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Abstract. Recently, there has been a great development in communication-efficient zero-knowledge
(ZK) protocols for arithmetic circuit relations. Since any relation can be translated into an arithmetic
circuit relation, these primitives are extremely powerful and widely applied. However, this translation
often comes at the cost of losing conceptual simplicity and modularity in cryptographic protocol design.
For this reason, Lai et al. (CCS 2019), show how Bulletproof’s communication-efficient circuit zero-
knowledge protocol (Bootle et al., EUROCRYPT 2016 and Bünz et al., S&P 2018) can be generalized
to work for bilinear group arithmetic circuits directly, without requiring these circuits to be translated
into arithmetic circuits. For many natural relations their approach is actually more efficient than the
indirect circuit ZK approach.
We take a different approach and show that the arithmetic circuit model can be generalized to any
circuit model in which (a) all wires take values in (possibly different) Zq-modules and (b) all gates
have fan-in 2 and are either linear or bilinear mappings. We follow a straightforward generalization
of Compressed Σ-Protocol Theory (CRYPTO 2020). We compress the communication complexity of a
basic Σ-protocol for proving linear statements down to logarithmic. Then, we describe a linearization
strategy to handle non-linearities. Besides its conceptual simplicity our approach also has practical
advantages; we reduce the constant of the logarithmic component in the communication complexity of
the CCS 2019 approach from 16 down to 6 and that of the linear component from 3 down to 1.
Moreover, the generalized commitment scheme required for bilinear circuit relations is also advantageous
to standard arithmetic circuit ZK protocols, since its application immediately results in a square root
reduction of public parameters size. The implications of this improvement can be significant, because
many application scenarios result in very large sets of public parameters.
As an application of our compressed protocol for proving linear statements we construct the first k-
out-of-n threshold signature scheme (TSS) with both transparent setup and threshold signatures of size
O (κ log(n)) bits for security parameter κ. Each individual signature is of a so-called BLS type, the
threshold signature hides the identities of the k signers and the threshold k can be dynamically chosen
at aggregation time. Prior TSSs either result in sub-linear size signatures at the cost of requiring a
trusted setup or the cost of the transparent setup amounts to linear (in k) size signatures.

Keywords: Zero-Knowledge, Bilinear Groups, Pairings, Compressed Σ-Protocol Theory, Threshold
Signature Schemes.

1 Introduction

Bulletproofs [BCC+16, BBB+18] introduced an ingenious technique to compress the communication com-
plexity of discrete logarithm (DL) based circuit zero-knowledge (ZK) protocols from linear to logarithmic.
Their approach was presented as a drop-in replacement for the well-established Σ-protocol theory and it
results in efficient zero-knowledge protocols for relations captured by a circuit defined over Zq ∼= Z/(qZ).
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In [AC20], Bulletproofs and Σ-protocol theory were reconciled by repurposing an appropriate adaptation of
Bulletproofs as a black-box compression mechanism for basic Σ-protocols. They first show how to handle lin-
ear arithmetic relations by deploying a basicΣ-protocol. Second, they show how an adaptation of Bulletproofs
allows the communication complexity of the basic Σ-protocol to be compressed from linear to logarithmic.
Hence, the resulting compressed Σ-protocol allows a prover to prove linear statements with a communication
complexity that is logarithmic in the size of the witness. Finally, to handle arbitrary non-linear relations,
arithmetic secret sharing based techniques [CDP12] are deployed to linearize these non-linearities. Crypto-
graphic protocol design can now follow well-established approaches from Σ-protocol theory, but with the
additional black-box compression mechanism to reduce the communication complexity down to logarithmic.

These, and other, recent advances in communication-efficient circuit ZK lead to an obvious, but indirect,
approach for efficient protocols for arbitrary relations:

1. Construct an arithmetic circuit capturing the relation.
2. Apply an efficient circuit ZK protocol to this arithmetic circuit.

However, for some relations, the associated arithmetic circuits can be large and complex. Thereby losing
the conceptual simplicity and possibly even the concrete efficiency over a more direct approach. The work
of [ACF20], for instance, describes a number of efficiency advantages of their direct approach for proving
knowledge of k discrete logarithms out of n public group elements.

Moreover, Lai et al. [LMR19] construct a zero-knowledge proof system for directly handling relations
captured by bilinear group arithmetic circuits. A bilinear group is a tuple (q,G1,G2,GT , e,G,H), where
e : G1×G2 → GT is a bilinear map, also called a pairing, and G1, G2 and GT are groups (group operations are
written additively) of prime order q generated by G, H and e(G,H), respectively. A bilinear group arithmetic
circuit, or a bilinear circuit, is a circuit in which each wire takes values in W ∈ {Zq,G1,G2,GT } and the
gates all have fan-in 2 and unbounded fan-out. Gates are either group operations, Zq-scalar multiplications
or bilinear pairings. For more details see Section 6.3. Bilinear circuits directly capture relations encountered
in, e.g., identity based encryption [SW05] and structure preserving signatures [AFG+10]. We note that, for
a highly optimized group of order q ≈ 2256, multiplying a single group element with a Zq-scalar requires an
arithmetic circuit with approximately 800 multiplication gates [HBHW20], instead of a single gate in the
bilinear circuit model. Hence, besides conceptual simplicity there can be significant efficiency advantages of
the direct approach over the indirect approach that uses generic solutions for arithmetic circuit ZK.

In this work, we focus on another application of ZK protocols for relations defined over bilinear circuits:
threshold signature schemes (TSSs) [Sho00]. A k-out-of-n TSS is a standard signature scheme, allowing each
of the n players to individually sign arbitrary messages m, enriched with a public k-aggregation algorithm.
The k-aggregation algorithm takes as input k signatures, issued by any k distinct players, on the same
message m and outputs a threshold signature σ. Most previous works (e.g., [Sho00]) consider a slightly
different functionality in which individual players are only capable of generating signature shares. Unlike
plain signatures, signatures shares are not necessarily publicly verifiable. However, signature shares can be
aggregated into a threshold signature. The party evaluating the k-aggregation algorithm, not necessarily
one of the n players, is called the aggregator. There is a public verification algorithm to verify a threshold
signature, i.e., it takes as input a message m and a threshold signature σ and it outputs either “accept”
or “reject”. If the verification algorithm outputs “accept”, we say that the signature is valid. A TSS is
designed such that no adversary holding strictly less than k distinct signatures on a given message m can
issue a valid threshold signature on this message. A naive TSS is obtained by exhibiting the k individual
signatures directly. However, this approach results in thresholds signatures with size linear in the threshold
k. The main goal for TSSs is to have succinct threshold signatures, i.e., with size sub-linear in k. The first
succinct construction [Sho00] immediately found an application in reducing the communication complexity
of consensus protocols [CKS05]. This application was revived recently [LM18, YMR+19, ADD+19, AMS19].
The impact of succinctness is significant since, in consensus applications, the threshold k is of the same
order of magnitude as n (typically k = n/2 or k = 2n/3). Although desirable in some applications, it is not
required that a threshold signature hides the k-subset of signers.
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1.1 Contributions

In this work, we present a ZK protocol for relations captured by bilinear circuits. We show that there is a
straightforward generalization of the approach of [AC20] for arithmetic circuit relations to bilinear circuit
relations. The main ingredient required for this generalization is a homomorphic commitment scheme that
allows a prover to commit to vectors x ∈ Zn0

q ×Gn1
1 ×Gn2

2 ×GnT

T [AFG+10, LMR19]. Generalizing [AC20],
our approach is to first compress a basic Σ-protocol for proving linear statements about committed vectors
x, and second to show how to handle arbitrary bilinear circuit relations by linearizing non-linearities. This
leads to a conceptually simple and modular construction of ZK protocols for bilinear circuit relations. We
actually show that our generalization works for any circuit model in which all gates have fan-in 2 and are
either linear of bilinear.

The communication complexity of our approach is derived from the properties of the commitment scheme.
The size of a commitment to a vector x ∈ Zn0

q × Gn1
1 × Gn2

2 × GnT

T is constant in the dimensions n0, n1
and n2, but it is linear in the dimension nT . For this reason the communication complexity of our approach
is logarithmic in n0, n1 and n2, but linear in nT . Even though we consider strictly a stronger application
scenario, we achieve exactly the same asymptotic communication complexity as the prior work of [LMR19].
However, besides conceptual simplicity, our approach also has concrete practical advantages over this prior
work. We namely reduce the constant in the logarithmic component of the communication costs from 16 down
to 6, and the constant in the linear component from 3 down to 1. See Section 6.5 for a detailed comparison.

Another application of the commitment scheme of [AFG+10, LMR19] is that it allows a prover to commit
to Pedersen commitments in a pairing-based platform. This layered approach, of committing to commit-
ments, was already suggested in [AFG+10] and it allows a prover to commit to n2 Zq-coefficients using only
2n + 1 public group elements, instead of the n2 + 1 public group elements required when using Pedersen
commitments directly. Replacing the Pedersen commitment scheme, in circuit ZK protocols derived from
Bulletproofs [BCC+16, BCC+16] or Compressed Σ-Protocol Theory [AC20], by this layered commitment
scheme immediately gives a square root reduction in the size of the set of public parameters while leaving
the logarithmic communication costs exactly the same.

An additional advantage of our approach is that we can handle linear relations directly. By contrast,
Lai et al. [LMR19] generalize the Bulletproof approach [BCC+16, BBB+18] where the pivotal protocol
handles a specific non-linear inner-product relation. Applying this approach to a linear relation requires
a cumbersome approach of capturing this linear relation by a set of non-linear inner-product constraints,
leading to unnecessarily complicated protocols.

As an application of our compressed Σ-protocol for proving linear relations, we construct a transparent
k-out-of-n threshold signature scheme (TSS) with threshold signatures that are O(κ log(n)) bits. Recall that
a TSS enables any set of at least k players, in a group of n, to issue a “threshold” signature on a message
m, but no subset of less than k players is able to issue one. A TSS is called transparent if it does not
require a trusted setup phase, i.e., all public parameters are random coins. Given recent advances in efficient
circuit zero-knowledge, an obvious solution is to construct a threshold signature as a proof of knowledge
attesting the knowledge of k-out-of-n signatures. With the appropriate ZK protocol this would immediately
result in a transparent TSS with sublinear size threshold signatures. However, we have not encountered this
obvious approach in literature. Perhaps because this approach would require an inefficient reduction from
the corresponding threshold signature relation to a relation defined over an arithmetic circuit.

For this reason, we follow a more direct approach avoiding this inefficient reduction. We append the
BLS signature scheme [BLS01] with a k-aggregation algorithm. The BLS signature scheme can be defined
over any bilinear group (q,G1,G2,GT , e,G,H) and it is secure if the Computational Diffie-Hellman (CDH)
assumption holds in G1. Let us briefly recall the BLS signature scheme when instantiated in our n player
setting. All players i, for 1 ≤ i ≤ n, generate their own private key ui ∈ Zq and publish the associated public
key Pi = uiH ∈ G2.5 To sign a message m ∈ {0, 1}∗, player i computes signature σi = uiH(m) ∈ G1, for
a public hash function H : {0, 1}∗ → G1. The public verification algorithm accepts a signature σi if and
only if e(σi, H) = e(H(m), Pi). By the bilinearity of e all honestly generated signatures are accepted. The
unforgeability follows from the CDH assumption in G1.

5Group operations are written additively.
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Let us now sketch our k-aggregation algorithm. We adapt a technique from a recent work on k-out-of-n
proofs of partial knowledge [ACF20]. The k-aggregator takes as input a set of k signatures σi ∈ G1 for
i ∈ S where S is a k-subset. Let the polynomial p(X) = 1 +

∑n−k
i=1 ajX

j ∈ Zq[X] be uniquely defined
by p(i) = 0 for all i ∈ {1, . . . , n} \ S and let σ̃i := p(i)σi, for i ∈ S, and σ̃i = 0, for i /∈ S. Then the
k-aggregator computes a commitment P ∈ GT to the vector x := (a1, . . . , an−k, σ̃1, . . . σ̃n) ∈ Zn−kq × Gn1
using the commitment scheme from [AFG+10, LMR19] described in Section 3. Subsequently, it uses our
compressed Σ-protocol to prove knowledge of an opening of commitment P that satisfies the linear constraint
fi(a1, . . . , an−k, σ̃1, . . . σ̃n) = e(H(m), Pi) for all 1 ≤ i ≤ n where

fi : Zn−kq ×Gn1 → GT , x→ e(σ̃i, H)−
n−k∑
j=1

aji
je(H(m), Pi).

Since the fi’s are homomorphisms, these constraints are indeed linear and our compressed Σ-protocol suffices
in proving that they are satisfied by the committed vector x.

From this proof of knowledge it follows that the k-aggregator knows some polynomial p′ of degree at most
n − k with p′(0) = 1, and some group elements σ̃′i such that e(σ̃′i, H) = p′(i)e(H(m), Pi) for all 1 ≤ i ≤ n.
Hence, it knows a signature σi issued by player i on message m for all i with p(i) 6= 0. Moreover, since p′(X)
is nonzero and of degree at most n−k, it has at most n−k zeros. Therefore, the k-aggregator knows at least
k valid signatures on message m, i.e., no adversary can forge a valid threshold signature without knowledge
of k BLS signatures.

The compressed Σ-protocols are interactive and can be made non-interactive by the Fiat-Shamir trans-
form [FS86]. The non-interactive proofs contain precisely the messages sent from the prover to the verifier.
Hence, the logarithmic proof size is inherited by the logarithmic communication complexity of the com-
pressed Σ-protocol. More precisely, a k-out-of-n threshold signature contains 4 dlog2(n)e+ 3 elements of GT ,
1 element of G1 and 1 element of Zq.

The k-aggregation algorithm can be evaluated by any party with input at least k valid signatures from
distinct signers. Besides the signatures, the k-aggregation algorithm only takes public input values. Moreover,
the threshold k can be chosen at aggregation time independent of the set-up phase. By contrast, Shoup’s
construction requires a different trusted setup phase for every threshold k. Since the compressed Σ-protocol
is zero-knowledge, an additional property of our TSS is that a threshold signature hides the k-subset of
signers S. Our TSS does not require a trusted setup and is therefore transparent. More precisely, the players
can generate their own public-private key-pairs and the Σ-protocol only requires an unstructured public
random string defined by the public parameters of the commitment scheme.

1.2 Related Work

Zero-Knowledge Proof Systems. Groth and Sahai [GS08] were the first to consider zero-knowledge proof
systems for relations defined over bilinear groups directly. In contrast to more standard indirect approaches,
their work avoids inefficient reductions to arithmetic circuit relations. Bilinear groups have found applications
in many areas of cryptography. For instance, in digital signatures, identity based encryption and efficient zero-
knowledge proof systems. For this reason many relevant relations are naturally defined over bilinear groups.
The goal is not only to achieve efficiency, but also modularity in the design of cryptographic protocols.

A drawback of the Groth-Sahai proof system is that its proof sizes are linear in the size of the statements.
By contrast, Bulletproofs [BCC+16, BBB+18] are practically efficient DL-based proof systems for arithmetic
circuit relations with logarithmic proof sizes. Their main building block is an efficient protocol for proving a
specific non-linear inner-product relation. Arbitrary relations captured by an arithmetic circuit are reduced
to a set of inner-product constraints. Lai et al. [LMR19] adapted the techniques from Bulletproofs to the
bilinear circuit model achieving a communication-efficient ZKP system for relations defined over bilinear
circuits. More precisely, the communication complexity is logarithmic in the number of Zq, G1 and G2
inputs, but linear in the number of GT inputs. They first reduce the bilinear circuit relation to a set of inner-
products constraints, and subsequently describe protocols for proving various inner-product relations. The
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work of [BMMV19] improves the efficiency for a specific subset of bilinear inner-product relations. Hence,
although these approaches avoid reductions to arithmetic circuits, they do rely on the reduction to a set of
inner-product constraints defined over a bilinear group.

In [AC20], an alternative approach for arithmetic circuit relations is described. Their pivotal protocol is
a basic Σ-protocol for proving linear relations. They show how to compress the communication complexity
down to logarithmic and how to handle non-linearities in arbitrary arithmetic circuit relations. This approach
is compatible with standard Σ-protocol theory and avoids the need for reinventing cryptographic protocol
design around non-linear inner-product relations. Here, we generalize Compressed Σ-Protocol Theory to the
bilinear circuit model.

In [ACF20], another ZK scenario, in which a direct approach is advantageous over indirect approaches, is
presented. They construct a communication-efficient protocol for proving knowledge of k discrete logarithms
out of n public group elements, without resorting to the obvious approach of capturing this relation in an
arithmetic circuit.

Threshold Signature Schemes. Shoup’s TSS [Sho00] already achieves threshold signatures of constant
size. However, his approach, and all other approaches with threshold signature sizes sub-linear in k and n,
require a trusted set-up phase and are therefore not transparent [GJKR96, GJKR03, Bol03, LJY16, HAP18,
KG20, KSM20, GG20]. These works require either an explicit trusted dealer, or they have implemented this
trusted dealer by an MPC (or other interactive) protocol that is evaluated before messages are signed. At
first glance it might seem that [GG20] also achieves a transparent setup. However, in their protocol the k
signing players first have to run an interactive protocol before they can generate threshold signatures. This
interactive protocol has to be evaluated before players can produce their inputs to the aggregation algorithm,
therefore we consider this as a trusted setup.

The standard approach by Shoup works as follows. A trusted dealer generates a public-private key-pair
for the underlying (key homomorphic) signature scheme, such as BLS [BLS01]. Subsequently, the dealer
secret shares the private key using a k-out-of-n linear secret sharing scheme (LSSS) and distributes the
shares amongst the n players. Players sign a message m using their individual shares, resulting in signature
shares. Using the reconstruction algorithm of the LSSS any set of at least k signatures can be aggregated
into a single signature that can be verified with the public key generated by the trusted dealer. This TSS
therefore has a public k-aggregation and a public verification algorithm. However, the private key, known
to the trusted dealer, allows an adversary to forge a valid threshold signature, i.e., this solution is not
transparent. Moreover, in contrast to our scheme, the threshold k should be fixed during the setup phase.

In this work, we aim for a TSS without a trusted setup, i.e., a transparent TSS. However, all known
transparent TSSs have size at least linear in the threshold k. Besides the naive implementation of simply
outputting k valid signatures, there is also the following approach used by the decentralized transaction
system Libra [Lib19] and by [NRS+20]. Every player generates its own BLS public-private key-pair. A
threshold signature is computed as the sum of k individual BLS signatures, and it can be verified by running
the BLS verification algorithm using the sum of the public keys of the k signers. Hence, the threshold
signature should contain a list of the k signers, i.e., it is of size O(n) or O(k log(n)) depending on the exact
encoding of this list. Moreover, these threshold signatures clearly do not hide the k-subset of signers. By
contrast, Haque et al. [HKSS20] construct a transparent TSS that does hide the k-subset of signers. However,
while individual signatures are logarithmic in n, the threshold signature sizes are linear in the threshold k.

Finally, a recent unpublished work [BCG20] presents a different variant of a TSS, which they call succinctly
reconstructed distributed signatures (SRDS). Their SRDS is most similar to the obvious approach of reducing
the problem to an arithmetic circuit relation. It indeed applies a general (unspecified) SNARK in a black-box
manner to achieve O(poly log)-size signatures. However, their SRDS can only tolerate up to n/3 corruptions.

1.3 Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, we recall basic notation and definitions
regarding bilinear groups and zero-knowledge proof systems. In Section 3, we define a number of commitment
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schemes generalizing Pedersen vector commitments. In Section 4, we describe a compressed Σ-protocol for
proving linear relations about committed vectors. The compressed Σ-protocol has a logarithmic communica-
tion complexity. In Section 5, as an application of our compressed Σ-protocol, we describe a novel threshold
signature scheme. Finally, in Section 6, we describe our linearization strategy that allows handling non-linear
relations.

2 Preliminaries

2.1 Bilinear Groups

We consider the ring Zq ∼= Z/(qZ) for a prime q. Moreover, we let G1, . . . ,Gk and GT be groups of prime
order q supporting discrete-log (DL) based cryptography, hence log(q) = O(κ) for security parameter κ.
Some properties of commitment schemes used in this work rely on the stronger Decisional Diffie-Hellman
(DDH) assumption. For this reason, we assume the DDH assumption to hold in all groups Gi.

We write the group operations additively. Clearly, all groups Gi are Zq-modules and, for all a ∈ Zq and
g ∈ Gi, the product ag ∈ Gi is well-defined. We write vectors in boldface and inner-products are defined
naturally, i.e., for all a = (a1, . . . , an) ∈ Znq and g = (g1, . . . , gn) ∈ Gni we define 〈a,g〉 :=

∑n
i=1 aigi.

Let G ∈ G1 and H ∈ G2 be generators and let e : G1 × G2 → GT be a non-trivial bilinear mapping,
i.e., e(G,H) generates GT . Then, e is also called a (bilinear) pairing and a tuple (q,G1,G2,GT , e,G,H)
defines a bilinear group. For vectors G ∈ Gn1 and H ∈ Gn2 the following inner-product is defined e(G,H) :=∑n
i=1 e(Gi, Hi).
We say that the Symmetrical External Diffie-Hellman (SXDH) holds in a bilinear group

(q,G1,G2,GT , e,G,H), if the DDH assumption holds in both G1 and G2 [BGdMM05]. By the above as-
sumption that the DDH assumption holds in all Gi, it follows that the SXDH assumption holds for all
bilinear groups that are considered in this work. The SXDH assumption implies that there is no efficiently
computable isomorphism from G1 to G2, or from G2 to G1 [ACHdM05], i.e., we only consider bilinear groups
of Type III [GPS08].

2.2 Proofs of Knowledge

We recall some standard notions regarding Proofs of Knowledge (PoKs) following the notation and definitions
of [AC20, ACF20]. A relation R is a set of statement-witness pairs (x;w). A µ-move protocol Π for relation
R is an interactive protocol with µ communication rounds between a prover P and verifier V. It allows P to
convince V that it knows a witness w for statement x, i.e., (x;w) ∈ R. Protocol Π is also called an interactive
proof for relation R. The statement x is public input for both P and V and the witness w is private input
only for P. In our protocol descriptions this is written as Input(x;w), i.e., the public and private input are
separated by a semicolon. As the output of the protocol V either accepts or rejects P’s claim. The messages
sent between P and V in one protocol execution are also referred to as a conversation or transcript. If V
accepts the associated transcript, it is called accepting.

An interactive proof is said to be public coin, if all message from V are chosen uniformly at random and
independent from prior messages. Interactive protocols that are public-coin can be made non-interactive by
the Fiat-Shamir transformation [FS86], as proven in [BR93], without increasing the communication costs
from P to V. All interactive proofs in this work are public-coin.

Let us now describe some desirable (security) properties for interactive proofs. An interactive proof Π
is called perfectly complete, if on any input (x;w) ∈ R, the verifier V always accepts. Moreover, Π is said
to be knowledge sound with knowledge error κ(·), if there exists a polynomial-time algorithm χ (extractor)
with the following properties. On public input x, and given rewindable black-box access to a prover P∗
that succeeds with probability ε(x) > κ(x), χ outputs a witness w for statement x with probability at least
ε(x) − κ(x). An interactive proof that is complete and knowledge sound is said to be a proof of knowledge
(PoK).

We also consider a computational variant of knowledge soundness. In this variant the extractor either
extracts a witness, or it solves some computationally hard problem, i.e., knowledge soundness only holds
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under some computational assumption. Protocols that have computational knowledge soundness are also
referred to as Arguments of Knowledge (AoKs). However, we will use the terms PoK and AoK interchangeably.

The standard notion of knowledge soundness introduces some subtle problems when interactive proofs are
composed with other cryptographic protocols [Lin03], or when the number of communication rounds µ is not
constant in the size of the witness [BCC+16, BBB+18, AC20]. These problems can be avoided by using an
alternative notion of knowledge soundness, witness extended emulation [Lin03], which is sufficient in practical
applications. Witness extended emulation therefore gives an alternative notion for proofs of knowledge. For
details we refer the reader to [Lin03, HKR19, AC20].

Let us now recall a generalization of the special soundness property. A (2µ + 1)-move protocol is said
to be (k1, k2, . . . , kµ)-special sound, if there exists an efficient algorithm that on input a (k1, k2, . . . , kµ)-
tree of accepting transcripts for statement x, outputs a witness w for x. A (k1, k2, . . . , kµ)-tree of accepting
transcripts is a set of

∏µ
i=1 ki transcripts that are arranged in the following tree structure. The nodes in this

tree correspond to the prover’s messages and the edges correspond to the verifier’s challenges. Every node at
depth i has precisely ki children corresponding to ki pairwise distinct challenges. Every transcript corresponds
to exactly one path from the root node to a leaf node. An interactive proof that is (k1, k2, . . . , kµ)-special
sound is known to have witness extended emulation [BCC+16, AC20]. For this reason, protocols that are
complete and (k1, k2, . . . , kµ)-special sound are also referred to as proofs of knowledge (PoKs).

In some protocols there are rounds in which V sends multiple challenges per round, i.e., µ challenges
are sent in less than 2µ + 1 rounds. For these protocols we also consider the (k1, . . . , kµ)-special soundness
property. However, in this case a tree of accepting transcripts contains nodes that do not correspond to a
message sent from P to V.

A protocol is said to be honest verifier zero-knowledge (HVZK), if there exists an efficient simulator
that, on input a statement x that admits a witness w, outputs an accepting transcript, such that simulated
transcripts follow exactly the same distribution as transcripts between an honest prover and an honest
verifier. If the simulator proceeds by first sampling the random challenges, the protocol is said to be special
honest verifier zero-knowledge (SHVZK).

Finally, we recall that two protocols, Πa for relation Ra and Πb for relation Rb, are said to be composable,
if the final message of protocol Πa contains a witness for relation Rb [AC20]. In this case, the composition
Πb � Πa runs Protocol Πa but replaces the witness for relation Rb in its final message by an appropriate
instantiation of Protocol Πb. If protocol Πa is (k1, . . . , kµ1)-special sound and protocol Πb is (k′1, . . . , k′µ2

)-
special sound, then the composition Πb �Πa is easily seen to be (k1, . . . , kµ1 , k

′
1, . . . , k

′
µ2

)-special sound.

3 Commitment Schemes

The techniques in this paper work for any homomorphic commitment scheme of the following form:

Com : GS × Zrq → GC , (x, γ) 7→ Com(x, γ), (1)

where GS := Zn0
q ×Gn1

1 × · · · ×Gnk

k for groups G1, . . . ,Gk of prime order q, and γ ∈ Zrq is the commitment
randomness, typically r = 1 or r = 2, i.e., to commit to a vector x ∈ GS , a prover samples γ ∈ Zrq uniformly
at random and outputs the commitment Com(x, γ) ∈ GC . We assume that this commitment scheme is
hiding and binding, possibly under computational hardness assumptions, and that it is homomorphic, i.e.,
Com(x1, γ1) + Com(x2, γ2) = Com(x1 + x2, γ1 + γ2) for all x1,x2 ∈ GS and γ1, γ2 ∈ Zq.

In this section, we describe a number of instantiations of this abstract commitment scheme. Subsequently,
in the next sections, we show that the compressed Σ-protocol theory of [AC20] immediately generalizes
from proving statements about Pedersen commitments to vectors x ∈ Znq to proving statements about
commitments of vectors x ∈ GS . For the techniques of [AC20] to work, it is only required that the commitment
function is a homomorphism. The compression techniques are applicable if the commitments are compact, i.e.,
the size of the commitments is independent of the dimensions ni of the variables that are to be compressed.

The first and best-known instantiation of this abstract commitment scheme is the Pedersen vector com-
mitment scheme [Ped91], where n1 = · · · = nk = 0. This commitment scheme is perfectly hiding and
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computationally binding under the discrete logarithm assumption. Applying this work to the Pedersen com-
mitment scheme simply results in the compressed Σ-protocols of [AC20]. Recall that group operations are
written additively.

Definition 1 (Pedersen Vector Commitment [Ped91]). Let G be an Abelian group of prime order q.
Pedersen vector commitments to vectors x ∈ Znq are defined by the following setup and commitment phase:

– Setup: g = (g1, . . . , gn)←R Gn, h←R G.
– Commit: Com1 : Znq × Zq → G, (x, γ) 7→ hγ + 〈g,x〉.

Abe et al. [AFG+10] constructed a similar commitment scheme that works with bilinear groups
(q,G1,G2,GT , e,G,H) and allows a prover to commit to vectors of group elements x ∈ Gn1 . A straightfor-
ward generalization shows that this approach allows a prover to commit to vectors x ∈ Zn0

q ×Gn1
1 [LMR19].

The commitment scheme is perfectly hiding and computationally binding under the DDH assumption in G1.
Analogously, this construction results in a commitment scheme for vectors x ∈ Zn0

q ×Gn2
2 .

Definition 2 (Commitment to (Zq,G1)-vectors [AFG+10, LMR19]). Let (q,G1,G2,GT , e,G,H) be
a bilinear group and let n0, n1 ≥ 0. The following setup and commitment phase define a commitment scheme
for vectors in Zn0

q ×Gn1
1 :

– Setup: g = (g1, . . . , gn0)←R Gn0
T , h←R GT , H = (H1, . . . ,Hn1)←R Gn1

2 .
– Commit: Com1 : Zn0

q ×Gn1
1 × Zq → GT , (x,y, γ) 7→ hγ + 〈g,x〉+ e(y,H).

Remark 1. As an application of the commitment scheme of Definition 2, Abe et al. [AFG+10] mentioned
commitments to Pedersen vector commitments. A commitment to n n-dimensional Pedersen vector commit-
ments is namely a commitment to an n2-dimensional Zq-vector. This two-tiered commitment scheme only
requires 2n + 1 public group elements. By contrast, Pedersen’s commitment scheme requires n2 + 1 pub-
lic group elements to commit to an n2-dimensional Zq-vector. Replacing the Pedersen vector commitment
scheme in [BCC+16, BBB+18, AC20] by this two-tiered commitment scheme results in arithmetic circuit
ZK protocols with exactly the same communication complexity, but with a square root improvement in the
size of the public parameters.

In addition, Lai et al. [LMR19] show how this approach can be extended to construct a commitment
scheme for vectors with coefficients in Zq,G1 andG2. In contrast to the previous commitments, a commitment
to a vector x ∈ Zn0

q ×Gn1
1 ×Gn2

2 consists of two target group elements. Informally, the reason is that, with
high probability, (S,−R) ∈ G1 × G2 is a non-trivial solution for the equation e(x,R) + e(S, y) = 1, where
(S,R) ∈ G1 ×G2 is sampled uniformly at random. Such a solution would break the binding property of the
naive generalization in which commitments consist of only one target group element. However, with high
probability, there does not exist a solution (x, y) ∈ G1×G2 to the system of equations e(x,R1)+e(S1, y) = 1
and e(x,R2) + e(S2, y) = 1, where (S1, R1), (S2, R2) ∈ G1 × G2 are sampled uniformly at random. For
this reason, the commitments consist of two target group elements and breaking their binding property
can be reduced to solving a similar system of equations. The resulting commitment scheme is described
in Definition 3. It is computationally hiding under the DDH assumption in GT , and it is computationally
binding under the SXDH assumption [LMR19]. The scheme can be made perfectly hiding by introducing an
additional randomizer γ2 ∈ Zq.

Definition 3 (Commitment to (Zq,G1,G2)-vectors [LMR19]). Let (q,G1,G2,GT , e,G,H) be a bilin-
ear group and let n0, n1, n2 ≥ 0. The following setup and commitment phase define a commitment scheme
for vectors in Zn0

q ×Gn1
1 ×Gn2

2 :

– Setup: g←R G2×n0
T , h←R G2

T , H←R G2×n1
2 ,G←R G2×n2

1 .
– Commit: Com1 : Zn0

q ×Gn1
1 ×Gn2

2 × Zq → G2
T , (x,y, z, γ) 7→ hγ + 〈g,x〉+ e(y,H) + e(G, z), where

hγ + 〈g,x〉+ e(y,H) + e(G, z) :=
(
h1γ + 〈g1,x〉+ e(y,H1) + e(G1, z)
h2γ + 〈g2,x〉+ e(y,H2) + e(G2, z)

)
. (2)
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The aforementioned commitment schemes do not allow a prover to commit to elements of the target group
GT of the bilinear pairing e : G1 ×G2 → GT . For this reason, we introduce the homomorphic commitment
scheme of Definition 4. This scheme is based on the El Gamal encryption scheme [Gam84]. The commitment
scheme is unconditionally binding and hiding under the DDH assumption in GT .

Definition 4 (Commitment to (GT )-vectors [Gam84, LMR19]). Let GT be an Abelian group of
prime order q. The following setup and commitment phase define a commitment scheme for vectors in GnT

T :
– Setup: g←R GnT

T , h←R GT .

– Commit: Com2 : GnT

T × Zq → GnT +1
T , (x, γ) 7→

(
hγ

gγ + x

)
.

Note that, in contrast to the schemes of Definitions 1, 2 and 3, this commitment scheme is not compact,
i.e, a commitment to a vector x ∈ GnT

T contains nT + 1 group elements. For this reason, the compression
techniques applicable to compact commitments are of no benefit for commitments to GT -vectors, and we
will treat commitments to target group elements separately.

Altogether, for a bilinear group (q,G1,G2,GT , e,G,H), we obtain the following commitment scheme:

Com : Zn0
q ×Gn1

1 ×Gn2
2 ×GnT

T × Z2
q → GnT +2

T , (x,y, γ1, γ2) 7→
(

Com1(x; γ1)
Com2(y; γ2)

)
, (3)

where x ∈ Zn0
q × Gn1

1 × Gn2
2 , y ∈ GnT

T , Com1 is the commitments scheme from Definition 3, and Com2 is
the commitment scheme from Definition 4.

4 Compressed Σ-Protocol for Opening Homomorphisms

In this section, we describe a Compressed Σ-Protocol for opening homomorphisms on committed vectors with
coefficients in Zq,G1, . . . ,Gk. More precisely, we construct a protocol for proving that a secret committed
vector x ∈ GS = Zn0

q ×Gn1
1 × · · · ×Gnk

k satisfies f(x) = y for a public homomorphism f and a public value
y. From now on we assume to have access to a homomorphic commitment scheme

Com : GS × Zrq → GC .

Our Compressed Σ-Protocol is a generalization of the approach of [AC20] for opening linear forms on
committed Zq-vectors.

4.1 Basic Σ-Protocol

We describe a basic Σ-protocol for opening homomorphisms on committed vectors x ∈ GS , i.e., a Σ-protocol
for proving that the secret vector x satisfies that f(x) = y for a public homomorphism f : GS → H and
a public element y ∈ H := Zq × G1 × · · · × Gk × Gh, where Gh is an arbitrary group. More precisely, we
describe a basic Σ-protocol for the following relation,

R =
{ (
P ∈ GC , f ∈ Hom(GS ,H), y ∈ H; x ∈ GS , γ ∈ Zrq

)
: P = Com (x, γ) , f(x) = y

}
. (4)

Protocol 1, denoted by Π0, describes a basic Σ-protocol for relation R and its main properties are
summarized in Theorem 1. The Σ-protocol is a straightforward generalization of the Σ-protocol for opening
linear forms of [AC20], and the Σ-protocol for opening homomorphisms of [ACF20], where the committed
vectors have coefficients only in Zq.

Theorem 1 (Homomorphism Evaluation). Π0 is a Σ-protocol for relation R. It is perfectly complete,
special honest-verifier zero-knowledge and unconditionally special sound. Moreover, the communication costs
are:
– P → V: 1 element of GC , 1 element of H, 1 element of GS and r elements of Zq.
– V → P: 1 element of Zq.

9



Protocol 1 Σ-protocol Π0 for relation R
Σ-protocol for opening a homomorphism.

Input(P, f, y; x, γ)

P = Com(x, γ) ∈ GC
y = f(x) ∈ H

Prover Verifier

r←R GS , ρ←R Zq,
A = Com(r, ρ), t = f(r) A,t−−−−−−→

c←R Zq
c←−−−−−−

z = cx + r
φ = cγ + ρ

φ,z−−−−−−→ Com(z, φ) ?= A+ cP

f(z) ?= cy + t

4.2 Reduction

The factors in the codomain H of the homomorphism f that are in {Zq,G1, . . . ,Gk−1} can be “incorporated
into the commitment”. The goal is not to hide the coefficients of the evaluation y = f(x), in fact y is still
public, but to reduce the overall communication complexity that is achieved after compression. Ultimately,
this step will reduce a relevant constant in the communication complexity of our compressed Σ-protocol by
a factor 1/2. This technique was first deployed in [BBB+18] to improve the communication complexity of
the protocols for certain inner-product relations from [BCC+16]. Here, this technique is generalized to our
setting.

We assume the homomorphic commitment scheme to be of the following form Com = (Com1,Com2),
with Com1 compact and where

Com1 : Zn0
q ×Gn1

1 × · · · ×Gnk−1
k−1 × Zr1

q → GC1 ,
Com2 : Gnk

k × Zr2
q → GC2 ,

Com : GS × Zrq → GC := GC1 ×GC2 ,
(5)

for some r1 and r2 with r = r1 + r2. Hence, the size of the codomain GC1 is independent from the input
dimensions n0, n1, . . . , nk−1, while the size of the codomain GC2 does depend on the input dimension nk.
Recall that the commitment scheme of eq. (3) is of this form.

To describe the reduction, we write f = (f1, f2), where f1 : GS → Zq × G1 × · · · × Gk−1 and f2 :
GS → Gk × Gh, i.e., Com is compact on the codomain of f1. We extend the domain of our commitment
scheme and write Com : GS × (Zq ×G1 . . .Gk−1)×Zrq → GC for the scheme that allows a prover to commit
to vectors (x,y) ∈ GS × Zq × G1 × · · · × Gk−1. We assume that Comold(x, γ) = Comnew(x, 0, γ) for all
x ∈ GS and γ ∈ Zrq, justifying the fact that we use the same notation for both commitment schemes. For the
commitment schemes of Section 3 this extension only requires additional public parameters to be sampled.
Using this notation, Protocol 2, denoted by Π1, gives another protocol for relation R. It is perfectly complete
and special sound under the assumption that the commitment scheme Com is binding. However, this protocol
is not special honest verifier zero-knowledge (SHVZK). The properties of this protocol are summarized in
Lemma 1.

Lemma 1. Π1 is a 2-move protocol for relation R. It is perfectly complete and computationally special
sound, under the assumption that the commitment scheme is binding. Moreover, the communication costs
are:

– P → V: 1 element of GS and r elements of Zq.
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Protocol 2 Argument of Knowledge Π1 for R
Reduction from relation R to relation R1.

Input(P, f, y; x, γ)

P = Com(x, 0, γ) ∈ GC
(y1, y2) = y = f(x) =

(f1(x), f2(x))
Prover Verifier

c←−−−−− c←R Zq
x,γ−−−−−→

Com(x, cf1(x), γ) ?=
P + Com(0, cy1, 0)

f2(x) ?= y2

– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Special soundness: We show that there exists an efficient algorithm χ that, on input two accepting

transcripts, either extracts a witness for R1, or finds two different openings to the same commitment, and
thereby breaks the binding property of the commitment scheme.

So let (c,x, γ) and (c′,x′, γ′) be two accepting transcripts with c 6= c′, then by subtracting the two
verification equations and since Com(·) is a homomorphism,

Com (x− x′, cf1(x)− c′f1(x′), γ − γ′) = Com (0, (c− c′)y1, 0) .

Hence, either we have extracted two different openings to the same commitment, or x = x′, cf1(x)−c′f1(x′) =
(c− c′)y1 and γ = γ′. In the latter case, it follows that f(x) = f(x′) = y. Moreover, from this it follows that

Com (x, cf1(x), γ) = P + Com (0, cy, 0) ,

which implies that Com (x, 0, γ) = P. Hence, (x, γ) is a witness for relation R, which completes the proof.

We observe that the final message of Protocol Π1 is a witness for following relation

R1 =
{ (
Q ∈ GC , g = (g1, g2) ∈ Hom(GS ,H), y2 ∈ Gk ×Gh; x ∈ GS , γ ∈ Zrq

)
:

Q = Com (x, g1(x), γ) , g2(x) = y2
}
,

(6)

where Q = P + Com(0, cy1, 0) and (g1, g2) = (cf1, f2) for a random challenge c. In other words, Protocol Π1
has reduced relation R to relation R1. The benefit of this reduction is that the number of public elements in
R1 is smaller, i.e., a statement of relation R1 does not contain y1 ∈ Zq ×G1 × · · · ×Gk−1.

Note that the Gk factors of f can also be incorporated into the commitment. However, this will not result
in a reduction of the communication complexity, because the commitment scheme Com in not compressing
in its Gk component. For this reason we make the distinction between the (Z1,G1, . . . ,Gk−1)-part and the
(Gk,Gh)-part of the homomorphism f = (f1, f2). In the next section, we show how to compress a protocol
for relation R1. Alternatively, we can compress a protocol for relation R directly, but this will yield larger
communication costs.

4.3 Compression Mechanism

In this section, we describe a compression mechanism for relation R1, i.e., a protocol for relation R1 where
the communication costs are smaller than simply sending the witness. Subsequently, we will show how this
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compression mechanism can be applied (recursively) to reduce the communication complexity of the basic
Σ-protocol Π0.

We introduce the following notation. First note that, by reordering coefficients, a witness (x, γ) ∈ GS×Zrq
for relation R1 can be written as (z,xk, γ2) = ((x0, γ1),x1, . . . ,xk, γ2) ∈ Zn0+r1

q × Gn0
0 × · · · × Gnk

k × Zr2
q ,

where the commitment randomness γ1 ∈ Zr1
q for the commitment scheme Com1 is combined with the secret

Zq-coefficients of x ∈ GS . In this notation Com1(z) is a commitment to the vector (x0, . . . ,xk−1) and the
randomness γ1 is no longer explicit. The reason for this change of notation is that the compression mechanism
does not have to be zero-knowledge. For this reason the hiding property and the associated randomness γ1
are irrelevant in this section.

For such a vector z, we define the left and right halves zL, zR ∈ Z(n0+r1)/2
q × Gn1/2

1 × · · · × Gnk−1/2
k−1 ,

such that z = (zL, zR) up to reordering of the coefficients. We assume that n0 + r1, n1, . . . , nk−1 are all
even; if not, the vector z can be appended with the appropriate number zeros. We extend the domain of the
homomorphisms g = (g1, g2) to vectors z of this form by simply ignoring the randomness γ1, i.e., g(z,xk) =
g(x, γ1) := g(x) for all (z,xk) and for all g ∈ Hom(GS ,H). As before, we will extend the domain of the
commitment scheme with the codomain of g1, i.e., we define commitments of the form Com1(z, g1(z,xk)) :=
Com1(x0, . . . ,xk, g1(x), γ1) and Com (z,xk, g1(z,xk), γ2) := Com (x, g1(x), γ).

Moreover, for any z′ ∈ Z(n0+r1)/2
q × Gn1/2

1 × · · · × Gnk−1/2
k−1 , we define (0, z′) :=(

(0, z′1), (0, z′2), . . . , (0, z′k−1)
)
∈ Zn0+r1

q × Gn1
1 × · · · × Gnk−1

k−1 . The vector (z′, 0) is defined analogously.
We use sub-brackets, e.g., ((zL, zR),xk, γ2), to emphasize that a sub-vector (zL, zR) takes values in
Z(n0+r1)
q ×Gn1

1 × · · · ×Gnk−1
k−1 .

The compression mechanism is a straightforward generalization of the compression mechanism of [AC20].
It is described in Protocol 3 and its main properties are summarized in Theorem 2. Recall that we consider
commitment schemes of the following form Com = (Com1,Com2), where

Com1 : Zn0
q ×Gn1

1 × · · · ×Gnk−1
k−1 × Zr1

q → GC1 ,

Com2 : Gnk

k × Zr2
q → GC2 ,

(7)

and Com1 is compact. Note that we only apply the compression (or folding) on the part of the commitment
scheme that is compact, i.e., not on the Gk part Com2.
Theorem 2 (Compression Mechanism). Let ni ∈ Z>0 be even for all 0 ≤ i ≤ k. Then Π2 is a 3-
move protocol for relation R1. It is perfectly complete and unconditionally 3-special sound. Moreover, the
communication costs are:
– P → V: 2 elements of GC1 , 2 elements of Gh, ni/2 elements of Gi for all 1 ≤ i ≤ k− 1, nk + 2 elements

of Gk and n0/2 + r2 elements of Zq.
– V → P: 1 element of Zq.
The proof of Theorem 2 is almost identical to the proofs of [AC20, Theorem 2] and [ACF20, Theorem 2].

Proof. Completeness follows directly.
Special Soundness: We show that the protocol is 3-special sound, i.e., there exists an efficient algorithm

that, on input three accepting transcripts, computes a witness for relation R1.
Let (A,B, a2, b2; c1; z1,xk,1, γ2,1), (A,B, a2, b2; c2; z2,xk,2, γ2,2) and (A,B, a2, b2; c3; z3,xk,3, γ2,3) be three

accepting transcripts for distinct challenges c1, c2, c3 ∈ Zq and with common first message (A,B, a2, b2). Let
α1, α2, α3 ∈ Zq be such that  1 1 1

c1 c2 c3
c2

1 c
2
2 c

2
3

α1
α2
α3

 =

0
1
0

 .

Note that, since the challenges are distinct, this Vandermonde matrix is invertible and a solution to this
equation exists. We define z̄ =

∑3
i=1 αi(cizi, zi), x̄k =

∑3
i=1 αicixk,i and γ̄2 =

∑3
i=1 αiciγ2,i. Since Com1 and

Com2 are homomorphisms, it is straightforward to see that Com1(z̄, g1(z̄, x̄k)) = Q1, Com2(x̄k, γ̄2) = Q2
and g2(z̄, x̄k) = y2. Hence, (z̄, x̄k, γ̄2) is a witness for relation R1, which completes the proof.
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Protocol 3 Compression Mechanism Π2 for relation R1.

Input (Q, g, y2; z,xk, γ2)

z = (x0, γ1,x1, . . . ,xk−1)
g = (g1, g2) ∈ Hom(GS ,H)
Q = (Q1, Q2) ∈ GC1 ×GC2

Q1 = Com1(z, g1(x))
Q2 = Com2(xk, γ2)
y2 = g2(x) ∈ Gk ×Gh

Prover Verifier

(a1, a2) = g ((0, zL), 0)
A = Com1 ((0, zL), a1)
(b1, b2) = g ((zR, 0), 0)
B = Com1 ((zR, 0), b1) A,B,a2,b2−−−−−−−−−−−−−−→

c←R Zq
c←−−−−−−−−−−−−−−

z′ = zL + czR
z′,xk,γ2−−−−−−−−−−−−−−→ (d1, d2) = g ((cz′, z′), cxk)

Com1 ((cz′, z′), d1) ?= A+cQ1+c2B

Com2 (xk, γ2) ?= Q2

d2
?= a2 + cy2 + c2b2

4.4 Composition of the Protocols

We observe that the final message (z′,xk, γ2) of the compression mechanism is a witness for exactly
the same relation R1, but now with public statement (Q′, g′, y′2) where Q′ := (A + cQ1 + cB,Q2),
g′(z′,xk) := g ((c′z′, z′), cxk)) and y′2 = a2+cy2+c2b2. In other words, the dimensions of the Zq,G1, . . . ,Gk−1
components of the witness halved. Hence, the compression mechanism is composable with another appropri-
ate instantiation of the same compression mechanism. This composition can be applied to further reduce the
dimensions of the witness and thereby the communication complexity. Recall that, in this composition the
final message (z′,xk, γ2) in protocol Π2 is replaced by another instantiation of Π2. Altogether we see that
we can compose the following compressed Σ-protocol:

Πc = Π2 � · · · �Π2︸ ︷︷ ︸
µ times

�Π1 �Π0, (8)

where µ = dlog2 (max1≤i≤k−1(ni))e. The properties of composition Πc are summarized in Theorem 3. We
say Πc is a Compressed Σ-Protocol for relation R.

Theorem 3 (Compressed Σ-Protocol for Opening Homomorphisms). Πc is a (2µ+ 3)-move pro-
tocol for relation R, where µ = dlog2 (max(n0 + r1, n1, . . . , nk−1))e. It is perfectly complete, special honest-
verifier zero-knowledge and computationally (2, 2, k1, . . . , kµ)-special sound, under the assumption that the
commitment scheme is binding, where ki = 3 for all 1 ≤ i ≤ µ. Moreover, the communication costs are:

– P → V: 2µ + 1 elements of GC1 , 1 element of GC2 , 2µ + 1 elements of GH , 2 elements of Gi for all
1 ≤ i ≤ k − 1, nk + 2µ+ 1 elements of Gk, and r2 + 1 elements of Zq.

– V → P: µ+ 2 elements of Zq.
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4.5 Amortization

Standard amortization techniques apply to the basic Σ-protocol Π0 for relation R, and thereby also to
compressed Σ-protocol Πc. These amortization techniques allow a prover to open many homomorphisms
on one commitment, or one homomorphism on many commitments, without increasing the communication
costs from the prover to the verifier. For details we refer the reader to [AC20, §5.1].

These amortization techniques allow us to restrict ourselves to homomorphisms with the codomain Zq ×
G1 × · · · ×Gk ×Gh. Namely opening a homomorphism h : GS → Zs0

q ×Gs1
1 × · · · ×Gsk

k ×Gh is equivalent
to opening max(si) homomorphisms with codomain Zq ×G1 × · · · ×Gk ×Gh.

5 Threshold Signature Schemes

In this section, we describe a threshold signature scheme (TSS), as an application of the compressed Σ-
protocolΠc for proving linear statements on committed vectors x. Informally a k-out-of-n threshold signature
can only be computed given k valid signatures issued by a k-subset of n players. We first describe the formal
definition of a TSS. Subsequently, we give our construction based on the compressed Σ-protocol Πc.

5.1 Definition and Security Model

In this work, we deviate from standard TSS definitions by aiming for a strictly stronger functionality. In
standard TSS definitions [Sho00, Bol03], a trusted dealer generates a single public key and n private keys
that are distributed amongst the n players. The private keys allow individual players to generate partial
signatures on messages m. Partial signatures can not be verified. However, there is a public algorithm to
aggregate k partial signatures into a threshold signature. The threshold signature can be verified with the
public key generated by the trusted dealer.

Hence, this definition does not include a mechanism for individual parties to sign a message. By contrast,
we define a TSS as an extension of a digital signature scheme, thereby including this functionality. Our
fundamental strengthening of the definitions of [Sho00, Bol03] and related works, is that the public and
private keys can be generated by the players locally. Public keys are subsequently published on a bulletin
board and thereby publicly tied to the player’s identities. This setup is thus transparent (called “bulletin
board” in [BCG20] and formalized as FCA in the UC framework [Can04]). The players can individually sign
messages by using their private keys. The aggregation algorithm now takes as input k signatures, instead of
partial signatures, to generate a threshold signature.

For simplicity we assume the threshold k to be fixed. We will explain later why our construction (trivially)
satisfies some stronger properties.

Let us first give a definition for the basic building block of our TSS.

Definition 5 (Digital Signature). A digital signature scheme consists of three algorithms:

– keygen is a randomized key generation algorithm that outputs a public-private key-pair (pk, sk).
– sign is a (possibly randomized) signing algorithm. On input a message m ∈ {0, 1}∗ and a secret key sk,

it outputs a signature σ = sign(sk,m).
– verify is a deterministic verification algorithm. On input a public key pk, a message m and a signature
σ, it outputs either accept or reject.

A signature scheme is correct if verify (pk,m, sign(sk,m)) = accept for all key-pairs (pk, sk)← keygen
and messages m ∈ {0, 1}∗. If verify(pk,m, σ) = accept we say that σ is a valid signature on message m.
Moreover, an adversary that does not know the secret key sk should not be able to forge a valid signature.
This security property is formally captured in the widely accepted definition Existential Unforgeability under
Chosen-Message Attacks (EUF-CMA) [Bol03]. We assume digital signature schemes to be correct and EUF-
CMA by definition.
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Definition 6 (Threshold Signature). A k-out-of-n threshold signature scheme (TSS) is a digital signa-
ture scheme (keygen, sign,verify) appended with two algorithms:

– k-aggregate is a (possibly randomized) aggregation algorithm. On input n public keys (pk1, . . . , pkn),
k signatures (σi)i∈S for a k-subset S ∈ {1, . . . , n} and a message m ∈ {0, 1}∗, it outputs a threshold
signature Σ.

– k-verify is a deterministic verification algorithm. On input n public keys (pk1, . . . , pkn), a message m
and a threshold signature Σ, it outputs either accept or reject.

Let S ⊂ {1, . . . , n} be some k-subset of indices and let (σ)i∈S be signatures, such that
verify(pki,m, σi) = accept, for all i ∈ S, and for some message m ∈ {0, 1}∗. Then a TSS is robust, if
for all (pk1, . . . , pkn), m, S and (σ)i∈S , it holds that

k-verify
(

(pk1, . . . , pkn),m, k-aggregate
(
m, (σi)i∈S

))
= accept.

If k-verify
(

(pk1, . . . , pkn),m,Σ
)

= accept we say that Σ is a valid threshold signature.
Moreover, an adversary with at most k−1 valid signatures on a messagem should not be able to construct

a valid threshold signature. This unforgeability property can be formalized by the following security game.
Consider an adversary that is allowed to choose a subset of k−1 indices I ⊂ {1, . . . , n} and impose the values
of the keys pki in this subset. Assume that all remaining keys pki were generated honestly from keygen
and therefore correspond to secret keys ski. The adversary is allowed to query polynomially many signatures
σ′i = sign(ski,m′) for arbitrary messages m′. The TSS is said to be unforgeable, if the adversary is incapable
of producing a valid k-out-of-n threshold signature on some messagem that has not been queried. We assume
threshold signatures schemes to be robust and unforgeable by definition.

5.2 Our Threshold Signature Scheme

We follow a non-standard, but conceptually simple, approach for constructing a threshold signature scheme.
The starting point of our TSS is a digital signature scheme (keygen, sign,verify) and the k-aggregation
algorithm k-aggregate simply produces a proof of knowledge of k valid signatures on a message m, i.e., a
PoK for the following relation:

RT =
{

(pk1, . . . , pkn,m;S, (σi)i∈S) :
|S| = k, verify(pki, σi) = accept ∀i ∈ S

}
.

The obvious approach is to capture this relation by an arithmetic circuit, i.e., reduce it to a number of
constraints defined over Zq, and apply a communication-efficient proof of knowledge for arithmetic circuit
relations in a black-box manner. Although, for the appropriate choice of proof system, this approach would
immediately result in a transparent TSS with sub-linear size threshold signatures, we have not encountered
it in literature. The closest resemblance can be found in a recent unpublished work [BCG20] that considers
a different TSS scenario.

A significant drawback of this indirect approach is that it relies on an inefficient reduction to arithmetic
circuit relations. For this reason, we follow a direct approach avoiding these inefficient reductions.

We instantiate our TSS with the BLS signature scheme [BLS01] defined over a bilinear group
(q,G1,G2,GT , e,G,H). Let us now briefly recall the BLS signature scheme, instantiated in our n-player
setting. All players i, 1 ≤ i ≤ n, generate their own private key ui ∈ Zq, and publish the associated public
key Pi = uiH ∈ G2. To sign a message m ∈ {0, 1}∗, player i computes signature σi = uiH(m) ∈ G1. The
public verification algorithm accepts a signature σi, if and only if,

e(σi, H) = e(H(m), Pi). (9)

By the bilinearity of e, all honestly generated signatures are accepted. The unforgeability follows from the
CDH assumption in G1 [BLS01].
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We will be using the commitment scheme from Definition 2:

Com1 : Zn0
q ×Gn1

1 × Zq → GT , (xZq
,xG1 , γ) 7→ hγ +

〈
g,xZq

〉
+ e(xG1 ,H).

This commitment scheme requires the slightly stronger DDH assumption in G1 to hold. Note that, although
this is a standard assumption, it does not hold in the so-called “gap group” used in [BLS01].

Instantiating relation RT with the BLS signature scheme therefore results in the following relation,

RTSS = {(P1, . . . , Pn,m;S, (σi)i∈S) : |S| = k, e(σi, H) = e(H(m), Pi) ∀i ∈ S} .

The k-aggregate algorithm is basically a proof of knowledge for relation RTSS . The final ingredient required
for this PoK is a technique from the work on k-out-of-n proofs of partial knowledge [ACF20]. This technique
allows us to reduce relation RTSS to a linear relation defined over the bilinear group (q,G1,G2,GT , e,G,H).
Let p(X) = 1 +

∑n−k
i=1 ajX

j ∈ Zq[X] be the unique polynomial of degree at most n − k with p(i) = 0 for
all i ∈ {1, . . . , n}\S. Note that this polynomial defines an (n − k, n) secret sharing of 1, with shares si = 0
for all i /∈ S. The k-aggregator defines σ̃i = p(i)σi, where σ̃i is understood to be equal to 0 for i /∈ S, i.e.,
the secret sharing defined by p(X) eliminates the signatures (σi)i/∈S that the k-aggregator does not know.
Subsequently, the k-aggregator commits to

x = (a1, . . . , an−k, σ̃1, . . . , σ̃n) ∈ Zn−kq ×Gn1 ,

using the commitment scheme from Definition 2. Now note that the committed vector x satisfies fi(x) =
fi(a1, . . . , an−k, σ̃1, . . . σ̃n) = e(H(m), Pi) for all 1 ≤ i ≤ n, where

fi : Zn−kq ×Gn1 → GT , x→ e(σ̃i, H)−
n−k∑
j=1

aji
je(H(m), Pi). (10)

Hence, by proving that the committed vector satisfies these relations, it follows that the k-aggregator knows
a non-zero polynomial p(X) of degree at most n−k and group elements σ̃1, . . . σ̃n ∈ G1 such that e(σ̃i, H) =
p(i)e(H(m), Pi) for all 1 ≤ i ≤ n. Therefore, the k-aggregator must know valid signatures for all indices
i with p(i) 6= 0, and since p(X) is non-zero and of degree at most n − k at least, k of its evaluations are
non-zero. Because the mappings fi are homomorphisms, the required proof of knowledge follows from an
appropriate instantiation of compressed Σ-protocol Πc. We apply the amortization techniques of Section 4.5
to prove all n relations of eq. (10) for essentially the price of one. Moreover, we apply the Fiat-Shamir
transform to make protocol Πc non-interactive. Altogether the threshold signature contains a commitment
P ∈ GT to the vector x together with a non-interactive proof of knowledge π of an opening of P that
satisfies the aforementioned linear constraints. The k-aggregate algorithm is summarized in Algorithm 4.
The associated k-verification algorithm k-verify simply runs the verifier of Πc. Robustness of the resulting
threshold signature follows immediately from the completeness of Πc, and unforgeability follows from the
soundness of Πc. The properties of the TSS are summarized in Theorem 4. Note that our TSS has some
additional properties not required by the definition of Section 5.1. For instance, since the proof of knowledge
Πc is special honest-verifier zero-knowledge, our threshold signatures hide the k-subset S of signers.

Theorem 4 (Threshold Signature Scheme). The k-out-of-n threshold signature scheme defined by
the BLS signatures scheme [BLS01] appended with the algorithms (k-aggregate, k-verify) is robust and
unforgeable. Moreover:

– A threshold signature contains exactly 4 dlog2(n)e+ 3 elements of GT , 1 element of G1 and 1 element of
Zq.

– A threshold signature is zero-knowledge on the identities of the k signers.
– The threshold k can be chosen at aggregation time.
– It resists against an adaptive adversary which can replace the public keys of corrupted players.
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Algorithm 4 k-Aggregation Algorithm k-aggregate

Public Input : Public Keys P1, . . . , Pn ∈ G2
Message m ∈ {0, 1}∗

Private Input : k − Subset S ⊂ {1, . . . , n}
Signatures (σi)i∈S ∈ Gk1

Output : Threshold Signature Σ = (π, P ) ∈ Zq ×G1 ×G4dlog2(n)e+3
T ∪ {⊥}

1. If ∃i ∈ S such that e(σi, H) 6= e(H(m), Pi) output ⊥ and abort.
2. Compute the unique polynomial p(X) = 1 +

∑n−k
i=1 ajX

j ∈ Zq[X] of degree at most n− k such that p(i) = 0 for
all i ∈ {1, . . . , n}\S.

3. Compute σ̃i := p(i)Si for all i ∈ S and set σ̃i = 0 for all i /∈ S.
4. Let x = (a1, . . . , an−k, σ̃1, . . . , σ̃n) ∈ Zn−kq × Gn1 and compute commitment P = Com1(x, γ) ∈ GT for γ ∈ Zq

sampled uniformly at random.
5. Run the non-interactive variant of Πc to produce a proof π attesting that the committed vector x satisfies

fi(x) = fi(a1, . . . , an−k, σ̃1, . . . σ̃n) = e(H(m), Pi) for all 1 ≤ i ≤ n, where fi are homomorphisms defined
in Equation (10).

6. Output commitment P and the non-interactive proof π ∈ Zq ×G1 ×G4dlog2(n)e+2
T .

Proof. Robustness immediately follows from the completeness of Πc.
Unforgeability. The proof is similar to the proof of [ACF20, Theorem 6]. From special soundness of Πc

(Theorem 3), it follows that there exists an efficient extractor χ that outputs a vector x′ = (a′, S1, . . . , Sn) ∈
Zn−kq ×Gn1 such that fi(x) = e(H(m), Pi) for all 1 ≤ i ≤ n, where fi are as in Equation (10). Let us denote
p′(X) = 1 +

∑n−k
i=1 a′jX

k ∈ Zq[X], then S ′ = {i : p′(i) 6= 0} has cardinality at least k. Moreover, it is easily
seen that p′(i)−1Si is a valid BLS signature on message m associated to public key Pi. Hence, an adversary
capable of forging a threshold signature is also capable of computing k distinct valid signatures on m. Since
the adversary is capable of corrupting at most k − 1 players, this contradicts the unforgeability of the BLS
signature scheme.

The remaining properties are trivially verified.

6 Generalized Circuit Zero-Knowledge Protocols

The Compressed Σ-Protocol of Section 4 allows a prover to open homomorphisms on committed vectors
x ∈ GS , i.e., it allows a prover to prove linear statements. In this section, we show how to handle non-
linearities. The approach is again a generalization of that of [AC20], where it was shown how to linearize
non-linearities in arithmetic circuit relations.

In this generalization we consider circuits C : GS → Zs0
q ×Gs1

1 × · · · ×Gsk

k and we aim to find a HVZK
PoK for proving knowledge of a witness x such that C(x) = 0, i.e., for the following relation:

Rcs = {(C; x) : C(x) = 0}. (11)

Each wire of C corresponds to a variable that takes values in a group W ∈ {Zq,G1, . . . ,Gk}. We assume
all gates to have fan-in two and unbounded fan-out. The gates are either addition gates that add two
elements of the same group, or bilinear gates mapping two group elements a, b ∈ Zq ∪ G1 ∪ · · · ∪ Gk, not
necessarily of the same group, to another group element c ∈ Zq ∪G1 ∪ · · · ∪Gk. Note that these circuits are
indeed generalizations of arithmetic circuits, where wires take values in Zq, and gates are either addition or
multiplication gates.

Bilinear gates taking one constant and one variable input value are linear mappings. Hence, circuits C
containing no bilinear gates with two variable inputs are handled directly by the techniques from Section 4.
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In this case, C(x) = f(x) + a for a homomorphism f and a fixed constant a, both of which are independent
from the secret vector x. A protocol for relation Rcs now goes as follows:

1. The prover commits to x ∈ GS .
2. The prover and the verifier run Πc to open the homomorphism f , i.e., the prover reveals a value y and

proves that f(x) = y.
3. The verifier checks that y + a = 0.

In general, when C contains bilinear gates, we cannot express the circuit in the aforementioned manner.
To handle these non-linearities, the prover appends the secret vector x with a vector aux containing auxil-
iary information, i.e., in the first step of the protocol the prover commits to the appended vector (x, aux).
The dimensions of aux depend on the arithmetic circuit C. The approach relies on the [AC20] adaptation
of [CDP12] which uses a packed secret sharing scheme to linearize the non-linearities.

Let us define c to be the vector of wire values associated to the output wires of all the bilinear gates
in C(x). Note that c depends on the secret vector x ∈ GS . Then, there exists a homomorphism f and a
constant a, independent from x, such that C(x) = f(x, c) + a. A naive generalization of the above approach
to arbitrary circuits is now obtained by taking aux = c. However, this approach does not guarantee that
the committed vector (x, c) is of the appropriate form, i.e., that c indeed corresponds to the outputs of the
bilinear gates.

To prove that the committed vector (x, c) is of the appropriate form we encode the inputs and outputs
of the bilinear gates in polynomials f ∈ A[X] where A ∈ {Zq,G1, . . . ,Gk}. We first describe some properties
of these polynomials.

6.1 Polynomials over Groups of Prime Order

The Zq-module structure of the groups Gi naturally extends to the associate polynomial rings, i.e., Gi[X]
is a Zq[X]-module for all i, and the product h(X) of two polynomials f(X) =

∑n
i=0 aiX

i ∈ Zq[X] and
g(X) =

∑m
i=0 giX

i ∈ Gi[X] is defined as follows

h(X) = f(X)g(X) :=
n∑
i=0

m∑
j=0

(aigj)Xi+j ∈ Gi[X].

Note that, since Gi is a Zq-module, a polynomial f =
∑n
i=0 aiX

i ∈ Gi[X] defines a mapping:

f : Zq → Gi, ρ→ f(ρ) =
n∑
i=0

aiρ
i,

called the “evaluation” mapping. Whereas every ρ ∈ Zq defines a mapping:

Fρ : Gi[X]→ Gi, f =
n∑
i=0

aiX
i → f(ρ) =

n∑
i=0

aiρ
i,

called the “evaluation at ρ” mapping, which is linear.
A bilinear gate Gate : L×R → U can be extended to act on polynomials in the following manner:

Gate : L[X]× R[X]→ U[X],

 n∑
i=0

aiX
i,

m∑
j=0

bjX
j

 7→ n∑
i=0

m∑
j=0

Gate(ai, bj)Xi+j . (12)

By the bilinearity of Gate it follows that this mapping commutes with polynomial evaluation, i.e., for all
ρ ∈ Zq it holds that Gate(f(ρ), g(ρ)) = Gate(f, g)(ρ).

The following lemma shows that a non-zero polynomial f has at most deg(f) zeros. From this it follows
that, for a fixed non-zero polynomial f and a random challenge c, the probability that f(c) = 0 is at most
deg(f)/q.
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Lemma 2. Let f(X) ∈ A[X] be non-zero, for some A ∈ {Zq,G1, . . . ,Gk}. Then f(X) has at most deg(f)
zeros.

Proof. Recall that A has prime order q and let g be a generator of A. Then it is easily seen that f(X) = f ′(X)g
for some polynomial f ′(X) ∈ Zq[X] with deg(f) = deg(f ′). Moreover, since g is a generator of A, it holds
that f(a) = 0 if and only if f ′(a) = 0. The lemma now follows from the fact that a non-zero polynomial f ′
defined over a field has at most deg(f ′) zeros.

The following lemma describes an approach for testing whether three polynomials f(X), g(X) and h(X)
satisfy a bilinear relation defined by Gate. More precisely, when the bilinear relation holds in a random
evaluation point c ∈ Zq then, with high probability, it holds for the polynomials f(X), g(X) and h(X).

Lemma 3. Let f(X) ∈ L[X], g(X) ∈ R[X] and h(X) ∈ U[X] with deg(f),deg(g) ≤ n and deg(h) ≤ 2n.
Then, for d ∈ C ⊂ Zq sampled uniformly at random, it holds that

Pr (Gate (f(d), g(d)) = h(d)|Gate (f(X), g(X)) 6= h(X)) ≤ 2n
|C|
.

Proof. The polynomial h(X) − Gate (f(X), g(X)) ∈ U[X] has degree at most 2n. The lemma now follows
from Lemma 2.

6.2 Linearization of Bilinear Gates

We are now ready to describe the linearization approach. To this end, let us assume that there exist ` different
bilinear types of gates Gatei : Li×Ri → Ui, where 1 ≤ i ≤ `. Moreover, for all i, we let mi be the number of
gates of type i in circuit C and, for a circuit evaluation C(x), we let ai ∈ Lmi

i and bi ∈ Rmi
i be the vectors

of left and right input values of these gates. Similarly, we let ci ∈ Umi
i be the vector of output values for the

gates of type i.
The protocol now goes as follows. First, for each i, the prover samples two polynomials fi(X) ∈ Li[X]≤mi

and gi(X) ∈ Ri[X]≤mi of degree at most mi uniformly at random under the condition that fi(j) = ai,j and
gi(j) = bi,j for all 1 ≤ j ≤ mj . Note that these polynomials define packed Shamir secret sharings [Sha79] with
(mi+1)-reconstruction and 1-privacy of the vectors ai and bi, i.e., the vectors ai and bi can be reconstructed
from any mi+1 evaluations of fi(X) and gi(X) and any single evaluation outside {1, . . . ,mi} is independent
from the vectors ai and bi.

Second, the prover computes the polynomial hi(X) = Gatei (fi(X), gi(X)). By the strong-multiplicativity
of Shamir’s secret sharing scheme, it holds that hi(X) ∈ Ui[X] defines a packed secret sharing of the vector
ci ∈ Umi

i with 2mi + 1 reconstruction. More precisely, hi(X) is of degree at most 2mi and hi(j) = ci,j for
all 1 ≤ j ≤ mi. Subsequently, the prover sends a commitment to the following secret vector to the verifier:

y =
(
x, f1(0), g1(0), h1(0), . . . , h1(2m1), . . . , f`(0), g`(0), h`(0), h`(1), . . . , h`(2m`)

)
.

The vector y = (x, aux) contains the vector c = (c1, . . . , c`) of the output values of all bilinear gates as a
sub-vector. Hence, all wires values can be expressed as the evaluation of some public homomorphism in y
plus a public constant value. Moreover, the vector y contains mi + 1 evaluations of fi(X) and gi(X) and
2mi + 1 evaluations of hi(X) for all i, i.e., it uniquely defines polynomials fi(X) and gi(X) of degree at
most mi and hi(X) of degree at most 2mi + 1. By the linearity of Lagrange interpolation it follows that,
in addition to the wire values, all evaluations of the polynomials fi(X), gi(X) and hi(X) can be expressed
as some homomorphism evaluated in y plus a constant value. These properties allow the prover to convince
the verifier that the vector y is of the appropriate form by proving that certain linear constraints hold.

In the next step of the protocol, the verifier samples a random challenge d ∈ Zq \ {1, . . . ,max(mi)}
uniformly at random and asks the prover to run protocol Πc to open C(x), fi(d), gi(d) and hi(d) for all
1 ≤ i ≤ `. Note that all these values correspond to homomorphisms evaluated in the committed vector
y = (x, aux). To further reduce the communication costs, the amortization techniques mentioned in 4.5 are
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applied. Finally, the verifier verifies that C(x) = 0 and that Gate (fi(d), gi(d)) = hi(d) for all i. By Lemma 3
this final verification implies that Gate (fi(X), gi(X)) = hi(X), and therefore that Gate (ai,j , bi,j) = ci,j for
all j, with probability at least 1 − 2mi/(q −mi). If mi is polynomial and q is exponential in the security
parameter, this probability is overwhelming. The protocol is SHVZK because the polynomials fi(X), gi(X)
and hi(X) define secret sharings with 1-privacy, and because protocol Πc is SHVZK. For a more detailed
discussion we refer to [AC20] in which this approach is restricted to arithmetic circuits.

The resulting protocol, denoted by Πcs, is described in Protocol 5. The protocol is perfectly complete,
special honest-verifier zero-knowledge and computationally (k1, . . . , kµ)-special sound under the assumption
that the commitment scheme is binding. The precise properties of the protocol, such as the values of k1, . . . , kµ
and the exact communication costs, depend on the commitment scheme and on the bilinear gates that are
considered. For this reason, we will only specify these precise properties for the concrete example of bilinear
group arithmetic circuits in Section 6.3.

Protocol 5 Circuit Satisfiability Argument Πcs for Relation Rcs
The polynomials fi and gi are sampled uniformly at random such that their evaluations in 1, . . . ,mi ∈ Zq
coincide with the left and, respectively, right inputs of the mi type i gates of C evaluated in x.

Input(C; x)

C : GS → Zs0
q ×Gs1

1 × · · · ×Gsk
k

C(x) = 0
Prover Verifier

γ ←R Zrq
fi ←R Li[X]≤mi

gi ←R Ri[X]≤mi

hi(X) := Gatei(fi(X), gi(X))
y = (x, f1(0), g1(0), h1(0),

h1(1), . . . , h1(2m1)
. . .

f`(0), g`(0), h`(0),
h`(1), . . . , h`(2m`))

Com(y,γ)−−−−−−−−−−−−−−−−−−−−−→
d←R Zq \ {1, . . . ,max(mi)}

αi = fi(d) d←−−−−−−−−−−−−−−−−−−−−−
βi = gi(d)
γi = hi(d) α1,β1,γ1,...,α`,β`,γ`−−−−−−−−−−−−−−−−−−−−−→ γi

?= Gatei(αi, βi), ∀ 1 ≤ i ≤ `

Run Πc to prove that y = (x, aux) satisfies
C(x) = 0, fi(d) = αi, gi(d) = βi

hi(d) = γi, ∀ 1 ≤ i ≤ `

6.3 Bilinear Group Arithmetic Circuits

In this section, we consider the set of bilinear circuits C defined over a bilinear group (q,G1,G2,GT , e,G,H),
i.e., circuits of the following form:

C : Zn0
q ×Gn1

1 ×Gn2
2 ×GnT

T → Zs0
q ×Gs1

1 ×Gs2
2 ×GsT

T .
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These circuits are also called bilinear group arithmetic circuits [LMR19] and they are composed of addition
gates and the following 5 types of bilinear gates:

Gate0 : Zq × Zq → Zq, (a, b)→ ab,
Gate1 : G1 × Zq → G1, (g, a)→ ga,
Gate2 : G2 × Zq → G2, (h, a)→ ha,
Gate3 : GT × Zq → GT , (k, a)→ ka,
Gate4 : G1 × G2 → GT , (g, h)→ e(g, h).

(13)

Instantiating protocol Πcs for bilinear circuits and with the commitment scheme of Equation (3) results
in a protocol Πbi for relation Rbi = {(C; x) : C(x) = 0, C is a bilinear circuit}. Recall that the commitment
scheme of Equation (3) is hiding under the DDH assumption in GT and that it is binding under the SXDH
assumption in the bilinear group. This relation considers bilinear circuits C for which we let mi denote the
number of gates of type i for 0 ≤ i ≤ 4. The variables mi only count the bilinear gates that take two variable
input values, the ones taking one constant input are linear and therefore handled directly by protocol Πc.
In the first step of this protocol instantiation, the prover commits to a vector

y = (x, aux) ∈ Zn0+2m0+6
q ×Gn1+2m1+3

1 ×Gn2+2m2+3
1 ×GnT +2m3+2m4+3

T .

For ease of notation we define the following parameters:

m := max(mi), s := max(s0 + 6, s1 + 3, s2 + 3, sT + 3),
N := max (n0 + 2m0 + 7, n1 + 2m1 + 3, n2 + 2m2 + 3) ,
NT := nT + 2m3 + 2m4 + 3.

Note that we make a distinction between the (Zq,G1,G2)-part, for which the commitment scheme is compact,
and the GT -part of the vector y. The properties of ProtocolΠbi are now summarized in the following theorem.

Theorem 5 (Circuit Zero-Knowledge Protocol for Bilinear Circuits). Πbi is a (2µ + 7)-move
protocol for circuit relation Rbi, where µ = dlog2 (N)e. It is perfectly complete, special honest-verifier zero-
knowledge, under the DDH assumption in GT , and computationally (2m+1, s, 2, 2, k1, . . . , kµ)−special sound,
under the SXDH assumption, where ki = 3 for all 1 ≤ i ≤ µ. Moreover, the communication costs are:

– P → V: 6 dlog2 (N)e+ 3NT + 9 elements of GT , 5 elements of G1, 5 elements of G2 and 9 elements of
Zq.

– V → P: dlog2 (N)e+ 4 elements of Zq.

6.4 Improved Communication Efficiency for El Gamal Based Commitments

The basic Σ-protocol Π0 of Section 4.1, for opening homomorphisms f : GS → H, follows the generic design
for q-one-way group homomorphisms6 [Cra96, CD98]. Similarly, the compression mechanism is generally
applicable to a wide-class of relations captured by (structured) q-one-way group homomorphisms.7 However,
for some instantiations of the commitment scheme Com this generic approach is sub-optimal as it leads
to unnecessarily high communication costs. This is the case for the El Gamal based commitment scheme
of Definition 4,

Com2 : GnT

T × Zq → GnT +1
T , (x, γ) 7→

(
hγ

gγ + x

)
,

and for the commitment scheme Com = (Com1,Com2) used by protocol Πbi of Theorem 5. Here, we
describe a more efficient approach tailored to the commitment scheme Com2 and explain how the reduced

6Here, applied to the homomorphism GS × Zrq → GC ×H, (x, γ) 7→ (Com(x, γ), f(x))
7See [ACF20] for a general view on the compression mechanism.
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communication costs translate to a reduction of the communication costs of protocol Πbi for bilinear circuit
relations.

The main observation is that to open a Com2-commitment P = (P1, P2) ∈ GT × GnT

T , a prover merely
has to reveal a γ ∈ Zq such that hγ = P1. The committed vector x ∈ GnT

T can be computed from the
commitment P and the (partial) opening γ, i.e., x = P2 − gγ. Hence, proving knowledge of a commitment
opening is equivalent to proving knowledge of a discrete logarithm (in base h). The natural Σ-protocol for the
latter problem is much more efficient than the one for the former problem. More precisely, its communication
costs are independent of the dimension nT of committed vectors. A straightforward extension of this protocol
allows a prover to prove that the committed vector satisfies a linear relation captured by a homomorphism
f : GnT

T → H.
The resulting protocol, denoted by ΠEG, is a protocol for the following relation:

REG =
{ (
P ∈ GnT +1

T , f ∈ Hom(GnT

T ,H), y ∈ H; x ∈ GnT

T , γ ∈ Zq
)

: P = Com2 (x, γ) , f(x) = y
}
. (14)

It is described in Protocol 6 and its properties are summarized in Theorem 6.

Theorem 6 (Σ-Protocol for El Gamal Based Commitments). ΠEG is a Σ-protocol for relation REG.
It is perfectly complete, special honest-verifier zero-knowledge and unconditionally special sound. Moreover,
the communication costs are:

– P → V: 1 element of GT , 1 element of H, 1 element of Zq.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Special Honest-Verifier Zero-Knowledge (SHVZK): Upon receiving a random challenge c ∈ Zq a

simulator proceeds as follows. The simulator samples φ ∈ Zq uniformly at random and computes A = hφ−cP1
and t = f(cP2 − gφ) − cy. It is easily seen that the transcript (A, t, c, φ) is accepting and that simulated
transcripts follow exactly the same distribution as transcripts between an honest prover and an honest
verifier.

Special Soundness: We show that there exists an efficient algorithm, that on input two accepting
transcripts, computes a witness for relation REG. Let (A, t, c, φ) and (A, t, c′, φ′) be accepting transcripts,
for challenges c 6= c′ and with common first message (A, t). We define φ̄ = (φ − φ′)/(c − c′) ∈ Zq and
z̄ = P2 − gφ̄ ∈ GnT

T . Then it is easily verified that Com2(z̄, φ̄) = P and that f(z̄) = y. Hence, (z̄, φ̄) is a
witness for relation REG, which completes the proof.

Theorem 6 shows that the communication costs of ΠEG are indeed independent of nT . By contrast,
following the general design for q-one-way homomorphism would result in communication cost, from prover
to verifier, of 2nT+1 GT -elements, 1 H-element and 1 Zq-element. This improvement can directly be inherited
by the compressed Σ-protocols that use commitment scheme Com2. For instance the communication costs
of protocol Πbi can be reduced by 2nT elements by incorporating this improved Σ-protocol. We denote the
resulting protocol by Π ′bi and summarize its properties in Theorem 7.

Theorem 7 (Improved ZK Protocol for Bilinear Circuits). Π ′bi is a (2µ+7)-move protocol for circuit
relation Rbi, where µ = dlog2 (N)e. It is perfectly complete, special honest-verifier zero-knowledge, under the
DDH assumption in GT , and computationally (2m + 1, s, 2, 2, k1, . . . , kµ) − special sound, under the SXDH
assumption, where ki = 3 for all 1 ≤ i ≤ µ. Moreover, the communication costs are:

– P → V: 6 dlog2 (N)e + NT + 9 elements of GT , 5 elements of G1, 5 elements of G2 and 9 elements of
Zq.

– V → P: dlog2 (N)e+ 4 elements of Zq.
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Protocol 6 Σ-protocol ΠEG for relation REG
Σ-protocol for opening a homomorphism on a committed GT vector.

Input(P, f, y; x, γ)

P = (P1, P2) = Com(x, γ) ∈ GT ×GnT
T

y = f(x) ∈ H
Prover Verifier

ρ←R Zq
A = hρ

t = f(−gρ) A,t−−−−−−→
c←R Zq

c←−−−−−−
φ = cγ + ρ

φ−−−−−−→ z = cP2 − gφ
hφ

?= A+ cP1

f(z) ?= cy + t

6.5 Comparison of the Communication Costs

In this section, we compare the communication costs of our protocol Πbi to the bilinear circuit ZK protocol
of [LMR19]. We note that, a rigorous comparison is difficult, for the following two reasons. First, we consider
arbitrary bilinear circuits, whereas they assume certain structural properties, and therefore their result does
not apply to the general bilinear circuit model, but only to a more limited class of circuits.8 Second, we
consider a strictly stronger scenario in which the prover proves that the committed input values satisfy some
bilinear relation, instead of merely proving knowledge of a satisfying input vector without being committed
to this input vector. This difference explains why their communications costs are independent of the input
dimensions n0, n1 and n2.

Despite these two aspects, showing that we consider a stronger application scenario, it is interesting to
note that our communication costs are smaller in certain parameter regimes. From Theorem 7 it follows that
our Protocol Πbi requires the prover to send a total of

6 dlog2 (N)e+NT + 28

elements (group and field elements) to the verifier, i.e., the communication costs associated to the
(Zq,G1,G2)-part are logarithmic and the communications costs associated to the GT -part are linear. By
contrast, the protocol of [LMR19] results in a total communication costs of

16 log2 (`mix) + 3nT + 71

elements, where `mix = 2m′0 + m′1 + m′2 + nTm
′
3 + m′4. Here, the variable m′i counts all gates of type i,

including the ones taking a constant input value, i.e., m′i ≥ mi. Hence, we have reduced the constant of the
logarithmic part from 16 down to 6, and the constant of the linear part from 3 down to 1. However, when
comparing the linear parts of the communication complexity, we note that there exist bilinear circuits for
which 3nT < NT = nT + 2m3 + 2m4 + 3, e.g., circuits with nT = 0 and m4 > 0. Therefore, depending on the
bilinear circuit our linear communication costs can be larger. This can partially be explained by the fact that
Lai et al. [LMR19] make structural assumptions on the bilinear circuit. For instance, they assume that only
input and output wires can take values in GT , whereas our protocol works for arbitrary bilinear circuits.

Nevertheless, as opposed to general bilinear circuits, there are specific quadratic inner-product relations
for which the approach of Lai et al. [LMR19] can result in communication costs lower than those obtained

8This is perhaps not immediate from the paper [LMR19], but it has been confirmed by the authors.
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by applying our generic approach. These relations exploit the fact that their approach reduces bilinear
circuit relations to sets of inner-product constraints. These techniques are further improved in Bünz et
al. [BMMV19], who merely focus on communication-efficient protocols for quadratic inner-product relations.
By contrast, for the example of threshold signature schemes, which only rely on linear circuits, application
of the latter approach would result in unnecessary overhead as compared to our compressed Σ-protocol
approach.
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