Real-time segmentation for tomographic imaging
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Abstract—In tomography, reconstruction and analysis is often
performed once the acquisition has been completed due to the
computational cost of the 3D imaging algorithms. In contrast,
real-time reconstruction and analysis can avoid costly repetition
of experiments and enable optimization of experimental param-
eters. Recently, it was shown that by reconstructing a subset of
arbitrarily oriented slices, real-time quasi-3D reconstruction can
be attained. Here, we extend this approach by including real-
time segmentation, thereby enabling real-time analysis during
the experiment.

We propose to use a convolutional neural network (CNN) to
perform real-time image segmentation and introduce an adapted
training strategy in order to apply CNNs to arbitrarily oriented
slices. We evaluate our method on both simulated and real-world
data. The experiments show that our approach enables real-
time tomographic segmentation for real-world applications and
outperforms standard unsupervised segmentation methods.

Index Terms—tomography, machine learning, segmentation

I. INTRODUCTION

Tomographic imaging is a widely applicable technique for
studying the internal structure of objects using some form
of penetrating radiation such as X-rays or an electron beam.
Projection images are obtained from a range of angles and a
tomographic reconstruction algorithm subsequently computes
a 3D image of the internal structure of the object. Currently,
reconstruction and analysis are often performed after image
acquisition has completed. If processing, reconstruction, and
analysis of tomographic data can be run in real time during
the experiment, internal dynamic processes of the imaged
object can be visualized and analyzed as they occur. Real-
time feedback enables online optimization and steering of the
imaging setup and experimental conditions which increases
the efficiency of experiments and avoids costly repetition.

Despite advances in computationally efficient reconstruction
algorithms [1], [2] and in specialized hardware such as Graphic
Processing Units (GPUs) [3] and supercomputers [4], full 3D
tomographic reconstructions at the rate of data acquisition
remain out of reach for most applications. Recently it was
shown that real-time reconstruction can be achieved for a
small set of randomly oriented 2D slices [S]. These slices
can be adjusted on the fly, thereby giving access to a virtual
full 3D volume at a fraction of the computational cost.
This methodology is called quasi-3D reconstruction, and is
implemented in the RECAST3D software package.
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Fig. 1: Traditional experiments (top) involving tomography require significant time for
both the reconstruction phase and the offline analysis phase. With RECAST3D (middle)
the reconstruction phase is performed in real time. Our method (bottom) additionally
includes a real-time segmentation step.

To enable adaptive imaging, where the imaging process is
adjusted based on the observations, just having access to a
reconstructed volume is not sufficient, as the image analysis
step should also be included in the real-time processing
pipeline. By real-time we mean that the reconstruction is
almost instantly available after data acquisition. In practice,
we aim to perform reconstruction and analysis of the quasi-
3D volume at several frames per second. An important step
in many image analysis pipelines is segmentation, which is
the problem of assigning to each pixel the appropriate class
label from a finite set of classes, for example segmenting
bone for calcaneal fractures in CT images [6]. In this article
we introduce a real-time imaging pipeline to reconstruct,
segment, and visualize quasi-3D volumes implemented as an
extension of the existing RECAST3D software package. Our
method adds real-time segmentation to the existing real-time
reconstruction capabilities of the RECAST3D framework, as
outlined in Figure 1.

As quasi-3D reconstruction employs direct reconstruc-
tion methods such as filtered backprojection (FBP) [7] and
Feldkamp-David-Kress (FDK) [8] without additional image
regularization, limited-data artefacts are typically present in
the reconstructions. These artifacts limit the applicability
of computationally efficient unsupervised segmentation algo-
rithms, such as Otsu’s method [9], since they are often unable
to separate artifacts and noise from important features. Fur-
thermore, because image analysis algorithms may be sensitive
to noise in the segmentation [10], [11], analysis based on



such traditional segmentation methods may not be accurate.
In addition, many unsupervised segmentation methods operate
exclusively on the basis of the pixel values [9], [12], [13],
limiting their applicability to general segmentation problems
as they are unable to segment features that are not based on
pixel values.

To overcome these issues, we propose to use a con-
volutional neural network (CNN) to segment the quasi-3D
reconstructions in real time. To apply CNNs in a quasi-
3D setting, we introduce an adapted training strategy that
takes the arbitrary orientations of the slices into account. We
show that a CNN is capable of achieving similar accuracy
to segmentations based on computationally more expensive
total variation minimization (TV-MIN) reconstructions [14]
which are too slow to compute for real-time applications. In
addition, we show that a CNN can be implemented efficiently
as a plugin within the existing RECAST3D framework without
significantly increasing the processing time.

This article is structured as follows. In Section II we
introduce the tomographic reconstruction problem and define
the FDK and TV-MIN reconstruction algorithms. We introduce
quasi-3D reconstructions, the segmentation problem, and pro-
vide more details on the segmentation plugin. Lastly, we out-
line our adapted training strategy for randomly oriented slices.
In Section III we present the experimental results, and analyze
the training strategies. We perform a real-world experiment on
a dynamic X-ray CT dataset and two simulated experiments.
Finally, in Section IV we state our final conclusions.

II. METHOD
A. Prerequisites

Tomographic Reconstruction: The tomographic recon-
struction problem is to recover a volume from a series of
its projections. In this article we consider circular cone-beam
tomography, where the object is placed in between a point
source and flat-panel detector which are situated on opposite
sides of a circle. The object is rotated and X-ray projections
are taken at a selection of equidistant angles. The approach
generalizes to other acquisition geometries (e.g. parallel beam)
in a straightforward manner.

The tomographic reconstruction problem can be modelled
as an inverse problem:

Ku=f. (D

Here K is the forward projection operator, u € RV=*NyxN=
represents the object, and f € RNe*NaxNo jg the measured
projection data, with Ny is the number of projection angles,
and N,, N, are the number of detector rows and columns
respectively. In this article we use the FDK reconstruction
algorithm, given by

UFDK — KT(h*f') (2)

Here f denotes weighted projection data, which compensates
for diminishing intensity at distance from detector center, and
h € R™ is a 1D filter. We used the Ram-Lak filter for this
work.

Instead of using FDK, equation 1 can be solved by itera-
tively minimizing ||Ku — f||. In addition, we can add prior
information about the gradient of the image being sparse by
adding a total variation term [14] to improve reconstruction
accuracy when projection data is limited or noisy:

1 2
3 [ Ku— f||2 +A HVqu .

This function can be minimized by a range of convex opti-
mization algorithms.

Quasi-3D Reconstruction: Quasi-3D reconstruction has
recently been proposed as a method to make real-time to-
mographic reconstruction feasible [5]. Instead of computing a
full 3D volume, only a small collection of arbitrarily oriented
2D slices is reconstructed and visualized in real-time. When
these slices are translated and/or rotated by the user, they are
reconstructed on the fly, so that it appears as though a full 3D
reconstruction is available. This on-demand 2D reconstruction
significantly reduces the total computational cost compared
to full 3D reconstruction. This approach is implemented in
the open source RECAST3D software package and more
implementation details can be found in [5].

In RECASTS3D, the filtering and weighting steps of the FDK
algorithm are performed in parallel. The computation of h £
is performed in real time from the incoming data. When a slice
is requested, the application of KT (called backprojection) is
performed using GPU-based high-performance routines from
the ASTRA toolbox [15]. In addition, a low-resolution 3D
FDK reconstruction is created so that the user can preview
the object. Our quasi-3D pipeline for segmentation is imple-
mented by extending the RECAST3D software package with
a computationally efficient segmentation plugin.

Segmentation: Mathematically, segmenting an image can
be described as finding a function g : R™*"™ — Z]"*", where
m,n are the rows and columns of the image and £ is the
number of object classes to be assigned.

Classical segmentation methods (for example local and
global thresholding [9], [12], watershed methods [13]) typi-
cally operate on the image greyvalues to separate classes and
have the high computational efficiency that is need for real-
time segmentation. As an example, Otsu’s method performs
a segmentation of an image by selecting a threshold that
minimizes intra-class variance. In addition to the greyscale
distribution, segmentation can be performed on other prop-
erties by for example clustering pixels [16] or defining edge
boundaries in the image [17]. Recently, CNNs have proven
successful for image segmentation [18], [19].

CNNs for segmentation: In this work we use CNNs to
segment the tomographic reconstructions. In a segmentation
network, the final output layer will assign one of k classes to
each pixel. The CNN is defined by its architecture with weights
O which can be altered to change the output. For a given O,
a CNN corresponds to a function Fg : R™*" — RExmxn
which aims to approximate g by computing a probability
vector with predictions for each class for each pixel. The
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Flg 2: Diagram outlining unidirectional training on slices (left) and omnidirectional
training (right).

highest probability class can be chosen from the network
predictions to obtain a final segmentation.

The weights © are found in a training phase, where input
samples x1,...,Xy are processed by the network and com-
pared to known labelled output samples y1,...,yn. A loss
function J : RF*™m*n x Z7"*"™ — R, such as cross-entropy
loss, measures the error of the network on the training samples.
The aim of the training phase is to find a © that minimizes
the loss on the training dataset

N
©" = argmin {Z j(F@(Xi)vyi)} :
© i1
For a CNN, we can compute the partial derivatives of J with
respect to the weights using backpropagation. The weights can
be updated using gradient-based optimization algorithms [20].

B. Quasi-3D training strategies

In 3D image segmentation, neural networks are often trained
on 2D slices from the volumes since full 3D networks are
typically computationally too expensive [21], [22]. The 2D
input slices are obtained by extracting slices in a single
direction. In contrast, slices in a quasi-3D reconstruction can
have an arbitrary orientation. A network trained only on
unidirectional slices may not recognize object classes from
a different view. Therefore, the standard training procedure
has to be adapted to enable application of CNNs to arbitrary
oriented slices. Here, we introduce a training strategy where
arbitrarily oriented 2D slices of the tomographic volume are
supplied as input for the neural network.

Let X € R™*™*" be an input volume and Y € Z;*"*"
the aligned target volume. Define E, g : Z x R™*"*" —
R™ ™ to be a rotated extraction operation. Eq g ~(i,X)
extracts the i-the slice rotated by angles «, 3,y with re-
spect to the sagittal slice from the volume X. For omnidi-
rectional training we create a dataset of slices with pairs
(Fa,p,q(1,X), Eq p~(i,Y)) where the angles are randomly
generated. For unidirectional training we create pairs of sagit-
tal slices (Eo,0,0(¢, X), Eo,00(¢,Y)) (see Figure 2).

C. Segmentation Plugin

To construct the pipeline for real-time segmentation we
developed a plugin for RECAST3D which segments quasi-
3D reconstructions. The segmented slices are then visualized
in RECAST3D. The plugin is GPU-based and can be disabled,
altered and reenabled while the projection data is processed
simultaneously. A command line interface allows for online
tuning of parameters with immediate visual feedback, and the

Fig. 3: (a), (b) Example volumes of the fibre-sphere data, (c) slice of the noisy FDK
reconstruction, and (d) slice of the ground truth (spheres and fibres have different labels).

user can select which class is visualized. The plugin operates
independently from the quasi-3D reconstruction pipeline, and
can be run on a separate node.

The plugin is implemented in Python, and includes three
CNNs implemented in PyTorch: the MS-D network [22],
[23], U-Net [18], and ResNet [24]. In addition, the plugin
includes several traditional segmentation methods, including
Otsu’s method [9], cross entropy thresholding [12], contour
evolution [25], region based random walk segmentation [26]
and the watershed algorithm [13].

III. RESULTS AND DISCUSSION
A. Setup

To assess the accuracy and computational efficiency of
our CNN-based segmentation approach, we compare it with
traditional unsupervised methods. The neural network used in
this work is the MS-D network [22], chosen because of its
low number of trainable parameters.

Since the MS-D network can flexibly adapt to different
problems, we used the same network architecture for each
experiment. We used an MS-D network, implemented in
PyTorch [23], of 100 layers with a width of 1. The dilations in
layer ¢ were set to 14+ (¢ mod 10). The networks were trained
using the ADAM algorithm [20], using a batch size of 20, and
the cross-entropy loss function. For each experiment, the data
was split in training, validation, and test sets. The network
is trained on the training set for 100 epochs. The network
with the lowest validation error was selected to be evaluated
on the test set. All experiments were run on a workstation
with an AMD Ryzen 3800X processor and NVIDIA GeForce
RTX 2070 Super GPU. To quantify our comparisons we use
the Fl-score (also known as the Dice coefficient), and the
accuracy. For multi-class problems we report the macro F1-
score (average of per-class Fl-score), and the global accuracy.

B. Simulated data

We created two sets of simulated tomographic data to
investigate the difference between omni- and unidirectional
training, and to quantitatively compare Otsu’s method to
the MS-D network. For the former we created twenty 5123
volumes filled with fibre strands and spheres. Each volume
contained 20 spheres and 20 fibres which were generated with
a random shape and location. Greyscale intensities were the
same for both classes. 3D renderings of the noiseless volumes
are shown in Figure 3.

For the second simulation experiment we created twenty
5123 volumes filled with 40 fibre strands generated with
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Flg 4. (a) Example volume of the fibre-container data with container, (b) slice of the
noisy FDK reconstruction, and (c) slice of the ground truth (the container is not to be
segmented).

Random orientation Sagittal orientation

Training F1 Accuracy | F1 Accuracy
Omnidirectional | 0.9989  0.9979 0.9951  0.9950
Unidirectional 0.6857  0.9792 0.9995  0.9995

TABLE I: Macro F1 and accuracy on the fibre-sphere (left) randomly oriented test
set, and (right) sagittal test set, for MS-D networks trained with the omnidirectional, and
unidirectional strategies.

random shapes surrounded by a cylinder forming a container
(see Figure 4). Greyscale intensities were the same for the
container and the fibres to represent a segmentation problem
where the fibres are to be labeled but the container is not.

Using the ASTRA toolbox [15] we simulated a cone-beam
projection dataset of 60 projections for each volume. Fur-
thermore, Poisson noise was applied to the projection dataset
where the sample absorbed roughly 70% of the incoming
photons. Out of the 20 phantoms, 14 were randomly selected
for training, 4 for validation and 2 for testing. For each scan
we obtained 500 randomly oriented, and 500 unidirectional
512 x 512 slices for both the ground truth labeled volume,
and the noisy FDK reconstruction (see Figures 3 and 4).

Comparison of uni- and omnidirectional training slices:
To investigate the importance of the slicing direction in the
training strategy for CNNs, we compare unidirectional and
omnidirectional training strategies. We trained one network
on the slices in a single direction and the other on randomly
oriented slices, using the fibre-spheres dataset (Figure 3).
Otsu’s method, and any other unsupervised method that works
solely on greyvalues, are not applicable to this type of multi-
class segmentation problem. This indicates an advantage of
deep-learning approaches.

Example results from the test set are shown in Figure 5.
Note that both networks were able to remove the Poisson
noise and the tomographic artifacts. Some notable differences
between both networks can be seen where the unidirectional
network identifies parts of the fibre strands as spheres. In
Table I we report the macro Fl-score, and accuracy for both
networks on both the test set with randomly oriented slices
and the test set with slices in a single direction.

The MS-D omnidirectional network outperforms the uni-
directional network on both quantitative measures for the
randomly oriented test set, which is in line with the qualitative
comparison shown in Figure 5. When tested on the sagittal
direction, although the unidirectional networks performs better
than the omnidirectional network, the difference in perfor-

FDK

MS-D
omnidirectional

MS-D unidirec-
tional

ground truth

Flg 5: Slices of the simulated fibre-sphere test dataset and MS-D network predictions.
From left to right we have the FDK reconstructions, the labeled ground truths, the MS-
D network output trained on randomly oriented slices, and the MS-D network output
trained on unidirectional slices.

ground truth  MS-D omnidi- MS-D

rectional unidirectional

Flg 6: Slices of the simulated fibre-container test dataset, with (from left to right):
the FDK reconstructions, the labeled ground truths, the omnidirectional MS-D network
output, the unidirectional MS-D network output, and Otsu’s method.

mance is significantly smaller. This can be explained by the
fact that the omnidirectional network has also encountered
images sliced in the sagittal direction.

Comparison of MS-D segmentation and Otsu’s method:
Here, we compare Otsu’s method to the uni- and omni-
directional MS-D networks. Both the MS-D networks and
Otsu’s method were tested on randomly oriented slices from
the fibre data test phantoms because the user can select
arbitrary slices in RECAST3D. To more accurately determine
the performance of Otsu’s method inside the container, we
created a version of Otsu’s method where a ROI-mask was
applied on the segmented slices with the proper rotation. We
used a cylindrical volume around the simulated container to
remove misclassified background. Some example results from
the test set can be seen in Figure 6 and in Table II we report
the Fl-score and accuracy.

The results show that the omnidirectional MS-D network
was able to accurately segment the fibres and remove the
applied Poisson noise. We see that the unidirectional MS-D
network misclassified the container in the randomly oriented
slices, and that Otsu’s method occasionally does not remove
the FDK artifacts and noise. In addition, Otsu’s method clas-
sifies the container as a fibre since it is unable to distinguish it
from the fibres on the basis of intensity. Even if we manually
mask the region-of-interest, the interior of the container is



| Fl-score  Accuracy
MS-D omnidirectional | 0.9544 0.9989
MS-D unidirectional 0.6777 0.9885
Otsu 0.0585 0.6086
ROI-Otsu 0.2568 0.9300

TABLE II: F1 and accuracy on the fibre-container randomly oriented test set for
MS-D omnidirectional, MS-D unidirectional, Otsu, and ROI Otsu.

significantly more noisy than the MS-D network segmentation.

The MS-D network outperforms Otsu and ROI-Otsu on both
metrics. Otsu’s method performs significantly worse on F1-
score, which can be explained by the greater amount of false
positives segmented by Otsu as opposed to the MS-D network.

C. Experimental data

To show the feasibility of our method in real-world appli-
cations, we applied the real-time segmentation pipeline to a
real-world dynamic X-ray CT dataset of a dissolving tablet
suspended in gel [27], [28]. A container with a dissolving
tablet was filled with gel to create moving air bubbles which
we segmented. The container was rotated at 100 deg/s and 60
projections were acquired every 180 degrees with an exposure
time of 30 ms for each projection. In total 9960 projections of
size 647 x 768 were taken and the experiment lasted 5 minutes.

In RECAST3D, the full processing step of a batch of pro-
jections takes approximately 140 ms on our workstation. The
computation time to compute the backprojection for a slice is
about 2 milliseconds. The segmentation with Otsu’s method
is about 3 milliseconds and with the MS-D network about
30 milliseconds. This means that the pipeline would be able
to dynamically visualize the projection data stream every 170
milliseconds for a batch of 60 projections. In this experiment,
data acquisition was at a rate of 1.8 seconds per batch of 60
projections (180 degrees), well within the computational limits
of the pipeline. Figure 8 shows an example real-time quasi-3D
reconstruction and segmentation of the data in RECAST3D.

To create training data for the neural networks we cre-
ated TV-MIN reconstructions for every 60 projections with
a regularization parameter A = 0.001 for 2000 iterations.
We used the Douglas—Rachford primal-dual splitting algorithm
[29] to iteratively minimize the functional. Each TV-MIN
reconstruction took roughly 20 hours on our workstation and is
therefore infeasible to compute in real time. Next, we created
25 labeled ground truth volumes by applying Otsu’s method to
the TV-MIN reconstructions and masking the region outside
the container. As a final processing step we removed small
objects with a mass smaller than 4 pixels with the scikit-image
remove_small_objects function from the morphology
package [30]. The scans were randomly separated into 18
training scans (9216 slices), 4 validation scans (2048 slices)
and 3 test scans (1536 slices) for the unidirectional network.
For the arbitrarily oriented slices, we chose the same amount
of slices at random 3D orientations for each scan.

To compare our method to an existing computationally
efficient method, we segmented each FDK slice with Otsu’s
method and manually applied a cylindrical ROI-mask to
remove misclassified background. The results can be seen in

| Fl-score  Accuracy
MS-D omnidirectional | 0.8816 0.9983
MS-D unidirectional 0.7595 0.9968
Otsu 0.0142 0.2538
ROI-Otsu 0.8229 0.9977

TABLE III: F1 and accuracy on the real-world TabletInFluid randomly oriented test
set for MS-D omnidirectional, MS-D unidirectional, Otsu, and ROI Otsu.

Figure 7. In Table III we report the F1-score and accuracy for
the randomly oriented slices.

The MS-D network trained on randomly rotated slices is
able to create an accurate segmentation of the bubbles in real
time and it outperformed the other three methods on all met-
rics. It is able to create real-time segmentations with similar
quality to the computationally expensive segmented TV-MIN
reconstructions. This shows that our method can be used to
perform quasi-3D reconstruction and segmentation in real time
by training on randomly oriented slices of segmented TV-MIN
reconstructions. Note that, in practice, acquiring training data
and training the networks has to be performed offline. The
results show that our method outperforms Otsu’s method with
masking on all metrics. Notably, the unidirectional network
regularly misclassifies sections of the randomly oriented slices.
The importance of the training method is highlighted when
comparing the Fl-scores for both MS-D networks.

IV. CONCLUSIONS

In this paper, we introduced a real-time pipeline to process,
reconstruct, and segment quasi-3D tomographic images, rep-
resenting an important step for online and real-time analysis
of tomographic experiments. We showed the importance of
including arbitrarily oriented slices in the training dataset to
achieve accurate results. We demonstrated that a deep-learning
based approach can perform better than Otsu’s method in
terms of accuracy on both simulated data and real-world dy-
namic tomographic data. In addition, our deep-learning based
approach is more generalizable to multi-class segmentation
problems than traditional intensity-based unsupervised seg-
mentation methods. Using our method, one can perform real-
time and online segmentation of quasi-3D volumes, enabling
immediate feedback and analysis during experiments.
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