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Extraction of generalized parton distribution observables from deeply
virtual electron proton scattering experiments
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We provide the general expression of the cross section for exclusive deeply virtual photon electro-
production from a spin-1/2 target using current parametrizations of the off-forward correlation function in
a nucleon for different beam and target polarization configurations up to twist-three accuracy. All
contributions to the cross section including deeply virtual Compton scattering, the Bethe-Heitler process,
and their interference, are described within a helicity-amplitude-based framework which is also
relativistically covariant and readily applicable to both the laboratory frame and in a collider kinematic
setting. Our formalism renders a clear physical interpretation of the various components of the cross section
by making a connection with the known characteristic structure of the electron scattering coincidence
reactions. In particular, we focus on the total angular momentum, J,, and on the orbital angular momentum,
L,. On one side, we uncover an avenue to a precise extraction of J,, given by the combination of
generalized parton distributions, H + E, through a generalization of the Rosenbluth separation method
used in elastic electron proton scattering. On the other side, we single out for the first time, the twist-three
angular modulations of the cross section that are sensitive to L,. The proposed generalized Rosenbluth
technique adds constraints and can be extended to additional observables relevant to the mapping of the

three-dimensional structure of the nucleon.
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I. INTRODUCTION

Current experimental programs of Jefferson Lab and
COMPASS at CERN, as well as the planned future
Electron Ion Collider (EIC) [1,2] are providing new avenues
for concretely accessing the three-dimensional quark and
gluon structure of the nucleon and of the atomic nucleus.
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Knowledge of both the momentum and spatial distributions
of quarks and gluons inside the nucleon will be conducive to
understanding, within quantum chromodynamics (QCD),
the mechanical properties of all strongly interacting matter.
This includes the mass, energy density, angular momentum,
pressure and shear force distributions in both momentum
and coordinate space. The key to unlocking direct exper-
imental access to spatial distributions of partons inside the
proton was provided by Ji in Ref. [3], where he suggested
deeply virtual Compton scattering (DVCS), ep — ¢'p'y, as
a fundamental probe where the high virtuality of the
exchanged photon makes it possible to gain insight into
the partonic structure of the proton. Simultaneously, by
measuring the four-momentum transfer between the initial
and final proton, similarly to elastic scattering experiments,
one can obtain information on the location of the partons
inside the proton by Fourier transformation.

A challenging question since its inception has been to
provide the formalism and theoretical framework for deeply
virtual exclusive-type experiments including DVCS, [4-11],
deeply virtual meson production, ep — ¢’ p’M, and timelike
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Compton scattering (TCS), yp — [TI"p’, where a large
invariant mass lepton pair is produced [12—15]. Separately
measuring all of the helicity amplitudes which contribute to
the hadronic current can allow us to constrain the underlying
theoretical picture in terms of generalized parton distribu-
tions (GPDs) [3,16] (see reviews in Refs. [17-19]). This
stringent constraint on theoretical hypotheses will only be
possible if the polarizations of the initial and final particles
are measured.

In this paper we derive a formulation of the deeply
virtual photon electroproduction cross section in terms of
helicity amplitudes. We calculate all configurations where
the beam and/or the target polarizations are measured for
DVCS, for the Bethe-Heitler (BH) process, and for the
interference term between the two. Extensions to include
recoil polarization measurements and TCS will be provided
in future publications. While many dedicated previous
publications on this subject [4-11,18] have been useful
to guide an initial set of experiments (reviewed in
Ref. [19]), we are now entering a more quantitative and
accurate experimental era that will extend from the modern
Jefferson Lab program into the future EIC kinematic range.
For a reliable extraction and interpretation of physics
observables from experiment it is, therefore, timely to
introduce the formalism for all deeply virtual exclusive
processes according to the following set of benchmarks:

(i) Be general, covariant, and exactly calculable.

(i1) Provide kinematic phase separation.

(iii) Provide clear information extraction.

To clarify benchmark i), the formalism should be general
so as to consistently describe and compare observables
from all of the deeply virtual exclusive processes. All steps
from the construction of the lepton and hadron matrix
elements to the final observable should be clearly displayed
and directly calculated, including any instance of kinematic
approximations. The formalism should be present in a
covariant description which can be used to interpret
experimental results in any reference frame.

Benchmark ii) implies that a clear pathway to data
analysis should be provided where, for any independent
polarization configuration, one has control over both the
dynamic Q? dependence (twist expansion) and the kin-
ematic dependence, including O(1/Q?) subleading terms.
In particular, each polarization correlation in the DVCS
cross section can be written as the sum of terms of different
twist, each one of these terms in turn appearing with a
characteristic dependence on the azimuthal angle, ¢, the
virtual photon polarization vector’s phase. Both the ¢ and
0? dependence of the BH cross section are, instead, of pure
kinematic origin resulting from the components of the four-
vector products in the transverse plane. The interference
term contains ¢ dependence originating from both sources
which has to be carefully disentangled.

The ultimate goal of benchmark iii) is to bring out the
physical interpretation of the different contributions to the

cross section. The standard treatment of all exclusive
leptoproduction processes has been to organize the cross
section in a generalized Rosenbluth form [20] (see e.g.,
Refs. [21-25]). The same formalism is extended here to
ep — ¢'p'y. For example, this opens the way to uniquely
determine the direct contribution of angular momentum as
parametrized in Ref. [3] by the sum of GPDs, H + E by
Rosenbluth separation. The contribution of other GPDs can
be disentangled within the same approach. The extraction
of observables by Rosenbluth separation grants us a much
needed extraction tool as well as a model-independent
methodology.

The structure of the virtual Compton scattering and BH
cross sections was previously studied in several papers,
starting from the pioneering work of Ref. [4] to the more
recent helicity-based formulations of Refs. [9-11,26,27].
While some of the benchmarks were met in previous works,
this is the first time, to our knowledge, that all criteria are
satisfied within a unified description. Specifically, helicity-
based formulations were outlined but not fully worked out
by Diehl and collaborators in Refs. [10,17,28]. Detailed
derivations were subsequently given in Refs. [7-9,18].
However, in an attempt to organize systematically the
various kinematic dependencies, the contributions of the
various polarization configurations were expanded into a
Fourier series in ¢. This step provided a convenient,
although approximate scheme to organize an otherwise
rather complicated kinematic structure into harmonics. The
most evident drawback of the “Fourier harmonics”
approach is that it disallowed a straightforward physical
interpretation. Contributions that are vital to extract, for
instance, the angular momentum terms have been either
disregarded or deemed as subleading. A confusing situation
has arisen on the role of various terms contributing at twist
two and twist three as well as on the kinematic power
corrections (see talk in Ref. [29]) to which we provide a
remedy.

We present the general structure of the cross section in
terms of its BH, DVCS, and BH-DVCS interference terms
in Sec. II. The DVCS contribution to the cross section is
written in terms of structure functions for the various beam
and target polarization configurations in Sec. III. The
DVCS cross section displays the characteristic azimuthal
angular dependence of coincidence scattering processes
that stems from the phase dependence of the y*p — y'p’,
helicity amplitudes with the virtual photon, y*, aligned
along the z axis [10,21-26]. In Sec. III we also provide an
interpretation of the various polarization structures in terms
of twist-two and twist-three GPDs.

The BH contribution is described in Sec. IV. For each
parity-conserving polarization configuration the BH cross
section is written in a Rosenbluth-type form, displaying
two quadratic nucleon form factor combinations multiplied
by coefficients functions. In the unpolarized case, for
instance, the two form factors correspond to the nucleon
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electric and magnetic form factors. The coefficient func-
tions are given by nontrivial expressions in ¢. The
complicated structure of the ¢ dependence of these
coefficients, in comparison to the DVCS one shown in
Sec. I, is due to the fact that i) the lepton part of the cross
section also contains an outgoing photon compared to the
simpler e — y*¢’ vertex in DVCS, and ii) the BH virtual
photon momentum, A, is also offset from the z axis by the
polar angle, 6.

The complication introduced in the BH kinematics also
affects the BH-DVCS interference term. In Sec. V we
present a formulation that keeps the kinematic ¢ depend-
ence stemming from four-vector products of the various
momenta distinct from the helicity amplitudes’ (dynamic)
phase dependence inherent to the polarization vectors. The
conclusions and outlook are presented in Sec. VI. The
Appendixes contain many details of the calculation that
are useful for both a direct verification of the helicity
amplitude formalism results and possible extensions to
other configurations.

The main advantage of adopting our newly proposed
formalism is that it brings out the inherent Rosenbluth-type
structure of the deeply virtual exclusive scattering proc-
esses. Similarly to the BH contribution, the interference
term can be written in an extended Rosenbluth-type form
where, instead of two quadratic nucleon form factor
combinations, we now have three combinations containing
products of form factors and GPD-dependent terms. For
illustration, we show the BH contribution to the unpolar-
ized cross section in Eq. (1), and the leading-order
BH-DVCS interference term in Eq. (2),

Coupm T (P 4 o) + Byge By (1)
—_ — T T
dxg;dQ2d|tldpdgs 2P 20T PBREEMATL
(1)
ds(fgn 0l r
P [A7(FiNeH +1F,Mef)

dxy,dQ?d|tldpdgs  0*(—1)
+B;GyRe(H+E) +CrGyReH).
(2)

The detailed equations are derived and discussed in the
following sections. This is not an exhaustive listing, and,
for illustration purposes, only the unpolarized case for BH
[Eq. (1)] and the unpolarized leading order for the BH-
DVCS interference term [labeled 7 in Eq. (2)] are quoted.

In both equations, F, F, are the Dirac and Pauli form
factors, Gy = F; + F, is the magnetic form factor
(Gg = F; — tF»), and t is the momentum transfer squared,
(t = —t/4M?); in Eq. (2) H,E,H are Compton form
factors containing the GPDs that integrate to F'y, F, and
G4, respectively [17]. Agy, Bpy are kinematic coefficients
which are exactly calculable and rendered in covariant form

in the following sections; Az, By, Cy are also covariant
kinematic coefficients which, however, contain an extra
dependence on the phase ¢ as we also explain in what
follows. The new formalism allows us to emphasize the
physics content of the cross section: Eqgs. (1) and (2) show a
similar form where in both cases we can identify the first
term in the equation with the electric form factor type
contribution, and the second term with the magnetic form
factor contribution. For the BH-DVCS interference we also
have an extra function which includes the axial GPD
(interestingly, a similar term would also be present in
BH but it violates parity). Similar structures are found for
other polarization configurations.

To be clear, we replace the “harmonics-based” formalism
adopted in most DVCS analyses with a Rosenbluth-based
formulation which emphasizes the physics content of the
various contributions, e.g., by making a clear parallel with
coincidence scattering experiments, even if this implies
introducing more complex ¢-dependent kinematic coeffi-
cients. Instead of following a harmonics-based prescription
which, as shown in many instances, is fraught with
ambiguities, we organize the cross section by both its
phase dependence, disentangling the twist-two and trans-
versity gluons from higher-twist contributions, and its form
factor content. The price of evaluating more complex ¢
structures is paid off not only by having a much clearer
physics-based formulation, but also by the fact that the
coefficients are exactly calculable: no approximation enters
the calculation within the Born approximation adopted
here. The numerical dependence on the various kinematic
variables will be discussed in an upcoming publication.

In Figs. 1 and 2 we illustrate the workings of the
Rosenbluth separation for typical kinematic settings from
the Jefferson Lab experiment E00-110 [30]. In Fig. 1 we
show, on the lhs, the ep — ¢’ p’y unpolarized cross section
data plotted vs ¢; on the rhs we plot the reduced cross
section for the same set of data vs the kinematic variable
Agn/Bgy (the detailed definition of this quantity is given in
Sec. IV). The BH cross section appears as a linear function
of the variable Apy/Bgy, with intercept given by 7G3, and
slope given by F?7 + tF3. The difference between the data
and the BH line reflects the contribution from the DVCS
process.

A generalized Rosenbluth separation can be performed
for the BH-DVCS interference case, Eq. (2), by defining an
analogous kinematic variable, A7/B7 similar to Agy/Bgy
defined for BH (Fig. 2). The coefficient C7 is negligible
compared to the other two. The intercept with the y axis is
given by 7Gy,Re(H + E)." Therefore, by exploiting the
generalized Rosenbluth form of the BH-DVCS cross

'In the kinematic regime considered the DVCS contribution
is expected to be dominated by the BH-DVCS interference term;
the correction from the pure DVCS contribution is estimated to be
~10%.
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Left panel: A sample of the new precise ep — ¢'p’y data from Ref. [30] for unpolarized lepton proton scattering in the

kinematic setting: E, = 5.75 GeV, 0% = 1.82 GeV?, xpj =034, 1 =-0.172 GeV2. The cross section is plotted vs the azimuthal
angle, ¢p. The curves represent the BH contribution: the TG%,, term (red dashed line), (F % + 7F %) term (red solid line), and the sum of the
two (blue). Right panel: Reduced cross section obtained from the same set of data plotted vs the kinematic variable Agy/Bgy from
the Rosenbluth-type formula defined in Sec. IV. The straight line represents the BH calculation intercepting the y axis at zG3,. The
difference between the data points and the curve reflects the contribution from the DVCS process. The formulation of the BH cross

section is given in detail in Sec. IV.

section one can directly extract the Compton form factor
combination describing angular momentum [3]. This term
was deemed of higher order in all of the previous analyses
because, similarly to what happens in elastic scattering and
in the 7G5, term in BH, it is kinematically suppressed;

T I I I
E07-007, Q?>=1.8 GeV? +—&—
2 Q%=3.5Gev? © _
1.5
1 -
)
~
’@ 0.5 F
B T Gy Re(H+E)
~ 0 e e GO Qrrnnne [SREEEr e Deereeannann -
OSF 017 Gev? ]
1L xe=0.34 |
Ee= 5.75 GeV
_1.5 1 1 1 1
0 0.5 1 1.5 2
Ar/B;

FIG. 2. Rosenbluth separation applied to the same data set
as in Fig. 1 [30]. The reduced cross section is plotted vs the
kinematic variable A7/B7 defined in Eq. (2) and Sec. V. The line
represents a model calculation and it intercepts the y axis at
Gy Re(H + £). The data points are the BH-DVCS contribution
extracted by subtracting the calculated BH term from the
unpolarized absolute cross section data of Ref. [30]. The line
is a model evaluation obtained using GPDs from Ref. [27]. The
graphs also shows kinematic projections at higher QZ, or by
varying the angle 6,, between the initial and final lepton.

however, it can be extracted if one disentangles it according
to our proposed generalized Rosenbluth formulation. We
reiterate that our example is for illustration purposes
only. To obtain a precise value of both Sm(H + &) and
Re(H + &), a systematic analysis is in preparation.

II. GENERAL FRAMEWORK

DVCS is measured in leptoproduction of a real photon in
the region of large momentum transfer between the initial
and final lepton, where also an interference with the Bethe-
Heitler radiation occurs, according to the reaction,

I(k,h) + p(p,A) = I'(K,h) +7(q'. \) + p'(p'. N') (3)

with indicated momenta and helicities (Figs. 3 and 4). In this
paper we present the formalism for a spin-1/2 (nucleon)
target.

The cross section is differential in the four-momentum
squared of the virtual photon, Q?, the four-momentum
transfer squared between the initial and final protons, ?,
the Bjorken xp; = 0?/2Muv, with v being the energy of the
virtual photon, and two azimuthal angles measured
relative to the lepton scattering plane: the angle ¢ to the
photon-target scattering plane and the angle ¢g to the
transverse component of the target polarization vector, as
displayed in Fig. 4. In what follows we give a detailed
definition of both the general cross section and the various
observables for deeply virtual photon production off
a spin-1/2 target.
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K=k—gq

FIG. 3.

Exclusive electroproduction of a photon through the DVCS and BH processes.

FIG. 4. Kinematics setting for the DVCS (right panel) and BH (left panel) processes.

A. Cross section

The cross section describing the process (3) is given by,2

do B
dxg;dQ*d|t|dpddps B

LT}, 4)

T is a coherent superposition of the DVCS and Bethe-
Heitler amplitudes,

T(k? P k/’ q/’ pl> = TDVCS(k? P k/’ q/’ p/)
+ Teu(k, p. K. 4", p'), (5)

yielding,
IT|* = |Tgu + Toves)* = |Teul* + [Toves|* + 2, (6)
T =TguToves + ThyesTeu- (7)

In the one-photon-exchange approximation the leptonic
parts for DVCS and BH are (Fig. 3),

I(k) = I'(K) +7"(q), (8a)

(k) = I'(K) +7"(8) +7(d),  (8b)

(DVCS)

(BH)

*Note that the dimensions of the cross section are nb/GeV*.
Equation (4) is consistent with the definition of |T|?> having
dimensions of 1/(energy) squared while the helicity amplitudes,
defined below, are dimensionless (see Appendix A).

while the DVCS and BH hadronic processes are given by,

(DVCS)  y*(q)+p—=7'(d)+ P, (9a)
(BH) y*(q)+p—1r. (9b)
We define,
a3

(10)

F — )
1677 (s — M?)*\/1 + y*xp;

where a is the electromagnetic (EM) fine-structure con-
stant. I has dimensions of GeV~*; the modulus squared of
the matrix elements therefore has dimensions of GeV~2,
consistently with the cross section definition (4). We define,

0? Q?
2__ — I e _
Q*=-¢"=-(k=K)", B 2 (pg)  2My’

with ¢ = k — K/, and Q> = —¢?, with M being the proton
mass. Other kinematic variables alre,3

3We use the light-cone kinematics notation v* = (10 4 3)/ V2,
and the metric Joo = l’gll =0y = 033 = —1.
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!

A=p —p=—¢ + (k=-k), P:p_;p, (12a)
p2 eo B0 (g+q) _ [ty

’ 2(Pq) 2[(Pq)+(Pq)] ™ 2—xp+
(12b)

2xBjM 0 (PCI)
==, S = k+ 2, —_ T, 120
v 0 5 (k+p) V=100 (12¢)

where £ represents the skewness parameter, or the differ-
ence in the “4” momenta of the incoming and outgoing
quarks, —AT/(2P7), in the large-Q? limit [31].

Notice that the virtual photons in the BH and DVCS
amplitudes are different: in DVCS the virtual photon has
four-momentum ¢, setting the hard scale of the scattering
process, Q2, while in BH it has four-momentum A.

The DVCS amplitude is written as,

Tpyes = [L_‘(k/7h)V””(lﬁh)]W,w(P’P’)(SAV'”(C],))*7 (13)

where the quantity in square brackets denotes the leptonic
process. W, is the DVCS hadronic tensor to be described
in Sec. III; **(q') is the polarization vector of the
outgoing photon, y’.

For BH one has,

Ton =[(e""(¢)) Ly (k. K .g)U(p' . N)*U(p.A), (14)

where one factors out the quantity in the square brackets
denoting the lepton part, and the nucleon current. We
denote the electron helicity as 4, the initial (final) proton
helicity as A (A’), the final photon helicity as A/, and the
exchanged photon helicity for DVCS as A,-. The helicity
dependence of the two types of amplitudes can be made
explicit by expressing them as,

hA, A AN,
Tovesan = ZAhy (kK. q)f v "(q.p.q'.p"),  (15)
A
hA,
TBHr,A,A’ = [BhA’,(k» k’»q/’A)]D[JAA’(A’P’P/)]D~ (16)

Aﬁy* corresponds to the lepton-photon interaction in
Eq. (8a) and Fig. 3 (left), while [B),/] corresponds to the
lepton process in Eq. (8b) and Fig. 3 (right),

ﬁﬁ—émmmmMﬁwyWW, (17)

“The formalism considered throughout this paper is valid at
order agy;.

hA;’ 1 ! *
B = 5 (eMM(d)) L (kK. q). (18)

The helicity amplitudes for the y*p — y'p’ scattering
process in DVCS, and the nucleon current in BH are
respectively, defined as,’

AN . ’ "
Fan (q.p.q.p') = Y (@)W, [ ()] (19)
/ T / / + ' v
P80 ) = O N |(Fy + By = P 2D,
x U(p, ), (20)

where F; and F, are the proton Dirac and Pauli form
factors. W,, is parametrized in terms of GPDs Compton
form factors (CFFs), which are complex amplitudes. In this
paper we adopt the parametrization of Ref. [31] including
twist-two and twist-three GPDs. The explicit expressions

for the DVCS Iepton, AAY*, and hadron fix,/\;, helicity
amplitudes, are given in Sec. I1I; the BH lepton tensor, Lf,’l,
(see also Ref. [5]), and hadronic current J’I‘\A,, are given
in Sec. IV.

In the expressions above we introduced the polarization
vector for the virtual photon in the DVCS process, £ (g).
While in the BH term the helicity of the exchanged photon
with momentum A is summed over, in DVCS the virtual
photon helicity is singled out to separate the contributions
of different twist. In particular, similarly to deep inelastic
scattering, the twist-two term corresponds to transversely
polarized photons, the twist-three term contains one lon-
gitudinally polarized photon, and the twist-four term
contains two longitudinally polarized photons. We will
see in Sec. III that DVCS allows for the helicity flip of
transversely polarized photons, 1 — —1, described by the
transversity gluon GPD terms.

B. Kinematics

We begin by choosing the kinematics in the target rest
frame, i.e., as in Fig. 4. Notice, however, that the formalism
developed in Secs. III, IV and V is fully covariant and it can
therefore be extended to collider kinematics with either
collinear or crossed beams. The incoming and outgoing
electrons define the lepton plane, which is chosen here to be
the x-z plane; the hadron plane is fixed by the outgoing
photon and the outgoing proton momentum at an azimuthal
angle ¢ from the x axis. In this frame the four-momenta for

the overall process, with § = k—K along the negative z
axis read,

‘We adopt here the formalism for the helicity amplitudes as in
Ref. [32] for states with momenta at angles 6, ¢ (see Ref. [33] for
a detailed description of this formalism).
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k= |z\(1;sin91,0, cos ),
K = |%’|(1;sin6§,0,cos€§),

qg= (1,0,0,—v1/1+7?),

q' = |q'|(1;sin @ cos ¢, sin O sin ¢, cos 9),
p=(M;0,0,0),

p'= (py:|P'| sin@ cos @, |p'|sin@ singp, |p’| cos @),
A=p'—p
= (py, — M; |p'|sin@ cos ¢, |p’| sin@ sin g, |p’| cos &),

(21)

where we have taken the leptons to be massless. Note that
the exchanged photon in BH has momentum A = p’ — p,
while in DVCS it has momentum ¢ # p’ — p.

All kinematic variables defined in Eq. (21) are written
below in terms of invariants. The angular dependence of the
various momenta can be written in terms of the invariants
XBj> Vs y>, t, and M, Egs. (11) and (12a)—(12c). For the
lepton angles one has,

1 2
cosél:—7<l+&>,
V1472 2
2,2
sim9,=#y2 1—y—yTy, (22a)
sin 6
sin @) L
(I-y)
0, +y\/1+ 7 1-y-%
cosg) = LUTIVIFY _ YT 2 (22m)

(1-y)

(1=y)V1+7

The beam energy, k, = |1§| and final lepton energy, k, =
|1?| are, respectively,
0 o(1 -y)

k==, K= kl(1-y)="—"22 (23
k| > k| = [k|(1 =) - (23)

Finally, the angle between the two electrons, .., is
defined by,

l—y—ﬁ

0,, = z 24
€080 =~ (24)

The outgoing photon angle, €, is obtained from the
following equation that defines ¢:

t=(q-4q)=-0>-2q|(1+/1+>cos0). (25)

with,

t Q XB't
= M—-—p =v[l+— ) ==(1+2L
di=e s togg) =5 (14 )

so that,

cosf = —

1
— |1+
\/1+y2{

Notice that the virtual photon is along the negative z axis,
and therefore g3 = —|g|. Also note that the specification of
azimuthal angles does not change from the laboratory to the
c.m. frame, since the y* is in the same direction and the
orientation of the planes is unchanged under the boost to
the c.m.

The allowed region of ¢ is given by varying cos @ for each
fixed Q% v, and g). In the laboratory frame this is
equivalent to the elementary problem of finding either
the minimum energy of the nucleon, pj, or the maximum
energy of the photon, g, that conserves the overall energy,
v+ M, and three-momentum g = —v+/1 + y?2. Solving
Eq. (25) for g, for cos@ = 1, gives the minimum 7,

Q*(1=V1+7r +357)
xpi(1 = V147 +5577)

452M2
1-&

I = _2M(1/ - qé)max) =

M>x% _
(1 —xp)

(27)

so the minimum momentum transfer is equivalent to a
target mass correction. The following relation holds in the
given reference frame between t, &, f,, and AT6:

t:tO—A%i—J_r? (28)

An important variable that appears in all electroproduc-
tion processes is the ratio of the longitudinal to transverse
virtual photon flux,

l-y—1v?% >oalAnP
1,,2 1.,,2,2 A+
=y +oy7r %, DA =1 1Ay

(29)

€
2

where the functions AQ’ connect the lepton helicity to the
virtual photon helicity.

In summary, given the initial beam energy and momen-
tum encoded in k, the initial proton energy and momentum,
p, and Qz, Xpj» I, We can reconstruct all the components of

®In the light-cone frame where we evaluate GPDs in what
2
follows, the relation becomes, t = t, — %. The relationship is

frame-dependent because A7 is not invariant under transverse
boosts [17].
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the final particles’ four-vectors K/, p’, ¢’ as a function of the
azimuthal angle ¢.

1. Phase dependence

The DVCS helicity amplitudes (15) are evaluated in the
c.m. frame of the final hadron system, which defines the
hadron plane at an angle ¢ with respect to the lab lepton
plane. To evaluate the cross section one has to transform to
the laboratory lepton frame by applying a rotation of —¢
about the z axis. Another way to express this is that the
lepton produces a definite helicity virtual photon specified
in the lepton x-z plane, while the virtual photon’s inter-
action with the hadrons occurs in the hadron plane which is
rotated through an azimuthal angle ¢. Phases appear in the
definition of the DVCS contribution to the cross section as
a consequence of such a rotation about the axis where the
virtual photon lies [34,35]. To implement this we first
define the polarization vectors for the virtual photon of
momentum ¢ along the negative z axis in the laboratory
frame,

ehr=+1

Nia

(0;F 1,4,0),

(

q

™
=
Il

1
;0,0, go) =;( 1+7%0,0, 1)- (30)

Q=

The ejected (real) photon polarization vectors read,

/ 1 1
M=l = — (0; F cos O cos ¢ + i sin ¢,

V2
F cosfsing + icosp, £sinf).  (31)

The outgoing photon polarization vectors obey the follow-
ing completeness relation obtained by summing over the
physical (on-shell) states [36]:

3 (6 (4)) () = g (32)

A

One can see that the ¢ rotation about the z axis changes the
phase of the transverse components, and leaves the longi-
tudinal polarization vector unchanged. The transformed
DVCS polarization vectors are,

rest L 0 10 33
e g \/z ( ) :F y Ly )7 ( )
Npoir €N : :

ghr =l (0, 1,i,0) + (0,07, £5sin0).  (34)

V2

The dependence on the angle @ arises from the fact that the
photon’s momentum, ¢’, is produced at an angle with the
z axis. Equations (31) and (34) become the same as Egs. (30)
and (33) in the forward (i.e., collinear with the virtual photon

along the —z direction) limit. From Eq. (26) one can see that
in the limit 7/ Q* — 0, cos @ = 1 to order O(1/Q*) (given by
y*), while sin@ = 0 to order O(1/Q?) (or y?).

One can therefore display explicitly a phase term as
shown in Eq. (34) in the 8 — 0 limit.

As we show in the following sections it is the incoming
photon polarization vector, through Eq. (33), that character-
izes the phase dependence of the DVCS contribution to the
cross section.

C. Observables

The helicity formalism allows us to identify polarization
observables for the various beam and target configurations.
The total number of twist-two and twist-three CFFs we
wish to extract from the observables is 32 =2 x 16 (the
factor of 2 is from considering the Sm and Re parts in each
CFF, corresponding to four distinct GPDs in the quark
twist-two sector, eight twist-three quark GPDs (four in the
vector and axial-vector sectors, respectively) and four
transversity gluon GPDs (the explicit expressions for all
of these quantities are given in Sec. III). The four twist-two
and eight twist-three GPDs correspond to the specific
quark-proton polarization configurations listed in Table I
where we adopt the symbolism where the first letter refers
to the polarization of the quark, Pq, and the second to the
polarization of the proton target, P,.

In the twist-two sector, the following quark-proton
polarizations contribute: P,P,=UU,LL,UT,LT. Along
with the GPDs, we also list the transverse momentum
distributions (TMDs) corresponding to the same spin
configurations. Notice that the TMD f{; appears with
an asterisk. This is to signify that while the UT configu-
ration is the same as for the GPD E, these two quantities
have opposite behavior under PT transformations, namely
E is naive T-even by definition, while f7 is naive T-odd: E
and f{; originate from the Re and Jm parts of the same
generalized TMD (GTMD) [31].

In the twist-three sector we find new relations: the
combinations 2H,; 4 E,7, and 21:1’2T+E’2T encode quark-
gluon-quark correlations that arise for an unpolarized quark
in an unpolarized proton, and a longitudinally polarized
quark proton configuration, respectively. These GPDs can
be, therefore, described as twist-three correspondents of the
GPDs H, and H, respectively. The TMDs for the same
configuration are also listed. Similarly, the combination
Hyr + ﬁ H,y is the twist-three correspondent of the GPD
E. Notice that the twist-three TMDs with the same UT
polarization configuration are f} and f7, which are
T-odd, similarly as for the twist-two case of f{;. The
GPD H; + ztm; H); is the twist-three correspondent to E;
itis an off-forward extension of ¢ and g7 (g7, T-even) (see
also Ref. [37]). The twist-three distributions that cannot be
associated with any of the twist-two P, P, polarization
configurations are listed separately. These functions carry
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TABLE I. Polarization observables for the DVCS and BH-DVCS interference contributions to the ep — ¢’p’y’ cross section. The
GPD content entering the complex CFFs for each polarization configuration is listed in the first column (we use boldface characters for
the dominant terms); the corresponding twist is in the second column; the third column contains the polarization of the quark and proton;
the fourth column indicates the TMDs with the same quark-proton polarization configuration; in the last two columns the observables’
beam and target polarization configurations are displayed.

GPD Twist P,P, TMD PpeanP, (DVCS) PpeanP, (D)
H+E£E 2 UU  fi  UU, LL, UT$~9), LT~ yUest, L ysing

H +]§TE 2 LL 91 UU, LL, UTSi"(¢_¢»¥), LTeos(d=¢s) UUst, yLeosd, LUsne, [Ls5ne, UT%, LTeosh
E 2 Ut g UTsn(@=¢,) | [ Te0s($=0s) Uy, LUus™®, UT, LT, UT*?, UT"?

E 2 LT air UTsnb-4,) | [ eos(d-,) ULsnd, [Leosd yTeosd sind

H+E 2 yuse, LUsne, gLsné, [LosP yTeosd yrsind
2Hyr + Eyp—¢E; 3 UU ft Uyesd, Lysind UU, LU

2Hyy + By — By, 3 LL gp yuess, Ly UU.LU

Hyp + 22 oy 3 UT g0 ple) guesd, yLeesd, Lusnd, LLe? UU.LU

Hyy + 5 Hy, 3 LT ghgr UUSPUL™?, LU, LLOSY UU,LU

Eyp —¢Eyr 30 UL gl guesd, gLest, LUshd, LLos UU,LU,UT

By — EEy 3 LU gt®)  gUese, yLeest, LU e, LLes¢ UU,LU,UT

Hyy 30 UL, gl guesd, gLes?, LUsné, LLov UU,LU,UT

H)yy 30 LT, gk QU ULeSh, LU, LLos? UU,LU,UT

new physical information on the structure of the proton.
Two new correlations involving longitudinal polarization
correspond to the GPDs E,; and E’2T. These functions are
particularly interesting because they single out the orbital
component of angular momentum (OAM) [37-41]. Notice
that the careful analysis performed in this paper allows us to
point out precisely which polarization configurations are
sensitive to OAM and to, therefore, dispel the notion that
OAM cannot be measured in DVCS. Finally, the functions
H,; and H), involve “in plane” transverse polarization.
Their study will open up the way to understanding the
contribution of transverse OAM.

The various polarization configurations listed in the third
column of Table I enter the different beam polarizations,
Pgeam = U, L, and target proton polarizations, P, = U, L,
T, in the DVCS and BH-DVCS interference (Z) terms,
which enter the cross section as listed below,

oyy = ZGhA = o> + oty + by (35a)
A

oLy = Z(UM —o_a) = o> +aly, (35b)
A

ouL = Z(6h+ — o)) =001 + oy, (35¢)

h

o= (041 —0, )= (04 —0_) =0} +0}] +0[;.

(35d)

our = Z(0£,+ —aj,_) = o1 + oy, (35¢)
T
our = 0T ol = o ~oT) = oIS 4 o+ .
(35¢)

where & and A are the electron and target helicities,
respectively. Equations (35a)—(35f) can be used to navigate
the last two columns in Table I. Notice that the various
polarization observables in DVCS are interpreted differ-
ently than similar observables or helicity configurations in
inclusive or semi-inclusive experiments. In DVCS the
observables are bilinear forms that contain quadratic
expressions of the CFFs (the interference term contains
products of nucleon form factors and CFFs). This makes it
difficult to isolate specific GPDs within each observable,
since summing terms with different polarizations does not
produce cancellations like the ones appearing in inclusive
scattering processes. For instance, unpolarized scattering
measures the PDF f; in inclusive scattering, while for
DVCS the UU term contains both the vector, H, and axial-
vector, H GPDs. Equivalently, the scattering of a longitu-
dinally polarized electron from a longitudinally polarized
target measures both vector and axial-vector GPDs in
DVCS, while the axial-vector component, g;, can be
singled out in the inclusive case. A clearer physics
interpretation of the interference term is, however, attain-
able by formulating this contribution according to the
standard notation used for elastic electron-proton scattering
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in the one-photon-exchange approximation, generalizing
the Rosenbluth cross section [20] (Sec. V).

In conclusion, the physics picture summarized in Table I,
calls for a different approach than the standard analysis
methods used so far to extract information from inclusive/
semi-inclusive polarized scattering experiments. We, first
of all, notice that by writing the cross section in a
generalized Rosenbluth form, the GPD combination,
(H + E), appears naturally in the formalism as the coef-
ficient of the magnetic form factor term. We, therefore,
separately list this observable and the corresponding beam-
target polarization configurations in Table I. On more
general grounds, in DVCS measurements one cannot rely
on the dominance of any specific observable for any given
polarization configuration, but multiple structure functions,
translated into multiple CFFs, appear simultaneously in the
cross section. Our easily readable formalism was con-
structed in such a way as to facilitate the analysis of these
observables. Numerical evaluations will be shown in a
forthcoming publication.

III. DEEPLY VIRTUAL COMPTON
SCATTERING CROSS SECTION

In this section we present the detailed structure of the cross
section for DVCS in terms of helicity amplitudes. Our
formulation is consistent with the work in Refs. [10,26]
where a general notation was introduced to describe the
various beam and target polarization configurations for a
wide variety of electron-proton scattering processes from
semi-inclusive deep inelastic scattering (SIDIS) to DVCS.
While specifically for SIDIS a more detailed notation
following Refs. [10,26] was developed subsequently in
Ref. [42], an analogous complete description of the exclusive
processes including DVCS, TCS and their respective back-
ground BH processes has so far been lacking.

dSGDvcs |T ‘
dxy,dQd|t|dpdps VS
T
Q*(1-¢)

+ (A7) [sin(g = ds) (F )+ eF

N
\'\H\\
\
\
-~

AeA
fak

FIG. 5. Factorization of the DVCS contribution to the cross
section into leptonic and hadronic helicity amplitudes.

The formalism presented here allows us to:

(1) single out the various beam and target polarizations
configurations contributing to the DVCS cross section
with their specific dependence on the azimuthal angle
¢, between the lepton and hadron planes;

(2) describe observables including various beam and
target asymmetries with GPDs up to twist three;

(3) in virtue of its covariant form, give a unified
description that is readily usable for both fixed-
target and collider experimental setups.

A. General formalism

Following the formalism introduced in Refs. [10,26,42]
one can derive the general expression describing all
polarized and unpolarized contributions to the DVCS cross
section, ¢ = d°¢ in Eq. (6), corresponding to the following
configurations: unpolarized beam/unpolarized target (UU),
polarized beam/unpolarized target (LU), unpolarized beam/
longitudinally polarized target (UL), polarized beam/lon-
gitudinally polarized target (LL), unpolarized beam/trans-
versely polarized target (UT), and polarized beam/
transversely polarized target (LT),

{FUUT+€FUUL+€C082¢F0052¢+\/ €+ COS¢FCOS¢—|— Zh)\/mSIH¢Fsm¢
+(24) [ Ve(e+ 1)singFy;? +esin2¢Fy* + (2h) (\/ 1—e*Frp +2y/e(1—e€) cos¢F°°“/’)}
A7)

vre ") esin(g+ ps)Fip ") +esin(3¢ — )

2¢(1+€)(sinpsFyy’s + sin(2¢ — ¢S)F§i;1‘r(2¢_¢“)}

+ (2]’1) <2AT) {\/ﬁcos(qb ¢S)F2(3; d—os) + 26(1 _ 6) cos ¢SFcoqz/)s

++/2¢(1 —€)cos(2¢ — ¢S)FCLO;(2¢_¢5):| }

(36)

7Similarly to Ref. [42], while the first and second subscripts define the polarization of the beam and target, the third subscript in e.g.,

Fyy.r specifies the polarization of the virtual photon.
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The longitudinal spin is S = A, while |§T\ = Ar, with Sy
being the transverse proton spin at an angle ¢y with the
lepton plane. The dimensions of Tpycs, Eq. (13), are
GeV~! (see Appendix A).

In this respect, our formalism supersedes the work
presented in Refs. [6-9,43] where the theoretical frame-
work of DVCS on the proton was described by organizing
the cross section in terms of “angular harmonics™ in the
azimuthal angle, ¢. In our approach the various sources of
both kinematical and dynamical dependence on the scale,
Q? for the DVCS and BH processes can be readily singled
out and a more physical interpretation of the occurrence of
twist-two and twist-three contributions appears from the
combinations of the virtual photon polarizations, namely:

(i) Twist two: Fyyr, Frp, F?IHTW bs) cm;(f—(/;s). |
(ii) Twist three: FSo/, Fn?, leflljfﬁ, FEOs0, pings,

F;i]r;£2¢—¢s)’ on; ¢s, FZO;(2¢_¢S)'

(iii) Twist four: Fyyp, F ;}HT% ¢52>¢ w20 in(g14,)
(iv) Transverse gluons: Fyup ", Fy'. Fyp' 7,

FiinGé—¢,)
uT :

Notice the striking similarity between the DVCS and
SIDIS cross section structures [42]. We remark that despite
the fact that the observables contain the same helicity
structure, the helicity structure at the amplitude level is
inherently different. This is a consequence of the DVCS
process being exclusive.

The amplitude, Tpycs, Was introduced in Sec. II and
factorized into its lepton and hadron contributions. We
consider the structure of the cross section for the case in
which the polarizations of the final photon, Aj, and

UhA—ZZ[Ah fAA’ }ZA fAA'

(A

/\//\/
V
LA ) 0.A] | *
=y A},fA,K' + AT AL
A/A/
—1,A/
_Z |fAA/ ( ) |fAA//|2
A/A/
* OA A * lA
+A}1AO[(fAA') fAA/+<fAA/) f/\/\'

LA | *

nucleon, A/, are not detected while the initial nucleon
and lepton have a definite longitudinal polarization, 4 and
A, respectively. For longitudinally polarized states we
define,

hA’
DVCS /\A’

* hA’
DVCS AN

Opn = FZ

AN

AW AD
=T E L, "H

A@.A@
Ty

A(i)’A(i)
14 14 (37)

where the lepton tensor contracted with the polarization
vectors is defined as [Eq. (17)],

ADA@
7" r*
E : Ah Ah

AD 7O
14 14

(38)

while the hadronic contribution written in terms of helicity
amplitudes reads [Eq. (19)],

HYy =SSR (39a)
A/

A(L)A(z) (1) A’ % A@,Af/

Fo = Z[fAA, rew (39b)
A,

14

Separating out the leptonic and hadronic contributions [as
shown in Fig. 5] we have,

LA,
A}lfA,A,JrA 1fA N A fAA,)

DA

=LA+ L0.A * =1,

]“‘AZIAO[(J[AN ) fan + (f/\/\') Fan']

AL ) A+ ) Fv):

(40)

Replacing the A, functions in the helicity structure module in Eq. (40) allows one to separate out the beam helicity

(h)-dependent terms as follows:
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—lA
Gh/\—— { Z ‘f/\/\/ +|fAA’

)+ 2¢ ZIfAA,

A/AI AI A/
*OA *]A —1/\*0/\ *—1/\
+V2Ve(T+6) Y [=(Fai) Fo = i) i+ ) Pl + (Fae) Fae’]
A’A’
lA * lA’
— 2 Z fAA/ fAA/ (fAA’ ) fAA’]
A’A’

+ (2h) {2\/:2 AP = o )

A’ A
—V2Ve(T=&) S 1) v + ) P+ Fa ) P + ) Fae }}, (41)
A’ A

where the coefficients dependent on ¢, Eq. (29), are
obtained from the various lepton tensor components in
Sec. I A 1. The transverse polarized case involves a
different summation over the helicity states and is described
separately in Sec. III B.

1. Lepton tensor

The bilinear terms defining the lepton tensor are given by,

‘c}%lil A*ilAil [2:&2(2}1) (I+e)(1-¢)],

(42a)
1 2e
L0 = A2040 = Pioe (42b)
1 2

ﬁilq:l _ A;;IAZI — _@1 _€€ (42C)

L0 = Ar+1A0 = Q21 Fe(l+¢€)—2h\/e(1—¢)].
(42d)

- . A

The helicity amplitudes, A,” , for the transverse and

longitudinal virtual photon helicity components read,
respectively, as,

= :Fé\%[ﬁ(k’, Ry u(k, h)(ef!)*
+ (K, h)yu(k, h)(eE)7]
l1+e¢ 3 2h>,

1

e — a(k', h)ysu(k, h)es

+1
Ah

(43a)

AY = (k' h)you(k. h)

/2
- 1 <. (43b)

m

=

Notice that the factor 1/Q? in the first line of Eq. (43)
comes from the photon propagator. The rest of the matrix

elements depend on 4/Q? due to the lepton spinor
normalization. As a result, the overall Q> dependence is

1/+/ Q? (the Dirac spinors and normalizations are shown in
Appendix A). These terms satisfy the parity relations,
A -A,
Ay = (CDMALT (44)
No phase dependence appears here because the polarization
vector is evaluated in the lepton plane.
The e-dependent coefficients in Eq. (36) result from

evaluating the lepton tensor (38). For example, in the
unpolarized case one has the following combinations:

1 1

Fuvr = S5 = oo (45a)
h
1 4de
Fuvs = Y00 = Gt (45b)
cos2¢p LEF g P = 1 de 45
Fuy Z LT = grme 49
1
Foyl = o0 == F Pl \/ I+e).  (45d)

h

Notice that an overall factor of 2 was included in I
[Eq. (10)] (see also Appendix C).

2. Hadron tensor

The helicity amplitudes entering Eq. (37) are defined in
terms of the hadron tensor as,

P = W, e (@[ (¢ (46)

where for Q% > M?, (—1), W, can be written within the
context of QCD factorization theorems as [44],
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1 1 . ! -
W =3 [_gw /_ A (x oWl +ier,, / dxC~(x, g)W[AYA,“]]
2Mxpg; 1

2 42 o [ avCH W iens, [ axe Wiy (47)

with
g =g =it —ntl =g = ey gy g = e =€l
(i,j = 1,2), with n_ and n_ being unit light-cone vectors. WE\F/]\, are the quark-quark correlation functions,
1 dz~ +g
Wik =3 [ e ot (<2 (S)inml (43)
T 77=0,z;=0

where U/ is the gauge link connection. For GPDs U/ is a straight link, implying that all GPDs are naive T-even. Writing out
explicitly the proton helicity dependence, we have, for I' = y*,y*y>, the following vector and axial-vector twist-two
correlation functions:

N 1 A Al 4 iAA?
W“ I = —=—=[H(l - &) — EElopn + <
1-¢ Vi-& M

| ) ) 1 Al 4+iAA?
WA = g WA = &)~ AP B+ -

For ' = ¥/, y'y> we adopt the following parametrization of the twist-three correlation function [31]:

E5A,—A/ ’ (49)

+.,5

EEGy - (50)

W}’

AA’:M

Y 2
1-¢ [—F (A8 +id) (Hzr + 552 2T~ f & E2T> —A

1 Al - - IANETAT
[”ﬁ (2Hyr + Eyr = EEor) + Spr (Exr — §E2T):| WY
Al(A! 4+ iAA?
%Hﬂ] Sa-ns (51
e L [0 N AN
M T=g | 2Pt 2070 pr AT oph

1 [M((s,.1 +iASy)

el P

Throughout we adopt the notation given in Ref. [31] where for the chiral-even twist-two contributions, as in the first
parametrization introduced by Ji [3], the letter H signifies that in the forward limit these GPDs correspond to a PDF, while
the ones denoted by E are completely new functions. The tilde denotes the axial-vector case [45]. Note that the matrix
structures that enter the twist-three vector (y') and axial-vector (y'y>) cases are identical to the ones occurring at the twist-
two level in the chiral-odd tensor sector. Hence, the GPDs are named using a similar notation: the corresponding twist-three
GPD occurring with the same matrix coefficient as the chiral-odd tensor sector is named F,7 in the vector case y’, and F in
the axial-vector case y'y°> (F = H, E, H,E).

The structure functions in Eq. (36) while reflecting the helicity structure of the various azimuthal angular modulations,
are written in terms of complex-valued CFFs. CFFs are obtained as convolutions over the longitudinal momentum fraction,
x, of the GPDs, F(x,¢,t), (F = H,H,...), and the Wilson coefficient functions, C*,

(Eyy :E'm] San

ielI AJ(A! + iNA?)
2MP*

(1 = &)Hyy + EEyy — EEyy) — A

T L NSC)

F(E 1) =C(CTF) = /_1 dxC*(x,&)F(x, &, 1), F(&t)=C(CF) = /_1 dxC~(x,&)F(x, & 1),  (53)

whereby, at leading order,
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1 1
+ _ 4
R ol (54)
and the real and imaginary parts of the CFFs are defined as,
1 1
F =ReF +iSmF = PV / dx( S 5) F(x, &, 1) +in[F(&,&,1) — F(=¢,&,1)], (55a)
= ~ ~ 1 1 1 - - -
F =ReF +iSmF = PV/ dx< + —> F(x,& 1) +in[F(EE 1)+ F(=E,&,1)). (55b)
~1 X — f X+ f

B. Structure functions in terms of Compton form factors

The structure functions appearing in Eq. (36) are given by quadratic terms in the CFFs multiplied by a kinematic
factor, w,

wReFRegd, w3mF3Img, wReFImg, w3ImFRed,

where we distinguish terms where both F and G are of twist two, with F,G = H, &, H, &; terms where either F (G) is of
twist two and G(F) is of twist three i.e., F,G = Hor, Eors Hor, Exr, Hyr Erps H s E’ZT; and finally, terms where both F
and G are of twist three. Additional terms with transverse gluon polarization are also present. Their structure is described in
Sec. IITE.

Twist two:
Fyyr =4[(1-&)[(ReH)? + (SmH)? + (ReH)? + (SmH)? + 1201\;5 [(Re€) + (SmE)* + & (Rek) + £ (ImE)’]
2
12_5(:2 (ReHReE + SMHSmE + ReAReE + SMHImE)), 56)

Frp =42(1 — &) (ReHReH + SmHSmH)

(9‘{65(59165) SmE(EImE))

2
+ 12552 (ReHRe& + SMHIME + ReHReE + SMHImME)], (57)
Fur ™ = @ [SMHReE — ReHISmE + ReFU(EIME) — SmH(EReE)), G8)

2 5 .
+ 15—52 (ReERel + ImEImE) |.

Fesomts) _ v tX[ T _ReFReE — SMAIME + ReH(ERE) + SmH(eSmE)

At twist three, the structure functions listed below include the factor

K :Lo_txg.(l_g),

[see Eq. (97) and Sec. I C 1].
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Twist three:

Je0s ¢ 2K

v :‘@

2
(1- 52)9{e{(2H2T + &y + 2Hor + &5y ) (H - 1f—§2€>
r~

t p—
4M2 HzT + Hyp 4M2 ) (€ -&8)

~ ~ ~ 2 ~ ~ ~ ~
—28(&xr + Er)" (H ] f 2 5) Tz 52 (Ear — E€ar + Exp — EE37)* (€ — EE)

1 -
+ 106 e (Hor + Hap ) (€ + 55)},

i =- j% (1- 52)5m{(2H2T + Exr + 2Hor + Ey)’ (H - lf—zgzs)
(P + 8 o 4 e+ B ) (6 - )
26+ ) (o ) 1 By = + B - ey (6 - )
+—=—— 16M2 (HZT + Hhy)* (5+§E)},
L (L O (R ety
0 Py + Fap)* (€ + )
+ <H2T O oy + g+ HZT) (€ - &)
b e+ B g0 .

COS @ 2K I3 ! g * A i 3
Foosd — \/@(1 _52)9{(3{(52T—§€2T+827—552T) <H_1f§28>

th—1t ,~ ~ o
g2 (Flar + Hor) " (€ + &8

! — Iz * fo
Hzr + Hyr + 4M2 ,2T> (€-¢8)

<H2T T 4M2

¢

—|— e

(Eap = EEay + By — EE47)" (€ = 5?:)},

sin(¢g K a3 5 &
Fines) T V1-ESm [(HzT + Hby) + (Hzr + Hor) + I _552 (Ear + &)
2
552(52T+5 )} <H+ﬂ—

K to—t_
vagram® "

52

1_—§2<5+S)>*

+
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sin(2¢— K - / fol £)*
rae -k G2y + (1= &)(Ear + Ear) + 2oy + (1 = E)(Ely + Exr))(€ - EB)
K e ity + ) (T - e-7)) 65
T:E —58 ar + < _1—52( - )> (65)
I 7] = \/— vV1- ézi}le[ Hor + Hap) + (Hzr + Har) + (Ear + E7)
& . 52 )
Tog ot & )} <H+H— . _52(5+5)>
K ~ - ~ o
+ V20 t4M2 Re[2Hor + (1 + &) (Exr — Ear) + 2Hor + (1 + ) (Ehy — Ep)I(E + EE)7, (66)
K ~

S(2—¢ps) _
R

~ Vg or

K 2
MV

: sin(p—¢bs)
The structure functions Fyy ., Fyry

suppressed by a 1/Q? factor,

FUU,L:Q

+ 2Hor + (1 + &) (Exr

2

ERe[szT + (1= &)(Ear + Exp) + 2oy + (1

me[HZT + Hhy] <H H—

= &)(Exr’ + Ep)I(E - £E)°

62 - *
— (5-5)) . (67)

are given by the product of two twist-three CFFs. They enter the cross section

K- . . -,
— (2Hor + (1 = &) (Ear + Ear) + 2Hor + (1 = &) (Ex’ + Ear )|?

= &) + 2Hor’ + (14 &) (Exr' = &), (68)

K ~ - - .
Fyrp = o ([2H2T + (1 =&)(Ear + Eor) + 2Hor' + (1 = &) (Exr" + E1)]F [(H2T + Hor')

1y

e 4M2 (Hzr + Hor') + (Ear +Ex) -

¢
_52

The structure functions F;
involve two units of hehc1ty ﬂ1p They are, therefore,
described by transverse gluon GPDs (Sec. Il E).

The leading-twist structure functions, Eqgs. (56)—(58)
display a similar content in terms of GPDs as in
the expressions for the “Fourier -coefficients” in
Refs. [6,8]. However, notice that expressing the
kinematic coefficients in terms of the variable ¢ effi-
ciently streamlines the formalism, avoiding any appro-
ximation. The twist-three structure functions contain
GPDs from the classification of Ref. [31]; they are
entirely new, in terms of both GPD content and kinematic
coefficients.

c0s2§ 2 psineds) puin(ig—bs)

&
1-&

+ 2 + (1 + &) (Ex' - gzrl)m:fzr + ﬂzr’]*)

(Ear + 52T’)} + RHor + (14 &) (Exr — Eor)

(69)

In order to pin down the twist-two GPD structure of the
nucleon, from this part of the cross section one would need
eight distinct measurements for the Re and Im parts of the
four GPDs. ep — ¢'y'p’ from a polarized proton can
provide only four of these measurements. Additional
information can be obtained from related deeply virtual
exclusive experiments.

C. Helicity structure functions

The structure functions’ composition in terms of CFFs
follows from the definition of the helicity amplitudes for
the DVCS process given in Eq. (19). In particular, we
define the unpolarized components in Eq. (36) as,
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Fyyr=4(F\, + FIL + F1, + F!), (70a)
Fyyy = 2F9,, (70b)
Fnd = 2Re(FO, + FO + FO 4 FOL), (70c)
Fl =28m(FQ, + FQL + O + 1)y =0, (70d)
F?? = 2Re(FI7) 4+ FI7' 4+ FI5) 4 FI2Y, (70e)

while the structure functions involving longitudinal beam
polarization are,

Fry=2(F), + F{L-F{7' = Fi7) =0, (71a)
Fl = —23m(FO, + FOL + FY - FOL),  (71b)
F5? =2Re(FO + FL + IO + ISy =0, (7lc)

the structure functions for longitudinal target polarization
are,

Fn? =28m(FO', + FO_ — FO1 — FO1), (72a)

F? = 2Re(FQ + L+ '+ 13 =0, (72b)

and finally the structure functions for both beam and target
longitudinal polarization read,

Fpp =2(F\Y + FY—FY, —Fl), (73a)
F? =28m(FQ, + FQL - F07' = F') = 0. (73b)
Fc0s¢ _22’16(1_79:Jr _ FOI 4 FOl F(ll_) (73c¢)

Note that F;;; = Fy;, = 0 from parity conservation (the
properties of the structure functions under parity trans-
formation are explained in Sec. III C 1). Similarly, in the
twist-three case, Fin! = F = F$%? =0 as it would
follow from parity conservation in the quark-proton scat-
tering amplitude seen as a two-body scattering process in

the c.m. For instance, F blj[;j is given by the combination of
helicity amplitudes F9, + FOL + FO + FO 4+ FOZ1 +
FOol+ PO+ FO! Wthh is zero as if the two-body
scattering parity rules held. The scattering process for
twist-three objects cannot, however, be trivially reduced
to a two-body scattering process, thus implying that the
gluon rescattering happens, in this case, in one plane.

For an initial target nucleon with definite transverse
polarization, ST, and orientation

Sr = S7(cos . sin ¢, 0) (74)

in the target hadron rest frame with the target transverse
spin relative to the lepton frame coordinates, the target
polarization density matrix for longitudinal or transverse
polarization, in the helicity basis relative to the lepton frame
coordinates, is

STorL — l 1 + SL
2

STe+i¢S )
" . . 75
Para STe_’¢S i ( )

1-5;

The basis in which the transverse spin is diagonal is a
transversity basis, Ay, wherein the state reads

1 —ids/2
A :i—>: e+l¢x/2)A T >:|:e"¢s/2‘A———>].
’ ) V2 [

(76)

The amplitudes with definite transverse spin for the target
will be given by linear combinations of helicity amplitudes,

= A, 1 5,
Tpvesan = \72[ et AT s A
~ hA,
+ ATe (/) /ZTDVCS A= ] (77)

where T is the amplitude with the target in the transversity
basis. One has for Sy = £1 that the target is totally
polarized in the (cos¢;,sing,,0) direction with trans-
versity Ay = +1/2.

The A dependence is defined through the spin four-
vector,

0

SL”:(ZA)<|p| OT,—pM> — —(2A)% (restframe), (78)

STﬂ = ST(Ov Cos ¢sv sin ¢s7 O) (79)

where the minus sign in S ; follows the Trento conven-
tion [46].

We distinguish the two cases of an unpolarized
beam, UT,

Fin® = Sm(FL + FL) (802)
F;}nTM) ?s) _ o (F(%OJFJr +F + ) (80b)
in 1 F Z
FSUT(¢+¢5) — Esm(p%.—i+ + Fi7l), (80c)
sin(3¢p—gs 1
penabe) _ SSm(Fil, + L), (80d)
sin(¢hs) 1 S (10 [10
Fyr™ = 75‘5’”(FT,++ +ETL): (80e)
sin(2¢—¢ 1 F
pon2is) _ ﬁgm(plo +FP_).  (80f)
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and a polarized beam, LT,

FE00) = Re(FY,. + FYL), (8l2)
1 ~
Rt = - s ReF L+ P, (810
Cos(2¢— 1
FesCots) _ _ SRe(Fi, +F).  (81¢)

Note that of the six imaginary parts, only three have
corresponding real parts. That is a result of the parity
and Hermiticity of the transverse polarization-dependent
structure functions.

1. y*p — y'p’ helicity amplitudes

The structure functions appearing in Eq. (36) are con-
structed from bilinear structures in the helicity basis
[Eq. (19)] for a specific A and summed over the final
proton (A) and photon (A,/) polarizations. We list below all
the constructs appearing in the DVCS cross section. More
details on the cross section in terms of the helicity
amplitudes are given in Appendix C.

The phase dependence of the various contributions to the
cross section included in the bilinear forms listed above,
derives from the properties of the helicity amplitudes [32,33],

£ (0, ) = eI AN FA N ) (82)

which follows from the definition of the rotated polarization
vectors in Egs. (33) and (34). Not measuring the intermediate
exchanged photon’s phase generates phase (¢)-dependent

configurations where A ;é A at variance with the A’y, A,

A terms where the ¢ dependence cancels out in the product
of the f functions times their conjugates.

In a two-body scattering process the helicity amplitudes
obey the following parity constraint:

—A, A’ CA=ALA A K
foan' = n(=1)~ AR (fan") (83)

with n = 4 for photon or vector-meson production and
n = — for pseudoscalar-meson production.

For longitudinal polarization the phase dependence of
the structure functions is given by,
A“)Aﬁ) i(A(])—/\(Z) » A(L)A(i)

*)4) Y 4
VY

- Au_A Yo A’*AA’
= E: an ) Fan

A( )A/ * A(*)A;
Z(fAA, ) Fan (84)

/

whereas for the transverse case one has,

AVAS A BRI ADAY
FTAA’ =e 7 FTAA’
A(I)Ar * A( A'
E :(f IV AN
A/

14

—/\ —2A *A’ * A(i)A'
¢Z (Fyow ) Fod - (85)

The helicity structure functions which contain twist-two
quark GPDs are the ones with transverse 7*.¥ For an
unpolarized or longitudinally polarized target one has
the following.

Twist two, unpolarized/longitudinally polarized:

Fan = (Fan)" oy =

= |fanl* (86a)

F A}\’ '= (f AN ) |f AN |2
These helicity structure functions enter Fy; r [Eq. (70a)]

and F;; [Eq. (73a)]. They obey the following parity
relations:

(86b)

+1+1 _ pFIFI
Fio =FI, 7. (87)
Because of these parity relations we have no leading-
twist UL and LU components in the DVCS contribution
to the cross section. For transverse target spin the

following amplitudes contribute to F SL}HT¢ ?s) [Eq. (80a)]
and F CLO; (9=ds) [Eq. (81a)], respectively.
Twist two, transversely polarized:
I = (FA) o (88a)
PNl = (Fah fa (88b)

Twist-two transversity gluons, longitudinal target:

e PPF AN T (fAA’) fx (fAA’) fAA' . (8%a)
12¢F/_\}\1’ = ( /_\}\1’)*~}\1/\’ ( A/\’ ) f/\/\’ (89]3)

Notice that the double-helicity-flip terms contribute at twist
two: they involve transversity gluons in the term in f7}},
which is suppressed by ag. We describe these contributions
in Sec. IIIE.

¥We disregard contributions of the type, (£ /\j\ V) fi) in these
equations since they are suppressed at order o
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Twist-two transversity gluons,
target.

eIl = (P ol + (P Foha. (90a)
dCRNPFLL = (Fan) Pl + (Fan ) FLan- (90b)

We list the bilinear products of helicity amplitudes involving
the twist-three GPDs: these contain a transversely polarized
photon term, A, = +1, multiplied by a longitudinally
polarized photon term with A7 = 0.

Twist three, longitudinally polarized:

P, = () FA, (91a)
e F = () Fan! (91b)
with conjugates,
e (F) = e PFN = (Fin) faws  (92a)
() = ey = (f;k?‘)*f%}‘f- (92b)
Twist three, transversely polarized:
<H'2’\)‘1’F01 AN = (fAA,) NG (93a)
SUENI R = TR T (93b)
with conjugates,
e~ i(142M)¢ (FOIA/\’)* =" (l+2A)¢F10 N ( AA’) fAA’
(94a)

K
1 +i
T W WL =

oL = wrldir Wi =

WJ:er + W(}’ +ir*)rs — _

oL =wr +ty _ W Firrs

K
Ve

to—
[(H2T+H2T )+ e

transversely polarized

(Hzr +Hyy! )+

eil1- 2/\)(/;(1;(“/\/)* = (il zA)d)F—l_oAN = (f-\a )fAA,

(94b)

The helicity amplitudes are written in terms of GPDs. At
twist two one has [45],

2
++:\/1—§2<H+H—f—

alE 5)) . (95a)

fll=y1-2 (H —F - 5 (€ - 5)) (95b)

52

1 — it %’M_t (& + E8), (95¢)
U= w0 e o) (954)

The GPD content of the helicity amplitudes is described in
Sec. I D. From these expressions one can see that by
summing e.g., over the nonflip proton polarization
[Egs. (952a) and (95b)], one would eliminate the axial-vector
CFF H at the amplitude level. However, because the DVCS
cross section involves the amplitude modulus squared, there
is no obvious simplification of results that allows us to
interpret an observable (in this example the U U one) in terms
of specific GPDs; counterintuitively, the UU observable
contains both the vector and axial-vector contributions.

The twist-three helicity amplitudes written in terms of
twist-three GPDs from the complete parametrization of the
correlation function [31] are presented for the first time
here. They read,

et [Zﬂzr + (1 =&)(Er + gzr) + 2o + (1= &)(Exr’ + ng)} ., (96a)
K . ~ - - -
> et {2H2T + (14 &)(Ear = Ear) + 2Hor" + (1 4+ 8)(Exr' — 52T/)} ., (96b)
K VT gl
Jo? M e [ + Tl (96c)

~ ~ 2
552 (Ear+Ex) —lf—fz(gzr + SZT/):| (96d)

where K is obtained from the hard scattering amplitude [Sec. III D, Eqs. (119) and (120)], using A% = (t,—1)(1—&2),

K _VO+i2-var/1-8

¢1+y2—1w0——t(

- =2¥h !

DM 1+¢

Ve Ve -

- xay(1-8) ©7)

Vo

The last expression in Eq. (97) was obtained for y*> < 1. Inserting the helicity amplitudes into the definitions for the bilinear

structures we obtain for the twist-two case,
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2
FU, — (1= &)H 4 - 12_552 Re((H + F)(E +&)].
(98a)
2
FUU =(1 - &)|H - HJ? —12_—55291(;[(71 —H)(E=E)).
(98b)
Fll = ’40A;2’|5 + £8P, (98¢)

At twist three one has,

e (5] (o
x <H+7~i—1_—§2 5+5>

- (L

Fi=- vr—ﬁé;( or + Hy' ) (€ + EE)).

Fo. = v25_<(TQT+-}QT +,4 (TQT*-?QT)

_itz (Ear + &) -

to—t -

(98d)

where we have disregarded terms proportional to £*. Notice
that the phase dependence structure described in Sec. III C 1
implies that the leading-twist structure functions with longi-
tudinal polarizations do not depend on ¢, despite the fact that
aphase dependence appears in the helicity-flip amplitudes in
Egs. (952)—(95d).

1_5 7 o ¥
52T> +T(Ezr + & ))

52T> - T4 4 8y >>*<H—H—5—2(5—é)>,

2

f 2 (Ear + SZT/))*(S — .fg’)> (99d)

The longitudinal structure function, F;;; contains a O(1/Q?)-suppressed term which is bilinear in the twist-three CFFs as

it can be seen by examining the helicity structure,

K e 7 / Vo !
FO = @(|2H2T + (1 =&)(&r + Eor) +2Hor' + (1 = &) (Exr + EF)?
+ [2For + (14 &) (Ear — Exr) + 2o + (14 &)(Exr’ — Exr')?). (100a)
K? . - N ~
F% — @ ([2Har + (1 = &) (Ear + Ear) + 2Hor' + (1 = &) (Ear' + Exr')?
+ [2Ftor + (14 &) (Exr — Exr) + 2o + (14 &)(Exr’ = Exr')?). (100b)
FO = K |(Hor + Hor') + 0 (HZT + Hor') + : (52T + &)
+- QZ 4M2 é
2 to—1)? ~ ~
- f -2 (Ear + &) + (64 4) Hor + HZT/|2>7 (100c)
K? N fo—1 - - E .
F¥ = 2 <|(H2T +Hor') + ﬁ (Har + Har') 1o 2 (Ear + 1)
SN Ul 2 100d
52( o + & )7+ 6AM* [For + Har'| (100d)

We write the structure functions for a transversely polarized target in an analogous way.
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Twist two:

il —i¢p . 52 &

P ==Y e i- Lo 0] -, (101
- 2 .

FU__ = \/;(}\/1 L oid [H H - 1 f 2 (€- 5)] (E+EE), (101b)
pu Yol iy H—H - & (E=E)|(E+EE) (101c)

= oM 1-& ’

11 _ [O -1 i i 52 _ *
P, = -2 [H+H e (5+5)] (& - &8) (101d)

Twist three:
K ~ ~ ~ ~
Fi. = \/@\/5 e 2Hyr + (1= &) (Ear + Ear) + 2Hor' + (1 - &) (Exr’ + Exr)]7 (€ - EE), (102a)
K /1 ~ ~ ~ ~
Fyl__= o M ZHZT + (14 8)(Ear = Ear) + 2Hor' + (1 +8)(Ear’ = Exr)]* (€ + 86, (102b)
K Vo=t _, .2 N
FY,_ = \/1—52\/@ 2(}” e[ Hyr + Hor'* <H—H—1_—§2(5—5)>’ (102c)
Fo! \/1—52%[(71 Ho) 4+ Oy 1+ T N+t S (Bort E)
T—+ Jo o1 o1 1 M2 o1 o1 _ g\t lar
52 * é:2 »

e (52T+52T/)] (H+H— 7 (6+5)>. (102d)

2. Flavor composition
In the previous section we omitted for simplicity an
index, g, referring to the quark flavor of the various GPDs.
The flavor composition of the proton GPDs, F ,, F4;, F7y. is
given by,

(103)

Fp:zequ/p Zq 9
q

where F,, = F, is the quark GPD in the proton, and e, is
the quark charge. The neutron GPDs are obtained using

isospin symmetry, namely F,,, = Fq/,, Fq/y = F,p-

D. Partonic structure of polarized
structure functions
We now discuss the quark-gluon content of the various

configurations described by the helicity amplitudes fﬁj\/,\;
up to O(1/Q). Specific factorized formulations of the
helicity amplitudes for deeply virtual exclusive processes

were given in Ref. [44] (see the review in Ref. [45]) at
leading order. Twist-three contributions were considered in
Refs. [8,9] for exclusive processes and in Ref. [42] for
SIDIS. In this section we show how these terms include
GPDs from the general classification scheme of GPDs,
GTMDs, and TMDs given in Ref. [31].

Considering a sufficiently large four-momentum trans-
fer, Qz, we can assume that perturbative QCD factorization
works [47]. The twist-two contribution, obtained by taking
the transverse polarization for both the incoming and
outgoing photons, A,- = A}, = %1, reads’

FE = Zgilztl X, E1:0%) @ Ay s (X, E.1),

AN

(104)

Notice that the subscripts for the initial helicities and final
helicities are switched compared to the amplitudes, f . We stick
to this notation in order to be consistent with the existing
literature.
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where, the convolution integral is given by ®— f_ll dx,
and Appay [17] is the quark-proton helicity amplitude
describing the process,

k(4) + p(A) = K'(X) + p'(N),

where k(k') are the initial (final) quark momenta, and p(p’)
are the initial (final) proton momenta, namely

dZ_dZZ ixPtz——ik -z
A/\//l/,/\i_/(zT)?,TeZXP < lkT T<p/aA/|Ol/l(Z)|p’A>|Z+:0‘

(105)

At twist two, the bilocal quark field operators are written as,

010 =w(=3)r 121w (3) =i (106

defining the chiral-even transitions between quark =+, +
helicity states; in the equation we have also defined
¢+ = yTy~w, which correspond to the “good” components
of y, i.e., its independent degrees of freedom obtained from
the QCD equations of motion [48]. We connect specifically
with the correlation function parametrization displayed in
Egs. (49) and (50) by noticing that,

Wiy = 3 [AA’+ A+ HAx- A

1

W[Ay,\/yS] ) [Ansas = Ax-a-]- (107)

The expressions of the quark-proton helicity amplitudes in
terms of GPDs read [17],

H+H & E+E
Apivr = V1 _52< ;— - 1{5_5 —; >’ (108a)
A+_’+_ — / 52 <H H f_sz;E>, (]OSb)

A, —iA, E—-EE

o-in Vo —1E-¢E

A = - = _
et oM\/1-8 2 2M 2
(108c¢)
Aj+idy E+EE . \Jlg—1E+¢E
A_yiq = =e .
2M\/1-E 2 2M 2
(108d)

These amplitudes are calculated in the c.m. frame of the out-
going photon and proton, with g in the negative z direction.
We write the relevant four-vector components as'

10 . _
Here we use the notation, v = (v, v7, vp).

TABLE II. Helicity and longitudinal spin configurations at
twist two. The polarization vector indices are i = 1, 2.
A AN X ST e e
1
s-channel 1 % 1 % -3 1 0
u-channel —1 % -1 % —% 0 1

k= ((x+§)P+,k—,kT+%>, (109a)
K= ((x—af)P+,k" ky —%), (109b)
p= ((1 +é) *,%,%), (109¢)
p=(0-ap SR80 s
A= <—2(§P+ %,—AT) (109)

where the momentum fraction, x, in the symmetric frame
defined by the reference vector, P [18], is

k* + Kk
X = ? .
. y . . AN,
The y*q — y'q scattering amplitude g,;, " reads,
Apvs Ay Ay A
N, €. )€ € )%e
gy =a(k )ty u(k.a) @)’ () ey q.
§—ie it—ie
(110)

From parity conservation one obtains the following
relations [17]:

A_N_y A = (DN Ay )"

Al (=LA A=A g -

9y Y (111)

The allowed helicity combinations are dictated by parity
conservation, namely, the only allowed, independent ampli-
tudes are g!!, in the s channel, and g' in the u channel.
The allowed helicity and longitudinal spin configurations
are summarized in Table II. By using the relations for the
invariants,

2 2
S (k@ nerlx-g. =K -af o (e
2
q~~(Pq)/P" = (2%P+’ (112)
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we obtain the following expressions:

gy = VP -8 i s-channel, (113a)
gl_l_ =V .X2 - 52 m M'Channel. (1 13b)
Notice that the parity transformation is carried

out independently from the complex denominators in
Egs. (113a)-(113b) where the ie term follows from the
analytic properties of the amplitudes and is, therefore, not a
feature of the helicity configurations. Moreover, the =~ sign
in Eq. (112) signifies that target mass corrections of the
same type as the ones appearing in deep inelastic scattering
were disregarded (see e.g., Ref. [49] for a review). The
convolution in Eq. (104) for the leading-order helicity
amplitudes can then be written as,

=0 @Ay ar + 9l ® Ap_as

1
= |l ®Aniatr T

Apn_ A
x—¢+ie ® An-a

x+E&+ie
(114)

where the normalization factor, \/x* — £2 is inserted into
the quark-parton structures Apry az. f/_\/'\TI is obtained

through the parity transformation in Eq. (83). By inserting
|

the expressions for Ay, 5, and A, _ ,_ from Egs. (108a)-
(108d) and using the parity relations for the f amplitudes,
one recovers the expressions for the photon-proton helicity
amplitudes given in Egs. (952)—(95d) in terms of Compton
form factors. A

At twist three a similar factorized form for f,’,” holds
[50]. It is important to specify precisely our definition of
“twist” which is given here by the order in 1/P* at which
the matrix elements corresponding to the field operators
O;,(z) in the correlation function [see e.g., Eq. (106)],
contribute to the amplitude. The O(1/PT), twist-three
matrix elements for the chiral-even operators are defined
by the following operators:

00 =#(=3) 0 i (3). @13

We adopt the same notation as in Ref. [48]: to identify the
composite quark-gluon fields in the helicity amplitudes we
add an asterisk to the helicity label for the quark within the
bad component; for instance, in g°! ~ in the s-channel, the
initial quark has helicity 4 = —1/2, the final quark also has
helicity A = —1/2, and the final gluon has helicity
Aq = +1, so that the total longitudinal spin is conserved
when counting the gluon as part of the final state.

As a consequence, at twist three we obtain twice as many
expressions for the quark-proton helicity amplitudes in terms
of GPDs. For the proton-helicity-conserving terms one has,

Ar T Ex+E . Ey + E)
Ay =+/1- fzﬁe’d’ [HZT +(1- g)%Jr Hy, +(1- g)ﬂfﬂ } , (116a)
Ey+Ey - E\ + E)
Appam=—V1 52 e {Hz + (1= ==y = (1 —é>%], (116b)
2 Ar i | Eor — / E/2T
A =VvI1=-¢ e Hyr + (1 +§)f+H2T+( +§)T , (116¢)
Ar - Ey—Ey E)yr — E
] L I e A R (1164)
while for the proton helicity-flip terms the amplitudes are,
V1-¢& & § = lo 452 ¢
A++7__* :T |:H2T + 4M HZT —62 E2T+ 1 _52 E2T +H’2T 4M2 H/2T 52 EIZT+ 52 E/ZT R (1173)
V1=-¢& lo—1~ & Ip—1 4~ & & =
Al _=-— 5 [HQT+4M2H2T—1_§2E2T+1 QT—W /2T+1_§2E,2T_1_§2 brls  (117b)
V1-81
A= 5 40M2 e (Hyr + Hyr'), (117¢c)
V1-8t, -
Aprgo="—— zM e (Hyp — Hyp). (117d)
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The helicity amplitudes read

% = g?ﬂ @A+ @A, (118a)
L= ®A . .+ @A ., (118b)
W= @A+ @A, (1180)
A=A, 4+ @A (118d)

where we used the helicity values allowed by parity con-
servation which in the s channel are given by,

0.A, e 1 <\/ Q2+y2_y>a<k+%,l>

G T px—Etie\ 2PTQ

A
X [N IV ys+ iy +ylysu <k—§,/1) (119)
and in the u channel by,

oA’ 5, 1 VO + 17—\ _ A,
T = u k-‘—i,l

G =% erie\U 2PTQ

A
X [=N7 +iNPys — i + 7' u (k ~5 ﬂ) :

(120)

Notice that the parity relations for the twist-three
. Ay A,
amplitudes, f,"\/"
scattering processes. The DVCS cross section does not
allow us to directly disentangle specific GPDs by appro-
priately choosing the beam and target polarizations because
these appear in the cross section embedded in bilinear
expressions of the CFFs. Notwithstanding, as explained
throughout this paper, each GPD/CFF or GPD linear
combination can be identified with specific polarization
observables.

, are the same as for the two-body

E. Transverse gluon amplitudes

Up to this point we have ignored the contributions to the
DVCS cross sections from gluons, noting that the virtual
and real photons do not interact directly with the gluon
content of the nucleons. That interaction occurs through
quark loops, and suppresses the amplitudes by order apy
while still contributing at leading twist. However, for
double photon helicity flip, the leading contribution to
the DVCS cross sections are from gluon double helicity flip
or gluon transversity. The analogs of the CFFs that connect
the gluon GPDs to the double helicity flipy* + N — y + N
are obtained from the gluon helicity double flip amplitudes
convoluted with the sum over quark loops.

The double-helicity-flip structure functions, F ?}’;,2’/',
Fin2e - prin@rds) prnG0=0s) involve gluon transversity
GPDs. They are given as

_ B 9 » 2 ~
Fﬁy"’——z;—;ﬂ—ﬁwt%[ 1—§2< <+(1—§)5T+5T>(H+H—lféz(ﬂe)*
g o 2 -
T (R e T R ek
—_ ~ g—~g ~
T G RN IR}
—*/1—§2<H9 +£7}9_ & &9 4+ ¢ §9>(g_§g)*] (121)
L7 C I -7 ’
) _ 5 g o9 B 2 -
Fﬁ}“LZ"’:—Z%MEMZISm[\/T——éi(H%+(I—f)gT;ST>(H+H—lf—§2(S+E)*
g _ 29 2 -
+ 1—5%7%%(1%)%)(%—7%—]féz(sw)*
f— ~ g—~g ~
+V;‘}Wt< %+(1+§)—5T25T>(5+55)*
i (m o e e S a) (e ey 122
¢ T+M2 T 1-&2 T+1_§2T( )|, (122)
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Fup?™) = —4 V—W— {1—¢2><H"><H H—lf—zgzw—é))*
+ (ﬂ$+ (1-9¢) @) (5—58)*]. (123)
They correspond to the following helicity structures,
FO = ome(FI) + FI), (1242)
i ogm(Fit 4 Fiot), (124b)
Fyi?%) —ogm{Ff'71 + Ff'71) =0, (124c)
Fyp ™ = 28m{F7li 1+ F7l 1y = 28m{Ff - Pyl ) (124d)

We write the double flip helicity structure functions in terms of the gluon transversity GPDs:

9 o9 2
P == @)t (R -0 T ot - e By

2z 4M? 1-¢&
g _ o9 B 2 y
- (ﬂ;+ 1+9% 5 5T> (H—H—lf—éz(ﬂf)*], (1252)
£ - &5 z
P == imp et VIS (g 149 B ) e 4 gy
—f . 2 - ~
-Vi=e(m e ot - e e -y (1250)

for the longitudinal/unpolarized target and,

—_ -~ 2 ~ ~ 2 ~
I | = e A e ) [ RS B LR
g o9
t4Mz (Hg +(1+¢) g) (5+§5)*}, (126a)

- _ 2 2 )
FITJ}_:;—;\/1—527\/;01‘/84’[(1—52)(7{";—1—% ST 55259)(714—71—5 (E+8))"

M? 52 1_52
I4M2 (H" (1 +§)¥>(5+§8)*}, (126b)
2 g | 2Y B
P -t T Do - e - R - e - B+ (R0 -9 T ey .
(126¢)

—_73 5 5 2 - N g!] g‘g -
Fi, = /T-g ol o [(1 - &) (Fg)(H =L~ féz E-&) + (H«H (1 _g)rerr> (5—55)*]

(126d)

for the transverse target polarization.
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We use Egs. (89a)—(90b) to define the double flip helicity
structure functions through their subsequent proton/photon
amplitudes,

FiRt= P (PR 7+ (PR 73T (127a)

Pz = eX(FLYFU 4+ )73 (127b)
for longitudinal target polarization and by,

Fily = e?I(FR) 28 + (PR 01 (128a)

Filo=e[(FL) f1 + () 2 (128b)

Frlo=eR (L) fil+ ) f0Y (128¢)

Fil = e™[(FL) R+ (PR 73T (1284)

for transverse target polarization. The leading contributions
in a; have a simple form for the helicity amplitudes, in
which the y helicities match the gluon helicities [45]. The
helicity amplitudes read,

gA, =N,

A _ +1dx 1 1
fAA’ (é»t) 271- ~ (f X —le §+x—i€>

xAA,A ALAA, <A (x,&,1). (129)
Writing explicitly the helicity values, one has,
g | 29
9=+ _ _ 2ip slo—tag 9 4 Er+ &7
f++ e -¢ 4M2 (H ( é) 3 )
(130a)
. —ta & - &9
9=+ — _ p2i¢ _al s ] T T
prt = TmE S (R (49 TS,
(130b)
_ Vig—Ttag ty—t ~
fg_:'_ = ( 52) 2M 2 (Hg + (;‘42 H%
cfz é
—atr &+ e 5?) (130c)
3
F=—e -V R (130d)

8M3 27

The GPD content of the amplitudes is obtained through
the following gluon-proton helicity amplitudes:

‘ to—1( - EY + ES
Al =e"\/1-¢ 40M2 (H%+(1—§)T2 T>,

(131a)
i . E7 - E7
A __ =¥ 524M2 (H%+(1+§) 3 )
(131b)
. \lg—1 fo—1 ~
A __=e?(1-8) 2(;‘4 <H9T+ 01\42 H.
& §
—l_ng‘}+1_§2E’; , (131c)
3
A =—edib(1— g2y Vo~ (131d)

8M3 -

Notice that a similar structure appears for the quark
helicity-flip amplitudes [17].""

IV. BETHE-HEITLER CROSS SECTION

Similarly to DVCS, the BH contribution to the cross
section defined in Sec. Il in terms of helicity amplitudes can
also be cast in a form that emphasizes the various beam and
target polarization configurations. In what follows we
present a covariant form of the cross section.

A. General structure

The cross section reads,

dSGBH
deJdQ2d|l|d¢d¢S

= F|TBH|2

=— {F + (2A)(2h)FBH

+ QA @mFETY. (132)
where I was defined in Eq. (4). Notice that we do not
consider in the cross section the terms FP} and FEH, FBH
where either the target or beam are polarized, since they
involve a Z° exchange and they are therefore suppressed.

The helicity structure of the amplitude Tgy defined in
Eq. (16), is given by,

hA,

TBH,AA’

= [Bin, (k. K. )T an (p. P')],. (133)

"The phases and signs are in agreement with Ref. [17];
here, each helicity-flip amplitude for quarks is multiplied by
the complex conjugate of that reference’s overall factor

etih\/1 - /[ty —1/2M.

054021-26



EXTRACTION OF GENERALIZED PARTON DISTRIBUTION ...

PHYS. REV. D 101, 054021 (2020)

where the matrix element of the lepton part, B} ,,, is,
v 1w Ay
BhA; = pUh e (')
LA | s
A2 ’ (k' +q/)2
1 A/
+r'(K=d)r" m} u(k,h)e, "(q').  (134)

The (massless) leptons conserve helicity12 in the EM
process and satisfy the Dirac equation (fu(k) = 0), with
normalization #u = 2m. L}" satisfies the gauge conditions,

Ly q, =LA, =0. (135)
The nucleon matrix elements of the EM current operator are
defined (using the Gordon identity) as,

_(p+p)

Uanl, = U(p', N) [(Fl + F)), o, UFz} U(p,N),

(136)

with F| and F, being the Dirac and Pauli form factors
(Fi + F, = Gy). Note that in Eq. (136) we explicitly
consider hadronic helicity states with A = +1/2.

The BH matrix element modulus squared entering
Eq. (132) can be written as the product of a leptonic tensor,

v _ pu
EhAy: =B

Bl (137)

A
and a hadronic tensor which reads,

[Wﬁmw = [JAA’L/[‘]AA’];’ (138)

when the target and recoil nucleon are either longitudinally
polarized or unpolarized (when helicities are summed
over), and

S .
[WR]T-I]I/p = Z pAJ’_’A[JA/\/]y[JA”A’]p
AN A

= Sr> Uanl,Uanls (139)
A/

=Ay |:e+i(¢s>Z[J_A,]y[J+A,};+e—i(¢.r)Z[J+A/]D[J_A/};,:|

N N
(140)

for a transverse polarized target, written in terms of the
target spin density matrix, Eq. (75). The factorization of the

2We use v u(k,h) =2hu(k,h), where h=Ileptonhelicity = 41,
throughout.

I
B ! =

[Jan]y

FIG. 6. Factorization of the BH contribution to the cross section
into its leptonic and hadronic components.

BH cross section into its lepton and hadron/nucleon parts is
sketched in Fig. 6. Only two types of (parity-conserving)
contributions describe the BH process, which involve either
an unpolarized or a polarized (longitudinally or trans-
versely) target. As we show in what follows, the unpolar-
ized term is generated by multiplying the symmetric part of
the lepton tensor with respect to the Lorentz indices, with
the symmetric part of the proton current, whereas the
polarized terms are given by the product of the respective
antisymmetric components of the lepton and hadron
tensors. The product of the antisymmetric contribution to
the lepton/hadron tensors with the symmetric/antisymmet-
ric tensor would yield the UL, UT and LU beam-target
spin correlations. The latter correspond to parity-violating
terms and we do not consider them in this paper. For all the
allowed polarization configurations the cross section will
depend on only two distinct structure functions which are
quadratic in the form factors, and which get multiplied by
different kinematic coefficients. This form of the cross
section is defined as “Rosenbluth-type.” Further details on
the contraction of the lepton and hadron tensors are given
below, in Secs. IV B and IV C, respectively.

1. Unpolarized target: FB}!

The unpolarized amplitude squared can be computed by
evaluating the following contraction of the lepton and
hadron tensors:

1

y 1
Timal® = 52 Winal,, 2 _Cik, = FE6- (141)
hA,

unpol

14

After performing the sum over the physical photon polar-
izations, and summing all contributions, we obtain for the
unpolarized structure function

gy L 8M?
oo =3 k) (e
+ (F + ©F3) (4((kP?) + (K'P?))
= (z+ D)((kA?) + (K'A%)))],

[27G3,((kA?) + (K'A?))

(142)

where 7 = —t/(4M?). Notice that the differential cross
section has dimensions of (nb/GeV*) — GeV~° so that
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FBIL is dimensionless, as required by the formulation
in Eq. (133).

One can write the contribution to the cross section in
Eq. (132) in the Rosenbluth-type form,

B T
dxp;dQ*d|t|dpdgps — 1~ 7Y
= g [A(y,xpj. 1, 0%, @) (F} + TF3)
+ B(y, xpj. 1. 0% ¢)1G3,(1)] (143)
with,
SM> ,
A= k) () [42((kP?) + (K'P?))
— (7 + 1)((kA?) + (K'A%))] (144)
16M?
P — kA2 k/Az , 145
k) () KA T (RAIL - (145)

where I is the factor multiplying the amplitude squared in
Eq. (4). Equations (143)—(145) agree with the expression
for the unpolarized BH cross section given in Ref. [4].
By writing all the covariant products appearing in the
expressions in terms of ¢, 02, xp i» ¥» (kA), one has,

) ==L - wa) = -Z (14 28). (1ae)

W)= - k) = Z(5-20) e
(KA + (KA = 0 E (1 —éy
(58]

2_xBj L:|2
[ Xpj +Q2
e o L)
{ Xpj +Q2 xBjy+ 0?
(L)
XBjY Q2 '

The formulation above is useful for numerical studies since
it enables us to disentangle the Q”>-dominant terms from the
subdominant ones (e.g., t/Q?), and the Q>-independent
ones [e.g., (2 — xp;)/xp;]. The kinematic ¢» dependence in
the target rest frame is entirely described by (kA). Notice
that this invariant is of order Q?, so that the term (kA)/Q?
is only mildly Q? dependent.

(149)

2. Polarized target: FB!! and FE}!

When the target is polarized either longitudinally or transversely, one may write

1

|TBH‘2 _ ;Z[WBH] Yol

v’ hA;

pol pol

A

1
FB or ;FE’?

1
t

After summing over polarizations of the final photon, and after several simplifications, the polarized BH structure functions

read,

s 2h 8MP
LL(LT) — Z‘_2 (kq’)(k’q’)

<o [ way - ear) + B (a5 (a2

!
S
— FyGy [(P L(T))

n (kSp (1))

(14 7)A%(kA)) — % ((1+ T)Az(k’A))] }

((K'A)? = (kA)?) = 2¢((K'A)(K'p) — (kA)(kp)))

(150)

The A(Az) dependence is given through the spin four-vectors S; (r), defined in Sec. IIL

054021-28



EXTRACTION OF GENERALIZED PARTON DISTRIBUTION ...

PHYS. REV. D 101, 054021 (2020)

The contribution to the cross section, Eq. (132) is,

o gifj i = P = [ A 0t O PGy 4 By (et O AIGY . (151
where we defined,
Auir =~ oot [P (AP - (k) = 26((K2) K ) - (k) k)
+t%(1+1)(m)—t%(lﬂ)(m) , (152)
By = (qu‘))(gx,) {(”;‘;L} (0a = (a)) + 10 (py - 50 oy | (153)

In addition to the invariants in Eqs. (146)—(149), the
following spin-independent four-vector products are
needed to compute the polarized Bethe-Heitler cross

section:
Sa 21 _ (kA)
e L(l Q2>+ o |

(154)

var-uar-ol1-4) ] (-8).

To evaluate the Bethe-Heitler polarized cross section, all
that is needed is the invariants involving the spin four-
vector Sz (7). Recalling the conventions in the target rest
frame of Fig. 4

§¢ =2A(0,0,0,1),
S = 2AT(O, cos ¢, sin @, 0),

one gets

2A)M t t
(155) (p'SL) = \/T—yz xgj| 1 ~0?) " an| (157)
o (1 -y < t ) (kA)>
KA (Kp)— (kA (kp)=—|— (1 -— | ——=% .
A ) - S0 (1) (158)
(156) V1+y? 2 ) 2Mxgp;y
Not.e that th.e formulation for F %% aqd F E?( LT).p.resented SO (2A)02 2 1
faris given in terms of Lorentz-invariant quantities. In order (K'S;) = e l—-y—— , (159)
to perform explicit calculations, the invariants (kA), (p'S), Vity 2 ) 2Mxg;y
(kS) and (k'S) must be computed in a given reference
frame. for the longitudinal polarization case, and
252 1/2
[—IU —xp;)(1 +x3jé) - sz%;j - MQZB’t 2+ é)} /
(P'Sr) =277 > cos(¢ — i), (160)
V1+y
2A 1 2,2\ 1/2
(k51) = (sy) = =22 (125 =) eon(a) (161)
1+y2y 4

for the transverse polarization case. We remark that in our treatment A(A7) = £1/2. In the following sections we describe
in detail the structure of the lepton (Sec. IV B) and hadron (Sec. IV C) tensors.
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B. Structure of lepton tensor

The structure of the lepton tensor is obtained by first writing the BH amplitude in Eq. (134) using the Dirac equation and
the Lorentz condition, ¢’ - ¢(¢") = 0, along with the reduction of products of three Dirac matrices into single Dirac matrices

and kinematic scalars,

BZA/ _F

(g — & )D_ + i2he ™ ey gy, D, Ju(k. ).

(K. h)[(ex, - (K +k)7*Dy + (e}, - (K = k))r*D-

where, disregarding the electron mass, we have defined,

1 1 1 1
DT T a2 k) k)RS

1 1 1 1 1

(0% +1),

== - =- - = (Q* =t +4(kA)).

K+4q) (k=q)  20Kq) 2kq) 4kq)(Kq)
We write the lepton amplitude in terms of three structures,

_ pv() v(2) v(3)
Bin, = By, + By, t By

where

By = (K. h)y ulk, ){[(ex, ) + (3, KD, + [(€3, k') = (e3,k)]D_},

B = a(k', h)y*u(k. h) ("€}, = €x 41D

hA,

Bh A, = i2hu(k', h)y u(k, h)eaﬂwej\;,aqlﬂDJr‘

(162)

(163a)

(163b)

(164)

(165a)

(165b)

(165¢)

This decomposition is purely practical, as the number of independent helicity amplitudes for the BH process is four (once
summed over A,; see Ref. [36]) while for our calculation we grouped the first two into one single term. Following

Eq. (165), the BH lepton tensor, ﬁh/\y, [Eq. (137)] is obtained as the sum of six terms,
s« a.b)
E’;ﬁ\ / = BI;IA/ BZA/ Zﬁl;l//)\ / ’

where EZ’j\,ab (a,b =1,2,3) read,

2L = 2CC g7 (kK) = 2ine ¥ 4 0k + kK7,

ZZEZ;/)\/I 2) —2CD_ [ ”’k”’(k&‘,\/y) _ //)5/\’ (kk’) 4k //J(k/gA/) - SA//Jk/l/(kq)

kk' Ve

+ q”’s/\;p(kk’) - k”eA/yf’(k’q’) 2ihg’e 7+ 2lh£/\/p€kk v,

fzﬁffkl Y = 20D, [(ken) (¢ (Kq') — 4"K?) + (Kep ) (K q" = g (kq'))

4 2i((kK)eT N 4 kTN 1 ket ) 4 en (k7 (kq') = k*(K'q"))].
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tzﬁze\(lfi) _ 2D%[—q”’ej*\;”(ke/\;)(k’q’) + q//)(k/é‘A/y)(q/”(kej\;) _ SZ;”(kq')) + q’”q”’(ksA;)(k’ej\;)
+ 28A;,)ej‘\[”(kq’)(k’q’) - q”’eA;p(kej‘\, )(Kq') - q’”eA/y/’(kq’)(k'sj\,) + q"q" (kk')

kk' q’sj\,

A kklfj\/f/\’r S Ip kv kk'q'e s e p /
2ihg™q"e "7 +2ihq"e} Ve r —2ihq"en’e 7], (170)
14

2L =2D_D, 2ih(q" (key,) - ej‘\;”(kq’))e’ok TN 4 2ihg (kk)e N — 2ihej\,y”(k’q’)e’)kq e,
. « \ pkd'ey N N X
+2ihg (Key )™ + (k) (g7 ey = g ey,”) (Ken) = q7es,* (ken ) (Ke)

+q"ey " (ken))(Kq') — q"k" (kq') + kg (K'q)), (171)

PLIY = 2D (K )(=2ka (97 + ex i) + (ke (aen = 20Re™%) 4 )
+ (kq’)(k’sj\, )(C]//)SA/VV + 2ih€upq’e/\/y) + 2l.h€/)l] 8,'\;8,\; (k”(k’q’) _ k/p(kq/))
+ (K ey ken) +K2) + (ke (ey " (Ken,) + K7)
—q"((key, )(Keny) + (ken) (Key, ) + (kK))) + g7 k" (kq')]. (172)
To obtain the expressions above we used u(k, h)i(k, h) = k(1 + hys)/2,au = 2m — 0 and defined

C=l(e k')+ (e . k)D, + [(ex k') — (e}, k)| D z(ej\—/’k/)—@ (173)
A, A, + A, A, - (k’q') (kq’) :

Summing over the photon polarization we find,

K> K 2(kK') ,
ot =2 - — P (kK') = 2ihe!¥? 4 kPk™ + kP, 174
! Wq? g7 )| ) TR R ) a

kk/uq/

(175)

El;lﬂ(ll) . |:q/pkyk/2 _k/pk/y(kq/) _kyk/p(k/q/) +2ihk're +k/ykp(kq/) _ q/pk/ykZ _q/ykp<kk/) _Zihkpekk’vq’:|

(K'q') (kq')
Y =2p, [(k,l—q,><<kk/><gw<k'q'> — g KP) K20 g = (kq')) + KK (q) = K¥k? (K )+ 2 (0¥ + Kved i)
+@((kk’) (9 (kq') —q" k) + k> (K? g — g (kq')) + k*K” (q'k) = k*k (K'q') + 2ih (e?7* + k”e‘/”k/"))} . (176)
£ =2D D [(Kq)(2q"k — g°k¥) + (kq')(qPK* = 2q"K?) + 2ih(kq )X + 2in(K q')e*d),  (177)
£/ = 2D2 [~(K q') (g7 K + qk?) = (kq')(@"K" + "K?) + 29" (kq') (K q') + 34" " (k')
+ 2ihgP eIV — ihg ek a7, (178)

E’;IP(3v3) — 2D3_ [2(k/q/)(kyqlp + kpqlu) + 2<kq/)(k1/q/p + kpq/y) _ 4gyp(qul)(kq/) _ 3q/1/qlp(kk/)
+ 2iheP?* — 2iheT¥]. (179)

We notice that in order to derive the final expression for the cross section, one needs the following relations among the
antisymmetric symbols:

€aﬂy5€aﬁy5 = —4', €”ﬂ}/5€aﬁy5 = —3'%, 6[41/]/56(1[3}/5 = —2!52”/ = —2(5};5; — 6’&5;),
4 <)
05 = —Olyy = —0uby, — 845 — Budly. (180)
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C. Structure of hadron tensor

The unpolarized and polarized hadronic tensors for BH
are obtained from the following helicity combinations of
Eq. (138):

(WEBH [ = 22 WhlL e, (181)
AN/
1
[WEBH]» = 5Z[Wﬁ’,{,]vﬂ — [WBR v, (182)
A7

Working in the helicity basis we write the polarization
combinations for the product of currents in Eq. (138),

Tara] I an]) as

[WBH ]vp+ [WBH]

unpol pol
1 P
= ETr{(ﬁ' +M) <GM7/” - Fzﬁ) (1 +ys8.)(F+ M)

P 183
Gyy’' —Fr,— | ¢.
X < MY 2 M)} (183)
Notice that the longitudinally polarized proton case is
obtained by inserting (y°8) -

The unpolarized and polarized hadronic tensors corre-
spond respectively to the symmetric and antisymmetric
parts of the rhs of Eq. (183). From Eq. (183) the symmetric
and antisymmetric parts can be readily extracted [24],

AYAPN (Fi+1F3)
it -6 g7 S80) (L) ]
(184)
(WBH» = —i2M [Gﬁ,,e”f’“//’/ SL oy

F,G /Bl /!
E2 et o oS, g, .

(185)

with 7 = —¢/4M?. We remark that our choice for the
proton spinor normalizations, UU = 2M, brings extra
factors of the proton mass in Eqgs. (184) and (185), with
respect to some of the expressions given in the literature
(e.g., Ref. [24]).

For transverse target polarization, as above, one may
simply replace S; , = St .- We remark that in our treat-
ment A(A7) = £1/2." The cross section contributions,
Egs. (143) and (151), are obtained by contracting the lepton

structures £7“?), (a,b = 1,2,3) with the corresponding

. BH .
hadronic tensor components, [W? npol( pol)]l/p’ and summing

YThe substitution of S 1 1s equivalent to keeping helicity labels. It
can be seen from the density matrix (75) that for Sz (o 7y = %1, the
target is totally polarized in the longitudinal (or transverse) direction
with helicity (or transversity) A = £1/2 (or Ay = +1/2).

over the six different structures obtained for (a, b) = 11,
12, 13, 22, 23, 33, using the symmetry between a and b.
Detailed formulas for the intermediate calculation are given
in Appendix D.

V. BH-DVCS INTERFERENCE

In this section we present the interference term between
the BH and DVCS helicity amplitudes appearing in Eq. (4).
Its general structure reads,

hA A/ hA/ *_hA hA *_hA
A— 14 14
2 :IAA’ BH AA’) TDVCS AN + (TDVCS.AA’) TBH.AA’
(186)

where TDVCS An and TBH An are defined, respectively, in
Secs. 11T and IV. We present a formulation of this term that
allows us to follow as closely as possible the helicity
formalism displayed in Sec. III and in Refs. [24,42]. The
phase structure of the cross section is however, more
elaborate, as we explain in detail below, since we are
dealing with two different virtual photons: one with
momentum g for DVCS, and one with momentum A,
for BH. Because the latter is tilted relative to the z axis, the
kinematical coefficients for the interference contributions
to the cross section are given by more complex expressions.

A. General formalism

In what follows, similarly to the pure DVCS [Eq. (36)]
and BH [Eq. (133)] contributions, we write a master
formula organized according to the beam and target
polarization configurations,

dSO'Z
dXB]dQ2d|t|d¢d¢S

= el (TguToves + ThyesTeu)

r
elQ2—|f| {Fiy + 2n)Ff,
+ (2A)FE, +
+ 2A7)FE, +

(2h)(2M)Ff,
(2h)(2A7)Fir},
(187)

where the electron/positron beam charge is e; = £1.
Notice that differently from the BH cross section, the
terms F%,, FZ,, and 7, are present since in this case they
do not violate parity.

Equation (187) can be factorized into its lepton, L, and
hadron, H, components [as shown in Fig. 7],

hA Ay Ny N A, AqA, ,
Iy = Z(Lz.h VPHL ANy + (LT ) (HIAA’)

Ay

(188)

The phase structure of the BH-DVCS interference term
arises similarly to the DVCS contribution (Sec. III) where
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the ¢ dependence is determined by the exchanged photon
polarization vectors [Eq. (40)]. However, differently from
the pure DVCS term where the azimuthal angular depend-
ence resides entirely in the phase factors [Eq. (15)], the BH-
DVCS contribution contains an additional ¢ dependence of
kinematical origin. The kinematical ¢ dependence arises in
the same way as in the BH cross section. In previous
literature by introducing an expansion in Fourier harmon-
ics, the distinction between ¢ dependence from the “phase”
and ¢ dependence from the ‘“kinematics” has not been
made clear. Here we give an exact treatment indicating the
two different sources of azimuthal angular dependence.
The phase dependence for the lepton and hadron
amplitudes can be summarized schematically as follows:

A*A

(L3 = B (4,7) = e, (189)
HYM = Ian A’*,A; — ¢mi(A=N)¢ o=i(Ay —A=N+N)
IAA » pJ) AN
= ¢ =)¢ (190)
A*/\ iAo
(L™ (E ), = e, (191)

Notice that the DVCS amplitude for the lepton part, A W
does not carry any angular dependence since it is defined
entirely in the lepton plane.

The form of the lepton and hadron tensors are given in
Secs. VA1 and VA 2, respectively.
|

A

fA A [JAA’] v

FIG. 7. Factorization of the BH-DVCS interference contribu-
tions to the cross section into their respective leptonic and
hadronic helicity amplitudes.

1. Lepton tensor
The BH-DVCS interference lepton tensor is defined as,

AN A\ *
(LI.yh ) BZ /\’ (Ah )

(2o (g

A
Loe’ | o) (12)+ (1.3)
= LoDy por(L2)x | pov(13)e)
tQZ C*< hA; hA; hA, )

K ulko ) (e )

(192)

The expressions for the DVCS lepton amplitude, A;\V*, and
the BH lepton amplitude, B) ., are given in Eq. (17), and
vp(l,a)

A, a=1,2,3 are

defined in Egs. (167), (168), and (169), whereas the
coefficient C is given in Eq. (173). Notice that the factor
(1)

AL
The dimensions of the lepton tensor, L, are GeV~ =3 (see
also Appendix A). Writing out explicitly the dependence on
the polarization vectors one has,

Eq. (18), respectively; the terms L

t arises from writing the amplitude Ah in terms of B

AN 2 { s , . , o Ak ((eA;k') (eA/rk))
L, ke Y kP + (KeM ) kP — (eMP)* (kk') — 2ihklky(e,” ) e™Pr -
( T.h ) le [( ) ( ) ) ( ) ﬂ( ) ] (k/q/) (kq’)
[(k€ y*)*q//)(eA;k/) 4 (k’eAV*)*q//)(GAIYk) _ [q’”(GAVé‘AY ) (q/eAV*)*GA/V/’](kk/)
—(ké’AV*)*G‘A/V/)(k/q/) _ (k/eAy*)*eA’y/)(kq/) _ zlhk;k/}el//\f €(zy/)’5(q//)€js\r _ q/ €A’y/1)]
)
(Kq') ~ (kq')

+ [(q/ Ay*)*kp(eA’yk/) _ (qlel\y»«)*klp(ef\;k) ( AVGAV**)kp(k’q’)

(N WP (ke') + (MF) (K (€M) -

4 2ih((KeM ks + (ke )kl —

A%
5 (kk/)) (lﬂﬂéea qﬂ](

(kq') (M k)
1 1

W—@>} (193)

Reorganizing the terms by grouping them under the same four-vector index p, and separating the unpolarized lepton from

the polarized lepton one has,

AA

(L) =

AN,
(LIS

AA*p

N 4 2ih(Ly (194)
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where,

AL 1 Ay N AN AqA AN
(LI’VS /) p:tQ—Z(kmAk’y ’—f—k”Ak’ V—f—(]/pAq/ y+€//)\y*A€*y r+€7\;A 14 y)’

€

Ay Ny 1 A\
Lza )p:@[k;kﬂ @) ((k’q’) (kq')
Ay

— Kikgle) (g5 — qye™) 2D~

!
(en k') (€A;k)> cabp

+ q;j((k’e’\r* )ks + (ke ) ks — 6?7**(kk'))€2;2D+€“ﬁ/’5]

. .. ApAN, AN, AN, AsA, AN
with the coefficients, A,/ ", A" ’,Aq,’ AL T A7 defined by

n ()W) (ke (ke) _ (g ke) | (de)ke)  (€ENke)
TSR T ke W) T ke W) )
— 4D, (k') (ke') 2D, (g'e") (ke) + 2D, (e*€') (ke ).

Kq) = (kq) Kq) (kg (kq')
=4D, (K'e*)(ke') + 2D (q'e")(K'e') = 2D, (e*€')(K'q').

AQ,*A;:z(k’e*)(k%’) , (Ke)(ke) | (g'e)(Ke) _ (q'e")(Ke)) (€*€’)(k’q’)_( e

A = (ker)(Ke') | (ke )(Ke') | (ge)(Ke) | (ge)(Ke) _ (e€)(kK) _ (e7€')(kK')

®a) T Ga) T W) &) W®q) (k)
=2D_(ke*)(K'e") +2D_(q'¢*)(K'€') — 2D_(e*€') (kk'),
W) k) Rk (kEE)
A =T g k) TR Ty O
— 4D () (ke') + 2D, (') (k') — 2D (K€') (k).

AN,

A (KK (g'er) | (kK)(g'e™) o o (Kda)(ke) (kq)(K'e™) ).
R 7 B (7] B () R I R
=2D_(kk')(q'e*) —2D_(k'q")(ke*) —2D_(kK'e*)(kq’).

D™ and D~ are defined for the BH cross section in Eq. (163) as,

1 1 Dot 1
2(Kq')  2(kq') C2(Kq) 2(kq)

DT =

(195a)

(195b)

(196a)

(196b)

(196¢)

(196d)

(196¢)

Notice the structure of the lepton tensor: it depends on both the outgoing photon polarization vector ¢ and the exchanged
DVCS virtual photon polarization vector ¢**. These two polarization vectors will be combined with the polarization vectors
for the twist-two and twist-three contributions to the hadronic tensor in Secs. V B 1-6. As we explain below, this will

determine the phase dependence of the DVCS-BH interference term.

2. Hadron tensor
The hadron contribution to BH-DVCS is defined as the product of the proton current, Eq. (136),

(p+p)

[‘]AA/]/) = U(p/’A/) GM}//) - M PF2 U(va)

with G, = F; 4+ F», and the hadron tensor contracted with the photon polarization vectors, Eq. (47),
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*

(Wi (e ()]

We now separate the structure of W,/ into its twist-two
and twist-three components. For twist two, using the
definitions in Egs. (49) and (50), one has,

<HI:\A’ ), = (JAA’)p[ (198)

(‘IAA/)p(_g;:ﬁfiA' + le‘ga]:ﬁ/\/)
x (ex'(4)) ¢, (q). (199)

and correspondingly A,- = +1, A, = +1. We introduced
the notation, Fg and F, for the symmetric (S), and
antisymmetric (A) components of the hadron tensor,

(HIZ\A’ )/) =

1 [
Fin =3 /_ A€ (x8) wi . (200a)
A _ L[ [rrs
Fhw =5 [ xCxOW (200b)
with,
1 1
C*(x, &) =T ix—l—f—

To understand the polarization configurations of the
products of the currents we need to understand the
projection of the spin. In our notation we define our
helicity spinors by separating out the momentum from
the helicity-dependent part,

yr+m
Up,A) =22 _y(o,A
0.8 = 0.
O(p A = 0(0,A) M (201)
p’+M

where the helicity-dependent pieces obey our general rule
for the overlap of two different states,

U(0,A)U(0, A/)_—(H'?’ )(14+Ayys)dan

1
+-

2 (202)

1+7°) (r" +iAy?)ys6p —n

so that the general expression for the overlap of two
different states with different helicity and momentum is
given by
U(p'.N)U(p.A)
B 1
4/(p° +M)(p"° + M)
< Tr{(1+7°)(1 + AP’ys)(p' + M) (p + M)}op -
(203)

This general result is useful for the calculation of the
amplitudes of the overlap of two momentum states; how-
ever, in the calculation of the interference term we are
calculating the overlap of two currents with the same
momentum. Thus simplifications can be made.

The interference term can be outlined as follows for
states of the same helicity (no transverse spin polarization
states):

Tan,F = U(p'.N')[BH],U(p.A)U(p. A)[DVCS]
xU(p'.N)

=Tr{U(p', N)U(p'. N')[BH],U(p. A)
x U(p, A)[DVCS]54}, (204)
where
(p+p)
[BH]/) = GM}/p - M p_F2 s (205&)
DVCS]S — Hyt 4+ EZ
[ |°=Hy" + i
. _ At
[DVCS]* = Hy'ys + Eﬁys. (205b)

Since we are summing over the polarization of the final-state
proton we can use the relation >, U(p/,A)U(p'.N') =
p' + M, to obtain,

= Tr{(#' + M)[BH],U(p,A)U(p, A)[DVCS]}
= Tr{(#' + M)[BH],(1 +7°)(1 + Ar’ys)
)

X (p+ M)(p+ M)[DVCS]}. (206)

This expression can be simplified using the covariant form
of the spin vector. We define the spin vector in its usual form
with §2 = —1 and (pS) =0, {p, S} = 0. We can use the
spin vector to make our gamma matrix structure above
covariant using the rest frame in which S0 =0,

172+ AP ys + AY°rys =1+ 890 + AS P ys + AS% O3y
=14Ays

and since S, p anticommute like y5 the two of them
commute, and therefore our final result for the outline is
as follows:

Tr{(# + M)[BH] (7 + M)(1 + Sy5)[DVCS]} ~ (208)
where § = A.

Similarly for a transversely polarized target we must
include the case where the DVCS process no longer
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conserves helicity. Therefore we can use the operator (y' +
iAy?)ys in which we see that when we make the expression
covariant using the spin vector we obtain,
Te{(p/ + M)[BH],(p + M)(1 + S775)DVCS]}  (209)
where 87 = Azy'. Notice the similarity between the inter-
ference expressions cast with our formalism and Eq. (183).

The covariant expressions for the products Jf\ s /S\’f, are
given by polarization configuration below.

Unpolarized target:

> Uan), Fiy = 2P,(FyH + 1F5E) + EA, Gy (H + €),

AN
(210)
> (an), Fhy = %) i€t g, L, GyH.  (211)
AN
Longitudinally polarized target:
i
(J++)pfi+ - (J——>/J'7:§— = _P_ Hovt gap GM(H + 5)
(212)
()P = U, P
= —2P,(F\H + tF,& — F|£E) — EA,GyT.  (213)
In-plane transversely polarized target:
J F t L g PP L3 Gyé
[( AA’)p S.AA’] - Me Gop | Lty 2 /w M
+ 5Pt P Fy(H+E)
iM ol+
+ Feﬂ gapAuGM(H + g)? (214)
1 M. b Al
() Fann]' == ghA" = Al g ]Gyt
1 - €& ~
—MAIPPFQH—wA]APGME. (215)
Out-of-plane transversely polarized target:
i
[(Jan), Fsan)* = Meﬂwzgap [P,,P,, 3 ﬂvi| Gué
P TP 1, Fy(H+€)
iM 02+
+F€M gap ﬂGM(H‘f'g) (216)

M
[(JAA’)pFA,AA’]Z = [gpA+ AZQ/JGMH

P
4 0 RN
_MA P/,FZ'H——A A, GME (217)
where,
1
7=—A%/4M?, w=P,A, —P,A +2A”A (218)

Notice that, differently from the BH and DVCS contribu-
tions, the unpolarized hadronic tensor now has an anti-
symmetric part that appears at twist two from the product of
the proton current and the axial-vector component from the
GPD correlation function. Although this term is generated
in an analogous way as in the parity-violating contributions
to elastic scattering [24], it is parity conserving in exclusive
photon production.

To evaluate the twist-three contribution we multiply the
proton current, Eq. (136), by the twist-three components of
the hadronic tensor, Egs. (47), (51), and (52),

(Ian) (g + 4EPY(SIFS,,  + i F, )
x (ex' ()" €y (q)

where now A, =0, A, = £1.
F% and FY are the symmetric and antisymmetric

components of the tensor, respectively defined in terms
of the CFFs in Sec. III as,

(HI;\A' )p =

(219)

. 2Mxp;

FY = QBJ 1d xCHx, W, (220)
. 2Mxp;

Frl = QBJ ld xC-(x, WL (221)

By inserting the expressions of the correlation functions in
terms of CFFs, we can evaluate Egs. (198) and (219) for
specific target polarizations. For the product J; ,, F f\’f/’ jwe

find the following.
Unpolarized target:

Z (Jan),F /S\A', j

AN

A - -
= 4PpP—J]r [F\(2Har + Eor) = Fo(Hor + tHor)]

2

Exr) + 4EH,7)

+ 9pj FGM[T(552T -

A
- A GMnga

e (222)

054021-36



EXTRACTION OF GENERALIZED PARTON DISTRIBUTION ... PHYS. REV. D 101, 054021 (2020)

—iei]-A’

Z(‘]AA')/)‘F?\A’J =4P,—% [F1(2HAy + E5p) = Fa(Hby + tHayp)]
AN
. . M2 ~ i€,~~Ai ~
- l€i,;9};?GM[T(55/zr — &) +4EH ) + A/;#GMng- (223)

Longitudinally polarized target:

4M?* 2 . -
(JAA)p]:/S\A.j =75\ l€ﬂ6+kgapgjkA/4GMH2T - —Ppleﬂwrkgjk[;wFZHZT

(PF)? (P*)?
iAj Jpov+ P 4i Jovk 1. Iy
+ P7) " 9ot GuEar + pr € GikGap PP, + Et’“’ Gy (&&= Ear), (224)
4M? . 2 "
(Jan)pFAnj = Weijeﬂa+lgapAﬂGMH2T + WPpGiﬁ”H'fﬂszHzT
eiin ov+ 7 4 ovi 1. fa
+ (P+)2 et g(r/)t/wGMgZT + Feijeﬂ g(i/) PﬂPll + Et;w GM(‘SSZT - gZT)' (225)
In-plane transversely polarized target:
8M .
(an),Fan = _F€_1+JP/)F2H2T
M 4etovt bVfp,pP 1PA 1AP 1AA I+je(2p P IAA Fi+F,)H
_(P—Jr)z € 9op9 u z/_i " u+§ " D_Z u=u +e€ P 0'_5 p=o ( 1+ 2) 2T
2iM . 4iEM
+ (P+)2€I”’1+g”/}AMA/(F1 + FZ)EZT + pt €Imljgn'pAﬂ(Fl + F2)E2T
i . 1
- M(P )2 €'MDI+A] <A#Py - P”AU —2A”AD> P/)FZEZT
4i . 1 1 1
- fMPJr G”Dl] <Pﬂpy —EP”A,, +§A/4PL/ _ZA/"Al/)PPFzEZT
4 1 1 1 _
_MP+€ go'/)A PﬂPV_EPMA”+EAﬂPV_ZAﬂAU (F1+F2)H2T
4i ) 1 1 1 ~ 4iM . -
+MP+ €”yl] (PﬂPy —EPﬂAy +§A”PU —ZAMAU) PpFZEZT _P—+€”0]JngA/4(Fl + F2)E2T. (226)

Out of-plane transversely polarized target:
M

(JA/\’>p‘FiA’,j = _F€_2+ijF2H2T
M ov+ 2j 1 1 1 2+ jo 1
—W 4et go’pg 7 P,MPL/ —§PMAD +§Aﬂpy —ZA”AI/ + € 7 2PpP(; —EA/)AO. (Fl +F2)H2T
2iM . 4iEM .
+ (P+)2€”62+gvauAj(Fl +F2)E2T + Pt €MGZJgapA;4(F1 +F2)E2T
. 1
P M2+ A (Aﬂpy —PA, - EA”AD) P,F>Ey;
4 1 1 1
—émé‘ PﬂP”_EPﬂA”—i_EAI‘P”_ZAﬂA” PpF2E2T
4 o 1 1 1 ~
—WGM go.pAJ PMPV_EPFAV+§AMP”_ZAﬂAV (Fl +F2)H2T
4 1 I 1 M _
+W€” J PyPl/ —EP”AD +§AﬂPU —ZA”AD P/)FZEZT —F@u Jgo'[)Aﬂ(Fl +F2)E2T. (227)
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Notice that by specifying the twist-two or twist-three
structures, we make a choice in the polarization vector
components that in this case, at variance with the DVCS
squared contribution, is frame specific.

We contract the lepton and hadron tensors while pre-
serving the helicity and phase structure, keeping in mind
that the hadronic plane is rotated compared to the leptonic

plane, or that the polarization vector 6,/,\’ comes with a phase
of e7N?% (see Sec. II). One has the following two
configurations, for a transversely and longitudinally polar-
ized virtual photon, respectively, defining the twist-two and
twist-three structures:

twist two — Z (e,/,\;)*ei\; = cos ¢gp, — singel,, (228)
A—t1

N=0

twist three — ()" )€’ = G (229)

where the nonzero components for longitudinal photon
polarization gf, are g =1+4+12/0% gk =dk=
V2 + Q%/ Q% and gk, = 12/ 0%

We can also perform a similar procedure for the trans-
verse polarization of the target. Using our covariant
expression previously derived for the interference term
after summation over final hadron state polarization, we
find two configurations: (y'+ iy?)ys corresponding to
A=+1 and (y' —iy®)ys corresponding to A = —1.
Therefore we can use the spin density matrix to see what
phase of the spin vector these polarization states correspond
to while simultaneously summing over A; as we did in our
previous longitudinal case,

. Ay A
7Y =irtrs = Y (@) et (230)
Ay=%x1

. Al s
Y iy~ Y (er) e e,
A==+l

(231)

Solving this system of equations for “in-plane” polari-
zation or polarization along the 1 direction, and “out-of-
plane” polarization or polarization along the 2 direction
gives us

r'rs = [cos (¢ + ¢s) + cos (¢ — ¢s)]gp

— [sin (¢ + ¢ps) + sin (¢ — )€, (232)
7*rs = [—sin (¢ + ¢s) + sin (¢ — ¢s)]gL,
— [cos (¢ + ¢bs) — cos (¢ — g€ (233)

Since we are using a specific orientation for ¢g we can
then utilize this to simplify our expressions:

¢s = 0= y'ys > cos(p)gl, —sin(@)el,,  (234)

bs =5 = 1rs = —cos(@)gfy +sin(B)el.  (239)

B. Polarization configurations

In what follows we organize the cross section into its
twist-two and twist-three contributions.

1. F¥,: Unpolarized beam, unpolarized target

For the unpolarized beam/unpolarized target contribu-
tion to the cross section we have,

K

\/éi

Fiy = Fiig” + —= Fi” (236)

with,
Twist two:

Fii? = AfyRe(F{H + tFy€) + By GyRe(H + £)
+ ChyGuRet. (237a)

Twist three:

Fig? :me{ASEJI [F1(2Har +Er) + F2(Hor +7Hor)]
+B$2/IGME2T + CSZ/IGM [26Hyr —t(Eyr —EEor)]}
+Re{AD) [F\ (2 + Ex') + Fa(Hor' + 7))
+By Gy +Ciy) Gul28Hyy' ~(Exy’ ~EE")}

(237b)

Both the twist-two and twist-three contributions are
organized as a sum of terms, each of which includes the
following:

(1) Kinematic  coefficients: A%]U(y, Xpj, t, 0%, ¢),
B%]U(y’ Xgj, 1, 07, b), C%JU()” Xgj» I, 02, #). The
latter are obtained by contracting the lepton tensor,
Eq. (V A 1), with the four-vectors, P,, A, from the
symmetric component of the hadronic tensor, F

[Eq. (210)] and ieﬂpbﬁf‘” from the antisymmetric
component F4 [Eq. (211)].

(2) Products of the nucleon electromagnetic form fac-
tors and the Compton form factors.

As explained in Sec. VA, the phase dependence is
determined by the DVCS virtual photon polarization
vector: the twist-two term is associated with transverse
virtual photon polarization, generating the cos ¢ term in
FLM2 [Eq. (237)], whereas the twist-three term is asso-
ciated with longitudinal virtual photon polarization which
carries no ¢ dependence [Eq. (237b)].
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The expressions for A, BY,,, and C},;, are given by

= G (0 + (k) = 2(0)y = 2(k'))(PR) + (2q) =2k R)y = (') 1) (PR) + (K (kP);

+ (k') (K Py = 2(kK) (kP)y] = (02 =t + 4(kA))[(2(KK) = (Kq')7 ~ (KK)1) (Pq') + 2(kK) (Pq)7

~ (Kq') (kP); ~ (kq')(KP)y]} cos 6. (238a)
Bu = 3oy €+ DIy = 20100 = 20ka)) (AK) + ({K') = 2K0)y = ()7 ) (A + (Ke) (k)

+ (kq')(K'A)7 = 2(kK') (kA)7] = (Q% — 1+ 4(kA))[(2(kK') = (K'q')r = (kK')7)(Aq") + 2(kK') (Aq')7

~ (Kq') (kA)7 = (kq')(KD);]} cos (238b)
Chu = sz (@ + D) (KA)r = (K (k) = (k' )(K D) -+ 4E(RK) (P} = 26K kP
~ 26(kq/)(KP)7] = (Q? = 1 + 4(kA) (K (Aq' )7 — (Kq')(AR)7 = (ka') (AR )7+ 26(kK') (Py’)7 = 26(K ¢') (PR
~ 26(kq')(PK')7]} cos (238¢)

with the transverse components defined by invariant quantities in the laboratory frame as,

€

(k)7 = (W) = 3

“0% (q8)r = -8F = ~(1- &) -1,

0’ €

For comparison we rewrite below the unpolarized BH coefficients, ABY! and BB} [Eq. (143)], to underline both the
similarities and differences in their structure,

(kq')r = (K'q')r = —(kA)p = =(K'A)7 =

8m> 16M>
ATS = 47((kP?) + (kP?)) — 1)((kA?) + (K'A?))|BEY, = —F77— [(kA?) 4 (K A?)].
uu (kq’)(k'q’)[ T(( )+( )) (T+ )(( )+( ))] uu (kq/)(k/q/) [( )+( )]
Equation (238a)—(238c) are obtained by evaluating the following four-vector products involving the momenta, P,, A ,, and
the tensor structure ?ﬂ,, [Eq. (218)]:
1 ~
A%/U = Z(PZS)’ B%—/U = 5(A25)7 C{/U = Femw go’/)tﬂyziv (239)
where,
X5 = KPAY + KA] + qPAS + AY 1+ A, (240)
T = KPAL + kAL + gPAL + AL + AL (241)

The A coefficients were evaluated by taking the coefficients labeled A in the lepton tensor, Eqs. (196a)—(196e), which
depend on the kinematic variables k, k', ¢’ and multiplying them by the photon polarization vectors, 62/ and eA’* from the

hadronic tensor, Eq. (198), and by either the symmetric (S) or the antisymmetric (A) tensors (g and €7 ) to give us the S
and A parts of the A. The twist-two contribution is finally obtained by summing over the transverse polarizations of the
photons (A, = A,- = +1), using the summation rules listed. The first terms in Eq. (240) and Eq. (241), are respectively
given by,

k/’Ai — _g{;ﬂ ZA;(\?A; kp(ellx\; )*62; , (242)
A, A
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kPAY = (243)

ﬂZAV Vkp r'

AN

The other terms in Egs. (240) and (241) are obtained
similarly. Calculating explicitly Eqs. (242) and (243) we
obtain,

k’ = —2D, [2(kk)y — (kq')y + 2(kq')] cos ¢

+ 2D [(k x ¢')7] sin, (244a)
A} = =2D [2(KK)7 + (Kq')r = 2(K'q)] cos ¢
—2D.[(K x ¢);]sin ¢, (244b)
A% = =2D_[(kK'); + (K'q')y = 2(kK')] cos ¢
—2D_[(K x ¢');] sin ¢, (244c¢)
AY = 2D [2(kK' Ky = (K q')Ky — (kq')KF] cos ¢
- 2D+[2<kk/>kg6/}ﬂ - (k’q’)kge’}ﬂ
— (kq' )k’ éy,] sin g, (2444d)
A% = 2D _[(kK)gf — (K )X — (kq' )R] cos ¢
+ 2D_[(kk’)q”‘ew, - (k’q’)k”eﬂp
— (kq')k"¥el,] sin ¢. (244e)

Note that this derivation is for the term TgyTpycs in
Eq. (187): taking the complex conjugate and summing, we

obtain specific cancellations of the ¢ dependence based on
the polarization, i.e., the UU polarization listed above has a
cancellation of the sin¢ component of the coefficient.
Similarly, the L L components contain only the cos ¢) terms.
The UL and LU polarizations will, on the contrary, have a
cancellation of the cos ¢)-dependent piece.

To project out the twist-three components we start from
expressions analogous to Eqgs. (240) and (241), namely
Z/)J 2 AJ + K’ Ai s + q"’ AJ

s+ Ao+ A7 (245)

¢S

S = KPA], , + KA, + qPAL AL+ AT (246)

oA
where the A coefficients are obtained by summing over the
photon polarizations with A; = 0. The contraction with the
symmetric and antisymmetric components involves, in this
case, a transverse index that is eventually contracted with
the transverse index from the twist-three correlation func-
tion (see Sec. II),

A;=0.A, )

kAL g = (q+ 4EP) g} ’ZA ke(ea) ey, (247)
A;=0.A, ) A;=0
kAL, = (q+4EP)Pes ZA ke (eq’) €, (248)

Note that the longitudinally polarized photon which gov-
erns the twist-three structure involves only the 0 and 3
components of the momenta, k,k',q. The twist-three
coefficients are, therefore, given by,

0 = 5w 7 (€ QAN RP)L(KP) + (K D)ol P)L(KP) + 2(k8), (KP), (kP)
+ (K 8)7(q/P)y (kP) — 2(kK) (A} (PP), + (Ke/)(kD)7(PP), — (ke')(K'A)1(PP),)
(02— 1+ 4(kA)) (KA),(kP), (4'P) + (KA)7(q'P),(¢'P) + (KK)(q'P),(PA) — (Kq')(kP), (PA),
~ (ke )(K'P), (PA))}. (2499)
2
By =~ (kjffk,q,) S 102+ DQEP) (K7 + (P), (KR + 2K P), (KK)y + (Pe), (kE))
(02~ 1+ 4(KA)((KP), (K'e )y + (P (4K )y + 2((kE)(Pq), ~ (K)(PK), ~ (ke/)(PK),))).  (249b)
i = ﬁpi (02 + )(2(KA)(kP), () + (K D)7(q'P), (K'D) + 2(kA)7(KP), (kA)
+ (K D)7(q'P), (&) ~ 2(kK) (kA)7(PA), + (Vq')(kA)r(PA), — (kq') (KA} (PA),)
— (02— 1+ 4(RA)((KA), (kP), (4'8) + (KA) (¢'P), (q') + (k) (P, (AA); - (Kq')(kP),(A4),
~ (k) (K'P), (A8))). (249¢)
Agy =-Apy. By =-Byy.  Coy - Coy (250)
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2
(AB), = A¥B*gl, = A°B° (1 + @> + (A°B3 + A3BO) /12 + Q%v/ Q% + A3B312/ 02, (251)
where gﬁy is defined following Eq. (229).

2. F%,: Longitudinally polarized beam, polarized target

For a longitudinally polarized beam and unpolarized target,

@L”’

we obtain a structure analogous to the unpolarized case, where the Re parts of the CFFs are replaced with the Sm parts.
Twist two:

FI, =Fri» (252)

Fii? = ALySm(F\H + 1F5€) + BfyGySm(H + &) + CL ;G SmH (253a)
Twist three:
Frm %m{A(LZ'l),I[F] (2Har + Eor) + F2(Hor + THor))]
+ By GyExr + CLf Gul2EHy — 2(Eyy — EExy)]}
+ %m{Af&I [F\(2Hy; + Exy’) + Fy(Hor' + tHop'))]
+ BESQ,IGMEZT' + C(L32/IGM[2§HQT/ - T(Ezr' - szrl)]}' (253b)

The coefficients are obtained by contracting the antisymmetric part of the lepton tensor, L;’;A; [Eq. (195)]

A1, =2(PDg), B, =¢&(ADsg), Cct, = FG’“’”g{mf D4, (254)
ALE = ap, iy, BT =g, My R = oa, i)
Afy = 4P, ejifi oY, B = —€ij9f}2P—A/fDﬁj7 e =4, P Df\] (255)
Similarly with the antisymmetric lepton tensor we get
DY = (q+4PY ‘”ZL M e )y (256)
DY =(q + 4£P) ﬁe‘”ZLA O ey (257)
and for the antisymmetric terms, respectively, we get
A =2D [(k x ¢')7] cos ¢ + 2D, [2(kk)7 — (kq'); + 2(kq')] sin ¢, (258a)
A = 2D [(K' x q')7|cos ¢ + 2D [2(kk'); + (K'q')y — 2(K'q')] sin ¢, (258b)
A;‘, = =2D_[(K' x ¢')7]cos¢p + 2D_[(kk'); + (K'q"); — 2(kk')] sin ¢, (258¢)
AY = 2D [2(kk ko€l — (K g )KL — (kg KT €S cos b
— 2D [2(kk K — (K q') Ky — (kq')k¥] sin ¢, (258d)
AY = -2D_[(kk)qf e — (Kq ke — (kg )k )] cos ¢
+2D_[(kK')gf - (K'q )R — (kq')K¢] sin 6. (258¢)

A similar derivation for the antisymmetric part of the lepton tensor (denoted by the lepton helicity £ in the lower index of
the A), yields,
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5 AsNp, A, A
D= -y L7 (ea") ey,
ALA;

AeAp, Aoy Al
D = —e';ﬂ g L7y " (ea" ) €g"
ALA

3. F 5L: Unpolarized beam, longitudinally polarized target

(259)

(260)

Contracting the lepton tensor with the symmetric [Eq. (212)] and antisymmetric [Eq. (213)] hadronic tensor components

for a longitudinally polarized proton yields,

K

\/@

7 _ L.mw2 Z,tw3
Fyo=Fy, ™+ Fyr,

with,
Twist two:

FLEM = AT Sm(F,(H = £€) + tF,€) + BY,, Gy SmH + CL, Gy Sm(H + £).
Twist three:

W3~ 7 7 3T 3T =
F@i = ~3m{ASI)A GuHor + BSZ FyHor + CEX Guéor + D(JZ Gu(&Er — &)}
+ 3m{A Gy Hay' + BU FoHor + COGuEsr’ + DU Gu(EE0 — Exr')}.

1 -
A%]L - _2<PZA)’ B%]L - _g(AZA)v C%]L = _2P+ 6ﬂ6v+gaptﬂy2{§)‘7
2
()T _ o+k ' ()T _ k. 7 '
AUL - <P+>2 et * gspgjkAﬂzpj’ BUL - (P+)2 Pﬂeﬂl/+ gjktﬂyzp]a
A, . 4 1 -
3)T o ~ 3)T - ~
Csjz = 4;] 2 e V+gr;/)t;w2{;‘]7 D(U% = _+€M Dkgjkgrrp PﬂPl/ + _t/w Z§]7
(P1) P 2
2
~(3)1’ 4M i ; ~ 3)1- 2 o .
Aow = (P*)? €;j€" +lgﬁﬂAﬂZﬁj’ BE/L - (P*)2 Pﬂeijeﬂwltﬂuzﬁj’

~(3)T €"Ai - : ~ (3)T 4 . 1~ P
P = (1’;—+>2€W+ 9ol =, DO) = BT " oy (P,,Pl, +3 t,w) Al

4. F, Longitudinally polarized beam, longitudinally polarized target

(261)

(262a)

(262b)

For both a longitudinally polarized beam and target we have a similar structure to Eq. (261), where now the Sm part of

the CFFs is replaced by their Re part,

_ T2 T3
Frp=Fi=+ Fry

K
/ Q2
with,
Twist two:

FEME — AT Re(F|(H — EE) + ©F5&) + BE, GyNeH + CE, GyRe(H + &)

Twist three:

W T T T T =
F%If P = me{A(fL) GyuHor + B(L3L) FyHor + C(L3L) Guéor + D(L3L) Gu(&Er — &)}
+ Re{AY) GyHor’ + BY) Fotor + €7 Gular’ + DY) Gu(eear’ = &)}
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Al, =-2(PD,), B, = —¢(ADy), i, = —%G”JVJrgW?WD/s’,
S ( P+)2 g gu DY, BY =- ( P2+)2 P kg1, DY,
A(LSL)I (L;ﬁ)z g, Y, B(L3L)Z = (Pi) Pe;e VT, DY,

sz €A . oy 4 1. .
c) :I’)JT)zeyngap;szl, DRF = P i€ g,,p<PP + 57 .

—~

5. FL,: Unpolarized beam, transversely polarized target, UT

For an in-plane transverse target polarization we have, for an unpolarized beam,

F%T (Zp cos ¢ + 2 sin qﬁ){A%x,pGMSmE + B Fzﬁm(H + 5) GM«Sm(’H + 5)
+ A%YGM‘SmH + B%Fzsmﬂ + C%VGM\smE},

4 1. . aM
Aty = 374" 9 [P”P” - Et“”} AL = —prlpAt - Alg,
2 4
7z _
B%X/’ MP+ €#U1+Pptﬂw B —MAIP
4M - 25
T _ r
CTX/; = P—+€l‘51+go_pAw C = _MAlAP

For an out-of-plane transverse target polarization we have, for an unpolarized beam,

F{/T\, = —(ZL cos ¢ + X sin qﬁ){A%WpGMSmE + B%\_pFZSm(H + &)+ C%)_pGMSm(H +&)
+ A} GySmH + BL. F,SmH + CL Gy Smé},

4i 1. ~ aM
A% = Meﬂayzgﬂp [PMPI/ - E tllu]’ A%‘_ = - pr [9;2)A+ - Azg;]v
2i - 4
Z 2 7 _ 2
Tv MP+ — et +P/)t/w7 BT‘ = —MA P/,,
4iM i 26
7z o2 Z __ 2
CT)‘ = P+ et +go‘/)Aﬂ? C e —MA A[)

6. F%,: Longitudinally polarized beam, transversely polarized target, LT

For an in-plane transverse target polarization we have, for a longitudinally polarized beam,

Fir = (D§cos g+ Dy sing){A7 ,GySmE + By ,FrSm(H + &) + CF ,GySm(H + €)
+ AL GySmH + BTVXszsm?:{ + C%XGMJmS}.

For an out-of-plane transverse target polarization we have, for a longitudinally polarized beam,

F{T}_ = —(D%cos ¢ + D/, sin ¢){Ai,pGMSm5 + Bt ,F,Sm(H + &) + C7 ,GySm(H + &)
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C. Discussion of results

A few remarks are in order:

6]

(@)

3

“

For each polarization configuration, the structure of
the cross section is clearly separated into its twist-two
and twist-three contributions. The distinction be-
tween the two types of contributions is defined both
by their different phase structure and by the 1/ \/@
suppression of the twist-three term. The phase struc-
ture is such that all twist-two terms appear with either
a cos¢ or sin¢ factor, while the twist-three term
appears with no phase. In addition to the phase
dependence on ¢, all coefficients depend on ¢ as
dictated by the kinematics. This is at variance with the
pure DVCS contributions (Sec. III).

The unpolarized target contribution to the cross
section displays a generalized Rosenbluth form sim-
ilar to the one describing the BH term. Considering,
forinstance, Eqs. (237a) and (237b) one can single out
the electric- and magnetic-type contributions,

(FIH +tF,E) < (F} +tF3) = G4,

However, differently from the elastic and BH scatter-
ing processes, a term containing the axial-vector GPD,

X (Fl +F2)H

is also present, as it is allowed by the DVCS helicity
structure. It is interesting to notice that a contribution
with the same structure (G,,G,) appears both in
elastic and BH scattering as a parity-violating term.
The GPD E decouples from the unpolarized meas-
urement since it involves longitudinally polarized
quarks in a transversely polarized target (Table I).
The unpolarized twist-three structure constructed
according to the scheme displayed in Table I, con-
tains the following terms:

(2Hyr + Eyr).  (Hyp +tHyyp),
and Ebp, (Hhy +tHbyp).

(2H,7 + E»r) is the unpolarized twist-three GPD
and it can be seen as the generalization of the Cahn
TMD, f; analogously, (H,y + tH,7) is the twist-
three contribution corresponding to the same polari-
zation configuration of the GPD E. The latter is key
to understanding final-state interactions. In the axial-
vector sector, E); corresponds to the twist-two GPD
H, and H'; + tH); to the GPD E.

Of particular interest are the GPDs

Ex.  (2Hy + Ejyy)

which are direct measurements of the quark con-
tribution to the proton orbital angular momentum,
L, and spin-orbit interaction term, (L - §), respec-
tively [37,40,41].
Based on our formalism, other polarization configurations
can be analyzed using a similar scheme as the one
described in detail for the unpolarized case.

VI. CONCLUSIONS AND OUTLOOK

DVCS gives unique access to the three-dimensional
picture of the quarks and gluons lending great potential
to unveil much more about the spin structure of the
nucleon. But of course this is only true if there is a more
or less universal approach to the physical interpretation to
leading power accuracy, and if the strategies for phenom-
enological analysis are practical with well-defined uncer-
tainties. Here we have taken the first steps on a long path to
improve the prospects of information extraction and opti-
mized data acquisition.

We have presented a generalized and comprehensive
description of the cross section for DVCS scattering in
terms of the helicity amplitude structures up to twist-three
accuracy in a covariant form. Our transparent layout
intends to help both in the development of theoretical
constraints and in implementing them in the analysis
framework towards the goal of more accurately and
completely extracting information at the amplitude level
from both fixed target and collider data. We believe our
presentation of the various beam target polarization con-
tributions beyond leading twist with full azimuthal angular
dependence allows for a more concise and intelligible
representation in comparison to the ensconced Fourier
harmonics. The most important and direct consequence
of our approach is that it allows us to organize both the BH
and DVCS contributions to the cross section according to a
generalized Rosenbluth formulation. The corresponding
experimental extraction technique, the Rosenbluth separa-
tion method, has been used as a standard procedure for the
extraction of the proton electromagnetic form factors since
its inception, providing the highest-precision determina-
tions in Refs. [51,52]. Our approach opens up the pos-
sibility of analyzing DVCS data with a similar technique,
unveiling terms that were previously disregarded, and that,
as we explained herein, measure directly the angular
momentum contribution to the DVCS cross section. In
this respect, notice that radiative corrections, namely two-
photon exchanges which have been advocated to play a role
in elastic e p scattering processes [53], might contribute and
are a subject for future studies.

The increase in thoroughness in the description of the
DVCS observables is, therefore, critical for moving
forward. There exists a distinct necessity for not only
higher-twist contributions to fully describe the experi-
mental data, but also a transparent depiction of the
phase dependence and interference terms at higher
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twist to obtain a more complete set of constraints. We
expect that the additional constraints combined with
modern computational tools will provide the essential
architecture to more accurately extract the Compton form
factors.

The observables evaluated were presented in an exact
treatment in all contributions apart from the operator
product expansion in the hadronic tensor where dynamic
twist-three GPDs are considered, including kinematic
power corrections. Much attention was also given to the
dependence on the azimuthal angle, ¢, of the different
contributions to the cross section, disentangling the phase
dependence resulting from the DVCS virtual photon
polarization vectors from the pure kinematic ¢ dependence.
In this way the formalism presented in this paper offers the
advantage of giving a transparent representation of both the
phase structure and the Q? dependence of the cross section.
In particular, the order in inverse powers of Q, corresponds
to GPDs of different twist.

We intend for our formalism to be useful in both
large- and small-x physics, enabling a more detailed
study of the differences between forward and nonforward
distributions over the full range of distance scales. With
consideration of kinematic suppression and observable
interdependence as well as the relationship processes
we expect the quality of nucleon imaging to radically
improve in years to come. To this extent the experimental
and phenomenological approaches must evolve together
and take full advantage of machine intelligence.
Additional investigations in future publications including
numerical analyses, and an extension of our approach
to consider both recoil polarization in deeply virtual
exclusive electron scattering, as well as timelike
Compton scattering, will help to reveal this potential in
more detail.

TABLE III. Dimensions of the lepton, hadron and photon
propagator contributions to the cross section. The spinors are
normalized to 2M.

Process/Type Lepton Hadron y propagator Total
[BH|? 0 M? M M2
[DVCS|? Mm? 0 M M2
BH-DVCS M M M= M=
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APPENDIX A: DETAILS OF
GENERAL DEFINITIONS

1. Dimensions

The cross section has dimensions of nb/GeV*. The
matrix element modulus squared, |T|?, has dimensions of
GeV~2, or (Ac)? x 10 nb,

A summary of the dimensions of the various contribu-
tions is presented in Table III. In particular, the dimensions
of Tpycs (GeV™!) are carried by the factor 1/Q in Eq. (15).

The lepton amplitude, Az\’* has dimensions of GeV (linear
in Q), while the hadron amplitudes are dimensionless; the
photon propagator has dimensions of GeV~2, through the
1/Q? factor, yielding GeV~! for the product.

APPENDIX B: GPDs IN TERMS OF HELICITY-DEPENDENT CORRELATION FUNCTIONS

By inverting Egs. (952)—-(95d) and (96a2)—(96d) we can identify the combination of proton helicities that describes

each GPD.
Twist-two GPDs:

1A
1-&M
1

¢ Ars

STE = et W — it W

M

2(1=)H = W, + WL 28 = (e PW_ — PWL),

T

TR = emit W5 4 et W[5,

1

-2
Vi F

~ M . + .
(1= E)H = W5 = Wrts 428 (e" W15 4+ W7 75).

Ar
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Twist-three GPDs:
1 AT

izt

IAT

vicer

—SEyy) = (W}iJr + iW’f+)e‘i‘/' — (WI_ +iWr )™,

Eyp — EEyr) = (Wiy + W0, )e™ + (WE_ +iWr)e

M, o0 S
SR (W =W (W W e,

1 A%‘ ~ 71 . y2 2 J/I . yz 2
iy = (W = W e — (W W),

V1 -EMP

1 2M 1 2 1 2
= &)2Hyr = (W —iW_) = (WL, +iW’)

et

M .
- 4A—Te-"/’((wﬁ+ FIWEL) = (W W)

1 1 .
5 (WE =W )e2d — (W i )e™),
L BT (m, —eBy) = e W W) + (WL 4 WP
Ji—gpten Ty
1-—
—M s WS e2i 1'7s _ s 20
* Ar (WD + Wi B)e™ 0 + (WL — iWLE)e™?),
1 Ay

J1-gpP"
1 A2
— —TZH/zr
V1 -82MP*

APPENDIX C: DETAILED LEPTON AND HADRON HELICITY STRUCTURE
OF THE DVCS CROSS SECTION

We write the cross section in Eq. (41) in terms of the helicity-dependent structure functions,

(Ehyp — EEhy) = e (W15 4+ iWT5) — e (WY'ts 4 iWr'ss),

= (W75 4+ iWIT0) e 20 o (WITs — (WP Ts) 20,

1
a,m_@—{mv + FiL+ FRo + FRE) 4+ 2e(FQ 4+ FQ)

+V2y/e(1 + €)2[cos pRe(—FY, — FOL + FO=' + FO~') + sinpSm(=FY!, — FQL — FO=!' — FO-1)]
—2¢[cos 2¢Re(F) 7! + Fi~') —sin2¢Sm(F) ' + FAZ')]}

+ 2 V1= E(F + FIL — Fyl=l - pri-t)
—Ve(l —e)[cosqﬁiRe(FOl + FQL + FOS + FOZY) 4 singSm(FQY, + FOL — FO2! — O] (C1)

Transverse polarization
To obtain a similar structure for the transversely polarized target in the ¢bg direction using the density matrix in Eq. (75),

we define the polarized cross section as,

1 , WA, % hA, WA WA,
2 (5T _ 5T — +1(¢\-)§ 4 ! (a)E v v
2(0h,AT:+ ‘711,AT:—) =e (TDVCS,+A’) TDVCS N e (TDVCS,—A’) TDVCS,+A’
AN AN
wr b
_ +i(ey) hA; *phiy - T
me{e > (Tovesan) Tovcs—n (= Chan,- (C2)
AN
Y

Working out the terms, one has,
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2 2
o 7 o A ' AAif NV
OpAp=+ — § :( DVCS,+A’) DVCS N — § : § : f+A/ § : h f—,A'
@
A*

A A, AN A

_ZA}szrA’—"A f+A’y+Af+A’) (A}zf A’+A f r+Af A’)

A’ A
= S AR N AU N @A) A
A’ A
AL PN ) PN+ A AL N )
AL T Ty . (C3)

. . A
Evaluating the lepton process amplitudes, A,” we have,

1 1 / /
- =@1—_€{2Z[<fl%>*f‘_% U+ 2630 (M) £

Iy Ay
+V2Ve(l+ o) Az; P Fo = o) I+ T o+ o) 1
. 2€A,2; P PN 4 (Y Fy
L enpVi-e Z( O = I
-ffT:;NZN Y N N SN+ Py 8+ N . (C4)

Similarly to the longitudinally polarized case we now write the cross section in terms of structure functions.
We have,

(1) B 1 1
OhAp=+ — @1 _

VAT~ L) YU S R

— e FY - e PR 4 e PP+ e TFLY)

2P+ POFIT 2P e

+@n)2V1=E(FY 7+ F_ - F0p - FI1)

—V2\/e(1 —e)(eF!0_; + e?F'0 |+ e FO) 4 e F7,

+ e 0+ e FTI0 4+ e FO L+ e FO )Y (C5)

CeT AR+ Pl PR+ FR5) 4 262, + FEL )

Now with the terms organized with common phase factors, using parity and Hermitian conjugation, all the transverse

target structure functions can be written in terms of the virtual photon helicities with Ay*(l) =41 or 0 and

S A A £2) } -
A, %) = 41,0, —1. Then the single S; terms become 2iZm(F 2 AT A ), while the double polarization terms reduce

(1) )
to 2Re(Fyy M),
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I I
T . +i(¢.) hAy * hAy
OhANy = 29{6{‘3 ' (TDVCS.JrA’) Toves -
N A,

_1 2
Q%1 -¢
+2cos(¢ps — ) (ReF!L +ReFlL ) —2sin(¢ps — ) (SmFL, ; +SmFIL ;)
+2cos(¢ps — ) (ReF 7\ 7F+ReF717}) = 2sin(¢ps — ) (SmFTT} + SmFT7))
—2ecos(¢p+ ¢s) (ReF1Z)p +ReFL 71 ) 4 2esin(¢p + ¢s) (SmFZ)  + SmFIZ,)
—2ecos(=3¢ + ¢s)(ReF 7\ + ReF71 ) + 2esin(=3¢p + ) (~SmF T\ p = SmF71 )}
+ (2h) {2V 1 =€ cos(¢ps — ¢) 2ReF!, 4+ 2ReF_ )+ 2V 1 —€?sin(pg — ) (—2SmF, = 23mF'_ ;)
—V2y/e(1—¢€)cos(ps —2¢) 2ReFY, 1 +2ReFI ;) —v2+/e(1 —e) sin(ps — 2) (—2SmF)',  —2FmFI. ;)
—V2y/e(1—¢€)cos(ps) 2ReF!0, ; +2ReF! 1) = V2\/e(1 —€)sin(ps) 2FmF, ; +23mF'"_ 1)} (C6)

Imposing parity conservation and Hermiticity one finds that the single transverse polarization involves the imaginary parts
of the bilinear product of helicity amplitudes while the beam and target polarizations involve the real parts. The final cross
section expression reads,

T 1 2
OhAp=+— @1—_6

{2ecos(¢ps — ) (ReFP, 7+ ReFL ;) —2esin(ps — ¢) (SmFP, 1+ SmFPL_ ;)

{=2esin (dhs — ) (S, + SmFY. ;) = 2sin (g~ $) (SmFLL, 1+ SmF!L )

+2esin (¢ + ¢ps) (SmF!7 p +ImF ! 1) + 2esin (=3¢ + ) (=SmF 7 7 = ImF L p)

—V2V/e(T T e)sin (s~ 20) 2SmEFY, 4+ 28mF ) ~V2\/e(1 1 ¢)sin(s) 2SmFY, ; +2SmF10 )}
+(2h) {2V 1 =2 cos (s — p) 2ReF1L, 1 +2ReFIL 1) —v2+/e(1 =€) cos (s — 2¢) 2ReFOL, | +2ReFO )
—V2\/e(1 =€) cos(ps) 2ReF'0  +2ReF'0 )} (C7)

The terms in this expression can be read directly to provide the transverse structure functions in Eq. (36) of Sec. III.

APPENDIX D: DETAILS OF THE BH CROSS SECTION CALCULATION
FOR SPECIFIC A, POLARIZATION

For future applications, in this section we provide the contributions to the BH cross section for an unpolarized outgoing
photon.

1. Unpolarized target

The contraction in Eq. (141), results in the following terms:

Gaiin = 16Mzc|2{wl [2(6K)] + 372 [2(kP)(K'P) — M2(x + 1><kk/>]}, (DI1)
Saiin, = 16MZCD_{% [(Pq')((kP)(Ken) + (ken,) (KP)) = (Pen,)(KP)(K'q') + <kq’><k'P>>1}, (D2)

Gt n = 16M20D+{W1 2(kq') (Ken,) = 2(ken ) (K )

- % [(Pq')((ken,)(K'P) = (kP)(K'ey,)) + (Pen, ) ((kP)(K'q") = (kq') (K'P))
= M(1 +7)((ken ) (K'q') — (kC/)(k’SA;))]}, (D3)

054021-48



EXTRACTION OF GENERALIZED PARTON DISTRIBUTION ... PHYS. REV. D 101, 054021 (2020)

522, = 16M2D%{w1 2(kq')(Ke)

AVZZ [(ker,)(Pq") (Peny)(K'q') + (kq')(Pq') (Pen; ) (K'e},)

+ (ken, ) (Pq')(Pey, )(K'q') + (kq') (Pq') (Pey, ) (K'ey,)

= (key, )(Pq')*(K'ew,) = (ken,)(Pq')*(K'ey, ) = 2(kq') (Pey, ) (Pey, ) (K ') — (kk') (Pq')?] } (D4)

Stin, = —16M*D,D_ {Z (P q/)((kq’)(k/i))—<kP><k’q’>>]}, (D3)

~(3,3
iy, = 1602 { W, 20k ()]

AVZZ (ke )(Pq')(Pen)(K'q') + (kq')(Pq') (Pen;) (K'e},)
+ (kew,)(Pq')(Pey, )(K'q') + (kq')(Pq') (Pey, ) (K'en,)

= (key, )(Pq')*(K'ew,) = (ken,)(Pq')*(K'ey, ) — 2(kq') (Pey, ) (Pey, ) (K ') = (kk') (Pq')?
+2(kP)(Pq')(K'q') +2(kq') (Pq') (K'P) = 2M*(z + 1)(’<Q’)(’<’f1’)]} (Do)

where W, = 1G3,, W, = (F? + 7F3) and P = (p + p’)/2. The expressions above involve the polarization vector for the
outgoing photon, €Ay

2. Target proton polarization

&0 — (an)8M|CJ?

BHhA

x {G@[(ksxm) — (kA)KS)

(P'S)

— (L+7)GyFL[(kS)(K'A) — (kA)(K'S) - (1 +7)

((kP)(K'A) - (kA)(k’P))]}, (D7)

Sh) = (2h)AMCD_

x { Ghil(Sew ) (k8) (Kq') = (kq') (K 8))
+ (kS)(~(Bex) (K') + (4'A) (Ken) = (kA) (Ken,) + (ke ) (K'A))
+ (K'S)(~(ken ) (K'8) + (¢'A)) + (kA)(Ken,) + (kq') (Aeny)) + (P'S)((KA) (Ken,) = (ke ) (K'A)
= (14 D)F>Guy | (Sew ) (kA) (K) = (kq')(K'A)
+ (kS)(~(Ben) (K ') + (¢'D) (Ken) = (kA) (Ken,) + (ke ) (K A))
= (K'S)((kex)((K) + (q'8)) = (kA) (Ken,) = (kg )(Aey,)
(P'S)

(=(ken,)((K'A)((Pq") +2M?*(z + 1)) = (¢'A) (K'P))

2M2(1 + 1)
+ (k8)((Ken )(Pg') + 2M2(s + 1) = (Pex ) (K")) + (Ben (KP)(K') = (¢'B) (kP) (Ken)
~ (kq') (Aen)(KP) + (kg )(Per ) (K'A))] }. (D8)
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~pol(1,3)

P, = (2h)BMCD,

x {G[(Sen ) ((kA)(K'q) + (kq') (K A))
— (kS)((Aep ) (K'q') = (q'A)(Keny) + (kA)(K'en,) + (key ) (K'A))
+ (K'S)((kea, ) (K'A) + (¢'A)) + (kA) (K'en) — (kq')(Aep)) + (P'S)((kA)(K'en) + (ke ) (K'A))]
= F,Gy (1 +7)[(Sen ) ((kA)(K'q') + (kq')(K'A))
— (kS)((Aep)(K'q") — (¢'A)(Keny) + (kA)(K'en,) + (key ) (K'A))
+ (K'S)((kepy ) ((K'A) + (¢'A)) + (kA)(K'ep,) — (kq')(Aey,))

’\\-//-\

—

i (e (KA (P) + 2002 + 1)) = (4)(P)
4 (A)((Ken, ) (P') + 2002(z + 1) = (Pey )(K') + (Aey ) (kP)K) - (¢'2)(kP) (e
+ (k') (Bey IP) = (kg') (Peny ) (K A))]). (09)

o, = (2h)8MD2

x Re{—G%[(CJ’A)(S&'Z; )((kq")(K'ep,) = (ke ) (K'q"))
+ (kS)((K'q") (ke )(Aey,) = (D) + (kD)) = (kq') ((Ae}, ) (K'en, ) + (K'A)))
+ (KS)(=(K'q')((key, )(Dep,) + (kA)) + (kq') (Mg}, ) (Ken,) + (K A) +(¢'A)))
+(P'S)(=(Kq')((key, )(Aep,) + (KA)) + (kq') ((Aey, ) (K'en, ) + (K'A)))]

2 (Se3, (ke ) (P ) (P')(K'D) ~ (g B)KP)) + (¢ ) (kP) (Pg') (Keny) ~ (kq')(Pa') (Peny J(K)
+ (kA)(Pg')((Pex ) (Kq') — (Pq') (Ken)) — (¢'A)(KP) (Pex ) (Ke') + (ka')(q' &) (Pen ) (K P))
+(R8)( (863 )PP (Ke) + (ki) (e (P P)

<A8A>< ¢)(Pex)(Kq) (ke
8)(Pq)(Pey, ) (Ke) — (k)

+<q’A><PsA )(Pe )(k’q’>+<kq'><PeA ><PeA,><k' )
P)(~(Acy, ) (Pq)(Ken,) + (Aey, ) (Pex ) (Ke) — (P )(KA))

((Pq')(Peyy ) (Ken,) — (Pen) (Pes, ) (Kq') + (P )(K'P))

KA)—(q'A)(Pq)(KP))

Bew) (P )(K'P) + (keyy ) (Pg)(Pey, ) (K A)

+

A~ ~— X

\/\_/

+ (kA

+(Pq')?
+(K'S)(=(key,)

+(kq')(Aey, ) (Pen, ) (K'P) = (kq') (Pey, ) (Pey, ) (K A)
+(kP)((Pq')((Aey, ) (Keny) +(q'A) + (K A)) = (K'q')(Ag}, ) (Pey )
— (kA)((Pq')(Pey,)(K'ey, ) = (Pey,) (Pey, ) (Kq') + (Pq') (K'P) + (Pq')?)
+(kq')(Aey, ) (Pq') (Pey,) + (key, ) (g'A) (Pq') (Pen;)
— (key, )(Aen, ) (Pq')* = (kq')(q'A) (Pey,) (Pey,))
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+ (P'S)(=(key, ) (Aen ) (Pq) (K'P) + (key, ) (Pq')(Pep ) (K A)
+ (kq')(Aey, )(Pen, ) (K'P) = (kq') (Pen, ) (Pey, ) (K'A)
+ (kP)((Aey, ) (Pq) (K'ey,) — (Aey, )(Pey ) (K'q') + (Pq') (K'A))

- () (P (e (Kery) = (Pewy)(Peiy ) (K) + (P )P (D10)
S, = (2W)AMD_D,
x {~GHIKS)((kA)K) ~ (4 8)(K'q') + (kq') (K'2))
— (KS)((kB)(K'q) + (kg ) (K) + (D)) + (P'S)(=((kA)(Kq') + (ke')(K'2)))]
= GuFa(1 4 9) [~ (k) (kA)(Kq') = (¢'8) (K'q') + (kg (KA)) + (KS)((kA)K') + (ke )(K'8) + (4')))

(P'S)
2M*(1 + 1)

~ (@ B)KkP)Kq))] }. (D11)
Sminn, = (2h)8MD?

X Re{-Gh[(a'8)(Ser,)((kex ) (Ka') = (ke )(Ken,)) + (KS) (=(ke, ) (A ) (Ke') + (ka ) (Aey, ) (Ken,)

+ (KS)((keiy ) (Ben) (K - (kq') (Be, ) (Kew )+ (P'S) (ke ) (Ben) (Ke) - (kq') (Be ) (Ken))

= GuFa(1+7)[=(¢'A)(Sey ) ((ken (Kq') = (ka') (Ken)) + (kS) (ke ) (Ae ) (Ke) - (kg )(Aey, ) (Ken,))

— (KS)((key,)(Ben (K ') = (k') (Aey, ) (Ken,)
+ (P'S) (ke ((K'q') ((4'2) (Per,) = (Ben ) (Pq') + 203 (4 1))
= (Key, )(kg)((q'8) (Pex) = (Aen )(Pq') + 202z + )]}, (D12)

where we have omitted terms that vanish after summing over the final photon polarization. In the lab frame, for the
longitudinal target polarization case, the azimuthal dependence of the BH amplitude squared comes only from the invariant
(kA). For transverse polarization, additional azimuthal dependence is introduced through (P'S) (kS and k'S).

+ (kA)(K'q")((Pq') +2M2(z + 1)) + (kg') (K A)((Pq') + 2M?(z + 1)) = (¢'A) (K'P))

APPENDIX E: DETAILS OF THE BH/DVCS INTERFERENCE COEFFICIENTS
Longitudinally polarized beam, unpolarized target:
1
Al =
H2(kg ) (K
— (P = P7k)(kq ) + (¢ k™ = ¢'"k")(Pk)y — (PTK™ = PTK"")(kq')7

{(@*+0)((Ptq™ = P~q")(kk) + (K~k* = K k™)(Pk)y + 2(P*q'~ = P=q"") (kk);

+ (KT =g "KT)(Pk)r +2(¢7PT = q'"PT)(KK'))

—(Q* =t +4(kA)) (kK" = kT K7)(Pq') + (K~k* =K k™) (Pq)r + (Kt q'~ = K=q"")(Ph)7

— (k"q'~ —k=q'")(Pk)7)} sin ¢ (E1)
Biy = (0 + (AT — Amq ) (kk)p + (K~k* = K" k™) (kA)r + (A% g™ = A™q"") (k)7

(kq/)(k’ )
TkT = ATk (kg ) + (4 ThT = qTKT) (kA)p + (ATg'T - A" (kk)

-

— (MK = AR (k) + (q7K = K )(RA) + 2(g A" — g A7) ()

— (@2 = 1+ A(KA)) (KK = KK (AG) + (KK = KA) (g A)y + (K g~ = K= (kA),

+ (kg — k7g) (ka),)} sin (E2)
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1 J— 7+ )7 — J— 7+ It — J— 104 I+ 70—
C%U:W{(QzJFI)((k kT =Kk )(kA)p + (¢ k" =g k) (kA) 7 + (¢'7K — ¢ "k'7) (kA)7)

—(Q* =t +4(kA)) (K g~ = k=g ) (kA) 7 + (K7k" = K" k7)(q'A)r + (k""" —k*q"7)(kA)7)}sing.  (E3)

Unpolarized beam, longitudinally polarized target:
1 / / / / ! ! ! !
AL ZW{(QZH)(@ P)(2(kk)r = (kq')r +2(kq")) + (kP)(2(kK')r = (K'q)r +2(K'q))
+2(kk') (kP)y = (K'q") (kP) 7 = (kq') (K'P) )
—(Q*—1+4(k2))((Pq)((kK')7+ (K'q")r = 2(kK')) = (2(kK') (¢'P)7 = (K'q') (kP)7 — (kq') (K'P)7)) } sing,  (E4)

5 / / / / ! ! ! !
Bf, ZW{(QZ +O((KA)(2(kk) 7 = (kq' ) +2(kq")) + (KA) (2(kK)r = (K'q')r +2(K'¢'))
+2(kk') (kA) 7 = (K'q') (k&) 7 = (kq') (K'A)7)
—(Q* =t +4(kA)((Aq") ((kK') 7+ (K q')r = 2(kK')) = (2(kK') (¢'A) 7 = (K'q") (kA)p = (kq') (K A)7)) } sing. (ES)

7z 1 2 ! ! / / / /v / /
CuL ~ (k) (K {(Q*+ 1) (2(kK) (kA) 7 — (K'q') (kA) 7 — (kq') (K'A) 7 + 25 (2(kK') (kP) 7 — (K'q") (kP) 7 — (kq") (K'P)7))

+(Q% =1 +4(kA))((kK')(q'A)r = (K q') (kD) = (kq') (K A)
+28((kk')(q'P)r — (K'q') (kP)y — (kq') (K'P)7)) } singp. (E6)
Longitudinally polarized beam, longitudinally polarized target:
1
AfL = —W{(
+2(¢~Pt—=q"P)
+ (P~ = K=P*)(kq')r + (¢" k'™ = q'"k"")(Pk)y — 2(kk') (¢ " P~ — ¢~ P"))
— (0% = 1+ 4(kA)) (2(Pq) (K™ = K=K+ + (P ) (K k= = K=k*) + (PR); (kg k')
+ (PR)r(K=q'" = K7q'7))} cos ¢, (E7)

z _ _ ¢ 2 At _ LA I+ A= _ = A+ =+ LI+ —
Bf, = 8(kq,)(k,q,){(Q + 1) ((kk) 7 (k™ AY — kT A7) 4 (kk) (KT A~ — K= AY) 4+ (K~kT — K+ k) (kA)y

Q>+ ) (K+P~ = K~PT)(kk); + (k" Pt — kT P7)(kk); + (K~k* — KT k™) (Pk);

(kk)p + (KP™ = k"PT)(kq')r + (¢"k™ = ¢'7k7)(Pk)7

+2(kk)7 (¢ AT =T A7) + (kq')p(KTA™ = k"AT) + (¢"Tk™ = ¢""k7) (kD)7
(k) (KA = K=A%) + (¢K™ = K *) (k)p = 2(kK) (¢ A~ — ¢/ ~A")
= (@ — 1+ 4(kA) 2(Aq ) (K" k™ = K7k +) + (' A)r (K k™ = K=k") + (k&) (kT q'~ = kq')
+ (kA)7(K=q'" = k"q'7))} cos ¢. (E8)
1
U awe)
—(Q* — 1+ 4(kA)) (K Tk~ = Kk*)(q'A) + (K=q™" = K" q7) (kD)7 + (k"q'~ —k~q")(kA)7)} cos . (E9)

{(Q* + ) (kK =K k*) (kD)7 + (q" k™ — g~k ")(kA)r + (¢ K~ — ¢'~K'*)(kA)7)
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