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limited labeled data is available. A subclass of problems, called Positive-Unlabeled (PU) learning, focuses
on cases in which the labeled instances contain only positive examples. Given the lack of negatively
labeled data, estimating the general performance is difficult. In this paper, we propose a new approach to
approximate the  score for PU learning. It requires an estimate of what fraction of the total number of
positive instances is available in the labeled set. We derive theoretical properties of the approach and apply
it to several datasets to study its empirical behavior and to compare it to the most well-known score in the
field, LL score. Results show that even when the estimate is quite off compared to the real fraction of
positive labels the approximation of the  score is significantly better compared with the LL score.
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Abstract. Semi-supervised learning can be applied to datasets that
contain both labeled and unlabeled instances and can result in more
accurate predictions compared to fully supervised or unsupervised learn-
ing in case limited labeled data is available. A subclass of problems,
called Positive-Unlabeled (PU) learning, focuses on cases in which the
labeled instances contain only positive examples. Given the lack of neg-
atively labeled data, estimating the general performance is difficult. In
this paper, we propose a new approach to approximate the F1 score for
PU learning. It requires an estimate of what fraction of the total number
of positive instances is available in the labeled set. We derive theoretical
properties of the approach and apply it to several datasets to study its
empirical behavior and to compare it to the most well-known score in
the field, LL score. Results show that even when the estimate is quite off
compared to the real fraction of positive labels the approximation of the
F1 score is significantly better compared with the LL score.

1 Introduction

There has been a keen interest in algorithms that can learn a good classifier by
using both labeled and unlabeled data. The field addressing such data is called
semi-supervised learning (cf. [2]). Semi-supervised learning algorithms exploit
the labeled data just like supervised learning algorithms do, but in addition take
the structure seen in the unlabeled data into account to improve learning. Based
on this combination, the algorithms are able to surpass the performance of fully
supervised and unsupervised algorithms on partially labeled data (see e.g. [7]).

One category of problems in semi-supervised learning focuses on learning
from datasets that only have positively labeled and unlabeled data, referred to
as Positive-Unlabeled (PU) learning. PU learning is seen in multiple application
domains (see e.g. [2,10,12]). The F1 score is a prominent metric in classification
problems in general, because taking both the precision and recall into account is
desirable. This allows one to select the best model. However, in PU learning, since
there are no negatively labeled examples available it is impossible to directly
c© Springer Nature Switzerland AG 2020
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2 S. A. Tabatabaei et al.

compute the F1 score. Attempts to mitigate this problem have been proposed.
For example, the LL score (cf. [5]) shows approximately the same behavior as
the F1 score without the need to have negatively labeled examples. However, in
absolute terms, it can be quite off from the real F1 score.

In this paper, we present a novel approach to estimate the F1 score for a
PU learning scenario. This estimator assumes an additional piece of information
on top of the performance on the positively labeled data, namely an estimation
of what fraction of labeled cases is available compared to the entire number of
positive samples in the dataset. This assumption is in many cases not unrealis-
tic and we show that even when the estimation is somewhat off, the proposed
estimator still performs better than the popular LL score. We mathematically
specify the approach and perform a mathematical analysis whereby we deter-
mine the sensitivity of the novel approach to mistakes in the estimation of the
fraction of positive labels. On top of that, we conduct a number of experiments,
both using generated and real life data. We compare the estimates of both the
LL score and our newly introduced approach and show that the estimates using
our approach are: (1) significantly closer to the true F1 score, and (2) better at
selecting the “best” model out of a set of models.

The rest of this paper is organized as follows. The formal problem description
is given in Sect. 2. Related work is presented in Sect. 3, while our proposed
approach is introduced in Sect. 4 together with the mathematical analysis of the
approach. The experimental setup and accompanying results are described in
Sect. 5 and 6 respectively. Finally, Sect. 7 concludes the paper.

2 Problem Formulation

Let us begin with formally specifying PU learning. Assume instances i ∈ M
which are specified by their feature vector xi ∈ R

d, corresponding label yi ∈
{−1, 1} and by the availability of the label si ∈ {0, 1}. Here, M := {1, . . . , M}
is the set of observations and d is the number of features. If, for an instance i,
the label is available (si = 1), then it is always positive (yi = 1). If the label is
not available (si = 0), it can be either positive or negative. More specifically, let
P ⊆ M be the set of observations with a positive label. Let S ⊆ P be the subset
of observations for which the positive label is provided. Consequently, the labels
of the observations in U := M\S are not known.

An important assumption in most PU learning algorithms is that positive
labeled instances are Selected Completely At Random among positive examples
(SCAR assumption). This assumption lies at the basis of most PU learning
algorithms [1]. Hence, S is a random subset of P under SCAR.

Using S and U we want to build a classifier f which can predict the label
of the cases in U , i.e. ideally f(xi) = yi for i ∈ U . It should be stressed that,
during the training and validation process, the final target of instances outside
of S is not available. Therefore, learning should be done based on S combined
with properties from the unlabeled data U .
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Estimating the F1 Score for Learning from Positive and Unlabeled Examples 3

3 Literature Review

In this section, to provide an intuition of PU learning algorithms, we briefly
introduce the commonly used two-step strategy. This is followed by metrics which
estimate the performance of the resulting models.

3.1 PU Learning Algorithms: Two-Step Strategy

A well-known class of PU learning algorithms is the two-step strategy (cf. [7]). In
step 1, a set of reliable negative instances is chosen from the unlabeled instances
U . It divides U into two sets: NR and U\NR. In step 2, the algorithm iteratively
adds more instances to NR, which are used as negative examples in the next
iterations. This procedure is repeated until a convergence criterion is met or
when no more instances are added to NR. There are several techniques for each
of these steps. For example, the spy technique [8] and the Ricchio technique [6]
are used for the first step. The EM algorithm [8] can be a natural choice for the
second step. A deeper review about two-step techniques can be found in [7].

3.2 Performance Estimation

To select the classifier with the best generalizable performance, some evaluation
is needed. In normal supervised learning, the F1 score is a common performance
measurement for binary classifiers. It is expressed as follows:

F1 = 2 · recall · precision
recall + precision

,

with

recall =
TP

TP + FN
=

∑
i∈M 1{f(xi)=1,yi=1}(i)
∑

i∈M 1{yi=1}(i)
=

P1

P

precision =
TP

TP + FP
=

P1∑
i∈M 1{f(xi)=1}(i)

=
P1

M1
.

Here, 1{·} represents the indicator function. Moreover, P := |P| is the number
of positive instances and P1 is the number of positive instances which are also
predicted to be 1, i.e. the number of true positives (TP). M1 is the total number
of observations which are predicted as positive.

In PU learning, the target label yi is not available for unlabeled instances
(with si = 0). Therefore, calculating the precision and recall is not directly pos-
sible. However, under the SCAR assumption, we expect the fraction of predicted
positives in S to be the same as the fraction of predicted positives in P:

E
(

S1

S

)
SCAR=

P1

P
,
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4 S. A. Tabatabaei et al.

with S1 the number of predicted positives in S and S := |S|. Because of SCAR,
the behavior of the classifier on S represents its behavior on P. Hence, the recall
can be estimated by

rec =
∑

i∈S 1{f(xi)=1}(i)
S

=
S1

S
.

However, it is difficult to approximate the value of the precision, because it is
less straightforward to obtain an estimate of P1/M1. This also means it is hard
to estimate the F1 score in PU learning. To solve this, multiple approaches exist,
of which the LL score is commonly used. This score is given by

LL =
rec2

M1/M
=

S2
1 · M

S2 · M1
.

It can be directly calculated from a validation set, which contains positive and
unlabeled examples. Moreover, it is shown that

recall2

M1/M
=

P 2
1 · M

P 2 · M1
=

(P1/M1) · (P1/P )
P/M

=
precision · recall

P/M
.

Therefore, the LL score also has an estimation of the precision in its definition.
It is claimed that the LL score has roughly the same behavior as the F1 score: a
high value of the LL score means both precision and recall are high, while a low
value means that either recall or precision is low [5].

4 Estimating the F1 Score

In this section, we present our approach to estimate the F1 score in a PU learning
problem. It is based on the assumption that we have an approximation of the
fraction of positive instances that are labeled. Moreover, we analyze our approach
mathematically.

4.1 Approach to Estimate F1-score

First, we show how the precision can be estimated with the fraction ρ, defined
as ρ := S/P . Under SCAR, E(S1/ρ) SCAR= P1, which yields

prec =
(1/ρ)

∑
i∈S 1{f(xi)=1}(i)

∑
i∈M 1{f(xi)=1}(i)

=
S1

ρ · M1
.

The F1 score can now be estimated by

F1 := 2 · rec · prec
rec + prec

= 2 · (S1/S) · (S1/(ρ · M1))
(S1/S) + (S1/(ρ · M1))

= 2 · S1

ρ · M1 + S
,

while the actual F1 score is given by

F1 = 2 · ρ · P1

ρ · M1 + S
.

A
ut

ho
r 

Pr
oo

f



Estimating the F1 Score for Learning from Positive and Unlabeled Examples 5

We are interested in how the approximated F1 differs from the actual F1 score
given a dataset and trained classifier f . Hence, we define the variable ΔF1 as:

ΔF1 := F1 − F1 = 2 · S1 − ρ · P1

ρ · M1 + S
.

The actual F1 score is fixed, but F 1 depends on which subset of P is chosen to be
labeled. The number of predicted positive observations S1 has a hypergeometric
distribution [9] with P the population size, P1 the number of ‘success states’ in
the population and S the number of draws. An observation is ‘successful’ in this
context if it is a true positive. Thus, S1 ∼ Hypergeometric(P, P1, S). Then,

E(S1) = S · P1

P
= ρP1,Var(S1) = S · P1(P − P1)(P − S)

P 2(P − 1)
=

ρ(1 − ρ)P1(S − ρP1)

S − ρ
.

We have for the approximated recall, precision and F1 score:

E(rec) =
ρ · P1

S
= recall, Var(rec) =

Var(S1)
S2

,

E(prec) =
ρ · P1

ρ · M1
= precision, Var(prec) =

Var(S1)
ρ2M2

1

E(F1) = 2 · ρ · P1

ρ · M1 + S
= F1, Var(F1) =

4 · Var(S1)
(ρM1 + S)2

.

Since the expected values of the estimators are equal to the actual performance
metrics, the estimators are unbiased.

4.2 Estimating ρ

Since ρ = S/P , and the size S of S is given, estimating P means estimating ρ.
There are different approaches to estimate this value. We will not elaborate on
this for the sake of brevity, but known approaches exploit domain knowledge or
prior experiences with similar datasets. Or they use a classifier to make this esti-
mate. In the remainder of the paper we use a classifier-based approach following
[4] and also evaluate how well it works for real life cases.

4.3 Behavior Under Noisy ρ

Now, we analyse what the theoretical implications of a noisy ρ are on our estima-
tors of the recall, precision and F1 score. We assume that we do not know the real
value of ρ ∈ (0, 1]. Let the random variable ρ indicate an estimator of ρ. In this
case, ρ represents the probability that a positive observation is labeled. Since
our estimator of the recall does not involve ρ, the distribution of rec remains
the same when ρ is replaced by ρ. However, the estimator of the precision does
change:

precρ =
S1

ρ · M1
. Consequently, E(precρ) =

E(S1)
M1

· E
(

1
ρ

)

=
ρP1

M1
· E

(
1
ρ

)
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6 S. A. Tabatabaei et al.

Var(precρ) =
1

M2
1

[

E(S2
1) · E

(
1
ρ2

)

− E(S1)2 · E
(

1
ρ

)2
]

=
Var(S1) · E

(
1
ρ2

)
+ ρ2P 2

1 · Var
(

1
ρ

)

M2
1

.

This means precρ is an unbiased estimator only when E(1/ρ) = 1/ρ, which in
general is not true. More specifically, consider the convex function ϕ : (0, 1] →
[1,∞) given by ϕ(x) = 1/x. Hence, by Jensen’s inequality, ϕ(E(X)) ≤ E(ϕ(X))
for random variable X and convex function ϕ. Thus, 1/ρ ≤ E(1/ρ), and so

E(precρ) =
ρP1

M1
· E

(
1
ρ

)

≥ P1

M1
= precision.

The approximated F1 score with noisy ρ is given by

F1ρ := 2 · S1

ρ · M1 + S
.

The expected value of this estimator is at least equal to the actual F1 score,
which means it is biased. We show this again using Jensen’s inequality and the
convex function ϕ : (0, 1] → ( 1

M1+S , 1
S ] given by ϕ(x) = 1

M1·x+S . Now,

E(F1ρ) = 2E(S1) · E
(

1
ρ · M1 + S

)

≥ 2E(S1) · 1
E(ρ) · M1 + S

= 2 · ρ · P1
1

ρ · M1 + S
= F1.

Consequently, when the fraction of labeled observations among the positive
instances is deemed stochastic with an arbitrary distribution, then both the
estimators of the precision and F1 score are expected to overestimate.

5 Experimental Setup

In order to evaluate our approach we empirically compare it to the real F1 score
and to the behavior of the LL score on four different datasets 1. For these datasets
the ground truth for all instances is available.

5.1 Datasets and Setup

Generated Dataset. The first dataset, or actually set of datasets, is generated
randomly. These datasets contain two features X1,X2 ∈ [0, 1] and points are
generated uniformly random. In order to assign the points to one of the two
classes (y = 0 or y = 1), their position is compared to a randomly generated line
1 All code is available on Github: https://github.com/SEYED7037/PU-Learning-

Estimating-F1-LOD2020-.
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Estimating the F1 Score for Learning from Positive and Unlabeled Examples 7

(a) Example of generated dataset. (b) Randomly generated linear clas-
sifiers

Fig. 1. Example of a generated dataset with accompanying classifiers. Positive labels
are red and negatives are blue. Labeled samples are highlighted with a gray circle.
(Color figure online)

(X1−X2+0.2 = 0). The classes are assigned to the points based on their position
compared to this line. We then select a random sample (SCAR assumption) of
size ρ · P of the positive examples (y = 1) to act as S (with value s = 1) and
take the rest as U (with s = 0). Figure 1a shows a randomly generated dataset,
and Fig. 1b shows a set of linear classifiers which are generated randomly.

IRIS Dataset is a popular dataset in pattern recognition and machine learn-
ing literature [3]. It contains 3 flower classes (setosa, versicolor and virginica) of
50 instances each. There are 4 features available for each instance. By taking the
last class (virginica) as positive and the two others as negative, it transfers to a
binary classification problem. These two classes are not linearly separable. We
again made a random fraction ρ of all positively labeled data points available as
S, the rest being U . 4-D hyper planes were generated randomly to act as linear
classifiers.

Heart Disease Dataset is well-known in pattern recognition literature [3].
The data contains both numerical and categorical features. The goal of models
applied to this dataset is to predict the presence of heart disease in a patient.
In our experiments, we trained random forest models with different numbers of
estimators (randint(1, 100)) and maximum depth (randint(1, 10)).

Health Dataset was obtained from the VU University Medical Center and
contains event logs of more than 300,000 patients. For more information about
this dataset, please take a look at [10]. The goal is to identify certain types of
patients based on their event log. Part of these patients are labeled as having
kidney disease, others are labeled as diabetes, and the rest have another disease.
For each disease, a fraction ρ of positive examples were randomly selected as
labeled examples S, while the rest were taken as unlabeled examples U . Following
[10] two features are present in the dataset to predict the label, namely X1,X2 ∈
Z which summarize the care paths of patients in a way that patients with that
disease are optimally separable. A classifier is defined by a set of two thresholds,
(θ1, θ2). An instance will be predicted as positive if X1 > θ1 and X2 > θ2.
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8 S. A. Tabatabaei et al.

5.2 Experimental Conditions and Performance Metrics

We compared our approach to the LL score based on two metrics: (1) distance
to the real F1 score; and (2) percentage of inversions. We compute the RMSE to
measure the distance to the F1 score. Computing the percentage of inversions,
which is the key in showing that the right model was selected and thus our most
important outcome, is a bit more difficult. The inversions were used to show
how often the wrong model was selected based on either F1 or the LL score
compared to the actual F1 score. To this end, we took the different classifiers
for each dataset and compared them pairwise. Each time a classifier that has a
higher F1 score compared to the other classifier is ranked lower we call this an
inversion. Hence, we want to minimize the number of inversions. We compared
the results using a Wilcoxon paired test to show possibly significant differences.

We conducted three types of experiments, namely: (1) empirically study-
ing the assumptions and theoretical results of our approach; (2) evaluating the
performance of the approach with the true value of ρ being available; and (3)
evaluating the performance with noisy ρ. Each is explained in more detail below.

Empirical Evaluation of Assumptions. As has become clear, we make the
assumption that ρ can be estimated. We have presented various approaches to
estimate ρ, one of which involves a classifier g. This estimator is exactly correct if
g(x) = Pr(s = 1|x) for all x, but usually this condition does not hold in practice.
To show the applicability of this technique (and how easily we can obtain the
crucial ρ) we used the IRIS data and the generated data with different values
of ρ and estimated the value of ρ using a trained classifier on the labeled data
points. We conducted this experiment 100 times per value of ρ. To get more
accurate results, we used the one-leave-out cross-validation technique.

Secondly, we evaluated another part of our approach, namely our result on
the bounds. In this experiment, we again used the generated and IRIS datasets
and took one randomly selected linear classifier with a real F1 score of 0.44. We
then took different values for ρ and for each value drew a random sample 100
times, thereby estimating the F1 score using our approach. We used these results
to compute the mean estimated value and the confidence bounds. We compared
these to the bound following our mathematical result.

Performance Evaluation with Correct ρ. To evaluate the approach com-
pared to the LL score, we first assume ρ to be known and correct. For these
experiments, we selected the value of ρ ranging from 0 to 1 with increments of
0.01. For each setting of ρ for the generated data we generated 200 datasets and
100 random lines to act as classifiers. For the IRIS and the health dataset we
generated 100 random classifiers. We measured the performance for both the
deviation of the F1 score and number of inversions.

Performance Evaluation with Noisy ρ. For the noisy ρ we varied the noise
level and use the same experimental setup as presented under the correct ρ case.
The noise level was varied from a 50% underestimation to a 100% overestimation.
Due to the computational complexity, we only studied this part on the generated
data and IRIS dataset and measure the percentage of inversions. Table 1 gives
a brief overview of the datasets used for the various experiments.
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Estimating the F1 Score for Learning from Positive and Unlabeled Examples 9

Table 1. Datasets used for the various experiments.

Experiment Generated
data

Iris Heart
Disease

Health

Estimating ρ X X

Evaluating bounds X X

Perf. Eval. Correct ρ - F1 X X X X

Perf. Eval. Correct ρ - Inversions X X X X

Perf. Eval. Noisy ρ - Inversions X X

6 Results

First, we report the results of the empirical evaluation of the assumptions fol-
lowed by experiments in which the correct value of ρ was known. Then, we
explore the cases where the value of ρ was noisy (either under- or overestimated).

6.1 Checking the Assumptions

Figure 2 shows the results on the estimation of ρ through our classifier including
confidence bounds. We see that as ρ increases the variability of the estimation
decreases, which makes sense as a small sample will make the estimation very
sensitive to the sample drawn. However, it can be seen that estimations are very
reasonable. We do not observe any obvious difference in the estimation behavior
between the generated dataset (Fig. 2a) and the IRIS dataset (Fig. 2b).

Our second study about the underlying assumptions concerns our estimation
of the bounds. Figure 3 shows the empirical results for various values of ρ, the
empirical mean and bounds and the computed mean and bounds based on our
mathematical results for both the generated and IRIS datasets. Results show
that the two align very well for both datasets.

(a) Generated Dataset (b) IRIS Dataset

Fig. 2. Estimating ρ using a classifier (see [4]). For each value of ρ, this experiment is
conducted 50 times. Mean, minimum, maximum, 10 and 90 percentiles are reported.
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10 S. A. Tabatabaei et al.

(a) Generated Dataset (b) Iris Dataset

Fig. 3. Expected value and standard deviation of estimated F1 for different values of
ρ. Each gray point shows F1 for one set of labeled data points. Points which overlap
become darker. The empirical mean and bounds of F1 are shown by the blue and red
dashed line respectively while the mean and bounds computed based on our mathe-
matical result are shown by blue and red dashes respectively.

Table 2. RMSE of real F1 vs. F1 and F1 vs. LL score. For all cases, ρ = 0.30.

Generated IRIS Heart disease Health

F1 0.064 0.060 0.089 0.060

LL-score 0.772 0.420 0.344 0.623

6.2 Correct ρ

Let us move on to measuring the performance of our approach. We start by
considering the case in which ρ was equal to the true value. Table 2 reports
the RMSE for different datasets. The RMSE for our approach is much smaller
compared to the LL score. This was also to be expected as the proposed score is
an estimation of F1, while the LL score aims to approximate the behavior of the
F1 score and not necessarily its actual value. Most important to observe (as our
aim is model selection and hyperparameter optimization) is that our estimated
values are monotonically increasing with the true F1 score. Therefore, our central
metric is the number of inversions when performing model selection. Figure 4.a
shows the results for the generated dataset for varying values of ρ. We see that
as ρ increases the difference in performance between our approach and the LL
score increases in favor of the approach we put forward. Also the confidence
intervals become smaller as ρ increases. We also see that our approach never
performs worse. Results of a paired Wilcoxon signed-rank test [11] show that for
values of ρ > 0.05 the number of inversions caused by sorting classifiers based on
the F1 score is significantly lower than those by the LL score. Moving on to the
IRIS dataset, Fig. 4.b shows the average number of inversions for different values
of ρ. Our approach is significantly better when ρ > 0.02. For the heart disease
dataset, the Wilcoxon paired test shows a significant better performance for our
approach for ρ > 0.02. Finally, for the real-life health datasets our approach is
significantly better when ρ > 0.08 for kidney disorder and ρ > 0.02 for diabetes.
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Estimating the F1 Score for Learning from Positive and Unlabeled Examples 11

(a) the artificially generated data (b) The Iris [3] data

Fig. 4. Number of inversions of both the LL score (red line) and the proposed F1 (blue
line) including confidence bounds for different values of ρ.

(a) Generated Dataset (b) IRIS Dataset

Fig. 5. Effect of error in estimated ρ on the percentage of inversions.

6.3 Noisy ρ

In many cases, we do not know the exact value of ρ and might only be able to
estimate it (see our first set of experiments). Figure 5 shows how under- and
overestimations influence the number of inversions of our proposed approach for
the generated data and the IRIS dataset. Here, the true value of ρ is multiplied
with a value c. When considering the generated dataset, we see that only for a
value of c = 0.5, i.e. an extreme underestimation of ρ, the proposed approach
scores worse compared to the LL score. For the IRIS dataset, we see a similar
pattern, except that also for a value of c = 2, i.e. a severe underestimation, our
performance is worse. This shows that suffering from a bit of noise does not
hamper our approach.

7 Conclusion

In this paper we have introduced a novel way of estimating the F1 score to
enable model selection and hyperparameter tuning in PU learning. This novel
method is based on the assumption that an estimation can be made on the
fraction of labeled positive cases. A mathematical analysis was performed to
show the expected value of the estimation with respect to the real F1 score.
Also, we analyzed what the influence of stochasticity in ρ is on the estimations.
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12 S. A. Tabatabaei et al.

We showed that the estimators become biased when ρ is noisy, while they are
unbiased when there is no noise.

Furthermore, we conducted experiments to evaluate our assumptions empir-
ically, showing that the approach is practically applicable. On top, we have
empirically compared our proposed approach to a well-known metric for model
selection, namely the LL score. Results show that our approach (1) is closer to
the true F1 score, and (2) has fewer wrong selections of models (i.e. inversions)
compared to the LL score for a variety of datasets. Both cases only hold for
sufficiently large samples of training data, though the approach never performs
worse. When considering wrongly estimating the fraction of positive labels we
see that only severe underestimations hamper performance compared to the LL
score. Our approach also brings advantages that the whole family of F scores
can now be estimated.
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