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Abstract

Graph sparsification underlies a large number of algorithms, ranging from approximation
algorithms for cut problems to solvers for linear systems in the graph Laplacian. In its strongest
form, “spectral sparsification” reduces the number of edges to near-linear in the number of nodes,
while approximately preserving the cut and spectral structure of the graph. The breakthrough
work by Benczúr and Karger (STOC’96) and Spielman and Teng (STOC’04) showed that spar-
sification can be done optimally in time near-linear in the number of edges of the original graph.

In this work we show that quantum algorithms allow to speed up spectral sparsification, and
thereby many of the derived algorithms. Given adjacency-list access to a weighted graph with n
nodes and m edges, our algorithm outputs an ε-spectral sparsifier in time Õ(

√
mn/ε). We prove

that this is tight up to polylog-factors. The algorithm builds on a string of existing results, most
notably sparsification algorithms by Spielman and Srivastava (STOC’08) and Koutis and Xu
(TOPC’16), a spanner construction by Thorup and Zwick (STOC’01), a single-source shortest-
paths quantum algorithm by Dürr et al. (ICALP’04) and an efficient k-wise independent hash
construction by Christiani, Pagh and Thorup (STOC’15). Combining our sparsification algo-
rithm with existing classical algorithms yields the first quantum speedup, roughly from Õ(m) to
Õ(
√
mn), for approximating the max cut, min cut, min st-cut, sparsest cut and balanced sepa-

rator of a graph. Combining our algorithm with a classical Laplacian solver, we demonstrate a
similar speedup for Laplacian solving, for approximating effective resistances, cover times and
eigenvalues of the Laplacian, and for spectral clustering.
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1 Introduction and Summary

1.1 Graph Sparsification

The complexity of many graph problems naturally scales with the number of edges in the graph.
Graph sparsification aims to reduce this number of edges, while preserving certain quantities of
interest. When considering for instance the approximation of cut problems such as min cut or
sparsest cut, the aim is to sparsify the graph while approximately preserving its cut values. This
was first shown to be possible in the pioneering work of Karger [Kar94] and later Benczúr and
Karger [BK96]. They introduced the concept of cut sparsifiers, which are reweighted subgraphs
that ε-approximate all cuts in the graph. We can then solve cut problems in the hopefully sparser
subgraph, yielding an approximate solution to the original problem. Quite surprisingly, they showed
that for any undirected graph with n nodes and m edges, there always exists a cut sparsifier with as
few as Õ(n/ε2) edges, and moreover this sparsifier can be constructed in time Õ(m). This result lies
at the basis of Õ(m)-time approximation algorithms for amongst others min cut [Kar94], min st-
cut [She13, KLOS14, Pen16], sparsest cut and balanced separator [ARV09, She13]. We refer
the interested reader to [PQ82, Shm97] for surveys on the many applications of cut approximation.

In their breakthrough work on Laplacian solvers, Spielman and Teng [ST11] strengthened the
notion of cut sparsifiers to so-called spectral sparsifiers. Rather than preserving the cut structure,
these reweighted subgraphs preserve the spectral structure or quadratic form of the Laplacian as-
sociated to the graph. More specifically, H is an ε-spectral sparsifier of G if

(1− ε)LG � LH � (1 + ε)LG,

with LH and LG the Laplacian matrices associated to H resp. G. Since the value of any cut
can be expressed as a quadratic form in the Laplacian, any spectral sparsifier is necessarily a
cut sparsifier. More importantly it implies that Laplacian systems, which are linear systems in
the graph Laplacian, can be approximately solved using the Laplacian of the sparsified graph.
Similar to the case for cut sparsifiers, Spielman and Teng showed the existence and Õ(m)-time
construction of ε-spectral sparsifiers with Õ(n/ε2) edges. This formed a critical cornerstone of their
Õ(m)-time solver for Laplacian systems, and the string of results and algorithms that followed it -
commonly referred to as the “Laplacian paradigm” [Ten10]. Some examples among these are faster
algorithms for learning [ZGL03, ZHS05], computer vision and image processing [KMT11], spectral
clustering [Vis13, OSV12] and computing random walk properties [CKP+16]. The sparsification
results of Spielman and Teng were later refined most notably by Spielman and Srivastava [SS11]
and Batson, Spielman and Srivastava [BSS12]. In [BSS12], the existence of spectral sparsifiers with
only O(n/ε2) edges was proved, which later inspired the resolution of the famous Kadison-Singer
problem by Marcus, Spielman and Srivastava [MSS15].

1.2 Main Result and Applications

In this work we propose a quantum algorithm for spectral sparsification, leading to the theorem
below. The algorithm builds on a range of quantum and classical results, the most important of
which are classical sparsification algorithms by Spielman and Srivastava [SS11] and Koutis and
Xu [KMP14], a spanner algorithm by Thorup and Zwick [TZ05], a quantum algorithm for single-
source shortest-path trees by Dürr, Heiligman, Høyer and Mhalla [DHHM06] and an efficient k-
independent hash function by Christiani, Pagh and Thorup [CPT15].

Theorem 1. There exists a quantum algorithm that, given adjacency-list access to a weighted and
undirected graph G, outputs with high probability the explicit description of an ε-spectral sparsifier
of G with Õ(n/ε2) edges in time Õ(

√
mn/ε).
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Note that sparsification is only useful when n/ε2 ∈ O(m) and hence ε ≥
√
n/m. This implies

that Õ(
√
mn/ε) ∈ Õ(m), and hence our algorithm provides a quantum speedup over classical

algorithms, whose Õ(m) runtime can be shown to be optimal. For dense graphs, having m ∈ Ω(n2),
this improves the time complexity from Õ(n2) classically to Õ(n3/2). The algorithm outputs an
explicit description of the sparsifier, and has a space requirement of O(log n) qubits and Õ(

√
mn/ε)

classical bits. We prove a matching lower bound, showing that the runtime of our algorithm is
optimal up to polylog-factors. In fact, we show that even outputting a weaker cut sparsifier requires
the same amount of queries.

Theorem 2. Any quantum algorithm that, given adjacency-list access to a weighted and undirected
graph G, explicitly constructs with high probability an ε-cut sparsifier of G has query complexity
Ω̃(
√
mn/ε).

Our algorithm provides a direct speedup for many of the aforementioned applications. In Table 1
we illustrate this speedup for a number of cut approximation problems. All bounds follow by
combining our sparsification algorithm with the best classical algorithms, applied to the sparsifier.
As far as we know, this is the first quantum speedup for these cut approximation problems.

Classical Quantum (this work)

.878-max cut Õ(m) [AK16] Õ(
√
mn)

ε-min cut Õ(m) [Kar00] Õ(
√
mn/ε)

ε-min st-cut Õ(m+ n/ε5) [Pen16] Õ(
√
mn/ε+ n/ε5)

O(
√

log n)-sparsest cut/bal.sep. Õ(m+ n1+δ) [She09] Õ(
√
mn+ n1+δ)

Table 1: Classical and quantum time complexity of cut approximation problems. All quantum
bounds follow from combining our quantum sparsification algorithm with the corresponding classical
algorithm. Parameter δ is an arbitrarily small but positive constant.

We can also use a classical Laplacian solver on the sparsifier to find a speedup for Laplacian
solving, i.e., solving the linear system Lx = b where L is the Laplacian of the original graph.

Theorem 3 (Quantum Laplacian Solver). There exists a quantum algorithm that, given adjacency-
list access to a weighted and undirected graph G, outputs with high probability an approximate solu-
tion x̃ to the linear system Lx = b such that ‖x̃− x‖L ≤ ε‖x‖L in time Õ(

√
mn/ε).

Here ‖v‖L denotes the L-induced norm ‖v‖L =
√
v†Lv = ‖L1/2v‖, with v† the complex transpose of

vector v. This is the typical norm considered for Laplacian solving. This speeds up the dependency
onm with respect to classical solvers [ST14], whose runtime is Õ(m log(1/ε)). We also find quantum
speedups for approximating effective resistances and random walk commute times, creating an
approximate “resistance oracle” which allows to query for the effective resistance of any node pair in
time Õ(1), approximating the random walk cover time, and approximating the bottom eigenvalues
of the Laplacian. Finally we discuss how a spectral sparsifier allows to implement spectral k-means
clustering more efficiently, so that our quantum sparsification algorithm also leads to a speedup for
this task. We summarize our speedups in Table 2, and discuss prior work on quantum algorithms
for some of these problems in Section 1.5.
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Classical Quantum (this work)

ε-Laplacian Solving Õ(m) [ST14] Õ(
√
mn/ε)

ε-Effective Resistance (single) Õ(m) Õ(
√
mn/ε)

ε-Effective Resistances (all) Õ(m+ n/ε4) [SS11] Õ(
√
mn/ε+ n/ε4)

O(1)-Cover Time Õ(m) [DLP11] Õ(
√
mn)

k bottom eigenvalues Õ(m+ kn/ε2) Õ(
√
mn/ε+ kn/ε2)

Spectral (k-means) Clustering Õ(m+ n poly(k)) Õ(
√
mn+ n poly(k))

Table 2: Classical and quantum time complexity of Laplacian solving and some of its applica-
tions. All classical bounds without reference follow from [ST14]. All quantum bounds follow from
combining our quantum sparsification algorithm with the corresponding classical algorithm.

1.3 Quantum Algorithm

Our quantum sparsification algorithm starts from the iterative sparsification algorithm by Koutis
and Xu [KX16]. Their algorithm provides a simple combinatorial counterpart to the usual, algebraic
treatment of spectral sparsification. It crucially relies on the growth of so-called spanners of the
graph, which are sparse subgraphs that approximately preserve all pairwise distances between nodes.
After growing a small number of disjoint spanners in the graph, and keeping these edges, they
downsample the remaining edge set by keeping every edge independently with some fixed constant
probability, and discarding the rest. This results in a sparsifier with approximately half the number
of edges of the original graph. Repeating this procedure a logarithmic number of times results in
an ε-spectral sparsifier with Õ(n/ε2) edges.

The gist of our quantum speedup comes from a faster quantum algorithm for constructing
spanners. This algorithm follows essentially by pairing a classical spanner algorithm by Thorup
and Zwick [TZ05] with the shortest-paths quantum algorithm by Dürr, Heiligman, Høyer and
Mhalla [DHHM06]. More specifically we prove the theorem below, where we call a graph H a
spanner of G if it is a subgraph with O(n log n) edges, and the distance between any pair of nodes
in H is at most log n times their original distance in G. Our algorithm speeds up the classical
Õ(m)-time algorithm by Thorup and Zwick, whose runtime is optimal.

Theorem 4. There exists a quantum algorithm that, given adjacency-list access to a weighted and
undirected graph G, outputs with high probability a spanner of G in time Õ(

√
mn).

We can now try to plug this faster spanner construction in the Koutis-Xu sparsification algorithm.
The problem, however, is that we cannot output the “intermediate” sparsifiers, since after a constant
number of iterations these still have Ω(m) edges, whereas we aim for a runtime that scales with

√
mn.

We overcome this issue using two observations, which will allow us to describe the intermediate
graphs only implicitly.

First we show that if we were given query access to a uniformly random “advice string” of
Õ(m) bits, then we could implicitly mark the discarded edges, and grow spanners in the remain-
ing, unmarked graph without significantly affecting the runtime. Second, we get rid of this long
advice string by using that any (k/2)-step quantum algorithm cannot distinguish a uniformly ran-
dom string from a k-wise independent string, which only behaves uniformly random for subsets of
at most k elements. This is a known result and can be proven for instance using the polynomial
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method [BBC+01]. Hence it suffices that we have access to a k-wise independent random string,
allowing us to use the rich literature on k-independent hash functions that aim to simulate access
to such random strings. Specifically we require the recent result by Christiani, Pagh and Tho-
rup [CPT15], which shows that in Õ(k) time we can construct a data structure that can simulate
queries to a k-wise independent string, requiring only Õ(1) time per query. Prior to their work,
all algorithms required preprocessing time Õ(k1+δ), for δ > 0. Using their construction we can
efficiently simulate the random advice string, which leads to the following claim.

Claim 1. Consider any quantum algorithm with runtime q that uses a uniformly random advice
string. Then we can construct a quantum algorithm without advice string that has the same output
distribution and has a runtime Õ(q).

Combining these observations remedies the issue of having to store the intermediate graphs, and
leads to a speedup of the Koutis-Xu algorithm runtime down to time Õ(

√
mn/ε2).

We then further improve the runtime down to Õ(
√
mn/ε) by combining this quantum sparsifi-

cation algorithm with the sparsification toolbox of Spielman and Srivastava [SS11]. In that work,
they show that a graph can be sparsified very elegantly by sampling edges with weights roughly
proportional to their effective resistances. Complementing this, they propose a near-linear time
constructible “resistance oracle”, which allows to query for effective resistances in logarithmic time.
We use our quantum sparsification algorithm to construct an initial, rough sparsifier with a con-
stant error, in time Õ(

√
mn). We then construct an approximate resistance oracle for this sparsifier,

which effectively yields an approximate resistance oracle for the original graph. Surprisingly, such
rough approximation suffices for constructing an ε-spectral sparsifier using the Spielman-Srivastava
sampling scheme. This finally allows us to sample the Õ(n/ε2) edges of the sparsifier in time
Õ(
√
mn/ε). This idea of using a “poor” spectral approximation to compute sampling probabilities

to obtain a better spectral approximation is also used in [LMP13, CLM+15].

1.4 Matching Lower Bound

We prove that the Õ(
√
mn/ε)-runtime of our quantum algorithm is optimal, up to polylog-factors,

even when we wish to construct a weaker cut sparsifier. The intuition behind this is that an ε-cut
sparsifier of a general graph must contain Ω(n/ε2) edges (and this is tight [BSS12]). If we can
appropriately “hide” these edges among the m edges of a graph, then a quantum search algorithm
requires Θ(

√
mn/ε2) = Θ(

√
mn/ε) queries to retrieve them.

Turning this intuition into a concrete lower bound, however, turns out to be rather complicated.
We start with a random graph construction by Andoni, Chen, Krauthgamer, Qin, Woodruff and
Zhang [ACK+16]. This construction describes graphs on n nodes and Õ(n/ε2) edges, so that any
ε-cut sparsifier must contain a constant fraction of the edges. As such, the constructed graphs are in
fact already sparsifiers. We then carefully “hide” these sparsifiers in a larger, denser graph, in such
a way that a sparsifier of this graph must retrieve all of the original, hidden sparsifiers. To prove a
quantum lower bound for this search problem, we describe it as the composition of the problem of
finding a constant fraction of the nonzero bits in a Boolean matrix with the OR-function. Finally
we combine lower bounds for the individual problems using a composition theorem for adversary
bounds, applicable to the composition of a relational problem with a function. This composition
theorem was very recently proven by Belovs and Lee [BL19], prompted by our question to them.

1.5 Prior Work

We are not aware of any prior work on quantum speedups for graph sparsification. In a very different
line of work though, spectral sparsification has been studied in a quantum context with the goal
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of sparsifying Hamiltonian matrices, which are used to describe many-body systems. Aharonov
and Zhou [AZ19] asked whether the interaction graph of a many-body system can be sparsified
while preserving its spectrum, showing that this is not possible in general. More recently, Herbert
and Subramanian [HS19] considered the weaker notion of sparsifying the Hamiltonian matrix, and
suggested that sparsification could indeed help in Hamiltonian simulation. They do not consider
quantum algorithms for effectively constructing such a sparsifier.

Research on quantum algorithms for cut approximation is also limited. There is recent work
by Hamoudi, Rebentrost, Rosmanis and Santha [HRRS19] on quantum approximate minimization
of submodular functions, which can be used for cut approximation. However, their work was
more recently superseded by better classical algorithms [ALS19]. Other recent work by Brandão,
Kueng and Stilck França [BKSF19] used quantum SDP-solvers to approximate quadratic binary
optimization problems, of which max cut is the most notable instance. They do not succeed in
finding a speedup for max cut though, mainly because their algorithm does not benefit from the
special structure of this instance.

Concerning our speedup for Laplacian solving, we mention a range of papers on quantum
speedups for general linear system solving. Most famous is the work by Harrow, Hassidim and
Lloyd [HHL09], which was later refined in work by Ambainis [Amb12] and Childs, Kothari and
Somma [CKS17]. They describe a quantum algorithm for solving general linear systems Ax = b in
time Õ(dMκ log(1/ε)), with dM the row sparsity and κ the condition number of A. These algorithms
are particularly relevant for sparse and well-conditioned systems (in general, however, κ can be as
large as O(n3wmax/wmin) for graph Laplacians [ST14, Lemma 6.1]). Crucially, they only output a
quantum state that encodes the solution, rather than an explicit description as we do.

Prior to our work, quantum speedups have also been studied for the problems of estimating
effective resistances and spectral gaps. Ito and Jeffery [IJ19] describe a quantum algorithm for
estimating a single effective resistance Rs,t in the adjacency matrix model. Their algorithm requires
time Õ(n

√
Rs,t/ε

3/2), which is Õ(n3/2/ε3/2) in the worst case, and is restricted to graphs with
unit edge weights. We improve1 the worst-case complexity to Õ(

√
mn/ε) ∈ Õ(n3/2/ε), and our

algorithm works for arbitrary edge weights. In addition, we effectively approximate all effective
resistances simultaneously in the graph in that complexity. In different work by Wang [Wan17]
and Chakraborty, Gilyén and Jeffery [CGJ19], quantum walks in the adjacency list model are
used to estimate a single effective resistance. However, similar to quantum linear system solvers,
these only find a quantum speedup for sparse graphs with a large spectral gap. In addition, their
algorithms have a polynomial dependency on the maximum edge weight, whereas we only have a
logarithmic dependence. A quantum walk algorithm for estimating the second bottom eigenvalue
λ2 of the Laplacian in the adjacency-matrix model was studied by Jarret, Jeffery, Kimmel and
Piedrafita [JJKP18]. They give a multiplicative ε-approximation of λ2 in time Õ(n/(

√
λ2ε)), which

is Õ(n2/ε) in the worst case. We improve the worst-case complexity to Õ(
√
mn/ε) ∈ Õ(n3/2/ε).

We also briefly mention some past work on quantum speedups for clustering. We could retrieve a
single work by Daskin [Das17] describing a quantum algorithm for spectral clustering. In this work it
is, however, mentioned explicitly that no direct speedup is found with respect to classical algorithms.
Less directly related, there exists a number of papers [ABG07, LMR13, WKS15, KLLP18] on
quantum speedups for k-means clustering and the construction of a neighborhood graph. These
tasks are complementary to our work on finding a spectral embedding, given a similarity graph of
the data. It does seem interesting to try and use these algorithms to further speed up our spectral

1We note that our algorithm works in the adjacency-list model. However, the adjacency-matrix model can be
interpreted as an adjacency-list model with m ∈ Θ(n2) edges. Hence, in the adjacency-matrix model our algorithm
has complexity Õ(n3/2/ε), which still improves on [IJ19].
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clustering algorithm.
Finally, we mention some classical work on sublinear algorithms for Laplacian solving and spec-

tral sparsification. First, the work by Andoni, Krauthgamer and Pogrow [AKP19] describes a
sublinear algorithm for Laplacian solving, with the aim of approximating a single coordinate of the
output. Their algorithm is inspired by quantum algorithms for linear system solving, and similarly
only finds a speedup for sparse and well-conditioned systems. The second work is by Lee [Lee13],
who proposes a classical algorithm for spectral sparsification of unweighted graphs which is sublinear
in m. He succeeds in bypassing the Ω(m) lower bound on classical sparsification by only achieving
a weaker, additive error in the approximation. As such this work is incomparable to ours.

1.6 Open Questions

Our work raises a number of interesting questions and future directions, some of which we summarize
below.

• The Õ(
√
mn/ε) runtime of our Laplacian solver has an inversely linear dependence on the

error parameter ε, whereas classical solvers have a logarithmic dependence on ε of their run-
time Õ(m log(1/ε)). We are convinced that this can also be achieved in the quantum case.
This is in contrast to sparsification algorithms, both quantum and classical, whose polynomial
dependence on ε is necessary.

• Work on Laplacian solvers has also led to progress on the long-standing question of computing
maximum flows in graphs [CKM+11, She13, KLOS14, Pen16], ultimately leading to classical
algorithms with runtime Õ(m) that approximate maximum flows. Since the naive description
of such a flow already requires time Ω(m), this seems optimal. We might, however, hope to
find a quantum speedup for approximating certain quantities of the flow, or a compressed
representation. A slower quantum algorithm for finding an exact maximum flow was already
proposed by Ambainis and Špalek [AŠ06].

• At first sight, sparsifiers can only yield approximate solutions to cut problems. However, for
the case of min cut, Karger [Kar99, Kar00] has shown that in fact they can also be used to
provide an exact solution in time Õ(m). We leave it as an open question whether our algorithm
allows to speed up the exact min cut problem.

• Spectral sparsification of graphs and Laplacians has been extended in different directions such
as sparsification of hypergraphs [SY19, BST19], sparsification of sums of positive semi-definite
matrices [SY19, SHS16], sparsification in a streaming setting [KL13, KLM+17]. It is also
closely related to concepts such as spectral sketching [ACK+16] and linear data regression
using leverage scores [DMM06]. It seems likely that we can also find quantum speedups for
these related problems. Similarly we might hope to solve more “quantum” tasks, such as
sparsifying density operators or POVMs.

2 Preliminaries

Throughout the paper we say that something holds “with high probability” if it holds with probability
at least 1−O(1/n).

2.1 Computational Model and Quantum Algorithms

As our computational model we assume a quantum-accessible classical control system that can run
quantum subroutines on at most O(log n) qubits. We quantify the complexity of our algorithms by
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their runtime, which measures the total number of elementary operations or quantum gates that
the algorithm requires.

We will only use qubits to implement Grover’s quantum algorithm [Gro96] for searching sets of
marked elements, which is summarized in the claim below.

Claim 2 (Repeated Grover Search). Let f : [N ]→ {0, 1} be a function that marks a set of elements
S = {i ∈ [N ] | f(i) = 1}. Then there is a quantum algorithm that finds S with probability at least
2/3 in Õ(

√
N |S|) elementary operations and queries to f , and uses O(logN) qubits and Õ(|S|)

classical bits.

While we also use a quantum algorithms for finding shortest-path trees by Dürr, Heiligman, Høyer
and Mhalla [DHHM06], the quantum routines in this algorithm can be reduced to Grover search.

2.2 Graphs, Queries and Spanners

We consider undirected, weighted graphs G = (V,E,w) with |V | = n nodes and |E| = m edges,
and edge weights w : E → R≥0. We are given adjacency-list access to G, as is considered in
e.g. [DHHM06, GR02]. This allows to query for the degree of a node, its k-th neighbor (according to
some unknown but fixed ordering), or the weight of an edge. This model is more restrictive than both
the “general graph model”, which in addition allows for adjacency matrix queries [Gol10], and the
“sparse-access model”, in which the neighbors are ordered lexicographically, as is commonly assumed
in quantum algorithms for linear system solving and Hamiltonian simulation [HHL09, CKS17].

We define the distance δG(u, v) between nodes u and v with respect to G as

δG(u, v) = min
u−v path P

∑
e∈P

1

we
.

This definition is in accordance with the interpretation of G as an electrical network, in which
an edge e corresponds to a link of conductance we (and hence resistance or “cost” 1/we), as is
common in the literature on spectral sparsification. A spanner of G is a sparse subgraph H that
approximately preserves all pairwise distances. Specifically, we will call H a t-spanner of G if for
any pair u, v ∈ V it holds that

δG(u, v) ≤ δH(u, v) ≤ tδG(u, v).

Note that the first inequality is trivially satisfied since H is a subgraph. It is well-known that every
weighted graph has a (2k− 1)-spanner with O(n1+1/k) edges [ADD+93]. Throughout the paper we
will use the shorthand spanner to denote a t-spanner with t = 2 log n and Õ(n) edges. An r-packing
of spanners of G is an ordered set H = (H1, H2, . . . ,Hr) of r edge-disjoint spanners such that Hj

is a spanner for G−∪i<jHi, which is the remaining graph after removal of the edges of all previous
spanners.

The Laplacian L of a weighted graph G is given by L = D−A, with A the weighted adjacency
matrix (Aij) = wij and D the diagonal weighted degree matrix (Dii) =

∑
j wij . Alternatively, we

can rewrite the Laplacian as
L =

∑
e∈E

weχeχ
T
e ,

where we let χe = χu − χv denote a vector associated to the edge e = (u, v), with χu, χv indicator
vectors of the nodes u, v (we fix an arbitrary orientation of the edges). If G is connected then LG has
a trivial kernel consisting only of the all-ones vector. Moreover, LG is a real, symmetric, diagonally
dominant matrix with nonnegative diagonal entries, and is hence positive semi-definite.
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2.3 Spectral Sparsification using Spanner Packings

A cut sparsifier H of a graph G is a sparse, reweighted subgraph that preserves the value of all
cuts. Specifically, H is called an ε-cut sparsifier if for any S ⊆ V it holds that

(1− ε)valG(S) ≤ valH(S) ≤ (1 + ε)valG(S), (1)

where valG(S) =
∑

i∈S,j /∈S w(i,j) denotes the total weight of the edges leaving S.
A spectral sparsifier H of a graph G is a sparse, reweighted subgraph that preserves the quadratic

form xTLGx associated to the Laplacian LG of G, for any vector x ∈ Cn. Specifically, H is called
an ε-spectral sparsifier if for any x ∈ Cn it holds that

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx. (2)

Alternatively, we can rewrite this as (1− ε)LG � LH � (1 + ε)LG, where A � B denotes that A−B
is positive semi-definite. This condition implies for instance that all eigenvalues of H ε-approximate
the eigenvalues of G [BSST13], and all cuts in H ε-approximate those in G. To see the latter,
consider a subset S ⊆ V and let χS denote the indicator on S, then

χTSLGχS =
∑

(u,v)=e∈E

we(χS(u)− χS(v))2 = valG(S).

This shows that the cut value can be described by a quadratic form in the Laplacian, and hence (2)
implies that (1− ε)valG(S) ≤ valH(S) ≤ (1 + ε)valG(S), for all S ⊆ V . Any ε-spectral sparsifier is
therefore also an ε-cut sparsifier.

Spectral sparsifiers can be constructed by using spanners to identify the “important” edges in
the graph. This was first noticed by Kapralov and Panigrahy [KP12], and further refined by Koutis
and Xu [KX16]. We will build on the latter work, which describes a very elegant approach for
constructing spectral sparsifiers from spanner packings. Their algorithm iteratively invokes the
routine described below, which creates a spectral sparsifier with approximately half the number of
edges of the original graph.

Algorithm 1 H = Half Sparsify(G, ε)

1: construct an O(log2(n)/ε2)-packing of spanners of G
2: let P be their union and set H = P
3: for each edge e /∈ P do
4: with probability 1/4, add e to H with weight 4we

5: return H

Theorem 5 ([KX16, Theorem 3.2]). The graph H = Half Sparsify(G, ε) is, with probability at
least 1− 1/n2, an ε-spectral sparsifier of G with at most m/2 + Õ(n/ε2) edges.

Iterating this routine O(log(m/n)) times yields with high probability an ε-spectral sparsifier with
Õ(n/ε2) edges, which is optimal up to log-factors [ACK+16]. Classically the complexity is dominated
by the construction of Õ(1/ε2) spanners, each of which requires time Õ(m) [TZ05], giving a total
time complexity Õ(m/ε2).
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3 Quantum Sparsification Algorithm

In this section we describe our quantum algorithm for constructing spectral sparsifiers. The algo-
rithm is based on the scheme by Koutis and Xu. We use as a black-box a quantum algorithm for
constructing a spanner in time Õ(

√
mn), whose description we postpone to Section 5.

As we already mentioned in the introduction, we cannot simply plug this quantum spanner
algorithm in the Koutis and Xu algorithm. Indeed, after a single iteration of their algorithm this
would require to output a graph with up to m/2 edges, which is much too costly since we aim at
a runtime that scales as

√
mn. We resolve this issue in two stages. First, we assume that we have

access to a random “advice string” of length Õ(m). We use this string to mark edges that have
been discarded at some iteration by 0-bits, which we later use to implicitly set their weight equal
to zero. By its construction, the spanner algorithm can then construct a spanner in the remaining
graph. At the end we use Grover search to explicitly retrieve the remaining Õ(n/ε2) edges, whose
union forms the spectral sparsifier. We then get rid of the random advice string. To this end we
use efficient k-independent hash functions that allow to simulate queries to a k-wise independent
random advice string. This suffices since by standard results a k-query quantum algorithm cannot
distinguish a 2k-wise independent advice strings from a uniformly random one.

3.1 Using Random Advice

We first assume access to a family of independent, random advice strings ri ∈ {0, 1}m, with indices
i ∈ [log(m/n)], such that all bits are independent and equal to 1 with probability 1/4. For different
indices i, the strings ri will function as consecutive “sieves” of the edge set.

Algorithm 2 describes the sparsification algorithm using such advice strings. A critical remark is
that steps 4 and 5 of the algorithm are only performed implicitly, as mentioned before. Rather than
keeping an explicit list of updated edge weights, we maintain an implicit “weight oracle”. Only when
an edge weight is queried, does this weight oracle calculate its weight by consulting the necessary
advice strings. We show how to do this efficiently in the proof of Theorem 6.

Algorithm 2 H = QuantumSparsify(G, ε)

1: let {w′e = we} and ` = dlog(m/n)e
2: for i = 1, 2, . . . , ` do
3: create an O(log2(n)/ε2)-packing of spanners of G′ = (V,E,w′), let Pi denote its union
4: for each edge e /∈ Pi do . implicitly!
5: if ri(e) = 1 then set w′e = 4w′e else set w′e = 0

6: use repeated Grover search to find H = {e ∈ E | w′e > 0}

Theorem 6. Given access to independent, uniformly random advice strings ri ∈ {0, 1}m, i ∈
[log(m/n)], algorithm QuantumSparsify(G, ε) returns with probability 1 − O(log(n)/n2) an ε-
spectral sparsifier of G with Õ(n/ε2) edges. There is a quantum algorithm that implements it in
time Õ(

√
mn/ε2).

Proof. Correctness easily follows from Theorem 5: in every iteration we “half-sparsify” the remaining
graph (induced by all edges of weight we > 0). The probability that all log(m/n) iterations succeed
is 1 − O(log(n)/n2). Below we discuss how steps 4 and 5 can be implemented efficiently, so that
the runtime of the for-loop is dominated by the construction of Õ(1/ε2) spanners. By Theorem 13
this takes time Õ(

√
mn/ε2). By standard results [NC02], the repeated Grover search routine in the

final step takes time Õ(
√
mn/ε), which is the time needed to find n/ε2 edges among m edges.
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What remains to prove is that there exists an efficient oracle that keeps track of the weight
updates in steps 4 and 5. Consider the i-th iteration. Given an edge e, let k denote the num-
ber of spanners before this iteration in which e occurs so far. If k = 0, return w′e = 4iwe if
(ri ri−1 . . . r1)(e) = 1, and w′e = 0 if (ri ri−1 . . . r1)(e) = 0. If k > 0, let j < i denote the last
spanner packing in which it occurs. Now return w′e = 4i−kwe if (ri ri−1 . . . rj+1)(e) = 1, and w′e = 0

otherwise. This takes Õ(1) searches through the set of spanners (which we may assume is sorted),
and at most O(i) ∈ Õ(1) evaluations of the random oracle.

The space complexity of the algorithm requires O(log n) qubits and Õ(n/ε2) classical bits. The
number of qubits follows from the space complexity of the quantum spanner algorithm and the
Grover search routine. The classical space complexity is dominated by the output size.

3.2 Using k-independent Hash Functions

In order to get rid of the random advice strings {ri}, we build on the following fact, which is an
easy consequence of the polynomial method [BBC+01]. It seems that this was first used in the proof
of [BFNR08, Theorem 19], and is stated explicitly in for instance [Zha15, Theorem 3.1].

Fact 1. The output distribution of a quantum algorithm making q queries to a uniformly random
advice string is identical to the same algorithm making q queries to a 2q-wise independent advice
string.

As a consequence, we can replace the uniformly random advice strings of length m by a k-wise
independent advice string with k ∈ Õ(

√
mn/ε2). Surely we also cannot explicitly construct a k-wise

independent string of length Õ(m) in time Õ(
√
mn/ε2), but we can use hash functions to simulate

queries to such a string. A family of hash functions F = {h : [u] → [r]} is called k-independent if,
for any subset S ⊆ [u] of size |S| ≤ k and a uniformly random function h in the family, the image
of h on S behaves uniformly random in [r]|S|. This implies that the image of a random member of
F , which we will refer to as a k-independent hash function, describes a k-wise independent string
over [r]u. Elegant constructions of such functions have long been known, the most famous example
being random degree-k polynomials, as proposed by Carter and Wegman [CW79]. Crucial to our
cause, however, is that we can evaluate the hash function in Õ(1) time, potentially allowing Õ(k)
preprocessing time. Fortunately, such a result was established very recently by Christiani, Pagh
and Thorup [CPT15], who proved the theorem below. We note that this is a purely classical
construction.

Theorem 7 ([CPT15]). It is possible to construct in time Õ(k) a data structure of size Õ(k) that
allows to simulate queries to a k-independent hash function in Õ(1) time per query.

With k = 2q and [r] = {0, 1}, we can combine this with Fact 1 to give the corollary below.

Corollary 1. Consider any quantum algorithm with runtime q that makes queries to a uniformly
random advice string. We can simulate this algorithm with a quantum algorithm with runtime Õ(q)
without advice string, using Õ(q) additional classical bits.

This shows that we can efficiently simulate the random advice string in Algorithm 2, leading to
at most a polylogarithmic overhead in the runtime. The classical space complexity of the algorithm
does increase from Õ(n/ε2) to Õ(

√
mn/ε2). The following theorem is immediate by combining

Theorem 6 with Corollary 1.

Theorem 8. There exists a quantum algorithm that, given adjacency-list access to a weighted and
undirected graph G, constructs with high probability an ε-spectral sparsifier of G with Õ(n/ε2) edges
in time Õ(

√
mn/ε2). The algorithm uses O(log n) qubits and Õ(

√
mn/ε2) classical bits.
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4 Refined Quantum Sparsification Algorithm

In the last section we proposed a quantum algorithm for constructing an ε-spectral sparsifier in
time Õ(

√
mn/ε2). Here we show how to improve the runtime of this algorithm to Õ(

√
mn/ε),

which we will later show is optimal up to polylog-factors. The improvement essentially follows from
combining our previous algorithm with the seminal results on spectral sparsification by Spielman
and Srivastava [SS11]. In that work, they first showed that sampling edges with probabilities
approximately proportional to their effective resistances results in a spectral sparsifier (the Koutis-
Xu algorithm is derived from their result). Then they showed how Laplacian solvers could be used
to efficiently estimate these effective resistances. We will use our quantum sparsification algorithm
to first construct a “rough” ε-sparsifier, for some constant ε, which we only use to approximate the
effective resistances in the original graph. Surprisingly such approximation suffices to implement
the Spielman-Srivastava sampling scheme on the original graph. We then use a quantum sampling
routine to efficiently implement this sampling scheme, finally leading to an ε-spectral sparsifier for
arbitrary ε > 0 in time Õ(

√
mn/ε). This idea of using a “poor” spectral sparsifier for computing

sampling probabilities to obtain a better spectral sparsifier is also present in for instance [LMP13,
CLM+15].

4.1 Spielman-Srivastava Toolbox and Quantum Sampling

Here we formally introduce the main tools that we use. These are an efficiently constructible
“resistance oracle” and a sparsification algorithm based on this oracle from [SS11], and a quantum
sampling routine for implementing this sparsification algorithm.

4.1.1 Approximate Resistance Oracle

The effective resistance in a graph G between a pair of nodes s and t is defined as the effective
resistance between s and t after replacing every edge e by a resistor of value 1/we. It can be expressed
algebraically as Rs,t = (χs−χt)TL+

G(χs−χt), so that a Laplacian solver allows to efficiently compute
Rs,t. Spielman and Srivastava proved that in some sense one can efficiently compute all effective
resistances in roughly the same time. More specifically, they showed that it is possible to construct
in near-linear time a data structure of size Õ(n/ε2) that allows to efficiently approximate Rs,t for
any s, t.

Theorem 9 ([SS11]). Consider a weighted and undirected graph G. There is an Õ(m/ε2)-time
algorithm which computes a (24 log(n)/ε2)× n matrix Z such that with probability at least 1− 1/n,
for every pair s, t ∈ V , it holds that

(1− ε)Rs,t ≤ ‖Z(χs − χt)‖2 ≤ (1 + ε)Rs,t.

Hence the matrix Z represents a data structure which allows to ε-approximate Rs,t for any pair s, t
by calculating the 2-norm distance between two columns, each of dimension Õ(1/ε2).

4.1.2 Spectral Sparsification with Edge Scores

In the same paper, Spielman and Srivastava proved the following theorem, which shows that a spec-
tral sparsifier can be constructed by independently keeping edges with weights roughly proportional
to their effective resistances.
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Theorem 10 ([SS11]). Let 2Re ≥ R̃e ≥ Re/2 for each edge e ∈ E, and pe = min(1, CweR̃e log(n)/ε2)
for some universal constant C. Then keeping every edge e independently with probability pe, and
rescaling its weight with 1/pe, yields with probability at least 1 − 1/n an ε-spectral sparsifier of G
with O(n log(n)/ε2) edges.

Note that
∑

e pe � 1 is the expected number of edges of the sparsifier. Since
∑

eweRe = n − 1
[Bol13, Theorem 25], this yields the claimed number of edges.

We note that, in fact, Spielman and Srivastava describe a slightly different scheme. They
propose to draw Õ(n/ε2) independent and identically distributed edge samples from the edge set,
with probability proportional to their effective resistance. It is well-known that both schemes give
the same performance bound - see e.g. [FHHP19, Remark 1].

4.1.3 Quantum Sampling

Assuming access to an approximate resistance oracle that gives approximations R̃e to Re, we wish
to implement the Spielman-Srivastava sparsification scheme. While classically this requires time
Õ(m+

∑
e pe), we can use quantum algorithms to do so more efficiently.

Claim 3. Assume we have query access to a list of probabilities {pe}e∈E. Then there is a quantum
algorithm that samples a subset S ⊆ E, such that S contains every e independently with probability
pe, in expected time Õ(

√
m(
∑

e pe)).

Proof. We can assume access to a random Õ(m)-bit advice string r, since by Corollary 1 this implies
that there also exists a quantum algorithm without random advice string. From this advice string
we can derive a function hr : E × [0, 1] → {0, 1} such that for each e independently hr(e, pe) = 1
with probability pe and hr(e, pe) = 0 otherwise. Combining this function with a query to the list
of probabilities allows to implement an oracle |e〉 |0〉 |0〉 7→ |e〉 |pe〉 |hr(e, pe)〉. If T is the number of
e ∈ E for which hr(e, pe) = 1, then we can use repeated Grover search (Claim 2) to retrieve these
in expected time Õ(

√
mT ). Since the expected value of T is

∑
e pe, this proves the lemma.

4.2 Refined Quantum Sparsification

Now we combine the Spielman-Srivastava toolbox, the quantum sampling routine and our quantum
sparsification algorithm from the last section to improve the runtime of the latter from Õ(

√
mn/ε2)

to Õ(
√
mn/ε).

Algorithm 3 H = QuantumSparsify(G, ε)

1: use quantum sparsification (Theorem 8) to construct a (1/100)-spectral sparsifier H of G
2: create a (1/100)-approximate resistance oracle of H using Theorem 10, yielding estimates {R̃e}
3: use quantum sampling (Claim 3) to sample a subset of the edges, keeping every edge with

probability pe = min(1, CweR̃e log(n)/ε2)

Theorem 11 (Quantum Spectral Sparsification). Algorithm QuantumSparsify(G, ε) returns with
high probability an ε-spectral sparsifier H with Õ(n/ε2) edges, and has runtime Õ(

√
mn/ε). The

algorithm uses O(log n) qubits and Õ(
√
mn/ε) classical bits.

Proof. First we prove correctness. Since H is a spectral sparsifier of G, and effective resistances
correspond to quadratic forms in the inverse of the Laplacian, we know that the effective resistances
ofH approximate those of G: (1−1/100)RGs,t ≤ RHs,t ≤ (1+1/100)RGs,t for all s, t ∈ V . By Theorem 9
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we know that the approximate resistance oracle yields estimates {R̃Hs,t} such that (1− 1/100)RHs,t ≤
R̃Hs,t ≤ (1 + 1/100)RHs,t. Combining these inequalities shows that

(1− 1/100)2RGs,t ≤ R̃Hs,t ≤ (1 + 1/100)2RGs,t.

By Theorem 10, if we now keep every edge with probability pe = min(1, CweR̃
H
e log(n)/ε2), then

with probability 1− 1/n we find an ε-spectral sparsifier with O(n log(n)/ε2) edges. Combining this
success probability with those of the quantum sparsification algorithm and the construction of the
resistance oracle, we find a total success probability of at least (1− 1/n)3 = 1−O(1/n).

The bound on the runtime follows from summing the Õ(
√
mn) runtime of the quantum sparsi-

fication algorithm, the Õ(n) runtime for creating the resistance oracle of the sparsifier with Õ(n)
edges, and the Õ(

√
m(
∑

e pe)) expected runtime of the quantum sampling routine. Since

∑
e

pe ≤
C log(n)

ε2

∑
e

weR̃
H
e ≤

(1 + 1/100)2C log(n)

ε2

∑
e

weR
G
e ,

and
∑

eweR
G
e = n − 1 [Bol13, Theorem 25], we have that

∑
e pe ∈ Õ(n/ε2) and so the expected

runtime of the sampling routine is Õ(
√
mn/ε). Moreover, by the Chernoff bound the runtime of the

latter routine will indeed be Õ(
√
mn/ε) with probability at least 1− 1/n. Hence we can abort the

algorithm whenever the runtime exceeds this bound, and the algorithm will still succeed with high
probability, while the total runtime becomes Õ(

√
mn/ε) in the worst case.

5 Quantum Algorithm for Building Spanners

The Koutis-Xu sparsification algorithm identifies “important” edges by growing spanners inside the
graph. In this section we propose a quantum algorithm for growing spanners, speeding up the best
classical algorithms.

Recall from Section 2 that a t-spanner of a graph G = (V,E,w) is a subgraph H = (V,EH ⊆
E,w) that preserves all pairwise distances between nodes up to a stretch factor t. For every pair
u, v ∈ V , it should hold that

δG(u, v) ≤ δH(u, v) ≤ tδG(u, v),

where we recall that δG(u, v) = minu−v path P
∑

e∈P 1/we. A spanner preserves the original weights
on its edges. This is in contrast to spectral sparsifiers which are necessarily reweighted. A classic
result by Althöfer et al. [ADD+93] shows that, for any parameter k > 0, any n-node graph has
a (2k − 1)-spanner with O(n1+1/k) edges. We refer the interested reader to the classic book by
Peleg [Pel00] or the very recent survey by Ahmed et al. [ABS+19].

There exists a range of classical algorithms for constructing spanners. We will make use of one
by Thorup and Zwick [TZ05], which follows from their work on “approximate distance oracles”. The
main bottleneck of their algorithm is the growth of shortest-path trees in subgraphs. We speed up
this bottleneck by using the quantum algorithm of Dürr, Heiligman, Høyer and Mhalla [DHHM06]
for growing a shortest-path tree in time Õ(

√
mn).

5.1 Thorup-Zwick Algorithm

The spanner algorithm from [TZ05] makes use of shortest-path trees (SPTs). A shortest-path tree
T (v) from a node v spanning a subset C is defined as a tree, rooted at v and spanning C, so that the
distance in this tree from v to any node in C is the same as their distance in the original graph G.
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The Thorup-Zwick algorithm, presented in Algorithm 4, randomly partitions the node set into
k layers {Ai}, which are increasingly sparsified. The nodes in these layers function as “hubs” for
the nearby nodes. Shortest-path trees are then grown that allow efficient routing along these hubs.
The resulting spanner consists of the union of these shortest-path trees. In the algorithm below, we
set δ(w, ∅) =∞ for any w ∈ V .

Algorithm 4 H = Spanner(G, k)

1: let A0 = V and Ak = ∅
2: for i = 1, 2, . . . , k do
3: if i < k, let Ai contain each element of Ai−1, independently, with probability n−1/k

4: for v ∈ Ai−1 −Ai do
5: grow shortest-path tree T (v) from v spanning C(v) = {w ∈ V | δ(w, v) < δ(w,Ai)}
6: add T (v) to H

Apart from the correctness of the algorithm, we will require some additional bounds on the size
of the intermediate clusters C(v). We extract the following theorem from the analysis by Thorup
and Zwick.

Theorem 12 ([TZ05]).

• The output graph H of Spanner(G, k) is a (2k − 1)-spanner of G.

• The expected number of edges in H is O(E(
∑

v |C(v)|)) ∈ O(kn1+1/k).

• The expected number of edges with at least one node in the clusters is E(
∑

v |E(C(v))|) ∈
O(kmn1/k).

Setting k = 1/2+log n, as we will do later on, this yields a 2 log n-spanner with an expected number
of edges O(n log n).

5.2 Quantum Spanner Algorithm

We can use a quantum algorithm from Dürr, Heiligman, Høyer and Mhalla [DHHM06] to speed
up the construction of the shortest-path tree T (v), spanning C(v). We slightly generalize their
algorithm to deal with “forbidden edges”, which are encoded by associating a weight we = 0 to them
(which corresponds to an infinite resistance or cost). Such edges will correspond to edges going
outside of C(v), as well as edges that have already been discarded by our sparsification algorithm.

In Appendix A we prove the following statement. We define the connected component of a
node v0 as the smallest subset Cv0 ⊆ V such that v0 ∈ Cv0 and either E(Cv0 , V \Cv0) = ∅ or
max{we | e ∈ E(Cv0 , V \Cv0)} = 0. This implies that there is no path of finite distance between v0
and any node outside Cv0 .

Proposition 1. Assume adjacency-list access to a weighted and undirected graph G = (V,E,w).
Let v0 be a source node and Cv0 its connected component. Then there exists a quantum algorithm
that outputs, with probability at least 1 − δ, a shortest-path tree from v0 that spans Cv0 . It has a
runtime Õ(

√
|Cv0 ||E(Cv0)| log(n/δ)) and requires O(log n) qubits and Õ(|Cv0 |) classical bits.

From this we can speed up the spanner construction rather straightforwardly. To see this, note
that the runtime of the Thorup-Zwick algorithm is dominated by the task of growing the shortest-
path trees T (v), spanning the local clusters C(v), for all nodes v ∈ V . By setting we = 0 for any
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edge reaching out of C(v), this task corresponds to a shortest-path tree on the connected component
of v. If we use the above quantum algorithm to accelerate this, the total runtime becomes

Õ

(∑
v

√
|C(v)||E(C(v)|

)
∈ Õ

(√∑
v

|C(v)|
√∑

v

|E(C(v)|

)
,

where the containment follows from the Cauchy-Schwarz inequality. By Theorem 12 we know
that E(

∑
v |C(v)|) ∈ O(kn1+1/k) and E(

∑
v |E(C(v))|) ∈ O(kmn1/k). By Markov’s inequality this

implies that with probability close to 1 the runtime is

Õ
(√

kn1+1/k
√
kmn1/k

)
∈ Õ

(
kn1/k

√
mn
)
.

What remains to be shown is how we (implicitly) set we = 0 for all edges reaching out of C(v).
To that end we follow the idea of Thorup and Zwick of connecting a new source node s to every
node in Ai, with edges of infinite weight, and construct an SPT from s to V . It is easy to see that
this returns the shortest path from any node w /∈ Ai to Ai, allowing to calculate δ(w,Ai). Using
the standard quantum SPT algorithm of [DHHM06] we can construct this SPT in time Õ(

√
mn),

and we do this whenever we construct a new Ai. Now assume that the quantum SPT algorithm
at some point wishes to choose an edge (w,w′), with w part of the SPT constructed so far, and w′

an adjacent node. Then by design this must be a cheapest border edge of the SPT constructed so
far, and δ(v, w′) = δ(v, w) + δ(w,w′). Hence we know δ(v, w′) and we can simply check whether
δ(v, w′) < δ(w,Ai), setting the weight of the edge equal to zero if this is not the case. This proves
the following theorem.

Theorem 13. There exists a quantum algorithm that outputs in time Õ(kn1/k
√
mn) with high

probability a (2k − 1)-spanner of G of size O(kn1+1/k). The algorithm uses O(log n) qubits and
Õ(kn1+1/k) classical bits.

Setting k = log n+ 1/2, we find an Õ(
√
mn) quantum algorithm for constructing 2 log n-spanners,

as is required by our sparsification algorithm.

6 Matching Lower Bound: A Hidden Sparsifier

In this section we prove that the runtime of our quantum algorithm for spectral sparsification is
optimal, up to polylog-factors. In fact, we show that even constructing a weaker cut sparsifier
requires the same complexity. The following is a rephrasing of Theorem 2 from the introduction.

Theorem 14. Fix n, m and ε ≥
√
n/m. Consider the problem of outputting, with high probability,

an explicit description of an ε-cut sparsifier of a weighted, undirected graph G with n nodes and m
edges, given adjacency-list access to G. The quantum query complexity of this problem is Ω̃(

√
mn/ε).

Note that sparsification is only meaningful under the constraint ε ≥
√
n/m, since for ε ∈ O(

√
n/m)

the sparsifier would have at least as many edges as the original graph. We prove this lower bound
by “hiding” a sparsifier in a larger graph, and then proving a quantum lower bound for finding the
sparsifier. More specifically, we use a random graph construction by Andoni, Chen, Krauthgamer,
Qin, Woodruff and Zhang [ACK+16] such that any cut sparsifier must contain a constant fraction
of the edges of the graph. We then hide a number of copies of this random graph by embedding it
in a larger, denser graph. Finally we show that finding a constant fraction of the edges of the initial
random graph requires Ω̃(

√
mn/ε) queries. To prove this lower bound, we combine a quantum
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lower bound for the OR-function with an information-theoretic lower bound for the problem of
finding nonzero bits in a Boolean matrix. We can combine these separate lower bounds by using a
composition theorem for adversary bounds, applicable to the composition of a relational problem
with a function. Prompted by our question, such a composition theorem was very recently proven
by Belovs and Lee [BL19].

6.1 Hiding a Sparsifier

We use a random graph construction of Andoni et al. [ACK+16] for which a sparsifier must output
a constant fraction of its edges. We then carefully hide a number of copies of this graph into a
larger graph, which will later allow for the reduction of a query problem to the construction of a
sparsifier.

6.1.1 An Unsparsifiable Graph

Andoni et al. [ACK+16] construct a communication problem that is described by a family of random
graphs on 2/ε2 nodes with 1/(2ε4) edges. They show that for a constant fraction of the inputs
(> 3/5), the communication problem requires to communicate Ω(1/ε4) bits. On the other hand, for
at least a 2/3-fraction of the inputs, the communication problem can be solved by communicating
an ε-cut sparsifier. This shows that for at least a (3/5 − 1/3) > 1/4-fraction of the inputs, the
description of an ε-cut sparsifier requires Ω(1/ε4) bits. Using a slightly more refined argument, they
even show that the number of edges of the sparsifier for these instances must be Ω(1/ε4).

Fix any ε > 0. Let Bε be any bipartite graph with 1/ε2 nodes on each side, and every left
node connected to a corresponding subset of half of the right nodes. From Andoni et al. [ACK+16,
Theorem 3.3] we can extract the following theorem. Indeed, if the claim would not hold, then we
could violate their communication lower bound by communicating an ε-cut sparsifier.

Theorem 15 ([ACK+16]). For at least a 1/4-fraction of all graphs Bε, any ε-cut sparsifier must
contain Ω(1/ε4) edges.

It follows that at least a 1/4-fraction of all graphs Bε cannot be significantly sparsified. Similarly
to [ACK+16], we will also consider larger families of disjoint copies of Bε. We can easily prove the
following corollary using the Chernoff bound.

Corollary 2. Consider the disjoint union of ` distinct copies of Bε. There exists a constant η > 0,
independent of `, such that for at least a 9/10-fraction of all such graphs it holds that any ε-cut
sparsifier must contain at least η`/ε4 edges.

6.1.2 Embedding the Sparsifier

Fix n, m ≤ n2/4 and ε ≥
√
n/m. Consider ` = ε2n/2 independent copies B(k) of Bε, yielding a

graph with n nodes. We wish to “hide” this graph in a larger, denser graph. To this end, we use
an m-bit string x to (redundantly) describe the resulting graph, which we denote by B(x). The
description x consists of ` = ε2n/2 matrices x(k) of dimension 1/ε2 × 1/ε2,

x(k) = {x(k)i,j | i, j ∈ [1/ε2]}, k ∈ [ε2n/2].

Every matrix x(k) is used to describe the bipartite adjacency matrix of the corresponding copy B(k).
Rather than bits, however, the entries x(k)i,j correspond to smaller strings of N = 2ε2m/n bits each,
with at most one nonzero bit per string. We say that an input x is valid if it is of this form. The
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presence of an edge between the i-th left node and the j-th right node in B(k) is determined by the
presence of a nonzero bit in the string x(k)i,j , i.e., by OR(x

(k)
i,j ). The bipartite adjacency list of the

k-th copy B(k) is hence described as

adj(B(k)) = OR(x(k)) = OR




00010 00000 00000 10000
00100 00000 00100 00000
00000 01000 00001 00000
00000 00000 00010 01000


 =


1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1

 ,
where we give concrete values to the bits in x(k) for illustration. In the next section we prove a lower
bound on the identification of a constant fraction of the 1-bits in a valid input x. In this section we
show how to embed the corresponding graph B(x) in a larger, denser graph G(x), so that an ε-cut
sparsifier of G(x) must identify a constant fraction of the edges of B(x). This identifies a constant
fraction of the 1-bits of the input x, so that the aforementioned lower bound effectively yields a
lower bound for the construction of a sparsifier. We must take particular care in embedding B(x)
in G(x) so as not to reveal additional information about x. E.g., we must prevent that the degrees
of G(x) reveal anything about the location of 1-bits in the input. We do this essentially by ensuring
that a query to the adjacency list of G(x) can be performed using a single query to x.

Initially, the oblivious (input-independent) mother graph G = G1 ∪ G2 is the disjoint union of
two bipartite graphs G1 = (L1∪R1, E1) and G2 = (L2∪R2, E2). The first graph G1 is a multigraph
consisting of ` = ε2n/2 disjoint copies B(k) of the complete bipartite graph on 1/ε2 nodes, containing
N = 2ε2m/n parallel copies of each edge (we will get rid of these multi-edges later). As such, G1

has exactly n nodes and m (sometimes parallel) edges. We match every edge of G1 to a unique
input bit by matching the parallel copies of edge (i, j) in B(k) to the input bits in the string x(k)i,j .
The second bipartite graph G2 has at most n nodes and exactly m edges, but no multi-edges (we
do not need to further specify this graph at this point). We formally match every single copy of an
edge in G1 to a unique edge in G2, so that every input bit now corresponds to a unique edge in G1

and a unique edge in G2. While doing so, we ensure that all edges leaving a left or right node of G1

are matched to edges in G2 whose left (resp. right) ends are distinct. We will later clarify why this
is important, and defer a proof that this is possible for some choice of G2 to Appendix B. At this
point, all edges in G have zero weight.

Next we take the input x into account, turning G into G(x). To this end, we “flip” edge pairs
conditioned on the input bit. Specifically, consider a bit x(i) that corresponds to edges (l, r) in G1

and (l′, r′) in G2. If x(i) = 1, then we keep these edges as they are, except that we give (l, r) a
unit weight. If x(i) = 0, then we “flip” the edges: we replace (l, r) and (l′, r′) by edges (l, l′) and
(r, r′). This is illustrated in Figure 1. We see now that if two outgoing edges from l were matched
to edges with the same left end l′ in L2, then this could create the edge (l, l′) twice. Similarly if
two incoming edges from r were matched to the same right ends r′, this could create the edge (r, r′)
twice. Our matching ensures that this can never happen.

Now consider a pair l ∈ L1 and r ∈ R1, corresponding to the edge (i, j) in B(k). Then G(x)

will contain a unique, unit-weight edge between l and r if and only if the string x(k)i,j has a unique
nonzero bit. As a consequence, G(x) restricted to the node set L1 ∪ R1 exactly describes B(x).
Moreover, we can perform a single query to the adjacency list of G(x) using a single query to x, as
we prove in the lemma below.

Lemma 1. Fix n, m ≤ n2/4 and ε ≥
√
n/m, and consider a valid input x ∈ {0, 1}m. Then G(x)

has at most 2n nodes and exactly 2m edges, and any query to its adjacency list can be simulated
using a single query to x. G(x) has B(x) as a subgraph with unit edge weights, and all remaining
edges have zero weight.
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Figure 1: Matching input bits to edges in G1 and G2 for n = 8, m = 16 and ε = 1/
√

2 (we set
G2 to be the complete bipartite graph for illustration only). The dotted red edges depict a pair of
matched edges, which correspond to input bit x(2)1,2(l). If x(2)1,2(l) = 1, these edges are kept in G(x);

if x(2)1,2(l) = 0, they are “flipped” with the dashed edges.

Proof. We only prove the claim about the query access, as all other claims follow easily from the
construction. A degree query is trivially simulated, since G(x) has the same degrees as G. To
simulate a neighbor query, say that we wish to query the k-th entry of the adjacency list of node
l ∈ L1 in G1, for some k ∈ [2m/n]. By construction, this corresponds to a known edge (l, r) in G1,
a corresponding edge (l′, r′) in G2 and a unique input bit x(i). We query the input bit x(i). If it
equals 1, then G(x) has the unit-weight edge (l, r) and hence we return r ∈ R1, and weight 1. If it
equals 0, then we flipped the edges and G(x) has the edge (l, l′), and so we return the node l′ ∈ L1

and weight 0. The same reasoning applies to queries from all other nodes of G(x).

We will also use the claim below, which follows easily from the fact that only the subgraph B(x)
of G(x) has unit-weight edges, and all remaining edges have weight zero.

Claim 4. Any ε-cut sparsifier of G(x) contains an ε-cut sparsifier of B(x).

Proof. Let H be any ε-cut sparsifier of G(x). Then we can simply remove all edges from H that
are not in B(x) (and necessarily have zero weight) to yield an ε-cut sparsifier for B(x).

Combining this claim with Corollary 2, we can deduce that for at least 9/10-th of all valid
inputs x, any ε-cut sparsifier of G(x) must identify a constant fraction (specifically, at least ηn/ε2)
of the edges of B(x). Since the presence of an edge in B(x), say (li, rj) in copy B(k), reveals that
string x(k)i,j has a nonzero entry, we find the following corollary.

Corollary 3. For at least a 9/10-fraction of all valid inputs x, it holds that any ε-cut sparsifier of
G(x) must identify a constant 2η-fraction of the nonzero strings.

6.2 Finding the Sparsifier

Now we wish to prove a lower bound on identifying nonzero strings, thereby proving a lower bound
on the complexity of sparsifying G(x). To this end, we first formalize the new problem.

18



Definition 1. The problem FindBitsr,c takes as input an r × c Boolean matrix, with each row
containing exactly c/2 nonzero bits. A correct output consists of the indices of a 2η-fraction of the
nonzero bits.

We can prove an information-theoretic lower bound on the bounded-error quantum query complexity
of this problem. This describes a lower bound on the number of queries required by a quantum
algorithm that returns a correct output with probability at least 2/3.

Claim 5. The bounded-error quantum query complexity of FindBitsr,c on any constant fraction of
its valid inputs is Ω̃(rc).

Proof. This lower bound follows from combining an information-theoretic lower bound on how much
information the algorithm extracts about its input, with Holevo’s quantum information bound. More
precisely, we examine the mutual information I(A;B) between a uniformly random input matrix A,
and an output B for FindBitsr,c that is correct with probability at least 2/3. We refer the reader
to the textbook of Cover and Thomas [CT12] for precise definitions. By Holevo’s theorem [Hol73],
this mutual information lower bounds the quantum query complexity times O(log(rc)).2

We lower bound I(A;B) = H(A) − H(A|B) by lower bounding H(A) and upper bounding
H(A|B). To lower bound H(A), let S denote the set of all inputs, consisting of all r × c Boolean
matrices with all row sums equal to c/2, and let S′ ⊆ S denote any constant fraction subset of S
(say |S′| = β|S| for some β > 0). Then A corresponds to a uniformly random element of S′, and
we have

H(A) = log |S′| = log(β|S|) = log

(
β

r∏
j=1

(
c

c/2

))
= r log

(
c

c/2

)
+ log β ≥ r(c−O(log c)).

To upper bound H(A|B), we use that with probability at least 2/3 the output B is correct, revealing
a 2η-fraction of the nonzero entries of A and hence significantly reducing the entropy of A. Let E
denote an indicator bit which equals 1 if B is a correct output, and 0 otherwise. Then we can bound

H(A|B) ≤ H(A|B,E) +H(E)

= Pr(E = 1)H(A|B,E = 1) + Pr(E = 0)H(A|B,E = 0) +H(E)

≤ 2

3
H(A|B,E = 1) +

1

3
rc+ 1.

We now want to upper bound H(A|B,E = 1). Fix integers {d(j)}j∈[r] such that
∑

j d(j) = ηrc,
and condition on the event D{d(j)} that B reveals d(j) entries of the j-th row of A. Let S{d(j)} ⊆ S′
denote the set of inputs which are compatible with {d(j)}. We can bound

H(A|B,E = 1, D{d(j)}) ≤ log |S{d(j)}| ≤ log

( r∏
j=1

(
c− d(j)

c/2− d(j)

))

=
r∑
j=1

log

(
c− d(j)

c/2− d(j)

)
≤

r∑
j=1

(c− d(j)) = r(1− η)c.

2This is a fairly standard argument. We can consider a communication protocol where the T -query quantum
algorithm implements each quantum query using one round of O(log(rc)) qubits of communication to and from
another party that holds A (by sending the query and answer registers back and forth), thus learning I(A;B)
bits of information about A while only communicating O(T log(rc)) qubits. It now follows from [Hol73] that T ∈
Ω(I(A;B)/ log(rc)).
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This upper bound holds irrespective of the specific setting of {d(j)}. Hence, taking the expectation
over all possible settings of {d(j)}, we obtain

H(A|B,E = 1) = E{d(j)}
[
H(A|B,E = 1, D{d(j)})

]
≤ r(1− η)c.

Our lower bound on H(A) and upper bound on H(A|B) together imply

I(A;B) ≥ 2

3
r(ηc−O(log c))− 1 ∈ Ω(rc).

We will also use the following lemma, which easily follows by using Grover’s algorithm to check
that indeed all output indices correspond to 1-bits in the r × c input matrix.

Lemma 2. There exists a bounded-error quantum algorithm that, given quantum query access to
an input x and an output y, verifies whether y is a correct output of FindBitsr,c(x) using O(

√
rc)

quantum queries to x and y.

Next we will compose FindBitsr,c with r × c copies of the ORN -function on N bits each, so
that every single input bit of FindBitsr,c is now described by the ORN of N bits. We denote this
composed problem as FindBitsr,c ◦ ORrc

N . To ensure that the input of the composed problem is a
valid input for FindBitsr,c, we must restrict it to r × c matrices of strings, each carrying N bits, so
that exactly c/2 strings per row have one nonzero entry, and the remaining strings only have zeros.

The composed problem FindBitsr,c ◦ORrc
N corresponds to the composition of a relational prob-

lem (multiple outputs are correct for FindBitsr,c) and a function. Bounds on the quantum query
complexity of the composition of functions are well understood [HLS07]. When the outer problem
is a relational problem, however, no such result seemed to be known. Prompted by our question,
Belovs and Lee [BL19] very recently proved such a result, leading to the theorem below. We denote
a relational problem by a set-valued function f : S ⊆ {0, 1}M → 2T , where S is a restricted set of
inputs and T denotes its set of possible outputs. For FindBitsr,c, each output in T corresponds to
a set of ηrc indices of the r × c input matrix.

Theorem 16 ([BL19]). Let f : S ⊆ {0, 1}M → 2T be a relational problem whose bounded-error
quantum query complexity is lower bounded by L. Assume that there is a bounded-error quantum
algorithm that, given oracle access to x ∈ S and some a ∈ T , verifies whether a ∈ f(x) using
o(L) queries. Then the bounded-error quantum query complexity of the relational problem f ◦ORM

N ,
restricted to inputs x such that ORM

N (x) ∈ S, is lower bounded by Ω(L
√
N).

Now we let f denote the relational problem FindBitsr,c, with S a 9/10-fraction of its valid inputs.
Then by Claim 5 its bounded-error quantum query complexity is Ω̃(rc), and by Lemma 2 we can
verify its output with bounded error using O(

√
rc) queries. Plugging this into the theorem above

yields the following corollary.

Corollary 4. Solving the problem FindBitsr,c ◦ORrc
N has bounded-error quantum query complexity

Ω̃(
√
Nrc). This holds even when the inputs are restricted to a constant fraction of the valid inputs.

Finally, using the graph embedding of the previous section, we show in the claim below how to
solve this composed problem by constructing a cut sparsifier of an associated graph. Combining
this with the lower bound from Corollary 4 then yields Theorem 14.

Claim 6. Fix n, m, ε ≥
√
n/m, and set r = n/2, c = 1/ε2 (number of potential neighbors) and N =

2ε2m/n. For at least a 9/10-fraction of all valid inputs x, we can reduce the problem (FindBitsr,c ◦
ORrc

N )(x) to finding an ε-cut sparsifier of G(n,m, ε, x). Specifically, any T -query quantum algorithm
that sparsifies G(n,m, ε, x) with success probability at least 2/3 can solve (FindBitsr,c ◦ ORrc

N )(x)
with success probability at least 2/3 on at least a 9/10-fraction of its valid inputs using O(T ) queries.
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Proof. Consider a valid input x ∈ {0, 1}m and the associated graph G(x) = G(n,m, ε, x) as defined
in Section 6.1.2. For a 9/10-fraction of these inputs, we know by Corollary 3 that we can solve
(FindBitsr,c ◦ORrc

N )(x) by constructing an ε-cut sparsifier of G(x). Moreover, by Lemma 1 we can
query the adjacency list of G(x) using a single query to x. Hence, if we output with probability
at least 2/3 an ε-cut sparsifier of G(x) using T queries to its adjacency list, then we also solve
(FindBitsr,c ◦ORrc

N )(x) with probability at least 2/3 using T queries to x.

7 Applications

In this section we non-exhaustively list some applications of our quantum sparsification algorithm,
proving speedups in cut approximation and Laplacian solving. Given the broad applicability of
sparsification in classical algorithms, we expect that more applications will follow.

7.1 Cut Approximation

A range of cut approximation algorithms have a near-linear runtime in the number of edges in the
graph. In the following we discuss a number of these, and show how our quantum algorithm for cut
sparsification allows to speed them up.

7.1.1 max cut

The max cut problem for a weighted graph G = (V,E,w) asks for a cut (S, Sc) that maximizes
the total weight valG(S) of the cut. Its decision version is one of the 21 problems famously shown to
be NP-complete by Karp [Kar72]. The best current approximation factor of this problem is roughly
.8785, as was famously proven by Goemans and Williamson [GW95] using an SDP relaxation.
Khot et al. [KKMO07] showed that this approximation factor is optimal under the unique games
conjecture.

In later work, Arora and Kale [AK16] showed how to solve the Goemans-Williamson SDP in time
Õ(m), using amongst others the cut sparsification algorithm by Benczúr and Karger [BK96]. We
find a quantum speedup by replacing the Benczúr-Karger algorithm by our quantum sparsification
algorithm. Specifically we construct an ε-spectral sparsifier H, for some small but constant ε > 0,
in time Õ(

√
mn/ε). Since all cuts are preserved up to a multiplicative error ε, we can apply the

Arora-Kale algorithm on H to retrieve a max cut approximation factor of at least .8785(1 − ε).
Choosing ε sufficiently small we find the following claim.

Claim 7. There exists a quantum algorithm that outputs a .878-approximate max cut of a weighted
graph in time Õ(

√
mn).

We note that for unweighted graphs, max cut can be approximately solved classically in time
Õ(n). If we wish to output the max cut bipartition, then this is trivially optimal both for classical
and quantum algorithms, and hence no quantum speedup is possible. The Õ(n) classical algorithm
follows from the fact that for unweighted graphs a trivial sparsification procedure suffices to approx-
imately preserve the max cut value (pick Õ(n) edges uniformly at random - see for instance [Tre12,
Section 2]). In the adjacency list model, this can be done classically in time Õ(n). For weighted
graphs this approach no longer works, as in this case the edges have to be sampled with probability
proportional to their edge weights. This cannot be done classically in time o(m) since we could for
instance hide a single heavy edge among m light edges. From all the cut problems we consider, this
is the only one for which a classical sublinear algorithm with multiplicative error exists - albeit only
for the unweighted case.
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7.1.2 min cut

Given a weighted graph G = (V,E,w), the min cut problem asks for a cut (S, Sc) with min-
imum weight valG(S). Up to polylog-factors in the runtime, the current best algorithm is by
Karger [Kar00]. It builds on cut sparsification to output an exact min cut of the graph with high
probability in time Õ(m). Running this algorithm on our ε-cut sparsifier with Õ(n/ε2) edges thus
requires time Õ(n/ε2), and returns an ε-approximate min cut.

Claim 8. There exists a quantum algorithm that outputs an ε-approximate min cut of a weighted
graph in time Õ(

√
mn/ε).

We leave it as an open question whether this algorithm can be improved to also output an exact
min cut, similar to the algorithm in [Kar00].

7.1.3 min st-cut

Given a weighted graph G = (V,E,w), the min st-cut problem requires to output a cut C =
(S, Sc) with minimum value valG(S), such that s ∈ S and t /∈ S. The current best algorithms for
approximate min st-cut build on the max-flow min-cut theorem, which states that the value of the
min st-cut equals the value of a maximum st-flow. Combining classical cut sparsification with the
recent Õ(m/ε3) solver for ε-approximate max flows by Peng [Pen16], this yields an Õ(m + n/ε5)
time algorithm for min st-cut. We obtain the following claim by running this algorithm on our cut
sparsifier with Õ(n/ε2) edges.

Claim 9. There exists a quantum algorithm that outputs an ε-approximate minimum st-cut of a
weighted graph in time Õ(

√
mn/ε+ n/ε5).

7.1.4 sparsest cut and balanced separator

Given a weighted graph G = (V,E,w), the sparsest cut problem asks for a cut C = (S, Sc) which
minimizes the ratio valG(S)/(|S| |Sc|). The balanced separator problem asks in addition that
the cut is “balanced”, i.e., µ ≤ |S|/|V | ≤ 1/2 for some constant µ > 0. Exactly solving either of
these problems is NP-hard, and optimally trying to approximate them has led to an interesting
line of research [LR99, ARV09]. Currently the best polynomial-time classical algorithm for both
problems achieves an O(

√
log n)-approximation factor in time Õ(m+n1+δ), for an arbitrary positive

constant δ. This is achieved by combining cut sparsification, work by Sherman [She09] which shows
that an O(

√
log n)-approximation can be calculated by solving Õ(nδ) max flows, and the Õ(m/ε3)

max flow algorithm by Peng [Pen16] for constant ε > 0. Applying these algorithms to our ε-cut
sparsifier for constant ε > 0, we get the claim below.

Claim 10. There exists a quantum algorithm that outputs an O(
√

log n)-approximate sparsest cut
or balanced separator of a weighted graph in time Õ(

√
mn+ n1+δ), for an arbitrary constant δ > 0.

7.2 Quantum Laplacian Solver

The complexity of the best known linear system solver is Õ(nω), with ω < 2.373 the matrix multi-
plication coefficient. Building on a long line of work, Spielman and Teng [ST04] famously showed
that the special case of Laplacian systems can be solved in time Õ(m) ∈ Õ(n2), with m the number
of nonzero entries of the Laplacian. To this end they exploit the connection of Laplacians with
graphs, allowing for a combinatorial interpretation and treatment of the linear system.
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More specifically, a Laplacian solver aims to solve a linear system LGx = b, where LG is the
Laplacian associated to some graph G. We denote the solution by x = L+

Gb, where L
+
G is the pseu-

doinverse of LG (i.e., the inverse on its image). The original motivation for spectral sparsification
was in fact to create better Laplacian solvers. Indeed, as follows from the lemma below, we can
solve the Laplacian system in the sparsifier and retrieve an approximation of the original system.
Here we use the A-induced norm ‖v‖A =

√
v†Av = ‖A1/2v‖ for a positive semi-definite matrix A,

with v† the Hermitian transpose of vector v.

Claim 11. Consider a linear system LGx = b, where LG is the Laplacian of a weighted, undirected
graph G. If H is an ε-spectral sparsifier of G, with Laplacian LH , then solving LHx = b yields an
approximate solution to the original system:

‖L+
Hb− x‖LG

≤ 2ε‖x‖LG
.

Proof. Since H is an ε-spectral sparsifier of G, we have that (1 − ε)LG � LH � (1 + ε)LG. This
implies that the nonzero eigenvalues of LGL+

H (and hence also of L1/2
G L+

HL
1/2
G ) lie between 1/(1 + ε)

and 1/(1− ε). With I the identity matrix restricted to the image of LG and LH , this implies that
‖L1/2

G L+
HL

1/2
G − I‖ ≤ ε/(1− ε) ≤ 2ε for ε ≤ 1/2. From this we can bound

‖L+
Hb− x‖LG

= ‖L1/2
G L+

Hb− L
1/2
G x‖

= ‖L1/2
G L+

HLGx− L
1/2
G x‖

= ‖(L1/2
G L+

HL
1/2
G − I)L

1/2
G x‖ ≤ ‖L1/2

G L+
HL

1/2
G − I‖ ‖L1/2

G x‖.

Since ‖L1/2
G L+

HL
1/2
G − I‖ ≤ 2ε and ‖L1/2

G x‖ = ‖x‖LG
, this proves the lemma.

This observation allowed Spielman and Teng to reduce the task of solving a potentially dense
Laplacian system to solving a very sparse one in the Laplacian of the sparsifier, having Õ(n/ε2)
edges. They then invoke other methods to efficiently solve the sparse Laplacian system in additional
time Õ(n/ε2).

An immediate consequence is that we can use our quantum sparsification algorithm to speed up
Laplacian solving. We can create a sparsifier H with Õ(n/ε2) edges in time Õ(

√
mn/ε), and then

use a classical Laplacian solver to solve the system LHx = b in an additional time Õ(n/ε2). This
proves the proposition below.

Proposition 2 (Quantum Laplacian Solver). There exists a quantum algorithm that, given adjacency-
list access to a weighted and undirected graph G, outputs with high probability an approximate solu-
tion x̃ to the linear system LGx = b such that ‖x̃− x‖LG

≤ ε‖x‖LG
in time Õ(

√
mn/ε).

The use of the LG-induced norm ‖·‖LG
is common in the study of Laplacian solvers. If, however,

an ε-approximate solution in the regular 2-norm is desired, then one can use that ‖x̃−x‖LG
≤ ε‖x‖LG

implies that ‖x̃−x‖ ≤ ε
√
κ‖x‖, with κ = λmax/λmin the condition number of LG. Setting ε = δ/

√
κ

hence yields a δ-approximation in the 2-norm, and the runtime of quantum Laplacian solver becomes
Õ(
√
mnκ/δ). This factor-

√
κ overhead would typically be too large, apart from the case where the

Laplacian is well-conditioned. A resolution to this issue follows from improving the error-dependence
of our quantum Laplacian solver down to polylogarithmic, which is one of the open questions that
we mentioned in the introduction.
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7.2.1 Effective Resistances and Commute Times

Electrical networks, consisting of nodes {v ∈ V } and resistors {re | e ∈ E}, are conveniently de-
scribed by a weighted graph G = (V,E, {we = 1/re}) [Bol13]. Certain quantities of the electrical
network can then be expressed using the Laplacian of G. One example is the effective resistance Rs,t
between a pair of nodes s and t, which we already encountered in Section 4. This can be expressed
as a quadratic form in the inverse of the Laplacian:

Rs,t = (χs − χt)TL+(χs − χt).

This effectively measures the dissipated power E(js,t) of the electric flow that results from injecting
a unit current in s, and extracting it from t, as is described by the demand vector js,t = χs−χt. For
a more general demand vector j ∈ Rn, with 1T j =

∑
v∈V j(v) = 0, the dissipated power is defined

analogously:
E(j) = jTL+j.

Closely related to the effective resistance is the commute time of a random walk. The random walk
commute time Cs,t between nodes s and t is defined as the expected number of steps the walk must
take from s to reach t, and then return to s. By a result of Chandra, Raghavan, Ruzzo, Smolensky
and Tiwari [CRR+96] we know that Cs,t = 2WRs,t, with W =

∑
ewe the total edge weight in the

graph.
Since the effective resistance and the dissipated power correspond to quadratic forms in the

inverse of the Laplacian, they can be ε-approximated by calculating the corresponding quantity in
an ε-spectral sparsifier. In addition, the total edge weight WH of an ε-cut sparsifier ε-approximates
the original edge weight W , so that (1− ε)2CGs,t ≤ CHs,t ≤ (1 + ε)2CGs,t and hence also the commute
times are approximated. Using our quantum sparsification algorithm, together with a classical
Laplacian solver, we can approximate any of these quantities in time Õ(

√
mn/ε).

Claim 12. Let j ∈ Rn be a current demand vector, with 1T j = 0. Then there exists a quantum
algorithm that outputs an ε-approximation to the dissipated power E(j) in time Õ(

√
mn/ε). In

particular, if j = χs − χt then this yields an ε-approximation of the effective resistance Rs,t and the
commute time Cs,t.

By a similar argument, we can create an ε-spectral sparsifier, and construct the approximate
resistance oracle of Spielman and Srivastava (see Section 4.1.1) on this sparsifier. By Theorem 9 we
can construct this oracle in time Õ(n/ε4) (which corresponds to Õ(m/ε2) when we input a sparsifier
with m ∈ Õ(n/ε2) edges). This proves the following claim.

Claim 13. There exists an Õ(
√
mn/ε+n/ε4)-time quantum algorithm that outputs a (24 log(n)/ε2)×

n matrix Z such that with high probability, for any s, t ∈ V it holds that

(1− ε)Rs,t ≤ ‖Z(χs − χt)‖2 ≤ (1 + ε)Rs,t.

After creating the matrix Z, we can hence ε-approximate any effective resistance Rs,t in time
Õ(1/ε2), simply by calculating the norm of the difference between two Õ(1/ε2)-length columns of
Z. Apart from its use for spectral sparsification, as we demonstrated in Section 4, such an oracle
can also be used to obtain geometric embeddings of the graph, see for instance [vL07].
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7.2.2 Cover Time

The cover time τcov(G) of a weighted graph G denotes the expected number of steps before a random
walk has visited all nodes, starting from the worst initial node. A classic bound on the cover time
called Matthew’s bound [Mat88] states that

max
s,t

Hs,t ≤ τcov(G) ≤ (1 + log(n)) max
s,t

Hs,t,

with Hs,t the hitting time from node s to node t. Tighter characterizations were later proven by
Kahn, Kim, Lovász and Vu [KKLV00] and Ding, Lee and Peres [DLP11]. We extract the following
claims from the latter.

Theorem 17. [DLP11, Theorems 1.6 and 4.14]

• If H is an O(1)-spectral sparsifier of G, then τcov(H) ∈ Θ(τcov(G)).

• There is an Õ(m) algorithm that outputs with high probability an O(1)-approximation of τcov(G).

We can easily derive the following claim by using our quantum sparsification algorithm to construct
an O(1)-spectral sparsifier, and then approximating the cover time on this sparsifier using the
algorithm from [DLP11].

Claim 14. Let G be an unweighted, undirected graph. There exists a quantum algorithm that outputs
a constant-factor approximation to the cover time τcov(G) in time Õ(

√
mn).

7.2.3 Eigenvalues and Spectral Clustering

The bottom eigenvalues and eigenvectors of a graph Laplacian provide useful information about the
graph, as is witnessed by e.g. Cheeger’s inequality and spectral clustering [NJW02], the Page-
Rank algorithm [BP98], and in fact the entire field of spectral graph theory [CDS80, Chu97].
Laplacian solvers allow to efficiently approximate these eigenvalues and eigenvectors. Spielman
and Teng [ST14] (with a later refinement by Koutis, Levin and Peng [KLP16]) showed that in
time Õ(m + kn/ε2) it is possible to compute (i) an ε-approximation to the k smallest eigenvalues
λ1, . . . , λk of a Laplacian, and (ii) a set of k orthogonal unit vectors v1, . . . , vk such that

vT` Lv` ≤ (1 + ε)λ`, 1 ≤ ` ≤ k. (3)

This set of vectors approximates the subspace spanned by the k bottom eigenvectors of the Lapla-
cians. Already for constant ε > 0, such a set can be used for spectral clustering. For the case of two
clusters, this is explicitly discussed in [ST07] and [ST14, Section 7] for RatioCut. For k clusters, the
most common approach is spectral k-means clustering [NJW02, vL07]. Using the same analysis as
in [PSZ15], one can show that a set obeying (3) can be used to obtain the same performance [Zan19].

Using our quantum sparsification algorithm, we find a direct speedup for this task. To that
end, note that it suffices to calculate the k smallest eigenvalues and approximate eigenvectors of an
ε′-spectral sparsifier, for say ε′ = ε/10. This will yield ε-approximate eigenvalues and eigenvectors
of the original graph - see e.g. [ST14, Proposition 7.3]. We can hence construct an (ε/10)-spectral
sparsifier with Õ(n/ε2) edges in time Õ(

√
mn/ε), and then use a classical algorithm to solve the

problem in the sparsifier, taking additional time Õ(kn/ε2). This proves the following claim.

Claim 15. There exists an Õ(
√
mn/ε + kn/ε2)-time quantum algorithm that outputs with high

probability an ε-approximation of each of the k smallest eigenvalues and a set of orthogonal unit
vectors v1, . . . , vk such that vT` Lv` ≤ (1 + ε)λ` for all 1 ≤ ` ≤ k.
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This directly yields a speedup for the aforementioned spectral clustering algorithms, provided
that we are given adjacency-list access to some similarity graph of the data [vL07]. Consider for
instance the spectral k-means clustering algorithm in [NJW02]. Given the similarity graph, its
classical time complexity is dominated by (i) the time to construct a set of k vectors obeying (3)
for constant ε > 0, which is Õ(m + nk), and (ii) the time to perform k-means clustering on these
vectors, which is Õ(n poly(k)). This yields a total classical complexity Õ(m+n poly(k)). From the
above claim, we immediately find the following corollary.

Corollary 5. There exists a quantum algorithm that, given adjacency-list access to the similar-
ity graph of a data set, performs spectral k-means clustering on this data set in time Õ(

√
mn +

n poly(k)).
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A Quantum Algorithm for Shortest-Path Trees

In the following we summarize the quantum algorithm for constructing a single-source shortest-path
tree (SPT) by Dürr, Heiligman, Høyer and Mhalla [DHHM06]. We straightforwardly generalize it
to the case where there is a set of “forbidden edges”, which we encode by associating a weight we = 0
to these edges. The algorithm should then return an SPT over the connected component of the
source. We recall that the resistance or “cost” of an edge is described by its resistance 1/we, and
the distance δG(u, v) between nodes u and v is

δG(u, v) = min
u−v path P

∑
e∈P

1

we
.
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The key routine that is used is a quantum algorithm for minimum-finding. It assumes oracle
access to a “value function” f : [N ] → N ∪ {∞} and a “type function” g : [N ] → N, with a total
number of types

M = |Im(g)| = |{g(j) : j ∈ [N ]}|.

Given an integer d ∈ N with d ≤ N/2, the problem minfind(d, f, g) requires to output a subset
I ⊆ [N ] of size |I| = min{d,M}, such that

• g(i) 6= g(j) for all distinct i, j ∈ I, and
• for all j ∈ [N ]\I and i ∈ I, if f(j) < f(i), then f(i′) ≤ f(j) for some i′ ∈ I with g(i′) = g(j).

Proposition 3 ([DHHM06, Theorem 3.4]). There is a quantum algorithm that solves minfind(d, f, g)
with success probability at least 1− δ in time Õ(

√
Nd log(1/δ)).

Algorithm 5 T = SPT(G, v0)

1: let T = {v0}, L = 1 and P1 = {v0}
2: while |T | < n do
3: use minfind on E(PL) to construct a set BL of at most |PL| maximum-weight border edges

from PL to distinct nodes
4: let (u, v) be a maximum-weight edge of B1 ∪ · · · ∪BL with v /∈ P1 ∪ · · · ∪ PL.
5: if w(u, v) = 0 then
6: abort and output T
7: else
8: set T = T ∪ {(u, v)}, PL+1 = {v} and L = L+ 1

9: as long as L ≥ 2 and |PL| = |PL−1|, merge PL into PL−1 (removing PL) and set L = L− 1

We define the component of a node v0 as the smallest subset Cv0 ⊆ V such that v0 ∈ Cv0 and
either |E(Cv0 , V \Cv0)| = 0 or max{we | e ∈ E(Cv0 , V \Cv0)} = 0.

Proposition 4. Let G = (V,E,w) be an undirected graph with weights w : E → N∗, and Cv0 the
connected component of v0 ∈ V . Then Algorithm SPT(G, v0) outputs a shortest-path tree from v0
that spans Cv0 . There is a quantum algorithm that implements SPT(G, v0) with success probability
1− δ in time Õ(

√
|Cv0 ||E(Cv0)| log(n/δ)).

Proof. We choose the success probability of each call to minfind to be 1 − δ/n, so that the total
success probability is at least (1− δ/n)n ≥ 1− δ. It was shown in [DHHM06] that in this case each
iteration returns a maximum-weight border edge of T . Correctness of the algorithm hence follows
from correctness of Dijkstra’s algorithm.

The bound on the runtime follows from bounding the runtime of the calls to minfind, which
are clearly dominant. At any iteration, we invoke minfind(|PL|, f, g) on E(PL), with

• type function g returning the end node g((u, v)) = v of an edge (u, v), and

• value function f returning the inverse weight 1/w(u, v) of an edge (u, v) if v /∈ T , and ∞
otherwise.

By Proposition 3 a single such call requires time O(
√
|E(PL)||PL| log(n/δ)). The total runtime is

hence given by

O

(∑
PL

√
|E(PL)||PL| log(n/δ)

)
,
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where the sum runs over the sets PL in step 3 of each iteration. We can bound this by noting
that the merging procedure in step 9 ensures that in every iteration |PL| = 2rL for some integer
rL ≤ log n, and any two PL of the same size are necessarily disjoint. Since necessarily PL ⊆ Cv0 ,
there are at most |Cv0 |/2r (disjoint) sets of size 2r, and we can bound∑

PL:|PL|=2r

√
|E(PL)||PL| = 2r/2

∑
PL:|PL|=2r

√
|E(PL)|

≤ 2r/2
√

2−r|Cv0 |
∑

PL:|PL|=2r

|E(PL)| ≤
√

2|Cv0 ||E(Cv0)|,

where the second inequality follows from Cauchy-Schwarz and the third inequality from the fact that∑
PL:|PL|=2r |E(PL)| ≤ 2|E(Cv0)|. Summing this over all r ≤ log n, we find the claimed runtime.

B Existence of Disjoint Matching

Fix n, m ≤ n2/4 and ε ≥
√
n/m. Let G1 = (L1 ∪ R1, E1) consist of ε2n/2 disjoint copies B(k)

of the complete bipartite graph on 1/ε2 left and right nodes, containing 2ε2m/n parallel copies of
every edge. In this way, G1 has n nodes, m edges and is 2m/n-regular. We index the i-th left and
j-th right node of B(k) as l(k)i resp. r(k)j . Let G2 = (L2 ∪ R2, E2) be the complete bipartite graph
on 2m/n left nodes and n/2 right nodes. In this appendix we prove that every edge in G1 can be
matched to a unique edge in G2 such that

1. all edges leaving a left node l ∈ L1 are matched to edges in G2 with distinct left ends,

2. all edges leaving a right node r ∈ R1 are matched to edges in G2 with distinct right ends.

We do this by considering maximum bipartite matchings in G2 of the form

Mj = {(i, i+ j) | i ∈ [2m/n]} ⊂ E2, 0 ≤ j < n/2,

where the sum is modulo n/2. These matchings form a partition of the edges set E2. We interpret
every Mj as a set of 2m/n ordered edges. Now for every node l(k)i ∈ L1 we will match the 2m/n

(lexicographically ordered) outgoing edges E(l
(k)
i ) from that node to the (lexicographically ordered)

edges in some Mj . This ensures that all edges leaving l(k)i are matched to edges in G2 whose left
ends are distinct, so that condition 1. is satisfied. In order to satisfy condition 2., we specify the
matching as follows:

E(l
(k)
i )⇔Mk−1+(i−1)ε2n/2, ∀k ∈ [ε2n/2], i ∈ [1/ε2].

Indeed, one can check that the 2m/n edges matched to for instance the incoming edges of node r(1)1

are described by

(α, β), with α ∈ [1, 2ε2m/n] and β = `
ε2n

2
+ α, 0 ≤ ` < 1/ε2.

Since we assumed that m ≤ n2/4, and hence 2m/n ≤ n/2, the right ends of these edges are indeed
disjoint. The same reasoning applies to all other nodes r(k)j . We illustrate this matching in Figure
2 below.
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Figure 2: Matching edges between G1 and G2 for n = 8, m = 16 and ε = 1/
√

2. The left ends of
matchings M0 are distinct, ensuring condition 1. for node l(1)1 . Similarly, the right ends of all edges
matched to r(1)1 are distinct, ensuring condition 2. for this node. We note that in general G2 is a
bipartite graph between 2m/n left nodes and n/2 right nodes, with 2m/n ≤ n/2.
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