C against an
unbounded semi-honest adversary corrupting up to t <

(
1
2 − ε

) · n players with
an amortized communication complexity per multiplication gate of O(n).

5.1 Offline Phase

As preprocessed material the parties need many shares of the form ([r], 〈r〉),
where r ∈ R is uniformly random. The basic template used in the literature to
achieve this comes from [17], and it uses the fact that Vandermonde matrices
are good randomness extractors. However, we cannot use these matrices in our
setting since they require the prime p to be at least n, which is not the case for
us. Naively, one can use a Galois ring extension in which these matrices exist,
as in [2], but this would lose linear complexity. There are two solutions to this
problem.

One solution is instead of a hyperinvertible matrix to use the generator matrix
of a [n, u, d] linear code over R, with d ≥ t+1. This yields u random elements at
the cost of n2 elements of R communicated, which if the rate and distance are
linear in n leads to linear complexity. By Theorem 5 we know such codes exist.

The second solution is to move to a Galois ring extension S with high enough
Lenstra constant, such that there is a non-singular n × n Vandermonde matrix.
Instead of simply embedding R ↪→ S, we use a tensor product Rs ∼= R⊗R S ∼= S,
where s is the degree of the extension [2,9]. We can take the tensor product of
the secret-sharing scheme; the result is a secret-sharing scheme that can be
interpreted as s parallel sharings of R. In this way n − t random elements of

168 M. Abspoel et al.

S can be obtained at the cost of n2 elements of S communicated. Since each
random sharing of S can be interpreted as s random sharings of R, this leads to
linear communication per random sharing.

5.2 Online Phase

Now we describe how the parties can securely compute any circuit assuming
they have preprocessed enough random sharings ([r], 〈r〉).

Online Phase

Input Phase. Pi secret-shares its input xi ∈ R as follows.
1. The parties take a preprocessed ([r], 〈r〉) and reconstruct [r]

towards Pi.
2. Pi broadcasts the difference xi − r to all parties.
3. The parties compute [xi] = (xi − r) + [r].

Addition Gates. The parties compute locally [x + y] = [x] + [y].
Multiplication Gates. To multiply [x] and [y], the parties use a pre-

processed value ([r], 〈r〉) as follows.
1. The parties compute 〈x · y〉 ← [x] · [y].
2. The parties compute 〈x · y − r〉 = 〈x · y〉− 〈r〉 and reconstruct this

value.
3. The parties compute [x · y] = [r] + (x · y − r).

Output Wires. For every shared output wire [w], the parties recon-
struct w.

The complexity of the protocol above is dominated by the reconstructions
in the multiplication gates. Each such reconstruction involves sending O(n) ele-
ments in A. Since these elements have bit-length O(k · log(p) · h), the overall
complexity of these reconstructions is O(k · log(p) · h · |C| · n).

6 Active Security with Abort

Even though we present an actively secure protocol with guaranteed output
delivery in Sect. 7, it is still worth mentioning that a much simpler protocol can
be envisioned if one is aiming for security with abort.

Our starting observation is that the online multiplication protocol presented
previously is secure up to additive attacks, as defined in [20], or, put more
precisely, the only attack that an active adversary can carry out is to cause the
result of the multiplication to be wrong by an additive amount that is known
by him and that is completely independent of the inputs. To see why this is the
case, we observe that if the preprocessed pair ([r], 〈r〉) is correctly shared, then
the only thing that the adversary can do in the online phase is broadcasting7 an
7 To handle the active case we must have a proper broadcast channel, that is, we

need to assume a the existence of a broadcast functionality. This is required in the
setting of honest majority setting with statistical security, that is, a statistically
secure protocol that instantiates a broadcast functionality cannot exist [23].

Asymptotically Good Multiplicative LSSS over Galois Rings 169

incorrect difference r − xy + δ (assuming that P1 is corrupted), but the effect
of this is that the final shares the parties get are [xy + δ], which constitutes an
additive attack. Furthermore, the preprocessed pairs can be guaranteed to be
consistent by a simple extension to the preprocessing protocol in Sect. 5.1 that
adds a consistency check at the end (for instance as in done in [2] or in [12]).

Very recently it was shown in [3] how to compile any protocol over rings
that is secure up to additive attacks to an actively secure protocol. Given that
our multiplication protocol satisfies this condition (and it can be verified that
it satisfies the other conditions required by the compiler), we obtain an actively
secure protocol by feeding our protocol from the previous section through the
compiler from [3]. The resulting protocol has linear communication in the number
of parties.

7 Active Security with Guaranteed Output Delivery

The main theorem we prove in this section is the following.

Theorem 10. For every n, p, k ∈ N, with p a prime, for every ε > 0 and for
every arithmetic circuit C over R = GR(pk, h) with h = Ω(logp(ε−1)), there
exists an n-party MPC protocol that securely computes C with guaranteed output
delivery against an unbounded active adversary corrupting up to t <

(
1
2 − ε

) ·
n players, with negligible failure probability in κ ∈ N, offline communication
complexity of O(k · log p · (h · |C| · n · log(n) + n7 · κ)), and online communication
complexity of O(k · log p · h · |C| · n).

Typically, we regard p, k and ε (and therefore h) as constants, so that the
only variables are n,C and κ. In this case, we see that the amortized complexity
per multiplication is O(n) for the online phase, and O(n log(n)) for the offline
phase. Furthermore, computation over Z/pk

Z can be obtained by embedding the
computation into a Galois ring R of constant degree h, and adding a check of
input correctness as in [2]. The following theorem is thus obtained as a corollary.

Theorem 11. For every constants p, k ∈ N, with p a prime, every constant
ε > 0, and for every arithmetic circuit C over Z/pk

Z there exists an n-party
MPC protocol that securely computes C with guaranteed output delivery against
an unbounded active adversary corrupting up to t <

(
1
2 − ε

) · n players, with
negligible failure probability in κ, amortized offline communication complexity of
O(n log(n)) per multiplication gate and amortized online communication com-
plexity of O(n) per multiplication gate.

The rest of this section is devoted to proving Theorem 10. We do so by
adapting the protocol from [6] over fields, which we refer to as the BFO protocol,
to work over a Galois ring R, while also making use of our LSSS from Sect. 4. Due
to space constraints, we only detail the most essential modifications to the BFO
protocol, and assume some of the terminology from [6] as given. An overview
of the BFO protocol and more details can be found in the full version of this
paper [1].

170 M. Abspoel et al.

In order to extend the BFO protocol to our setting while preserving its effi-
ciency, we mostly need to adapt the preprocessing phase. Arguments regarding
dispute control carry over immediately, since they are essentially combinato-
rial in nature. In the next sections we discuss how to adapt the preprocessing:
the verification of multiplication triples is in Sect. 7.4, and the computation of
the tags is sketched in Sect. 7.3. Additionally, the fact that these tags provide
the required authentication features when instantiated over Galois rings is not
trivial, and we discuss this thoroughly in Sect. 7.3.

We stress that our goal here is not to present a full-fledged self-contained
MPC protocol, but rather to describe our novel techniques and extensions to
the BFO protocol. Hence, we assume familiarity with the work of [6] and we
omit most of its heavy machinery, especially everything that extends seamlessly
to Galois rings. We also remark that, even though we assume the existence
of a broadcast channel implicitly (as the dispute control layer requires it), our
complexity analysis does not include the cost of these broadcasts, which is equal
to the corresponding cost in [6] and is independent of the circuit size.

Finally, we notice that the techniques from [22], which improve the complex-
ity of the protocol from [6] by removing an additive term of n2d, where d is
the depth of the circuit, rely mostly on the batch triple check from [6], which
we extend in Sect. 7.4 to the Galois ring setting. Hence, the optimizations from
[22] can be also applied to Galois rings, resulting in a much more efficient pro-
tocol that does not have a quadratic communication complexity in terms of the
numbers of parties and the depth of the circuit.

7.1 Different Types of Shares

From now on, we fix R = GR(pk, h) and S = GR(pk, κ). Notice that we may view
S as an extension of R of degree κ/h. The BFO protocol follows the template
from Sect. 5, except that it has an additional mechanism to ensure that whenever
the adversary cheats this can be detected and the computation can continue. This
is achieved by using different types of secret-sharings (especially 2-level sharings,
defined below), which create enough “redundancy” for the parties to be able to
interactively8 correct any error the adversary may introduce.

The multiple types of sharings considered for our extension of the BFO pro-
tocol are found below—for the intuition on these definitions we refer the reader
to [6]. Note that these sharings were originally defined purely in the context
of Shamir’s secret-sharing scheme. We plug in the family of LSSS over R from
Theorem 7 and get a more general setting: not only because our LSSS is defined
over a Galois ring, but also because it does not have information rate 1, i.e., the
shares do not have the same size as the secret.

Single sharing. These are the sharings [x] as defined using our LSSS. The
secret space is R, and the share space is A. They are the analogue to the
degree-t Shamir sharings from [6].

8 In contrast to the t < n/3 case in which an appropriate choice of the code allows for
non-interactive error correction.

Asymptotically Good Multiplicative LSSS over Galois Rings 171

Square sharing. These are the shares 〈x〉 under the “square” secret-sharing
scheme. The secret space is R, and the share space is A. As in Sect. 5, they
are the analogue to the degree-2t Shamir sharings from [6].
Twisted single sharing. These are defined with respect to a coordinate i ∈
{1, . . . , n}. Let x ∈ A. We denote by �x�i an element x = (x1, . . . , xn) ∈ D
such that ψ(x) = 0 and xi = x. One may view this as a sharing of 0 such
that i-th share equals x.
Twisted square sharing. These are defined with respect to a coordinate i ∈
{1, . . . , n}. Let x ∈ A. We denote by 〈x〉i an element x = (x1, . . . , xn) ∈ M
such that φ(x) = 0 and xi = x. One may view this as square sharing of 0
such that the i-th share equals x.
Two-level single sharing. The secret space is R and the share space is An. For
x ∈ R, we define �x� as an n × n matrix (xi,j)

j=1,...,n
i=1,...,n ∈ An×n, such that:

1. The j-th share is the j-th column.
2. Each i-th row xi = (xi,1, . . . , xi,n) is a vector in D, i.e., it constitutes a

single sharing [xi] of some element xi ∈ R.
3. We have x1 + · · · + xn = x.

Two-level square sharing. Denoted 〈〈x〉〉. It is identical to a two-level single
sharing, except the rows are vectors in M , and hence constitute square shar-
ings 〈xi〉.

7.2 Secret Sharing over a Galois Ring Extension

In [6], some subprotocols need a field size that is exponential in the security
parameter in order to ensure negligible cheating probability. To this end, most
of the protocol is defined over a smaller field, but occasionally they move to a
large field extension, in a way such that the overall complexity is not negatively
affected. Over fields and using Shamir secret sharing, it is straightforward to
use shares defined over the base field and the extension field together, since the
arithmetic is compatible. For our protocols, we use a Galois ring extension and
we show that the arithmetic is compatible as well.

Let L be a Galois ring extension of R of degree r, i.e., L = GR(pk, h · r).
Intuitively, the secret-sharing scheme [·] (and similarly for 〈·〉) over R can be
extended to L as follows. First, fix an R-basis ω1, . . . , ωr of L. To secret-share
an element α ∈ L, write α =

∑r
i=1 ai · ωi, and set [α]L := ([a1], . . . , [ar]). More

details can be found in the full version of this paper [1].

7.3 Authentication Tags

In the BFO protocol, whenever some cheating is detected, parties resort to dis-
pute control in order to partially identify the cheater. One of the critical points
in which the adversary can cheat in the protocol is when sending shares in order
to reconstruct shared values, since in principle any corrupt party can lie about
its own share. In order to be able to detect who sent a wrong share, the parties
need an additional mechanism that somehow “binds” a party to its own share.
This is precisely the purpose of the two-level shares defined in Sect. 7.1: the share

172 M. Abspoel et al.

of each party Pi is also shared among the other parties, so the parties can check
whether Pi is lying about its share by reconstructing it from the two-level shares.

Unfortunately, nothing prevents the parties to also lie in the reconstruction
of the two-level shares themselves. In order to deal with this situation, authenti-
cation tags are put in place, which allow a party to announce a share and prove
that it is correct, or more precisely, prove that it is the same share that was
created at the beginning of the protocol, which was guaranteed to be correct.

At a high level, the tags over fields in the BFO protocol work as follows.9

Consider a value s ∈ Fq that is shared as [s] = (s1, . . . , sn) ∈ F
n
q using Shamir

LSSS. Player Pi holds share si ∈ F
n
q , and to prevent him from lying about his

share, Pi is given a tag τ = μ ·si +ν, where the key μ, ν ∈ F
n
q is random and only

known by some verifier Pj . At the time of opening, Pi has to present a share
s′

i = si + δ plus a tag τ ′ = τ + Δ, where δ,Δ ∈ Fq may be nonzero for the case

of a corrupt Pi, and the verifier Pj checks whether τ ′ ?= μ · s′
i + ν. This check

passes if and only if Δ = μ · δ. If Pi attempts to cheat (i.e., δ �= 0) and if the
verifier Pj is honest, then Pi does not know the random μ, and therefore check
must fail with high probability (assuming the field is large). This can be seen by
using that δ �= 0 is invertible, so Δ · δ−1 = μ, which due to the randomness of μ
cannot be satisfied.

Adapting this to our setting is not straightforward because of two reasons.
First, Galois rings are not fields for k > 1 and therefore the argument above
does not apply directly, since δ �= 0 need not be invertible. Fortunately, using
the ideas from [2] we still can show that the equation Δ = μ · δ holds with
negligible probability. However, the second issue is more delicate and it has to
do with the fact that in our setting each share in [s] is not a single Galois ring
element but it is actually an element of A = R2.

We handle this second issue by extending the authentication scheme from
above not only from Fq to R, but to A. At a high level, the tag corresponding to
a share si ∈ A is computed as τ = μ
 si + ν ∈ A, for the key μ, ν ∈ A. Cheating
in this new MAC scheme corresponds to solving equations of the form Δ = μ
δ,
for some Δ, δ ∈ A, which intuitively cannot be satisfied since it corresponds to
two similar equations over R. We develop the details in what follows.

Definition and Properties of the Tags. We use the same template as the
MAC scheme from [6], which authenticates batches instead of individual values.
Let {(sj,1, . . . , sj,κ/h)}�

j=1 ∈ (Rh)�. Recall from Proposition 3 that Rκ/h ∼= S, so
we may think of each (sj,1, . . . , sj,κ/h) as one single element σj ∈ S. Following
Sect. 7.2, we consider shares [σj]S which can be obtained by sharing each of its
coordinates as [sj,i]. By writing [sj,i] = (sj,i,1, . . . , sj,i,n) ∈ Dn and considering
the vector (sj,1,w, . . . , sj,κ/h,w) ∈ Aκ/h for j ∈ {1, . . . , �} and w ∈ {1, . . . , n},
which we identify with an element σj,w ∈ AS where AS = spanS(A), we can see
that [σj]S = (σj,1, . . . , σj,n) ∈ (AS)n.

9 As we will see, the scheme is a bit more complex since the values are tagged in blocks
rather than individually, but we will not consider this for now.

Asymptotically Good Multiplicative LSSS over Galois Rings 173

Notice that the S-algebra AS can be seen simply as S2, with the product
operation defined as (α, α′)
 (β, β′) = (α · β′, α′ · β). With this in hand we can
define what it means for the shares of σ to be authenticated.

Definition 3. (Informal.)10 We say that the � · κ
h shares {[sj,i]}�,κ/h

j=1,i=1 are
authenticated if for every pair of players Pu, Pv the following holds:

– Pv has a random key μ ∈ (AS)� and ν ∈ AS.
– Pu has a tag τ ∈ AS

– τ = μ � σ + ν, where σ = (σ1,u, . . . , σ�,u) ∈ (AS)� and � denotes the dot
product operator.

Proposition 6 argues that the tags defined above serve their purpose, i.e. a
corrupt Pu cannot lie about any of his shares sj,i,u and still present a valid tag
without an honest Pv detecting this. The proof follows a similar argument as
the one sketched before over fields for the BFO protocol. However, we first need
to show that the S-algebra AS , even though it is not a field, and not even a
Galois ring, does have good properties in terms of roots of linear equations. This
is shown in the following lemma, which can be seen as an analogue of Lemma 6
to the S-algebra AS , but considers multivariate polynomials of degree 1.

Lemma 4. Let L = GR(pk, r) and let B = L2 be the L-algebra with multiplica-
tion given by (α, α′)
 (β, β′) = (αβ′, α′β). Let α ∈ B� and γ ∈ B. If α �= 0,
then Prβ←B� [α � β = γ] ≤ �

pr .

Proof. Suppose that (α1, . . . , α�) � (β1, . . . , β�) = γ, and suppose that α �= 0.
Without loss of generality, assume that α1 �= 0, so α1
 β1 = ρ, with ρ =
γ − ∑�

j=2 αj
 βj . Let π1, π2 be the canonical L-algebra homomorphisms B → L
of projection onto the first and second coordinate, respectively. Since α1 �= 0,
for at least one of i = 1 or i = 2 we have πi(α1) �= 0. Then πi(ρ) = πi(α1
β1) =
πi(α1)πi(β1) is a nonzero polynomial of degree 1 over L (in the variable πi(β1)),
which occurs with probability at most 1/pr according to Lemma 6. ��
Proposition 6. (Informal) Suppose that the shares {[sj,i]}�,κ/h

j=1,i=1 are authen-
ticated, and let Pu, Pv be two players, where Pv is honest. If Pu announces
potentially incorrect shares s′

j,i,u = sj,i,u + δj,i,u and a potentially incorrect tag

τ ′ = τ + Δ, then the check τ ′ ?= μ � σ′ + ν will succeed with probability at most
1

pκ .

Proof. The errors δj,i,u translate into an error vector δ ∈ (AL)� such that the
check is performed on σ′ = σ+δ. Furthermore, δ = 0 if and only if δj,i,u = 0 for
all i ∈ {1, . . . , κ/h} and j ∈ {1, . . . , �}, so checking that the shares announced
by Pu are correct amounts to checking that δ = 0.

It is easy to see that the check passes if and only if Δ = μ � δ + ν. Invoking
Lemma 4 completes the proof. ��
10 The statement is incomplete since we are deliberately omitting many details like the

dispute control layer, which determines which parties should get which type of tags,
or how the keys are reused. We refer to [6] for these details.

174 M. Abspoel et al.

We conclude that once the tags are in place, these can be used to prevent
corrupt parties to lie about their shares whenever some fault localization is
required at the dispute control layer. We refer the reader to [6] for the details
about how these tags are exactly used.

Computation of the Tags. In the previous paragraphs we showed that the
tags, once computed and distributed, provide the required authentication prop-
erties. However, we did not deal with the way that these tags are computed. An
important contribution of [6] was showing an efficient method for the compu-
tation of these tags, which saves in communication and that is crucial for the
overall efficiency.

At a very high level, their method works as follows: First, observe that the
task of computing the tags can be seen as a two-party protocol between party Pu

and party Pv, where Pu inputs the share vector σ, Pv inputs the keys μ ∈ (AS)�,
ν ∈ AS , and Pu gets the output τ . The idea is to use a “Mini-MPC” protocol
for this computation, but to ensure efficiency of the whole protocol distributing
the inputs must be done with little communication. This is where the concept
of twisted shares defined in Sect. 7.1 comes into play: one of the inputs, σ, is
actually a share, and therefore it is already “shared”. We discuss this idea in a
bit more detail in what follows, but first we begin with the crucial property of
twisted shares that motivates their consideration in a first place.

Lemma 5. Let R = GR(pk, h), let x, y ∈ R and suppose they are shared as
[x] = (x1, . . . , xn) ∈ An, �y�i = (y1, . . . , yn) ∈ An. Then [x] ∗ �y�i = 〈〈xi
 y〉〉.
Furthermore, an analogous property holds for the LSSS obtained by extending to
a Galois ring extension L.

Proof. By definition, �y�i can be seen as [0]. Then, using Proposition 5, we see
that [x] ∗ �y�i = [x] ∗ [0] = 〈0〉. Furthermore, the i-th entry of this vector is
xi
 yi = xi
 y, which concludes the proof of the lemma. ��

With this lemma in hand we can sketch the Mini-MPC protocol that the
parties Pu, Pv use to compute the tags. First, let us assume for simplicity that
� = 1 and that R = S, so the MAC is simply τ = μ
 σ + ν ∈ A. Let [s] be such
that its u-th share is σ (recall that the tags are used to authenticate shares, so
σ is a share of some secret). The protocol, at a high level, proceeds as follows:

1. Pv samples μ, ν ∈ A.
2. Pv distributes twisted shares of μ and double twisted shares of ν, i.e.,

�μ�u, 〈ν〉u.
3. The parties compute [s] ∗ �μ�u + 〈ν〉u, which by Lemma 5 equals 〈〈σ
μ+ ν〉〉.
4. The parties send these shares to Pu for reconstruction.
5. The correctness of the tags is verified via standard cut-and-choose techniques.

We refer the reader to protocol TagComp in [6] for the full details of the
protocol to compute the tags. We remark that the core aspects of this protocol
that depend on working over a field have been already addressed above, and the
rest of the protocol translates directly to our setting.

Asymptotically Good Multiplicative LSSS over Galois Rings 175

Complexity Analysis. With the due modifications the resulting TagComp proto-
col over R has a communication complexity of O(k · log2(p) · (m · n · h + n5 · κ))
for computing the tags in one single segment. Since m = O(|C|)/n2, multiplying
by the n2 segments yields O(k · log2(p) · (|C| · n · h + n7 · κ)).

7.4 Batched Triple Sacrifice

The task here is to compute the M = O(|C|) multiplication triples necessary for
the execution of online phase. Computing them can be done in a similar way
as in Sect. 5, but their correctness will not be guaranteed. As before, due to the
dispute control layer, m = M/n2 triples are checked in each segment. One of the
key novelties of the BFO protocol is a technique for checking these triples with
a complexity that is roughly O(n log(n) + κ) per triple.11 This is achieved by
dividing the m triples to be checked into batches of size N = n2 each, developing
a procedure that checks these N triples with complexity O(N ·n · log(n)+n2 ·κ),
which, by multiplying by the number of batches m/N , yields O(m·(n·log(n)+κ)).

Before we adapt their protocol to our setting, we begin by revisiting their
techniques over fields here. Consider a field Fq with at least 2N elements, where
N = n2, and let x1, . . . , x2N−1 be different points in Fq. Suppose the parties
have shares over this field {�ai�, �bi�, �ci�}N

i=1 where ci is supposed to be ai · bi.
The parties check their consistency as follows:

1. Define f(X), g(X) ∈ Fq[X] to be the polynomials of degree at most N − 1
such that f(xk) = ak and g(xk) = bk for k = 1, . . . , N .

2. The parties compute shares of ak := f(xk) and bk := g(xk) for k = N +
1, . . . , 2N − 1 by taking an appropriate linear combination (over Fq) of the
shares {�ak�}N

k=1 and {�bk�}N
k=1, respectively.

3. Define h(X) as the polynomial of degree at most 2N − 2 given by h(X) =
f(X)·g(X), notice that it should be the case that ck = h(xk) for k = 1, . . . , N .

4. Use a passively secure multiplication protocol to compute (potentially incor-
rectly) �ck� := �ak� · �bk� for k = N + 1, . . . , 2N − 1. Now the parties have
shares of 2N − 1 points on the polynomial h(X).

5. Sample a random σ ∈ Fqκ and compute shares over Fqκ of f(σ), g(σ), h(σ) ∈
Fqκ by taking a linear combination over Fqκ of {�ak�}N

k=1, {�bk�}N
k=1 and

{�ck�}2N−1
k=1 , respectively.

6. Perform some check over these shares to verify that f(σ) · g(σ) = h(σ).

When extending the above protocol over rings there are several complications
that appear. One immediate concern is the argument that shows that checking
the polynomial equality f(X)·g(X) = h(X) can be done by evaluating a random
point. To show this still holds, we invoke the following lemma from [2, Lemma
2].

Lemma 6. Let f ∈ R[X] polynomial of arbitrary degree � > 0. Then
Prx←R[f(x) = 0] ≤ �

pκ , where x is drawn uniformly from R.

11 A simple optimization in [6] transforms this into O(n log(n)) for the case in which
κ = poly(n). This optimization also applies to our setting.

176 M. Abspoel et al.

One issue that appears is that we do not necessarily have enough points
x1, . . . , x2N−1 ∈ R for interpolation over our ring R. We fix this by using a
Galois ring extension L of degree O(log(N)) = O(log(n)) for the interpolation,
which introduces an overhead of log(n) in the multiplications �ck� = �ak� · �bk�
for k = N + 1, . . . , 2N − 1. We remark that this is the only place of the whole
protocol where the log(n) overhead appears.

The final effect of this is that the complexity of the preprocessing phase
becomes O(|C| · (n · log(n)+κ)), which is not fully linear, but it is already better
than the best protocol known for this setting [2], which has a complexity of
O(|C| ·n2 · log(n)).12 Furthermore, our online phase is fully linear, i.e., O(|C| ·n).
This has an interpretation in practice: in the offline phase the communication
per party increases logarithmically as the number of parties gets larger, but
in the online phase, this communication remains constant. This supports the
rationale of the offline/online paradigm: expensive computations can be pushed
to a function-independent preprocessing phase, and in the online phase where the
inputs and the function are actually instantitated, the computation is cheaper.

We describe our protocol for batched triple generation in Fig. 1. It is very
similar to the corresponding protocol in [6] except that in our case we use proper-
ties of Galois rings to argue about the security of the construction. The security
of our construction is argued below in proposition 7. It shows that if there is at
least one triple that is incorrect then it will be detected in the final check with
high probability.

Proposition 7. Let {(�ai�R, �bi�R, �ci�R)}N
i=1 be the triples inputted to Protocol

BatchedTriples, and suppose that ci = ai · bi + di for i = 1, . . . , N . If the honest
parties output OK at the end of the protocol, then di = 0 for all i with probability
at least 1 − 1

pκ .

Thanks to the properties of Galois rings that we have exploited throughout
the paper, the proof follows along the same lines as the corresponding proof in
[6], and we will not replicate it here.

Complexity Analysis. Similar to the analysis in the field case done at the begin-
ning of this section, the complexity of checking the m triples in one segment
using BatchedTriples is O(k · log2(p) · m · (n · log(N) · h + κ)). By multiplying by
the number of segments n2, and recalling that N = n2 and m = O(|C|)/n2, we
obtain O(k · log2(p) · |C| · (n · log(n) · h + κ)). Furthermore, the optimization in
[6] of using N = n2+c where κ(n) = O(nc) applies also in our case and results
in a complexity of O(k · log2(p) · |C| · n · log(n) · h).

12 We notice, however, that the extension of Shamir secret sharing to R from [2] is
likely to be compatible with the BFO protocol using some of the ideas introduced
in our work. The resulting protocol would have the same offline complexity as our
construction, but the online complexity would be O(|C|n log(n)), unlike ours which
is O(|C|n). On the other hand, the threshold would be maximal.

Asymptotically Good Multiplicative LSSS over Galois Rings 177

Fig. 1. Protocol for checking the correctness of several triples

Remark 2. The log(n) overhead we have in the preprocessing appears in a very
specific stage, and we can even remove it assuming a functionality that produces
additive shares of matrix outer products efficiently.

Optimizing the Batch Triple Verification. We can use the tools we have devel-
oped to further optimize our triple check procedure by adapting the more recent
protocol of [22]. Their batch check protocol builds on top of the one we use from
[6], and also makes use of polynomial interpolation, which as we have shown
extends to Galois rings. This would lead to a more efficient protocol.

178 M. Abspoel et al.

7.5 Putting the Pieces Together

Using the building blocks described in previous sections, we obtain a protocol
over R = GR(pk, h) whose offline phase has a total communication complexity
of O(k · log p · (h · |C| · n · log(n) + n7 · κ)). The online phase, which follows the
exact same template as in [6, Section 3.4], has a total communication complexity
of O(k · log p · h · |C| · n). This proves Theorem 10.

8 Conclusions and Future Work

Our work shows that results from coding theory over fields can be leveraged to
obtain corresponding results over the more general Galois rings, which include as
a particular case the practically relevant ring Z/2k

Z. Although not all properties
automatically lift (e.g., multiplicativity), we presented techniques to overcome
these issues and still get meaningful coding-theoretic tools over Galois rings, that
can be applied to MPC.

We showed that information-theoretic honest-majority MPC over rings which
scales well with the number of parties is possible. Our protocols have linear com-
munication complexity, except for the offline phase of our protocol with guaran-
teed output delivery from Sect. 7, which has a log(n) overhead. The complexity
can be further reduced by combining our results with the work of [21].

Finally, like in [6], the communication complexity of our construction remains
linear if the circuit is not too narrow. This restriction was removed in [21] for
the case of t < n/3, and then in [22] for the case of t < n/2. As we mentioned
in Sect. 7, the techniques from that paper can also be adapted to Galois rings.

Acknowledgements. The authors thank Gabriele Spini for helpful discussions in the
early stages of this research project. This work has been supported by the European
Union Horizon 2020 research and innovation programme under grant agreements No.
74079 (ALGSTRONGCRYPTO) and No. 669255 (MPCPRO), and by an SJTU-Huawei
project.

References

1. Abspoel, M., et al.: Asymptotically good multiplicative LSSS over Galois rings and
applications to MPC over Z/pk

Z. Cryptology ePrint Archive (2020)
2. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient

information-theoretic secure multiparty computation over Z/pk
Z via Galois rings.

In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 471–501.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 19

3. Abspoel, M., Dalskov, A., Escudero, D., Nof, A.: An efficient passive-to-active
compiler for honest-majority MPC over rings. Cryptology ePrint Archive, Report
2019/1298 (2019). https://eprint.iacr.org/2019/1298

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 16

https://doi.org/10.1007/978-3-030-36030-6_19
https://eprint.iacr.org/2019/1298
https://doi.org/10.1007/11681878_16

Asymptotically Good Multiplicative LSSS over Galois Rings 179

5. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

6. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

7. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-Knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 67–97. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 3

8. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs. In: Cavallaro, L., Kinder,
J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 869–886. ACM Press (2019)

9. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 14

10. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure
computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72540-4 17

11. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

12. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPD Z2k : effi-
cient MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 26

13. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

14. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation
over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 37

15. Cramer, R., Rambaud, M., Xing, C.: Asymptotically-good arithmetic secret shar-
ing over Z/pk

Z with strong multiplication and its applications to efficient MPC.
IACR Cryptol. ePrint Arch. 2019, 832 (2019)

16. Damg̊ard, I., Larsen, K.G., Nielsen, J.B.: Communication lower bounds for statis-
tically secure MPC, with or without preprocessing. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 61–84. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 3

17. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

18. Damg̊ard, I., Escudero, D., Frederiksen, T., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy (SP), Los
Alamitos, CA, USA, May 2019, pp. 1325–1343. IEEE Computer Society (2019)

https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/978-3-030-26951-7_3
https://doi.org/10.1007/978-3-540-74143-5_32

180 M. Abspoel et al.

19. Garcia, A., Stichtenoth, H.: A tower of Artin-Schreier extensions of function fields
attaining the Drinfeld-Vladut bound. Inventiones mathematicae 121(1), 211–222
(1995)

20. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.)
46th ACM STOC, pp. 495–504. ACM Press (2014)

21. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC with
guaranteed output delivery. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11693, pp. 85–114. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26951-7 4

22. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority MPC. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 618–646. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 22

23. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. In: Concur-
rency: The Works of Leslie Lamport, pp. 203–226 (2019)

24. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 259–276. ACM Press
(2017)

25. Massey, J.L.: Some applications of coding theory in cryptography. In: Farrell, P.F.
(ed.) Codes and Ciphers, Cryptography and Coding IV, pp. 33–47. Formara Lt.,
Esses (1995)

26. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 17

27. Stichtenoth, H.: Transitive and self-dual codes attaining the Tsfasman-Vlăduţ-Zink
bound. IEEE Trans. Inf. Theor. 52(5), 2218–2224 (2006)

28. Stichtenoth, H.: Algebraic Function Fields and Codes, 2nd edn. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-76878-4

https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-540-76878-4

	Asymptotically Good Multiplicative LSSS over Galois Rings and Applications to MPC over Z/pkZ
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Linear Codes over Finite Fields
	2.2 Galois Rings

	3 Codes over Galois Rings
	3.1 Constructing a Self-orthogonal Code over R
	3.2 Code and Dual Code over R

	4 Arithmetic Secret-Sharing over Galois Rings
	4.1 Formalization

	5 Passive Security
	5.1 Offline Phase
	5.2 Online Phase

	6 Active Security with Abort
	7 Active Security with Guaranteed Output Delivery
	7.1 Different Types of Shares
	7.2 Secret Sharing over a Galois Ring Extension
	7.3 Authentication Tags
	7.4 Batched Triple Sacrifice
	7.5 Putting the Pieces Together

	8 Conclusions and Future Work
	References

