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Integer Quantum Hall plateau transitions are usually modeled by a system of non-interacting
electrons moving in a random potential. The physics of the most relevant degrees of freedom, the
edge states, is captured by a recently-proposed random network model, in which randomness is
induced by a parameter-dependent modification of a regular network. In this paper we formulate
a specific map from random potentials onto 2D discrete surfaces, which indicates that 2D gravity
emerges in all quantum phase transitions characterized by the presence of edge states in a disordered
environment. We also establish a connection between the parameter in the network model and the
Fermi level in the random potential.

Introduction. The physics of plateau transitions in the
Quantum Hall Effect (QHE) continues to be one of the
most exciting research topic in modern condensed mat-
ter physics. Much of the current interest is motivated
by the emergence of a similar type of physics in the con-
text of topological insulators. The Quantum Hall plateau
transition is in fact an example of a metal-insulator tran-
sition (see [1, 2] for a review) with the plateau region
between the Landau Levels (LLs) corresponding to the
insulating phase where all the bulk states are localized
due to the external magnetic field. The transition is a
disorder-induced localization/delocalization transition of
Anderson type, characterized by a divergent localization
length ξ with critical exponent ν.
Quantum Hall plateau transitions can be modeled by a
system of non-interacting electrons moving in a 2D ran-
dom potential (RP) V (r), with r = (x, y), characterized
by a white-noise Gaussian distribution. In the following,
we shall consider RPs with a finite correlation length gen-
erated by Gaussian sources placed on a regular lattice,
i.e.

V (r) =
∑
i,j

Wi,j exp

(
−|r− ri,j |2

2σ2

)
, (1)

where σ2 is the variance, ri,j = (i, j) is the position vec-
tor of the generic source and the coefficients Wi,j are ran-
domly chosen in [−W,W ], for some W ∈ R. In such RP
landscape, electrons with energy smaller than the Fermi
level c are localized [3] due to the external magnetic field
B and their state corresponds semi-classically to an or-
bital motion with small radius RL ∼ 1/B. They fill the
Fermi sea, which actually consists of a collection of lakes
with characteristic size l, as displayed in FIG. 1. At the
boundary of a lake, the orbital motion of (edge) electrons
combines with the reflection due to the potential giving
rise to a precession motion along equipotential lines.

When an edge electron with energy E > c approaches

FIG. 1: RP generated by N = 2500 Gaussian sources (W = 1
and σ =

√
2) placed on a torus. Points mark maxima (red),

minima (blue) and saddle points (green). The plane repre-
sents the Fermi level (c = 0).

a saddle point, it may either tunnel through the potential
barrier between the two neighbor lakes with probability
[19]

t2 ∼ 1

1 + eε
, ε ∝ (V − E) , (2)

or continue to move along the boundary of the same
lake with probability r2 = 1 − t2 (see FIG. 2). The
presence of such quantum scattering nodes at saddle
points enables electrons to reach arbitrary distances with
a finite probability and is at the origin of the localiza-
tion/delocalization transition. Taking inspiration from
this semi-classical picture, J. Chalker and P. Codding-
ton (CC) [4] formulated a network model of quantum
scattering nodes based on a regular lattice that is meant
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FIG. 2: Neighborhood of a saddle point (green dot) separating
two lakes (blue areas) in a RP. The cycloid represents the
motion of edge states along the boundary of a lake. The
parameters r and t denote the reflection and transmission
probabilities, respectively, while B is the magnetic field.

to provide an effective description of the physics of edge
states. Its generalization on a Kagome lattice was pro-
posed in [5] and a similar network model for the Spin
Quantum Hall Effect (SQHE) was studied in [6, 7]. Nu-
merical investigations of the localization length ξ around
the critical point, i.e. ξ ∼ (t− tcrit)−ν with tcrit = 1/

√
2,

resulted in ν = 2.56 ± 0.62 for a regular lattice [8–13]
and ν = 2.658 ± 0.046 for the Kagome lattice [5]. Both
these values are not compatible with the experimental
value ν = 2.38 ± 0.06 measured for plateau transitions
in the integer QHE [14, 15]. A possible solution to fix
the discrepancy was put forward in [16, 17] by consider-
ing random networks (RNs), which should better account
for the disorder present in a RP. The numerical estimate
obtained in this framework ν = 2.372 ± 0.017 [16, 17]
confirms indeed a very good agreement with the exper-
imental result. In fact, randomness generates – in the
continuum limit – fluctuations of the background metric
[16, 17], namely 2D quantum gravity, that are responsi-
bile for the change of the critical exponents in network
models, similarly to what was established by [18] in the
context of minimal models of statistical mechanics. The
primary objective of this paper is to show that 2D gravity
is indeed emerging from the RPs framework, by estab-
lishing a precise correspondence between RNs and RPs.
Notice that quantum gravity is also involved in the under-
standing of Fractional QHE [21, 22] revealing the physics
of Laughlin wave-function. In that context, the interac-
tion between fermions is responsible for the emergence of
gravity in the bulk. Instead, in the present paper grav-
ity is related to the 1+1 dimensional edge states, which
originates from the RP.

Network models with geometric disorder. Let us briefly
review the construction of RNs proposed in [16, 17].
Starting from a regular CC network, randomness is gen-
erated by making an extreme replacement, which consists
in “opening” a scattering node in the horizontal (vertical)
direction with probability p0 (p1) setting t = 0 (t = 1)

(see FIG. 3), or leaving it unchanged with probability
1 − p0 − p1. In the following, we shall set pn = p0 = p1
to maintain statistical isotropy [16, 17]. In the RP pic-
ture, the scattering node represents a saddle point and
the four squares surrounding it correspond to an alter-
nate sequence of maxima and minima (see FIG. 3). After
the extreme replacement, the scattering node becomes an
hexagon containing a maximum (minimum) and two ad-
jacent triangles both containing a minimum (maximum),
as depicted in FIG. 3. Thus, starting from a regular net-

FIG. 3: Top: “opening” of a scattering node in the horizontal
and vertical directions. Bottom: result of the extreme re-
placement on the network. Red, blue and green points mark
maxima, minima and saddle points in the corresponding RP
framework.

work where all the faces are quadrangles and randomly
making the extreme replacement with probability pn, a
polygonal tiling of the plane is obtained. In [17] it was
shown that in this type of RNs the critical index ν has
a non-trivial dependence on the replacement probability
pn, with a critical line for pn ∈ [0, 1/2]. The best agree-
ment with the experimental value of ν in the integer QHE
is found for (pn, ν(pn)) = (1/3, 2.372± 0.017).

A natural question addressed in the present paper con-
cerns the physical interpretation of the parameter pn
within the RP model.

Random potentials and discrete surfaces. The RP (1) cor-
responds to a 2D smooth surface characterized by Nmax
maxima, Nmin minima, Nsp saddle points (see FIG. 1)
and with Euler characteristics [23]

χ = Nmin +Nmax −Nsp . (3)

Connecting maxima and minima according to the gradi-
ent of V (r) leads to a unique quadrangulation of the sur-
face: a 2D discrete surface S made of v = Nmax +Nmin
vertices, e edges and f = Nsp quadrangular faces (see
FIG. 4). Denoting by ni the connectivity of the i−th
vertex, i.e. the number of edges connected to it, the Eu-
ler characteristics χ = v − e + f of S can be written
as

2πχ =

v∑
i=1

R(ni) , R(n) =
π

2
(4− n) , (4)
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where, according to Gauss-Bonnet theorem, R(n) can
be interpreted as the discrete Gaussian curvature asso-
ciated to each vertex of S. Equation (4) follows from
e = 2f = 1

2

∑v
i=1 ni, which implies χ = v − e + f =

v − f = 1
4

∑v
i=1(4− ni).

By construction, each face of S contains exactly one sad-
dle point. Therefore, connecting saddle points belonging
to nearest neighbor faces of S results in a dual 2D discrete
surface S∗. The latter surface is made of v∗ = f vertices
with connectivity 4, e∗ edges and f∗ = v polygonal faces
of size n, where n is the connectivity of the vertex of
S lying within each face of S∗ (see FIG. 4). By dual-
ity, each polygonal face of S∗ carries a discrete Gaussian
curvature R(n) and brings a local contribution to 2πχ,
as described by eq. (4). Hence, a RP is associated to a
pair (S, S∗) of 2D discrete surfaces, which correspond to
network models where the discrete Gaussian curvature of
the surfaces is encoded either in the connectivity of the
sites or in the number of sides of the polygons. In the
following, the symbols S or S∗ will stand for both the
discrete surfaces and the corresponding networks.

FIG. 4: Topography of a RP generated by N = 900 Gaussian
sources (W = 1 and σ =

√
2) placed on a torus. Points

mark maxima (red), minima (blue) and saddle points (green).
White and black lines are the edges of S and S∗, respectively.

Random potentials vs. Random networks. The purpose
of this section is to establish a correspondence between
RPs and RNs in the case of a torus geometry. Consider
a RP generated by N = L2 Gaussian sources evenly dis-
tributed on a regular square lattice of size L with unit
spacing and doubly periodic boundary conditions. Let
ri,j = (i mod (L), j mod (L)) be the position vector of
the generic source on the lattice. Then, the RP at the
generic point r = (x, y) ∈ [1, L]× [1, L] is

V (r) =

L∑
i,j=1

∑
n∈Z2

Wi,j exp

(
−|r− ri,j + nL|2

2σ2

)
, (5)

FIG. 5: Networks associated to the truncated discrete surfaces
Sc and S∗

c , obtained from the RP displayed in FIG. 4 with
c = −1.2. White and black lines are the links of Sc and S∗

c ,
respectively. The areas highlighted in light blue indicate the
regions under the Fermi level.

where the range of the summation index n = (nx, ny) is
restricted to {−1, 0, 1}×{−1, 0, 1} in the numerical sim-
ulation. Equation (3) implies that Nmax +Nmin = Nsp,
since χ = 0. In FIG. 6, the distributions of critical
points per unit height h of the potential are reported.
The statistical sample consists of m = 45 simulations
with L = 300, W = 1/10 and σ =

√
2. Since at finite

W and σ the potential V (r) is bounded, these distribu-
tions are defined on a finite support, also in the limit
L → ∞. However, in the case under consideration, they
are well approximated by Gaussian distributions with ex-
pectation values µmax = −µmin = 0.187, µsp = 0 and
standard deviations σmax = σmin = σsp = 0.119. Fol-

FIG. 6: Number of maxima (∆Nmax), minima (∆Nmin) and
saddle points (∆Nsp) in the height range [h, h + ∆h], with
∆h = 1/200, divided by the area A of the lattice. The statis-
tical sample consists of m = 45 simulations with L = 300, i.e.
A = mL2, W = 1/10 and σ =

√
2.

lowing the procedure described in the previous section,
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FIG. 7: Curvature distributions for the RN (blue dots) and
the dual network S∗

c (red squares) for various values of the
parameters pn and pc which minimize the SSE.

a discrete surface S or equivalently S∗ can be uniquely
associated to the RP (see FIG. 4). The introduction of
a Fermi level c produces a truncated surface Sc in which
the vertices lying below c and belonging to the same lake
are replaced with a single vertex, as displayed in FIG.
5. This operation is indeed physically meaningful since
the scattering of edge states is not affected by bulk elec-
trons. Therefore, a change in the Fermi level induces a
flow within the space of discrete surfaces parametrized
by c.

The removal of sites due to the truncation generates
polygonal faces in S∗c with different sizes compared to
those of S∗ (see FIG. 5). The net effect of this procedure
is reminiscent of that induced in the CC network by the
surgery defined in [16, 17] and leading to RNs. For this
reason, we expect the replacement probability pn of RNs
to be somehow related to the Fermi level in RPs. How-
ever, for the purpose of comparing these two models, it is
first necessary to restore the particle-hole duality in the
RP framework because the RNs, which are described in
the continuum limit by a Dirac fermion theory [20], pos-
sess it. To this aim, the range of energies accessible to an
edge fermion in the RP should be restricted from [c,+∞]
to the symmetric interval Ic = [−|c|, |c|]. We shall refer to
the complementary interval Īc = [−∞,−|c|]∪[|c|,+∞] as
the non-valid region. Next, notice that the replacement
probability pn is equivalent – at large network size – to
half the ratio of the number of removed scattering nodes
to the total number of nodes. Therefore, the quantity

pc =
1

2

# saddle points ∈ Īc
# saddle points ∈ (Ic ∪ Īc)

, (6)

FIG. 8: Correspondence between the replacement probabil-
ity pn and pc obtained searching for the best match between
the two curvature distributions. The inset plot gives the es-
timated SSE as a function of pc in logarithmic scale.

appears to be the most appropriate parameter of the RP
to be put in relation to pn. Since the distribution of
saddle points per unit height h is approximately Gaus-
sian (see FIG. 6), the parameter pc can be related to
the Fermi level via the complementary error function,
pc ' 1

2erfc
(
|c|/(
√

2σsp)
)
.

To find the relation between pn and pc, we consider
the distribution of discrete Gaussian curvatures R of the
polygons tiling both the RN and the dual network S∗c
for several values of pn and pc, respectively. The crite-
rion adopted for the association between pn and pc is the
minimization of the sum of squared errors,

SSE =
∑
m≥1

(nn(R(m))− nc(R(m)))
2
, (7)

where nn(R) and nc(R) denote the number of polygons
with curvature R divided by the total number of polygons
in the RN and in S∗c , respectively, with R(m) as in eq.
(4). In FIG. 7, curvature distributions in both the RN
and S∗c are compared for some values of pn and pc that
minimize the SSE. The statistical samples consist of more
than 50 RN simulations on a 100×1000 network for each
value of pn ∈ [0, 1/2] and 45 RP simulations on a square
lattice of size L = 300 for each value of c ∈ [0, 1/2].
A good agreement between the two models is obtained
for a suitable correspondence pn ↔ pc, as reported in
FIG. 8. We see that for pc & 0.35 the relation pn(pc)
is approximately pn = pc, while for smaller values of pc
the curve is deviating from the linear behavior ending at
pn(0) ' 0.178. The origin of this deviation is related to
the fact that pn = 0 corresponds to a regular network
which can be associated to a periodic potential, while
the RP is intrinsically disordered for any value of pc.
Periodic potentials have zero measure in the space of all
RPs, therefore it is not surprising that the distribution of
curvatures in the RN is less sensitive to variations of pn
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around pn = 0. Similar considerations might also justify
the discrepancy between nn(R) and nc(R) that can be
observed in the bottom right plot of FIG. 7. We shall
leave a more systematic study of this issue to the future.

Conclusions. There are strong evidences that the field-
theory description of plateau transitions corresponds to
a model of fermions interacting with random gauge and
scalar potentials and also with structurally-disordered ge-
ometry. Indicating that, in the scaling limit, localization
transitions of this type are correctly described by matter
fields coupled to 2D quantum gravity. Starting from a
random potential model, we have explicitly constructed
a map onto the 2D disordered graphs Sc and S∗c depend-
ing on the Fermi-level. Thus, observing the appearance
of the basic ingredient of random network models [16, 17]
for Quantum Hall plateau transitions and giving an in-
terpretation of the replacement probability in term of the
Fermi energy. Sc and S∗c , being quadrangular and polyg-
onal tilings of the plane, have a straightforward interpre-
tation as discrete random surfaces, explicitly showing the
emergence of 2D gravity. As discussed also in [16], the
notion of functional measure of random surfaces remains
an open problem. From the current analysis, it appears
that the distribution of Gaussian curvatures on the ran-
dom surface associated with the random potential coin-
cides with the corresponding distribution in the random
network model, suggesting that the functional measure of
random surfaces can be defined in terms of the measure
of random potentials. In conclusion, we revealed a deep
link between random potentials in Anderson localization
problem and 2D curved surfaces, where the edge states
responsible for plateau transitions live.
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