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Abstract—In n-player sequential move games, the second root-
player move appears at tree depth n + 1. Depending on n
and time, tree search techniques can struggle to expand the
game tree deeply enough to find multiple-move plans of the
root player, which is often more important for strategic play
than considering every possible opponent move in between. The
minimax-based Paranoid search and BRS+ algorithms currently
achieve state-of-the-art performance, especially at short time
settings, by using a generally incorrect opponent model. This
simplifying model enables Alpha-Beta pruning, thus allowing
the search to reach follow-up root player moves at greater
search depths. This paper introduces abstraction over opponent
moves to MCTS in multiplayer games, and uses its synergies
with progressive widening in order to outperform these state-of-
the-art minimax-type baselines. Progressive widening makes the
search tree selective and deep enough to reach the root player’s
next moves, and abstraction over opponent moves generalizes
value estimates of the root player’s moves online across different
opponent moves. In contrast to paranoid search approaches,
opponent models do not have to be simplified. Experiments
show that combining progressive widening with opponent move
abstraction (MCTS-OMA-PW) leads to improved performance
in the multiplayer games Chinese Checkers, Rolit, and Focus.
Our work thus paves the way for improved multiplayer search
by online generalisation that focuses on the root player’s actions,
with the potential of improving real-time MCTS applications as
well as training in expert iteration and other meta-algorithms
where short time settings are relevant.

Index Terms—Game AI, Monte Carlo Tree Search, Multi-agent
systems, Multiplayer games, Monte Carlo methods

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) and its many variants have
celebrated countless successes in recent years, e.g. in General
Game Playing [1], General Video Game Playing [2], and as
an essential part in recent breakthroughs in deterministic two-
player board games [3], [4]. When considering the exponential
complexity of multiplayer games however, and in particular
when only short search times are available, MCTS can struggle
against alternative minimax-based search algorithms. MCTS
has for example been found to be inferior to Paranoid search
[5] and Best-reply Search (BRS) [6] in five out of eight tested
multiplayer domains when compared at 250ms per move [7].
Time settings of much less than one second per search have
several important applications however, such as real-time games,

or the use of MCTS as a policy improvement operator within
frameworks such as Expert Iteration [8] or Zero learning [4].

What makes Paranoid and BRS stronger in these cases?
These algorithms make use of the paranoid assumption – the
assumption that all opponent players are always conspiring
against the root player. While often wildly incorrect, this
simplified opponent model allows for an n-player game to be
treated as a 2-player zero-sum game. This means that Alpha-
Beta pruning can be applied, and an iterative deepening search
can reach the next moves of the root player (at depths n+ 1,
2n+1 etc.) within a shorter search time. Reaching future moves
of the root player, or at the very least the second root player
move at depth n + 1, can often be a much more important
factor for the strength of the resulting policy than considering
many of the opponent moves in between, or modelling the
preferences of these opponents correctly. We believe this to be
the deciding factor in many multiplayer domains: the ability to
focus mostly on yourself and your (at least short-term) plans,
without getting too distracted by the vast number of potential
opponent moves in between. In many domains, your own plans
will be relatively robust to these opponent moves on average.
However, an algorithm should be able to detect and adapt
when an opponent does have the ability to interfere, as is to
be expected in multiplayer games; simply ignoring opponents
is generally not sufficient.

In this paper, we tackle this problem of multiplayer MCTS
with a combination of the existing technique of progressive
widening (PW) [9], [10] and the newly proposed technique
of online generalization through opponent move abstraction
(OMA). Progressive widening makes sure to grow the tree
deeply enough to see follow-up root player moves, by initially
focusing only on the most likely opponent moves in between
(using offline generalization). Opponent move abstraction
makes better use of value estimates learned for these follow-up
moves, by generalizing them during search to similar game
states that only differ in past moves of the opponents, but not
in past moves of the root player (using online generalization).
Both techniques have parameters that allow to specify exactly
how many opponent moves we can afford to prune, and how
strongly we can rely on the online generalization over different
opponent moves. In the limit, they converge to no pruning and
no generalization, and therefore do not change the asymptotic
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behavior of MCTS, while providing a significant boost at
limited search times.

This paper is structured as follows: Section II discusses
related work, including the minimax-type baselines, and
the existing element of our multiplayer MCTS approach:
progressive widening. Section III proposes the new element of
our approach, opponent move abstraction, and argues for its
synergy with progressive widening. Section IV outlines the six
test domains, and Section V presents our experimental results.
Finally, Section VI concludes and discusses future work.

II. BACKGROUND

This section discusses the baselines Paranoid search and
BRS+1; outlines the MCTS variant our approach is extending,
and the progressive widening technique as one element of
our approach; and mentions previous techniques for online
generalization in MCTS in order to situate the newly proposed
element of opponent move abstraction in the literature.

A. Paranoid search

Following notation from related work on BRS [12], we model
the deterministic and fully observable games used in this work
as tuples (N,S, Z,A, T, P, ui, hi, s0), where N = {1, . . . , n}
is the set of players; S is the set of game states; Z ⊆ S is the
set of terminal states; A is the set of moves; T : S ×A→ S
is the transition function mapping any state s and any move
chosen from the available moves A(s) ⊆ A to the successor
state resulting from taking the move; P : S → N maps any
state to the player to move; ui : Z → [0, 1] ⊆ R returns the
utility of a terminal state for Player i; hi : S → [0, 1] returns
the heuristic evaluation of a state for Player i (the result of a
static board evaluation function like those discussed in Section
IV); and s0 ∈ S is the starting state of the game. The tuple
u(s) = (u1(s), . . . , un(s)) refers to the utility of state s from
the point of view of all players; the same holds for h(s).

Paranoid search [5] approaches multiplayer games by assum-
ing that all opponent players have formed a coalition against
the root player r. This effectively turns any multiplayer game
into a two-player zero-sum game between r and the coalition,
which makes Alpha-Beta style pruning possible. The utility
Vd(s, a) of any move a in any state s with a desired lookahead
of depth d is defined as follows for Paranoid:

Vd(s, a) =



u(s′) if s′ ∈ Z
h(s′) if s′ /∈ Z and d = 0

maxra′∈A(s′) Vd−1(T (s′, a′), a′)

if s′ /∈ Z and d > 0 and P (s) = r

minra′∈A(s′) Vd−1(T (s′, a′), a′)

if s′ /∈ Z and d > 0 and P (s) 6= r
(1)

where maxr returns a tuple that maximizes the rth value (here
over all legal next moves, the utility tuple that maximizes the
utility of the root player), mini analogously, and s′ = T (s, a).

1Given the similarity in background setting, parts of these subsections are
shared with a paper accepted for publication [11].

Paranoid tends to perform well in practice due to the deeper
searches made possible by Alpha-Beta style pruning. However,
it suffers from using an overly pessimistic opponent model,
which becomes more unrealistic the deeper it searches, and
the more opponents it is facing. In many games it is ultimately
not possible to win if all opponents form a coalition.

B. BRS and BRS+

Best-Reply Search (BRS) and BRS+ are improved search
techniques based on the paranoid assumption. Like Paranoid,
BRS assumes that all opponents are playing against the root
player; however, it restricts the move choices of this coalition.
In vanilla BRS [6], as used in prior comparisons to MCTS [7],
only the opponent with the strongest move against the root
player can act, while all other opponents have to pass. This
means that all opponent levels of the tree are virtually combined
into one, and the root player and the opponent coalition move
alternatingly as if playing a two-player game.

The restricted move choice of opponents in BRS fulfills two
functions. First, it allows for even deeper search and more long-
term planning than in vanilla Paranoid search, and Alpha-Beta
pruning can also still be applied. Second, it weakens some of
the negative effects of the paranoid assumption: All opponents
are still playing against the root player, but their moves and
therefore their strength as a coalition are limited.

BRS has been shown to work well in a variety of multiplayer
games [6], [13], [14]. However, it can lead to illegal game
states in the tree when the game at hand does not actually allow
passing. This motivated the further development of BRS into
BRS+ [12]. BRS+ assumes access to a static move ordering
function. Its basic idea is that whenever an opponent does not
have the strongest move against the root player in a given state
and would be forced to pass by vanilla BRS, this opponent
instead gets to play the move ranked highest by the move
ordering, which maintains valid game states during search.
Subfigures 1(a) and (b) show the effect of this pruning – 1(a)
is a toy example of a game tree, and 1(b) is the corresponding
BRS+ search tree in which at most one of the opponents
can make a free move (not ranked first by the move ordering)
between two turns of the root player. The highest ranked moves
are marked with bold lines in the illustration.

BRS+ and its generalization OPPS [11] can be considered
state of the art for fully observable, deterministic multiplayer
games2. Problems such as illegal moves are avoided, for
the price of requiring a move ordering function, and being
somewhat dependent on its quality.

C. MCTS and progressive widening

Monte Carlo Tree Search (MCTS) denotes a large family
of related search algorithms [15]. We assume that the reader
is familiar with its basic structure. In this work, we use the
popular and simple Upper Confidence Bounds for Trees (UCT)

2Due to space restrictions, we only compare to BRS+ in this paper; OPPS
is playing somewhat stronger but otherwise shows qualitatively similar results.



variant of MCTS [16], i.e. moves in the search tree are selected
to maximize:

X̄a + k

√
lnn

na
(2)

where X̄a is our current value estimate for taking move a in
the current node (the average reward for taking a here), n is
the number of times we have visited the current node so far,
na is the number of times we have selected move a in the
current node so far, and k is the exploration factor, trading off
exploration and exploitation. When an MCTS simulation leaves
the tree, we use the same static evaluation functions as used
by our minimax baselines to evaluate the newly visited state,
add a node representing it to the tree, and then backpropagate
its evaluation; i.e. we do not use rollouts.

Progressive widening (PW) or progressive unpruning [9],
[10], is a soft move pruning technique that allows the search
tree to initially focus on moves that are heuristically believed to
be promising, drastically reducing the branching factor of the
tree and thus deepening the search. Over time, the technique
adds more and more moves to the tree, in decreasing quality
as ranked by a static move ordering function. This enables
it to retain the asymptotic behavior of MCTS, i.e. the policy
found as the number of MCTS simulations goes to infinity.
Concretely, we determine the number of top-ranked moves
considered in any given tree node by:

dcnαe (3)

where n is the number of visits to the current node so far, and
the widening factor c > 0 and widening exponent α ∈]0, 1[
are parameters determining the rate of unpruning over time.

D. Online generalization in MCTS

Recent efforts in game AI have largely focused on offline
generalization, for example with the deep convolutional neural
networks used by AlphaGo and AlphaZero [3], [4] for state
value and policy estimation. Training these estimators offline
means that they have to generalize across all states that could
ever be visited in any match, and they therefore require not

(a) The fully expanded game tree of a three-player toy game.

(b) The pruned tree as searched by BRS+.

Fig. 1: Illustration of BRS+.

only very powerful function approximators, but also very time-
intensive training.

An alternative (and orthogonal) approach to learning in
search is online generalization. The goal of online general-
ization is to focus learning on the states actually visited by
the search in the currently ongoing match, and make the most
out of the limited amount of data we can collect during play.
The MCTS tree in its basic form estimates the value of each
move ad at search depth d in the precise context of its entire
history a0a1 . . . ad−1, from the move a0 made at the root to
the preceding move ad−13. These value estimates are unbiased,
but do not generalize or share any information across the tree.
Move value estimation techniques that do generalize online
may take the form of abstractors: They create a wider learning
context by e.g. explicitly focusing on only a part of a move’s
history and generalizing over the rest, or abstracting the rest
away. The resulting value estimates are biased, but can be
learned much more quickly due to wider contexts appearing
more often. Therefore, such abstract value estimates have a
lower variance. They can then be used to guide the tree search
into directions that appear promising based on past experience
in similar situations, i.e. in the same context.

The Move-Average Sampling Technique (MAST) for ex-
ample, proposed for General Game Playing [17], uses the
widest possible learning context and estimates move values
globally and independently of where the move is found in
the tree. It learns how good a move is in general. The N-
Gram Selection Technique (NST) [18], as another example,
additionally learns move value estimates in the context of the
immediately preceding move ad−1 (or the preceding sequence
of two moves ad−2ad−1). It learns how good a move is
as answer to (an)other move(s). For the Predicate-Average
Sampling Technique (PAST) [17], the learning contexts are
given by the predicates used in General Game Playing to
describe states, and thus depend on the specifics of game states
reached by certain histories. The Rapid Action Value Estimate
(RAVE) technique [19] and its variants estimate the value of
a move ad in the context of every single prefix of its history:
a0, a0a1, a0a1a2, . . ., a0 . . . ad−1– resulting in one move ad
leading to many value estimate updates, for every partial history
corresponding to every move that was traversed before it.

In this work, we make use of an online generalization
technique that abstracts over opponent moves in every move’s
history. The following section describes how these abstract
value estimates are computed, and how they are used to
influence move selection in the MCTS tree.

III. OPPONENT MOVE ABSTRACTION

When studying the behavior of Paranoid and BRS+, we made
an interesting observation regarding such approaches based
on the paranoid assumption. When you let them play with
increasing search depths, these algorithms do not necessarily get
stronger with each additional tree level they reach, which would
be generally expected from algorithms without the paranoid

3We are ignoring transposition tables here for clarity.



assumption (such as Alpha-Beta search in two-player zero-sum
games, and maxn [20] in multiplayer games4). They instead
tend to only significantly increase in strength whenever they
reach an additional tree level where the root player moves.5

This makes intuitive sense: As the paranoid assumption about
the opponents’ objectives is usually incorrect, the behavior
of opponents cannot be particularly well predicted by an
algorithm using it, and searching an additional level of incorrect
predictions does not help. However, paranoid algorithms still
model their own objectives correctly, and the Alpha-Beta
pruning enabled by the paranoid assumption allows them to
search deeper and reach more of their own future moves. This
suggests that focusing on yourself is a lot more important
in multiplayer games than focusing on what opponents are
doing. The improved strength of BRS and BRS+ compared to
Paranoid confirms this as well, as these algorithms additionally
use pruning of opponent moves in order to search even deeper
trees that focus even more on the moves of the root player.
Of course this does generally not mean that you can ignore
your opponents completely or model them with static, non-
branching policies; occasionally, with a frequency depending
on the game at hand, managing complex interactions with
opponents is crucial. But on average, in a game with several
or many players, your plans are somewhat robust to specific
move choices of specific opponents – because typically, not
every opponent can strongly interfere with you at every turn.

The main goal of this paper is to apply this insight to the
MCTS framework, in a way that makes use of its particular
strengths. Our approach uses two elements and identifies a
particular synergy between them: the existing technique of
progressive widening as outlined above, and the newly proposed
technique of opponent move abstraction (OMA) explained in
the following. Two questions need to be answered.

First question: How are OMA value estimates computed?
Opponent move abstraction keeps value estimates for all moves
based on a context that abstracts over (i.e. ignores) past
opponent moves, only including past moves of the currently
moving player. Consider the example in Fig. 2, showing a
depth-four toy tree of a three-player game between the root
player and two opponents. The MCTS tree itself keeps separate
and independent value estimates for the three occurrences of
the root player move a, because they appear in different parts of
the tree and therefore in potentially different situations, where
they could have arbitrarily different values. They have different
histories: xmo vs. xmp vs. ynq. OMA however maps the
move a from node 1 and the move a from node 2 to the same
abstract value estimate – because OMA abstracts over past
opponent moves, both moves simply have the OMA context x.
This means that when move a has for example been chosen 14
times from node 1, and 23 times from node 2, the OMA value
estimate for the move a in the opponent-abstracting context x

4We are not describing maxn in more detail here, as it is usually weaker
than Paranoid, and is therefore not used as baseline in our experiments.

5For example, BRS+ depth d against d− 1 tested for d = {2, . . . , 7} won
56.5%, 51.6%, 48.0%,89.3%, 40.1%, 42.9% in 4-player Chinese Checkers
(of 500 games, 2nd root player move depth in bold).

ROOT

OPP. 1

OPP. 2

ROOT

x y

a a a
1 2 3

OPP. 1

o

nm

p q

Fig. 2: Opponent Move Abstraction. The root player’s OMA
identifies the moves a from nodes 1 and 2, because they have
the same history of root player moves, x. The move a from
move 3 has a separate OMA value estimate.

has already seen 37 updates. Note that move a when chosen
from node 3 has a different OMA context (y) and therefore
does not share the same OMA value estimate.

Second question: How are OMA value estimates used? In
every move selection in the search tree, we can now replace
the maximization of UCT values as given by Equation 2 with
maximizing a combination of the UCT value and the newly
computed OMA value estimate. There are several ways to
combine UCT values with additional value estimates from
an online generalization approach like OMA, with different
degrees of theoretical well-foundedness and complexity. For
RAVE, for example, different suggestions were made in [19],
[21], [22] – the performance in practice is often comparable.
For this work, we are therefore choosing the following simple,
heuristic formula [19]:

βX̄OMA
a + (1− β)X̄a + k

√
lnn

na
(4)

where X̄OMA
a is the OMA value estimate for move a in the

current node, and β is the weighting coefficient as given by:√
e

3na + e
(5)

where e is a tunable ”equivalence parameter” regulating
the strength of OMA’s influence. Decaying β ensures that
OMA’s low-variance, but potentially high-bias value estimate
is kickstarting the search, but gradually phases out as the node
collects more and more samples for its unbiased UCT estimate.

Our proposed approach to multiplayer search combines
opponent move abstraction with progressive widening. In this
setup, PW has the task of growing a tree deep enough to
reach the root player’s next moves, and OMA has the task of
learning the value of these moves abstracting over all potentially
irrelevant opponent moves in between. In this way, the crucial
knowledge about your own future actions can be more easily
acquired and more effectively used by MCTS.

Both elements of our approach, PW and OMA, have the
additional advantage of converging in effect to zero as the
search time goes to infinity: PW by widening to all legal moves
in all tree nodes, and OMA by converging to an abstractor
weight of zero. While we are considering short time settings
here, tuning how fast this convergence happens is still valuable



for achieving optimal performance. Furthermore, this means
that MCTS still converges to a Nash equilibrium in the limit
in our setting [23]. Our minimax-type baseline algorithms do
not have this convergence guarantee due to their unrealistic
paranoid assumption, as well as due to the hard pruning of
moves in BRS+.

Please note that while this explanation focuses on the root
player, where the proposed combination of techniques has the
most impact, both progressive widening and opponent move
abstraction are applied at all nodes in the tree, not just those
corresponding to the root player. Future work may expound the
effect of treating the root player nodes and the opponent nodes
separately. In the following, we empirically test our approach,
and demonstrate the synergy of opponent move abstraction and
progressive widening.

IV. DOMAINS

We use six different test domains for the experiments in
the following section: Chinese Checkers with three, four, and
six players; Rolit with three and four players; and Focus
with four players. All are deterministic, zero-sum, perfect-
information, turn-taking board games, although none of these
properties should in principle be limitations of our approach.
These domains have been used in prior work on minimax-
based and MCTS-based search algorithms, including a direct
comparison of these two families of search algorithms [7],
which partly inspired this work. We are staying close to the
domains, evaluation functions and move ordering functions
described in [7], and encourage the interested reader to consult
the complete game rules and more detailed explanations therein.

Chinese Checkers is a game for two to six players, played
on a star-shaped board, with every player trying to win by
reaching the opposite corner of the board first. Jumping over
own and opponent pieces is allowed. In order to speed up
experiments, we follow previous work [7], [23] in using a
small board with 73 fields and 6 pieces per player.

Both our MCTS-based approach as well as the minimax-
based baselines require a static board evaluation function, used
to assign heuristic values to leaf positions, as well as a static
move ordering function, used to search more promising moves
first, or pruning less promising moves. For Chinese Checkers,
we use a slightly simplified version of the evaluation function
from [7], which adds up for each player the distances of each
piece to the far end of the goal corner, and then normalizes
those values so they add up to 1 over all players. The move
ordering is identical to the one used in [7], which orders all
legal moves by how much closer they bring the moved piece
to the far end of the goal corner.

Rolit is a game for three to four players, generalizing the
two-player game of Othello. The players alternatingly place
pieces on a 8× 8 board, trying to capture opponent pieces in
straight lines in between their own pieces. Captured discs take
on the color of the capturing player, and when the board is
filled, the player with the most pieces wins. For Rolit, we use
a slightly tuned version of the evaluation function from [7],
adding up for each player the number of stable pieces – pieces

(a) Chinese Checkers
with six players.

R G

B Y

(b) Rolit with four play-
ers.

(c) Focus with four play-
ers.

Fig. 3: Starting positions of three of our test domains.

that cannot be captured anymore – and the number of legal
moves on the current game board. The number of stable pieces
is multiplied with a factor of two. The move ordering used
here is identical to the one used in [7] and based on a static
square-value table.

Focus is a game for two to four players, played on an
8 × 8 board as well, but with three squares removed from
each corner. In Focus, pieces can be stacked on top of each
other, and the entire stack or any number of its top pieces
can then be controlled by the player on top. Stacks of size x
can move x squares. When a stack exceeds five pieces, the
bottom pieces are captured by the moving player such that the
maximal stack size remains five, and a player wins either by
being the only one with any legal moves left, or by capturing a
given number of pieces (dependent on the number of players).
For Focus, we use a slightly tuned version of the evaluation
function from [7] as well, calculated for each player with the
formula 300− 50u+ v; u is the minimum number of captures
the player still needs to win the game, and v is the number
of stacks the player controls. The move ordering we use is
identical to the one in [7] and gives a preference to moves
creating larger stacks, as well as to moves that increase the
number of stacks the player controls.

Fig. 3 shows the starting positions for six-player Chinese
Checkers, four-player Rolit, and four-player Focus, adapted
from [7].

V. EXPERIMENTAL RESULTS

All experiments limit all players to 250ms of thinking
time per move, as our work is mainly motivated by the
weaker performance of multiplayer MCTS at short search times.
Vanilla MCTS, i.e. UCT in this work, has one parameter: the
exploration factor k. MCTS with progressive widening has
two additional parameters: the widening exponent α and the
widening factor c. MCTS with opponent move abstraction has
two additional parameters as well: the equivalence parameter
of the abstractor e, and a boolean f that determines whether ab-
stracted value estimates should be forgotten in between moves,
or accumulated throughout entire games. The parameters of all
algorithm variants were first tuned against the vanilla MCTS
baseline as well as against each other, followed by a final
test of the best found parameter settings with 1000 games.
The results of these final tests are presented here. Whiskers
on bar plots indicate 95% confidence intervals. Numbers in



parentheses behind the names of games refer to their number
of players, e.g. Rolit(4) is Rolit with four players. Minimax-
based and MCTS-based algorithms use the same heuristic
evaluation functions. MCTS uses no enhancements other than
the ones described in this paper, and minimax uses no other
enhancements than iterative deepening and the same move
ordering that progressive widening uses.

Our experiments are divided into two sets. In the first set,
described in Subsection V-A, we test the effect of adding
opponent move abstraction to vanilla MCTS, as well as the
effect of adding it to MCTS already using progressive widening.
This serves to demonstrate the synergy effect between the two
techniques. In the second set, presented in Subsection V-B,
we then test the minimax-based baselines Paranoid and BRS+
against vanilla MCTS, MCTS with opponent move abstraction
(MCTS-OMA), MCTS with progressive widening (MCTS-PW),
and against MCTS with both techniques (MCTS-OMA-PW).
This is to demonstrate the improvement achieved over the state
of the art for such short multiplayer searches.

A. Combining OMA and PW in MCTS

Our first set of experiments compares the performance of
opponent move abstraction when added to vanilla MCTS,
shown in Fig. 4, to the performance when added to MCTS
already equipped with progressive widening, shown in Fig. 5.
OMA leads to a modest improvement in vanilla MCTS at these
short time controls; the improvement is statistically significant
at the 95% confidence level in all domains except for 3-player
Rolit. The win rate of MCTS-OMA vs. MCTS, averaged over
all tested games, is 57.3%.

For MCTS with progressive widening however, OMA leads
to significant improvements in all tested domains, with an
average win rate of MCTS-OMA-PW vs. MCTS-PW of
65.0%. The improvement from adding OMA when progressive
widening is present is significantly larger than the improvement
from adding OMA when it is not present in all domains except
for 4-player Focus. This synergy effect is caused by PW helping
the search to grow a tree deep enough to reach more follow-
up root player moves, whose value estimates can then be
generalized by OMA and enhance the rest of the search process.
This makes the two techniques especially well-suited for use
in combination.

B. MCTS with PW and OMA vs. paranoid and BRS+

In our second set of experiments, we compared all combina-
tions of progressive widening and opponent move abstraction
added to MCTS – vanilla MCTS, MCTS-OMA, MCTS-PW,
and MCTS-OMA-PW – against the minimax-based baselines
Paranoid and BRS+, representing the state of the art for such
short multiplayer searches.

Fig. 6 shows the performance of vanilla MCTS against the
baselines. In seven out of twelve comparisons, MCTS is the
weaker player, with an average win rate across all games of
only 46.0% against Paranoid and 34.5% against BRS+. This
confirms that at least for these basic forms of the algorithms,
minimax-based searching is superior under our test conditions.

0% 20% 40% 60% 80% 100%

AVERAGE

Focus(4)

Rolit(4)

Rolit(3)

Chinese Checkers(6)

Chinese Checkers(4)

Chinese Checkers(3)

win rate

Fig. 4: Performance of MCTS with opponent move abstraction
vs. vanilla MCTS. 250ms per move.

0% 20% 40% 60% 80% 100%

AVERAGE

Focus(4)

Rolit(4)

Rolit(3)

Chinese Checkers(6)

Chinese Checkers(4)

Chinese Checkers(3)

win rate

Fig. 5: Performance of MCTS with both progressive widening
and opponent move abstraction vs. MCTS with only progressive
widening. 250ms per move.

Our results agree with the main result for the comparison of
MCTS and Paranoid/BRS at 250ms per move in [7], despite
implementation differences and different enhancements used
in their versions of MCTS and BRS.

Fig. 7 demonstrates the performance of MCTS-OMA against
the baselines. Even though there is a modest improvement of
the average win rates, now 53.1% against Paranoid and 37.0%
against BRS+, six out of twelve comparisons still show MCTS-
OMA to be the weaker player. Opponent move abstraction does
not find enough generalizable information for the root player in
the tree, even though it can still generalize for some opponent
players (for example generalizing over the root player’s first
move at tree depth 1 when selecting a move at tree depth 2)
and thus generate a small boost.

In Fig. 8, the results of MCTS-PW against Paranoid and
BRS+ are shown. The average win rates are here raised to
71.9% against Paranoid and 57.0% against BRS+, which means
MCTS-PW is much better than MCTS-OMA; the increased
focus on moves heuristically assumed to be good results in
much deeper and more effective search trees. However, three
out of twelve comparisons still cannot show MCTS-PW to
be significantly stronger than BRS+ (3- and 4-player Chinese
Checkers as well as 4-player Rolit).

Fig. 9 finally supports the main point of this paper again:



That progressive widening and opponent move abstraction are
ideally used together. While the win rates against Paranoid and
BRS+ improved only by 4.8% on average when OMA was
added to vanilla MCTS, adding OMA to MCTS-PW increased
these win rates by 10.8%. MCTS-OMA-PW wins 79.6% of
games against Paranoid search and 70.9% against BRS+, and is
significantly stronger than both of the minimax-based baselines
in all test domains at the 99.999% confidence level.

VI. DISCUSSION AND FUTURE RESEARCH

In this paper, we introduced an approach tackling the
problem of weak MCTS performance in multiplayer games, in
particular at short time settings. Based on an analysis of the
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Fig. 6: Performance of vanilla MCTS vs. Paranoid and BRS+.
250ms per move.
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Fig. 7: Performance of MCTS with opponent move
abstraction vs. Paranoid and BRS+. 250ms per
move.

strengths of competing, minimax-based algorithms Paranoid
and BRS+, we developed a combination of the existing soft
pruning technique progressive widening and the newly proposed
online generalization technique opponent move abstraction. We
empirically demonstrated the synergy of the two techniques,
and showed how they significantly outperform both baselines
in all six test domains when used together in MCTS-OMA-PW,
at the previously challenging time setting of 250ms per move.

The main idea of our approach is focusing your search as
much as possible on yourself, and only as much as necessary
on the opponents. This is achieved by growing a tree selectively
and deeply enough to find your own next follow-up moves
(PW), and then generalizing their values across the tree (OMA).
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Fig. 8: Performance of MCTS with progressive widening vs.
Paranoid and BRS+. 250ms per move.
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Fig. 9: Performance of MCTS with progressive widening and
opponent move abstraction vs. Paranoid and BRS+. 250ms per
move.



As a result, MCTS-OMA-PW is able to discover multi-move
plans, without getting lost in the exponential explosion of
mostly irrelevant opponent moves in between.

We see several perspectives for future work. First, PW or
OMA are not necessarily restricted to deterministic, zero-sum,
perfect-information, turn-taking, or board games, despite these
being convenient testbeds. In fact, board games with their highly
condensed environments and strong player interactions might
be the worst case for this kind of approach; it could work even
better in domains that are in some sense more similar to the real
world, so that most actions have much more localized effects,
and interactions are less common. We therefore see promising
applications in for example collaborative, simultaneous-action
multi-robot coordination problems.

Second, we expect benefits from integrating the approach
presented here with an Expert Iteration [8] or Zero learning
framework [4] – both because such frameworks could provide
MCTS-OMA-PW with state-of-the-art, automatically learned
state evaluators and move sorters instead of the hand-coded
ones used in this paper, but also because MCTS-OMA-PW
could potentially provide such frameworks with a powerful
policy improvement operator at very short time settings.

Third, in this paper we compared one specific form of
online generalization for MCTS to unenhanced minimax-type
algorithms. Of course online generalization can also be used by
minimax, e.g. in the history heuristic [24] or killer moves [25].
Both minimax and MCTS can use several forms of online
generalization based on multiple different learning contexts,
also simultaneously, and it remains to be seen which one is
the most effective. We used a static move ordering scheme
for PW, for example, while a dynamic one might allow the
knowledge acquired by OMA to be fed back into improving
PW for additional gains. The most interesting and challenging
goal here might be the automatic end-to-end learning of an
optimal online generalization technique.
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