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Abstract—In many ultrasonic imaging systems, data acquisi-
tion and image formation are performed on separate computing
devices. Data transmission is becoming a bottleneck, thus, effi-
cient data compression is essential. Compression rates can be
improved by considering the fact that many image formation
methods rely on approximations of wave-matter interactions,
and only use the corresponding part of the data. Tailored data
compression could exploit this, but extracting the useful part
of the data efficiently is not always trivial. In this work, we
tackle this problem using deep neural networks, optimized to
preserve the image quality of a particular image formation
method. The Delay-And-Sum (DAS) algorithm is examined which
is used in reflectivity-based ultrasonic imaging. We propose
a novel encoder-decoder architecture with vector quantization
and formulate image formation as a network layer for end-
to-end training. Experiments demonstrate that our proposed
data compression tailored for a specific image formation method
obtains significantly better results as opposed to compression
agnostic to subsequent imaging. We maintain high image quality
at much higher compression rates than the theoretical lossless
compression rate derived from the rank of the linear imaging
operator. This demonstrates the great potential of deep ultrasonic
data compression tailored for a specific image formation method.

Index Terms—deep learning, compression, Delay-And-Sum,
fast ultrasonic imaging, end-to-end training

I. INTRODUCTION

Ultrasonic imaging is becoming faster, more portable and
is being utilized in remote locations [1]. This leads to many
clinical and industrial applications where data acquisition
and ultrasonic image formation are performed on separate
computing devices. Often, data transfer is performed across
very limited capacity channels. Combined with the rise of
3D ultrasonic imaging and the increasing amount of data, fast
ultrasonic data transfer is becoming a technical barrier.

There have been efforts to improve data transfer by acquir-
ing less data without compromising image quality using com-
pressed sensing (CS) [2], [3] and finite rate of innovation (FRI)
approaches [4]. However, CS relies on randomly weighted
combinations of acquired data which might not always be
possible in hardware. Slow sparse reconstruction algorithms
could also compromise the real-time requirement. In addition,
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assumptions about the data are needed (e.g. sparsity) for both
CS and FRI approaches that do not always hold in practice.

Recently, deep learning methods have been introduced for
ultrasonic imaging using a limited amount of data [5] - [8].
In addition, deep learning has been applied for ultrasonic
data compression and decompression [9]. Data reduction rates
obtained by generic compression schemes can be further im-
proved using a key idea from our work. That is, we explicitly
take the end goal into account, which is to form an image of
sufficient quality to guide decision making processes. This is
beneficial since many ultrasonic image formation methods rely
on approximations of the acoustic wave-matter interactions.
This translates to using only the corresponding part of the data
which is a small fraction of the original. However, extracting
the useful part of the data efficiently is not always trivial.

In this work, we tackle this problem using deep neural net-
works. We propose a novel encoder-decoder architecture with
vector quantization in the bottleneck and explicitly include
the image formation as a network layer. It results in a data-to-
image compression optimized to preserve the image quality of
a particular image formation method. Here, we examine the
Delay-And-Sum (DAS) algorithm used in reflectivity-based
imaging. In section 2, we describe the ultrasonic data acquis-
tion and image formation. Then, in section 3, we introduce our
proposed data-to-image compression. In section 4, we include
experiments on simulated data and compare our approach with
data-to-data compression, agnostic to image formation.

II. ULTRASONIC IMAGING

During data acquisition, a pulsed ultrasonic wave is trans-
mitted into a medium of interest using source at location
rs. Receivers at locations r,, capture the resulting wave
field which contains information about the medium’s acoustic
properties. Data acquisition continues with the next source
firing until all elements have been used as sources, which
leads to data, f € R™*™=*"r [10], [11]. The number of time
samples, sources and receivers is n;, ns and n, respectively.
The aim is to obtain an image, u € R"=*"= with n, and n,
being the pixels in horizontal and vertical directions.

We consider the DAS image formation which calculates
travel times, 7(p;,rs, Ty, ), between each source r,, image
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Fig. 1: The encoder is a 3D DCNN, &y, that uses striding to downsample feature maps. At the bottleneck, a vector quantization
layer is used to compress the code further. A shared codebook maps the output of the encoder, e, to the closest codes via a
nearest neighbour search. A 2D depiction is included for illustration purposes in the bottom left corner. The indices to these
codes are transmitted and the feature maps, €, are recovered. These are passed to the decoder, Dy, which has a similar, albeit
in reverse, architecture to that of the encoder. It is followed by the DAS operator, 3. Feature maps are followed by Group
Norm and ReL.U (tanh is used at the last feature map of decoder). Only one filter at one location per layer is illustrated.

point, p; and receiver, r,,. It performs a delay operation in the
data and a sum across all combinations of travel times. Thus,

Ns Ny

U; = Z Z f(T(pi,rs»rm)aSam)a

s=0 m=0

6]

which is repeated for all image points to form an image. The
whole process can be written as,

u = Bf, )

where B : R™t*"sXnr _ R72 XM= g g linear operator. We will
refer to this as DAS operator hereafter. As DAS corresponds
to a linear operator, the best lossless linear compression is
given by the projection onto its row-space. The corresponding
compression rate is the ratio between the size of the data and
the rank of 3. However, this projection is difficult to compute
and apply in practice.

III. PROPOSED DATA-TO-IMAGE COMPRESSION

To achieve practical and high data compression rates, we
propose a novel encoder-decoder architecture with a vector
quantization layer in the bottleneck and explicitly incorporate
the DAS operator as an image forming network layer. Figure 1
depicts the proposed data-to-image compression architecture.

The encoder is composed of a 3D deep convolutional neural
network (DCNN) with varying number of layers depending
on the desired compression rate. Each layer has 32 filters
except for the last layer which has 256. Each filter has
5 x 5 x b dimensions. We use a stride of 2 at various layers to

downsample the feature maps for compression. The encoder
defines a mapping, &, and its output is given by,

e =Ep(f), 3)

where e € R Xn2xnsXD o and ng are the dimensions
of the reduced data and D = 256 is the number of filters in the
last layer of the encoder. The encoder’s compression rate de-
pends on the dimensions of these feature maps which depend
on the stride, filter dimensions and number of layers. We can
compress this latent space further using vector quantization.

Inspired by the Vector Quantised Variational AutoEncoder
(VQ-VAE) [12], we use a vector quantization layer at the
output of the encoder. A shared codebook, C € RDPXL,
is introduced which is composed of entries, {c1,ca,...,cp},
with each code, ¢; € R” and the corresponding index set,
Z ={1,...,L}. The number of codes in the codebook we use,
L, is 512. The output of the vector quantization layer is,

q= Qé(e)a

with q € Z"tX"2X"3 and
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where e; ;1. € RP. This is a nearest neighbour search resulting
in a 3D latent code, q, with each entry corresponding to an
index. This can be viewed as a non-linearity that maps the
output of the encoder to 1-of-L vectors. A 2D depiction can
be seen at the bottom left corner of Figure 1.



The feature maps, & € R™1x"2xnsxD are recovered using
the indices, q, and the shared codebook as,

& = QL (q), (6)

where each entry corresponds to a code, €; jx = ¢y, ;- The
decoder, Dy, uses these recovered feature maps and outputs,

f=Dy(8), (7)

where f € R™X7sXnr Jts architecture resembles that of
the encoder in reverse (using upsampling). Subsequently, we
include the image formation, 3, into the network by imple-
menting a layer that applies the DAS algorithm to input data
and the adjoint of this operation to images to enable end-to-
end training using back propagation. Skip connections are used
in the encoder and decoder in intermediate layers to enable
better information flow and reduce training time [13]. Weight
Standardization [14] and Group Normalization [15] is used
which helps training stability.

Loss function and training strategies

Training involves the learning of parameters, {0, C, ¢}, for
the encoder, the shared codebook, and the decoder. To achieve
this, we would like to optimize

6,C,¢) = %gmin [u® — BD(QL(QE(Ea(£D))) 2.
A ®)

Unfortunately, Q1 and Q% are not differentiable which means
that at the encoder/decoder bottleneck, there is no real gradi-
ent. We approximate it using the straight-through estimator
[12]. This translates to just copying the gradients from the
decoder input to the encoder output. These gradients contain
information as to how the encoder should change its output.
However, the straight-through estimator does not allow any
gradients to flow through the codebook. To learn the codebook
space, we add a term in the loss to move the codebook entries,
c;, closer to Eg(f). Given that the codebook entries could
change without any constraint, we would like to enforce the
encoder to commit to a codebook. Thus, a commitment loss
term is also necessary. The overall loss function is given by,

(6,C. ) = %gén;r)lz lu' — BDg(Ea(£))II3+

Z Isg(€a(£7)) — Cl3 + Z 1€6 (£7) —sg(C)3, (9

where sg() is the stop-gradient operator. It is defined as identity
in the forward pass and it has zero derivatives. The first term
of the loss function is the data misfit which optimizes the
weights for both the encoder and the decoder. The second
term optimizes the codebook space only and the third term
optimizes the weights of the encoder only.

We examine two training strategies: the first is our proposed
data-to-image compression which optimizes equation (9) using
{£@ 1N | The second strategy is a data-to-data compres-
sion agnostic to DAS, which optimizes equation (9) but we
replace its first term by >, [ — Dy (Ee(£9))||3. Tt uses
only {f(}N  as training data.

IV. EXPERIMENTS

To evaluate our proposed approach, we examine ultrasonic-
based non-destructive inspection of pipelines. We simulated
ultrasonic data using k-Wave [16]. The number and location
of defects in a pipeline were randomly varied, resulting in 770
scenarios (training: 700, test: 70). An example of a speed of
sound map for a random scenario is shown in Figure 2(a). The
pipeline was modelled as carbon steel with speed of sound,
s = 5920 m/s, the defects and the pipe wall were modelled as
air, s = 343 m/s. The data domain is 1020 x 64 x 64 with 64
elements, 1020 time samples and 50 MHz sampling frequency.
The image domain is set to 72 x 118. The simulated data
were used as input during training and the corresponding DAS
images were used as targets. An example of a target image
can be seen in Figure 2(b). Using this data simulation setup,
the DAS operator is defined as B € R(72x118)x(1020x64x64)
Therefore, the best lossless linear compression would have

: 1020x64x64
compression rate of =252 ~ 492.

Data-to-image vs data-to-data compression

Using our proposed architecture, we can vary the compres-
sion rate by adding layers. We examine two compression rates,
one that is close to the best lossless linear rate and one that
is higher. We train our proposed data-to-image compression
as well as a data-to-data compression, agnostic to subsequent
image formation as discussed in the previous section.

The first experiment examines an encoder with 5 layers of
32 filters and a last layer (in total 6) with 256 filters. This
results in a compressed code of 62 x 12 x 12 and gives a
compression rate of % ~ 468. At this compression
rate, the average structural similarity (SSIM) index across the
test set is: 0.93 for our proposed data-to-image compression
and 0.86 for the data-to-data compression followed by DAS.
Figure 2(c) and 2(d) show the decompressed images using
our proposed data-to-image compression and the data-to-data
compression. Both approaches produce high quality images.

The second experiment examines an encoder with 6 layers
of 32 filters and a last layer (in total 7) with 256 filters.
This results in a compressed code of 30 x 10 x 10. This
gives a compression rate of % ~ 1393. At this
compression rate, the average SSIM across the test set is:
0.91 for our proposed data-to-image compression and 0.77 for
the data-to-data compression followed by DAS. Figure 2(e)
shows the decompressed image using our proposed data-to-
image compression tailored towards DAS. We can see that
all defects are imaged with great accuracy. Figure 2(f) shows
the decompressed image using data-to-data compression. One
defect is correctly localized but the two others are not imaged
accurately, deeming their precise localization challenging.

V. CONCLUSION

Deep learning is being utilized for more and more tasks
in fast ultrasonic imaging, including for data compression in
between acquisition and image formation. The compression
rates obtained by generic compression schemes can be im-
proved significantly if the goal of image formation is taken
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Fig. 2: Two different compression rates are shown using two compression strategies. (a) Speed of sound map (white: air, black:
carbon steel), (b) DAS image from original data, (c) data-to-image compression (SSIM = 0.94, compression rate ~ 468), (d)
data-to-data compression followed by DAS (SSIM = 0.85, compression rate ~ 468), (e) data-to-image compression (SSIM =
0.92, compression rate ~ 1393), (f) data-to-data compression followed by DAS (SSIM = 0.77, compression rate ~ 1393).

into account, and compression networks are trained end-to-
end towards this objective. In this work, we proposed a
novel encoder-decoder architecture that explicitly incorporates
the DAS imaging operator as a network layer. This way,
the network can exploit the approximations and reductions
of acoustic wave-matter interactions performed by image
formation. This achieves data-to-image compression, where
the raw data is transformed into a compressed code through
vector quantization that exploits patterns in acoustic waves
via a codebook. Then, the data are decompressed directly
into an image. We compared the proposed data-to-image
compression against a data-to-data compression that optimizes
weights without any information on the subsequent image
formation method. Experiments show that our proposed data-
to-image compression obtains much better image quality, for
our application, at compression rates that are considerably
higher than the theoretical best lossless linear compression
rates. This illustrates the great potential of designing deep data
compression methods tailored to an image formation method.
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