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Abstract—Recently, a team of scientists from Google
claims to have carried a computation on their noisy,
intermediate-scale quantum (NISQ) computer which no
regular computer can achieve. A feat that is sometimes
referred as quantum supremacy. In the first part of
this work, we explain their approach, their randomised
circuit construction and the consequences of their work.
Having achieved this milestone, the natural question
becomes: what else can we do with a quantum computer?
We answer this question in the second part of this
work and give an overview of the most widely used
quantum primitives. We will see how one can implement
them using quantum circuits and how these primitive
circuits are composed to create fast algorithms capable of
solving commercially relevant problems like simulation of
complicated quantum systems for chemistry and material
science, Monte Carlo simulation, solving large systems of
linear equations, or breaking widely used cryptography
like RSA.

I. INTRODUCTION

Nowadays, computation is all built around bits,
strings of bits, and the operations that we can do
on them. A bit is a finite field of order 2, often
denoted as F2, which is nothing more than {0, 1} with
multiplication and addition modulo two. The content
of a bit is its bit value, and all computation in a regular
computer reduces to representing things as strings of
zeroes and ones and then performing Boolean opera-
tions on them. A quantum computer does not work like
that. In quantum computing, one has qubits instead of
bits, quantum states instead of bit values, and applies
unitary maps acting on complex vector spaces instead
of Boolean operations acting on binary strings. For a
physicist, a qubit is a two-level quantum system, and
a quantum state is a vector that describes a physical
system. For a mathematician or a computer scientist, a
qubit is simply the two-dimensional complex Hilbert
space C2, and an n-qubit quantum state is a unit-
norm vector in a Hilbert space H = (C2)⊗n, where
⊗ denotes the tensor product of Hilbert spaces. In this
work we will use the Dirac notation to denote quantum
states and operations. We will use |v〉, read as ”ket v”,
to denote a vector in H . We denote the dual form of
|v〉 as 〈v|, read ”bra v”, which is a map from H to C.
Throughout this paper we use the word classical, in
opposition to quantum, to refer to usual computers and
computation done on them. Circuits will be collections

of horizontal wires, one for each qubit, advancing from
left to right and upon which we perform gates. Vertical
wires connecting a qubit to a gate are quantum control
wires. Wires with a dash crossing them denote many
qubits at once. Tensor products have sometimes been
omitted when no confusion arises, e.g. we write |ϕ〉 |ψ〉
to denote |ϕ〉⊗|ψ〉. With the notation laid out, the rest
of the paper will deal with four quantum algorithms
or primitives, starting with the one that will require
most of our attention: quantum random circuits and
the recent claim of quantum supremacy.

II. QUANTUM SUPREMACY

A. The problem

The extended Church-Turing hypothesis (ECT)
states that classical computers can simulate any phys-
ical process with only a polynomial overhead. Quan-
tum supremacy, short for quantum computational
supremacy, is the goal of demonstrating that quantum
computers can efficiently perform some computations
which would take an exponential amount of time (or
resources) if computed by a classical computer, thus
disproving the ECT hypothesis.

There are many approaches (not necessarily use-
ful computational tasks) to demonstrate quantum
supremacy, such as integer factorization [1], boson
sampling [2], instantaneous quantum polynomial-time
(IQP) circuits [3], random circuit sampling [5], etc.
Table I shows an overview of their main strengths
and weaknesses. Some approaches like integer factor-
ization are currently very hard to run on a quantum
computer, while the rest of them are fairly straight-
forward to simulate and can be simulated on near-
term devices [4]. However, the claim of quantum
supremacy for all these approaches relies on various
complexity-theoretic assumptions [6], assumptions for
which we have strong but not definitive evidence. Just
as we still cannot prove P 6= NP, we cannot yet
unconditionally claim that quantum computers are not
efficiently simulatable by classical computers.

The quantum-AI group at Google demonstrated
quantum supremacy by using random circuit sampling
(RCS) as proposed by Boixo et al. [5]. In a nutshell, a
random quantum circuit generates a probability distri-
bution that is far from uniform, yet very unstructured
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Approaches Implementation difficulty Classical hardness Verification Usefulness
assumptions

Integer factorization [1] hard RSA secure easy yes
Boson sampling [2] easy PH infinite or hard no

IQP [3] moderately easy approx. counting 6= exact counting [4] moderate no
Random circuit sampling [5] moderately easy QUATH [6], #P-hard [7] hard no

Table I. Examples of some approaches to quantum supremacy.

and hard to sample from. The reason why random
circuits are suitable for a quantum supremacy exper-
iment are many-fold. To mention a few, they can be
demonstrated using noisy, intermediate-scale quantum
(NISQ) devices and do not require fault tolerance.
They also satisfy average-case computational hardness,
which means that sampling from the probability dis-
tribution of the output of a typical quantum circuit
classically is as hard as computing them in the worst
case. RCS also satisfies an anti-concentration property,
making it the first candidate with average-case hard-
ness and anti-concentration [7].

B. Google’s quantum supremacy experiment

Google demonstrated quantum supremacy with
a programmable 53-qubit superconducting processor
known as the Sycamore processor. One can refer to [8],
[9] for the details of the experiment and their quantum
processor.

a) The setup: The quantum processor consists of
a two-dimensional array of 54 qubits arranged in a
rectangular lattice (one qubit did not work properly).
Every qubit is (tunably) coupled with four nearest
neighbours using a total of 86 couplers. This structure
enables for error correction using surface codes. Their
setup is based on superconducting qubits and non-
commuting gates. The technology and design of the
Sycamore processor is quite advanced, and achieves
fast, high-fidelity single-qubit and two-qubit operations
even when gate operations are performed on many
qubits simultaneously.

b) The experiment: The first step of the exper-
iment is to generate a random quantum circuit C
of depth 20, consisting of single-qubit and two-qubit
gates. This circuit C is then applied to an all zero
|0〉⊗53 initial state and the outcome is measured in
the computational basis {|0〉 , |1〉}. The output of the
measurement, which is a 53-bit string is recorded and
the process is repeated millions of times.

c) Verification: For a randomly chosen circuit C,
the measurements in process (b) have generated a sam-
ple containing millions of 53-bit long strings approach-
ing the theoretical probability distribution of that cir-
cuit’s output. This distribution needs to be further anal-
ysed to check whether the output is consistent with the
outcome of a well-behaving quantum circuit. Google
uses the method of cross-entropy benchmarking [5].
First, they benchmark the single-qubit operations using
the cross-entropy benchmarking protocol to calibrate
and benchmark the processor at a component level.

Using the component level fidelities, they proceed
to accurately estimate the performance of the whole
system. Under some assumptions made about their
experimental device, this measure sufficiently certifies
that quantum supremacy is achieved [7]. However, this
assumption is only empirically validated for a few
qubits.

C. Discussion

The Sycamore processor takes around 200 seconds
for the entire process in (b), while Google’s cur-
rent benchmarks indicate that the classical computers
would take 10,000 years for the same task. Boixo et
al. [5] suggest and give numerical evidence that these
random quantum circuits generate distributions that are
hard to simulate classically, and, no classical simula-
tion is known that takes less than a petabyte of storage.
Most importantly, this experiment shows the high level
of control and fidelity achievable on the Sycamore chip
and suggests that there is no fundamental reason why
a quantum computer cannot be built.

D. Applications

The applications of the Sycamore processor and the
work done towards demonstrating quantum supremacy
are varied. For example, the benchmarking task men-
tioned in (c) has direct application in generating
certifiable random numbers [10]. Additionally, the
structure of the Sycamore processor is designed to be
compatible with error correction using surface codes,
making it a good candidate to run experiments on error
correction. Last but not least, the ability to manage,
for the first time, fast, high-fidelity operations on 53
qubits may result in near term applications in the field
of optimization, machine learning, material sciences
and chemistry.

E. Criticisms

Soon after Google’s paper came out, IBM [11]
claimed it was possible to simulate their circuit on
the largest existing supercomputer in a couple of days.
In principle, this does not refute Google’s claim to
quantum supremacy because the amount of resources
required to classically simulate random circuits still
scales exponentially with the number of qubits. How-
ever, there have been concerns about the cross-entropy
statistical measure which Google uses for verification.
Even though it has been suggested that it is difficult to
achieve high cross-entropy using classical circuits [12],
this claim is not supported by any complexity-theoretic



evidence. In [7], the authors comment on how cross-
entropy might not be sufficient for certifying whether a
device has achieved quantum supremacy without mak-
ing some assumptions on the internal operations of the
quantum device. To this day, no verification protocol is
known to unconditionally certify the classical hardness
of a sampling task.

III. THREE ALGORITHMIC PRIMITIVES

A. Quantum Fourier Transform

Given a vector v ∈ RN , N = 2n, the Fourier
transform of v is defined as v̂ = FNv, where
FN (i, j) = 1√

N
ωijN and ωN = e

2πi
N .

The fast Fourier transform (FFT) algorithm of Coo-
ley and Tukey [13] computes v̂ in time O(N logN).
This algorithm is much faster than the naive O(N2)
algorithm and is widely used in computer science.
However, its scaling is still polynomial in the size of
the input, which makes it incapable of dealing with
very large inputs. There is a quantum algorithm, called
quantum Fourier transform (QFT) that computes a
quantum version of the Fourier transform in time poly-
logarithmic in the size of the vector.

1) The problem: The quantum Fourier transform
problem can be phrased in the following way. Assume
one is given a vector of amplitudes of the form |v〉 =∑N−1
i=0 vi |i〉 encoding a vector v = (v0, . . . , vN−1) ∈

RN . The goal is to produce a state |v̂〉 =
∑N−1
i=0 v̂i |i〉

such that (v̂0, . . . , v̂N−1) =: v̂ = FNv.
2) The circuit: The circuit in fig. 1 implements the

QFT in time O(n2) [14]. The gates H and Rn are

defined as H = 1√
2

(
1 1
1 −1

)
and Rn =

(
1 0

0 e
2πi
2n

)
.

Notice how the QFT circuit and the FFT algorithm
actually do different things. While the FFT produces
a vector v̂ that is written somewhere and can easily
be read, the QFT encodes v̂i as amplitudes. In term
of readout one can roughly think of amplitudes as
encoding the probabilities of obtaining result |i〉 upon
measurement, and cannot be easily read off of a
register. Despite this limitation, the QFT has many in-
teresting and potentially game-changing applications.

3) Applications: A widely used application of QFT
is a subroutine called phase estimation [14]. Let U
be an n-qubit unitary, and |u〉 be an eigenvector
of U with eigenvalue e2πiϕ. Using the QFT one
can obtain |ϕ̃〉 |ψ〉 with O(t2) queries to U , where
|ϕ̃〉 is a t-bit approximation of ϕ. There is also
a variant of the phase estimation subroutine called
amplitude estimation [15].

However, the most important application of the
QFT is Shor’s algorithm, which solves two specific
instances of the hidden subgroup problem (HSP) for
Abelian groups. This rather abstract and convoluted
problem is at the heart of modern cryptography be-
cause all public key cryptography relies on the com-
putational hardness of factoring (RSA) and discrete
logarithms (Diffie-Hellman), which can be reduced to

HSP. An efficient, polynomial-time quantum algorithm
for HSP like Shor’s means that our current cryptogra-
phy would cease to be secure against adversaries with
a quantum computer. The vulnerability of current cryp-
tography to quantum computers has attracted much
attention to the field of quantum computation, opening
new research fields such as Quantum Key Distribution
(QKD) and post-quantum cryptography.

B. Quantum Search

The next primitive that we discuss is called quantum
search. Despite not offering quantum speedups as
dramatic as those of QFT for cryptography, quantum
search is of great importance because it is much more
widely applicable.

1) The problem: Let f : {0, 1}n → {0, 1} be a
Boolean function. Any n-bit string x such that f(x) =
1 is called a solution. Our goal is to find a solution to
f . The circuit that we will present here is a subroutine
because it requires one to provide an algorithm that
finds a solution with a certain probability (which could
be simply brute force search), and constructs a circuit
from it.

2) The circuit: Assume that we have a reversible
algorithm, classical or quantum, that can find a solu-
tion to f with probability p on input |0〉. Let A be a
circuit implementation of this algorithm. Assume also
that we have a reversible algorithm Of that checks a
solution by doing the operation |x〉 7→ (−1)f(x) |x〉.
Last, let R act as |x〉 7→ (−1)1−δx,0 |x〉, i.e. R is a
reflection around the state |0〉. Define OA = ARA−1.
Since the circuit A finds a solution with probability
p, one would need to run it O(1/p) times to find a
solution with high probability. The following circuit
finds a solution with only O(1/

√
p) applications of A

and A−1.

...|0〉⊗n A Of OA

· · ·

· · ·
Of OA

...

G

Repeat G 1√
p times

3) applications: This primitive has a surprising
number of applications thanks to the versatility that
comes from the ability to choose the function f and the
algorithm A. The first application of this primitive was
finding an element in an unstructured database, which
is equivalent to finding a solution to a random function.
Quantum search is in essence a generalization of two
widely used subroutines called amplitude estimation
and amplitude amplification [15]. Such subroutines
are rather ubiquitous in the literature, forming the
basis of span program quantum algorithms [16], [17],
[18], [19], as well as quantum algorithms for formula
satisfiability [20], quantum linear system solvers [21],
triangle finding [22] etc. A broadly studied application



|j1〉
|j2〉...

|jn−1〉
|jn〉

H R2 · · ·
· · ·

Rn−1 Rn

H · · · Rn−2 Rn−1 · · ·

· · ·
· · ·

H R2

H

1√
2
(|0〉+ e2πi·0.j1...jn |1〉)

1√
2
(|0〉+ e2πi·0.j2...jn |1〉)

...
1√
2
(|0〉+ e2πi·0.jn−1jn |1〉)

1√
2
(|0〉+ e2πi·0.jn |1〉)

Fig. 1. Circuit for the quantum Fourier transform.

of quantum search is quantum random walks [23],
[24] and random walk based algorithms [25], [26],
[27], [28]. The quantum search primitive allows us
to construct a quantum algorithm that walks on a
graph and whose mixing time is quadratically smaller
than the corresponding random walk on a regular
computer. Conversely, one can run many random walks
in quantum superposition and speed up some widely
used types of Monte Carlo simulations [29], making
quantum random walks of great practical importance.

C. Linear combination of unitaries (LCU)
This technique, first introduced by Berry et al. [30],

[31], [32], allows the user to implement a Hermitian
matrix M given as a linear combination of unitaries.
This is a special case of a more general and involved
primitive called ”singular-value transformation” [33],
that can implement any matrix M , be it non-Hermitian
or even non-square.

1) The problem: This primitive takes as inputs two
strings α = (α1, ..., αm) ⊂ R+, (U1, . . . , Um) ⊂
U(2n) and an n-qubit state |ψ〉 ∈ C2n, and aims to
prepare a state ∝M |ψ〉, where M =

∑
αiUi.

2) The circuit: In addition to the n-qubit register
containing the state |ψ〉, we define an additional reg-
ister E containing dlogme qubits. Let us assume that
one can construct the unitary O =

∑m
i=1 |i〉 〈i| ⊗ Ui

acting on E ⊗ C2n and a unitary on E acting as
V : |0〉 7→ 1

‖α‖1
∑m
i=1

√
αi |i〉. Apply the following

circuit to the state |0〉 |ψ〉.

|0〉

|ψ〉
V

O

V† |ψout〉

The output state of this circuit is of the form
|ψout〉 = 1

‖α‖1 |0〉M |ψ〉 +
√
1− ‖M |ψ〉‖

2

‖α‖21
|ϕ〉, where

(|0〉 〈0| ⊗ I) |ϕ〉 = 0. That is, it produces a linear
combination of the state that we want to construct,
including a flag, and some other garbage state. Apply-
ing the techniques described earlier in section III-B
we can amplify this amplitude and approximate the
desired state to precision ε in 1

ε iterations of the circuit
presented. Observe that LCU is a meta-algorithm, a
subroutine that relies on the user to supply O and V .
While the map V is efficiently implementable given
the string α, the complexity of O can vary a lot
and will ultimately be determined by the description
complexity of the string (U0, . . . , Un).

3) Applications: This primitive can be used to sim-
ulate the physical evolution of quantum systems, a task
often called Hamiltonian simulation. In Hamiltonian
simulation, the goal is to approximately implement a
unitary eiHt generated by the Hermitian operator H ,
called the Hamiltonian. Often times, a Hamiltonian can
be decomposed as a linear combination of unitary local
terms

∑
αiHi, each Hi affecting only a few particles

or degrees or freedom. Combining this fact with the
Taylor expansion of the exponential function, allows
us to write the unitary eiHt as a linear combination
of unitaries, which can be truncated and implemented
using the LCU technique described above.

Another application of this method is the HHL algo-
rithm for solving linear systems of equations [21]. The
goal in this case is to find a quantum state |x〉 encoding
in its amplitudes the solution to a linear system of
the form Ax = b. In particular, if this system has
a single unique solution, then A is invertible and
x = A−1b. The algorithm works by constructing a
unitary U , called a block encoding of A, that contains
the invertible matrix A as a minor. Using a polynomial
expansion of the inverse function to approximate A−1

by a linear combination of unitaries allows us to obtain
an approximation of |x〉. While the original algorithm
by Harrow, Hassidim and Lloyd relies on amplitude
and phase estimation, this algorithm by Gylién et al.
[33] has better scaling in every parameter.

IV. FINAL REMARKS

In this overview we have focused on quantum
supremacy and quantum algorithms, but these topics
are only a portion of the field of quantum infor-
mation processing. We have left out entire avenues
of research such as fault tolerance, error correction,
circuit optimization, secure communication or multi-
party computation on which much progress has been
done recently.

The quantum supremacy experiments mark the be-
ginning of the NISQ era, in which we will start to see
applications of the three primitives discussed above
being implemented on real hardware. While it might
take a while to see a large number factorized by a
quantum computer, quantum random walks, and espe-
cially, Hamiltonian simulation, may become a reality
in the following years.
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