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Abstract: Vulvar cancer (VC) is a rare neoplasm, usually arising in postmenopausal women, although
human papilloma virus (HPV)-associated VC usually develop in younger women. Incidences of VCs
are rising in many countries. Surgery is the cornerstone of early-stage VC management, whereas
therapies for advanced VC are multimodal and not standardized, combining chemotherapy and
radiotherapy to avoid exenterative surgery. Randomized controlled trials (RCTs) are scarce due
to the rarity of the disease and prognosis has not improved. Hence, new therapies are needed to
improve the outcomes of these patients. In recent years, improved knowledge regarding the crosstalk
between neoplastic and tumor cells has allowed researchers to develop a novel therapeutic approach
exploiting these molecular interactions. Both the innate and adaptive immune systems play a key
role in anti-tumor immunesurveillance. Immune checkpoint inhibitors (ICIs) have demonstrated
efficacy in multiple tumor types, improving survival rates and disease outcomes. In some gynecologic
cancers (e.g., cervical cancer), many studies are showing promising results and a growing interest is
emerging about the potential use of ICIs in VC. The aim of this manuscript is to summarize the latest
developments in the field of VC immunoncology, to present the role of state-of-the-art ICIs in VC
management and to discuss new potential immunotherapeutic approaches.

Keywords: immunology; immunotherapy; immune checkpoint inhibitor; vulvar cancer; vulvar
squamous cell carcinoma; vulvar melanoma; vulvar Paget’s disease; neuroendocrine tumor; human
papilloma virus (HPV); imiquimod

1. Background

Vulvar cancer (VC) is a rare malignancy, representing 4% of gynecological cancers and
0.3% of all newly diagnosed neoplasms. In the United States, the incidence rate is 2.6 new
cases per 100,000 women per year, with a median age at diagnosis of 69 years [1]. During
the last decades, the incidence of VC progressively increased in many Western countries [2],
especially in women aged 50–60 years [3,4]. This change is mainly secondary to changing
sexual habits and increasing exposure to HPV infection. In Austria, a 157% increase in VC
incidence has been reported in women under 50 years from 1985–1988 to 1994–1997 [5]. In
New Zealand, the incidence rose from 2% to 21% over two 10-year periods (1965–1974 vs.
1990–1994) in the same age group [6]. Furthermore, in Denmark, a significant upward trend
has been observed in women under 60 years (+1.60% per year between 1978 and 2007) [7],
whereas in Italy the total incidence showed a regular and significant reduction mainly
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due to decreasing incidences in women aged >60 years from 1990 to 2015; conversely, a
1.20%/year increase has been observed in women younger than 60 years [3].

The most common histological type of VC is squamous cell carcinoma (VSCC), ac-
counting for about 80% of cases, followed by basal cell carcinoma, vulvar melanoma
and other less frequent subtypes such as vulvar Paget’s disease (VPD), Bartholin gland
adenocarcinoma and neuroendocrine tumors and sarcomas [8]. Concerning VSCC, at
least two main oncogenic pathways have been identified. The first one recognizes vulvar
high-grade squamous intraepithelial neoplasia (VHSIL) as a precursor and is associated
with human papilloma virus (HPV) infection in over 80% of cases, mainly HPV 16 (77.2%),
HPV 33 (10.6%) and HPV 18 (2.6%) [9]. This HPV-related pathway is more commonly
found in younger women, usually in their third to fifth decade of life [10]. Recognized risk
factors are smoking, a high number of sexual partners and immunodepression. Overall,
although VHSIL is strongly related to HPV infection, only 30% to as low as 4.9% of VSCC
are secondary to HPV [11]. The second pathway arises within chronic dermatoses such as
lichen sclerosus and lichen planus, and it is typical of older women. Differentiated vulvar
intraepithelial neoplasia (dVIN) has been confirmed as a preinvasive lesion and carries a
higher risk of progression over a shorter period of time compared to VHSIL [12]. Even
though the majority of VSCCs are not HPV-related, dVIN represents only 2%–10% of all
vulvar intraepithelial lesions; thus, dVIN is considered a transient lesion, rapidly progress-
ing to invasive malignancy [10]. Regarding genomic alterations, frequent TP53 mutations
have been implicated in the development of HPV-negative VSCCs (HPV-negative/TP53-
mutated VSCCs). Histologically, HPV-negative tumors are well-differentiated, keratinizing
squamous cell carcinomas and tend to have worse disease-specific survival (DSF). Indeed,
HPV status has both prognostic and predictive value. An 83% 5-year overall survival
(OS) has been reported for HPV-positive VSCC compared to 48% for HPV-negative/TP53-
mutated VSCC [13]. HPV-positive VSCC also shows superior disease outcomes when
treated with radiotherapy (RT) compared to HPV-negative VSCC and this radiosensitivity
should prompt dose de-escalation [14]. The survival benefit seems to be similar to other
radiation-treated HPV-related SCCs, such as head/neck and anal cancers [15]. Recently, a
third subgroup of HPV-negative VSCCs has been identified with normal p53 expression
and NOTCH1 and HRAS mutations (HPV-negative/TP53 wild type VSCC) [16]. This third
subgroup has an intermediate 5-year OS of 64% and further studies are needed to fully
characterize its molecular landscape.

VC is staged according to the International Federation of Gynecology and Obstetrics
(FIGO) staging system which encompasses the lesion dimension, depth of invasion (DOI)
and inguinal lymph node involvement [17]. Almost 60% of VCs are diagnosed at an early
stage (FIGO stage I/II), whereas 28% present with regional lymph node spread and 6%
with distant metastatic disease [1]. Prognosis is strongly dependent on stage; 5-year OS
ranges from 85.5% of FIGO I/II cancers to 20.3% of cases with distant metastases.

Treatment also varies according to FIGO stage. FIGO IA tumors (a single lesion <
2 cm in diameter and DOI < 1 mm) are treated by wide local excision without inguinal
lymphadenectomy [18] as the risk of nodal metastasis in stage IA is minimal. For tumors
with DOI > 1 mm, a modified radical vulvectomy along with lymph node evaluation,
either by sentinel lymph node sampling for tumors ≤4 cm or inguino-femoral lymph node
dissection, is the standard of treatment. Adjuvant therapies are dependent upon surgical
margins and nodal status. Other prognostic factors such as perineural and lymphovascular
invasion must be considered for management after surgery [19]. Treatment for advanced-
stage disease is highly individualized and consists of multimodal therapies, including
neoadjuvant RT and chemotherapy, to possibly avoid exenterative surgery of the primary
tumor [20]. Systemic therapy has been proposed, but the overall rarity of VC makes it
challenging to perform randomized controlled trials. Furthermore, differences in terms of
inclusion criteria and the absence of reliable prognostic/predictive markers are obstacles to
the definition of the best drug regimen for each specific situation. Given the high burden of
unresectable/metastatic disease and the frequent comorbidities of elderly and frail women,
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the need for new therapeutic approaches is clear. A recent study assessing the immune
infiltrate in different subtypes of VSCC and its impact on prognosis found an association
between T cell-highly infiltrated VSCC and favorable clinical outcomes. In particular,
prognosis was strongly impacted by activated CD4+ T cell intraepithelial infiltration; the
percentage of infiltrated tumors varies widely according to the different tumor subtypes:
from 78% of HPV-positive VSCCs, to 60% of HPV-negative/TP53 wild type and 40% of
HPV negative/TP53-mutated tumors [21]. This finding suggests that, in highly infiltrated
HPV-positive VSCC, T cells could be exploited to induce an immunoresponse against
tumor cells and potentially de-escalate current treatment regimens.

Immune checkpoint inhibitors (ICIs) have reshaped the therapeutic and prognostic
paradigms of multiple malignancies, such as melanoma [22] and non small cell lung
carcinoma [23]. Regarding gynecological cancers, the overall success of ICIs has been so
far limited, with some exceptions. For instance, ICIs are highly effective against deficient
mismatch repair (dMMR) and microsatellite instability-high (MSI-h) endometrial cancer,
leading to the Food and Drug Administration (FDA) approval of pembrolizumab for this
indication in 2017 [24]. Later, pembrolizumab was approved in combination with an
antiangiogenic drug (lenvatinib) for pretreated, advanced dMMR endometrial carcinoma
irrespective of MSI status. In cervical cancer, pembrolizumab was approved in 2018 by the
FDA as a single agent in patients with recurrent or metastatic cervical cancer with disease
progression after chemotherapy and tumor expression of programmed death-ligand 1
(PD-L1) (combined positivity score (CPS) ≥ 1), but it is not approved in Europe [25]. Most
ongoing studies on cervical cancer are in phase II/III and are aiming to confirm these
promising preliminary results achieved in locally advanced or metastatic disease. Even if
immunotherapy in ovarian cancers is sustained by a strong biological rationale, ongoing
trials have not shown significant benefits and clinical results are largely disappointing [26].
Combining immunotherapy with chemotherapy or RT seems to be the most promising
strategy, but the right combination and regimen is still to be defined.

The purpose of this review is to discuss the latest developments in the field of im-
munoncology for VCs. The current knowledge regarding the VC tumor immune microen-
vironment will be presented, as well as the most recent clinical results regarding the use of
ICIs in VC. Finally, potential novel immunotherapeutic approaches will also be discussed.

2. Immunopathology of VC

The tumor microenvironment (TME) is characterized by interactions between cancer
and other cell populations within the peritumoral extracellular matrix. In this context, the
immune system is one of the most important factors modulating the TME. The complex
interactions between tumors and host immunity have been extensively studied in the past
few decades, identifying peculiar and variable scenarios according to tumor type, patients’
characteristics, the specific sample type (primary or metastatic) and so on.

Usually, the TME is shaped by a wide range of immune cells belonging to both the
adaptive and the innate immune system, including macrophages, dendritic cells, mast cells,
B cells, natural killer (NK) and T cells (T helper 1 (TH1) and 2 (TH2), regulatory T cells
(T reg), cytotoxic T cells (CTL) and natural killer T cells (NKT)). Some of these cell types
can exert an antitumoral effect, whereas others can contribute to tumor progression and
metastatization. Furthermore, heterogeneity in density and distribution of immune cells
may influence clinical and survival outcomes [27–29].

2.1. Innate Immune System

The innate or natural immune system comprises the inborn immune mechanisms that
defend the host from infection by other organisms in a non-specific manner. It includes
anatomical, physical and chemical barriers, circulating molecules and cells with specific
phagocytic or lytic functions. A limited number of germline-encoded pattern-recognition
receptors (PRRs) that recognize invariant pathogen-associated molecular patterns (PAMPs)
characterizes the innate immune system. Detection of PAMPs by PRRs leads to the induc-
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tion of inflammatory responses and the activation of innate host defenses. Phagocytes,
NKT cells, complement and inflammatory cytokines represent the key actors in innate
immunity [30,31].

The role of the innate immune system in controlling tumor progression is controversial,
as some studies suggest a favorable role in controlling tumor growth, whereas others argue
otherwise [32,33]. In this context, a key role is played by macrophages, myeloid-derived
suppressor cells (MSCs) and professional antigen-presenting cells (APCs). Macrophages
are CD68-, CD86-, and CD163-positive monocyte-derived cells that through the activation
of toll-like receptors (TLRs) and non-opsonic receptors can deliver pro-inflammatory
cytokines as well as phagocytes and degrade pathogens [34]. Usually, the presence of
high macrophage infiltration is related to a poor prognosis, as they contribute to the
metastatization process, angiogenesis and suppression of TH1 cells’ immune responses [35].
Macrophages are divided into two main categories: classic/inflammatory M1 (CD86+) and
the alternatively activated M2 (CD163+ CD206+) [34].

Classical activation of M1 occurs in response to bacterial molecules
(e.g., lipopolysacharide (LPS)) and immune stimuli such as interferon-γ (IFN-γ) (Figure 1A).
M1 macrophages are committed to producing tumor necrosis factor α (TNF-α), interleukin-
12 (IL-12), inducible nitric oxygen synthase (iNOS), and reactive oxygen species (ROS),
all agents with tumoricidal effects (Figure 1A). In addition, M1 macrophages enhance
TH1 activity (Figure 1A). On the contrary, M2-activated macrophages exist in different
forms depending on the eliciting signals—which include immune suppressive glucocorti-
coids IL-4, IL-13 and IL-10—and release cytokines that promote a TH2 immune response
(Figure 1B) [36]. Tumor-associated macrophages (TAMs) often express the M2 phenotype,
but recent evidence suggests that the TAM phenotype is a dynamic condition, supporting a
cellular plasticity model. Based on these data, TAMs are able to switch between M1 and M2
phenotypes, sometimes through the coexistence of both M1 and M2 markers, and can vary
according to the stage of tumor progression. M1 macrophages are often abundant in chronic
inflammatory sites, playing an anti-inflammatory and tumoricidal role; then they switch to
an M2-like phenotype, boosting tumor development, angiogenesis and invasiveness. On
the other hand, TAMs are involved in cancer progression through the release of specific
protumoral cytokines such as interleukin IL-6, IL-8 and IL-10 [37–40]. TAMs are also able to
express immune checkpoint modulators such as PD-L1 and various chemokines (C-C motif
chemokine ligand 17 (CCL17), CCL22, C-X-C motif chemokine ligand 10 (CXCL10)) which
attract effector/activated T regs that exert an immunosuppressive action and promote
tumor growth (Figure 1C) [36–38,41–43].

In normal vulvar skin stroma, intraepithelial M2 macrophages are the most abundant
cell type, whereas myeloid cells are absent. The transition to a pre-neoplastic condition
induced by the presence of HPV (dysplasia) is marked by an increase of intraepithelial
and stromal M1 and M2 macrophages. Macrophages also play a fundamental role in
VSCC development and progression. For example, preclinical studies of HPV-induced
oncogenesis using an E6/E7-expressing TC-1 tumor murine model showed that TAM
was the predominant population infiltrating neoplastic tissue. Moreover, the depletion
of TAMs is linked to an increase in the T cell-mediated anti-neoplastic immune response,
leading to a reduction in cancer growth [39]. Additionally in murine models, the addition
of an HPV 16-synthetic long peptide (SLP) vaccine to a carbo-platinum plus taxol-based
chemotherapy regimen led to a reduction in both circulating and intratumoral myeloid
cells and an increase in the T cell response. Similar effects on circulating immune cells were
observed in a small cohort of patients who underwent chemotherapy plus vaccination with
long peptides mimicking key HPV-16 oncogenic proteins [44]. VSCC is also characterized
by a high infiltrate of CD14+ M1 macrophages, which become the dominant population,
and the presence of CD14+ cells represents an independent negative prognostic factor
for recurrence-free survival (RFS) in HPV-related vulvar intraepithelial neoplasia [45]. A
recent large immunohistochemical study performed in 103 patients showed that CD3+
T cells, CD20+ B cells, CD68+ macrophages, forkhead box P3 (FOXP)3+ Treg cells and
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CD163+ TAMs are present in both peri- and intra-tumoral tissues of VC. Furthermore, the
number of CD68+ cells was constantly high in PD-L1-positive tumors and their amount
was associated with PD-L1 labeling intensity [46]. Similar results were observed in other
studies: Sznurkowski et al. [47] found that an increase in CD56+ and CD68+ cell infiltration
was related with the DOI in both p16-positive (a surrogate for HPV infection) and negative
VSCC, whereas concerning disease stage and the presence of distant metastases, only the
presence of a CD68+ infiltrate in p16 negative tumors showed a positive correlation.
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Professional APCs, including dendritic cells (DCs) and Langerhans cells (LCs), rep-
resent other key actors in the innate immune response. DCs have a highly effective
antigen-presenting ability and are considered to be a critical factor in antitumor immunity.
DCs are initiators of adaptive immunity by processing and presenting antigens to T cells
and through specific immunomodulatory effects mediated by cell–cell contact and cytokine
release. Within the TME, these cells are able to present tumor-associated antigens via the
human leukocyte antigen (HLA) class I pathway and this process culminates with the
activation of cytotoxic T cells, which results in anti-tumoral activity [48,49]. Regarding LCs,
they are a category of APCs commonly found in normal skin and have an immunomodulat-
ing action similar to other DCs in TME of SCC [50]. A reduction in the number of LCs was
observed in vulvar lichen sclerosus and in VSCC, suggesting that a dysregulation of the
skin immune system may lead to suppression of LCs in the vulvar epithelium, promoting
carcinogenesis [51].

Concerning the impact of NK/NKT cells on TME in VSCC, Sznurkowski et al. [52]
demonstrated that high intraepithelial granzyme B positive infiltrates (which include acti-
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vated NK, NKT and CTL cells with high cytotoxic activity) were correlated with longer
OS in non-metastatic cancer, whereas the number of CTL or CD56+ cells alone were not.
Conversely, a correlation between intraepithelial CD56+ (NK/NKT) cells and survival
was observed among metastatic VSCC patients, whereas the prognostic significance of
granzyme B-dependent killing was not observed. These findings are consistent with the
view that NK perforin-mediated lysis is important in the early stage of cancer develop-
ment, whereas in advanced cancer, NKs, NKTs and CTLs converge to an anergic state.
In fact, NKT cells can be classified as type I, also known as invariant NKs, that display
different antitumoral weapons, and type II NKTs that, on the contrary, downregulate
immunosurveillance. Their relative infiltration in the TME depends on different cytokine
concentrations, interaction with mesenchymal stem cells and other factors that are not fully
understood [53]. Further investigations about the role of this immune system component
could represent a new field of research, paving the way for new treatments [54].

Finally, expression of indoleamine 2,3-dioxygenase (IDO) by VSCC cells is another
potential mechanism of immune escape, since it restrains the proliferation of alloreactive
T lymphocytes and of DCs through the local reduction of tryptophan, and may partially
explain the immunological alterations present in these tumors. Furthermore, the IDO
expression in VSCC cells is an independent negative prognostic factor in terms of OS [55–58].

2.2. Adaptive Immune System

Unlike the innate immune response, the adaptive system shows a high specificity for
its target antigens [59]. Adaptive responses are based on the antigen-specific receptors
expressed on T and B cells: T-cell receptor (TCR) and immunoglobulin (B-cell antigen
receptor), respectively.

The main effectors of the adaptive immune response are CD8+ CTL and CD4+ TH
lymphocytes. CTL activation requires the interaction with an APC via HLA I and with CD4+
T lymphocytes which have been antigen-primed by the same APC via HLA II. Cancer
cells are then eliminated indirectly via complement-mediated antibody cytotoxicity or
directly by CTL activity, together with THs [60]. In particular, TH1 cells that are positively
selected by M1 macrophages mediate the expansion of tumor specific CTLs from the naïve
T pool. By contrast, TH2s, promoted by M2 macrophage, inhibit TH1s, hampering the cell-
mediated antitumor response [61]. This unstable equilibrium can be unbalanced in VSCC
by different mechanisms of immune evasion and inactivation of the T cell response, such as
the high expression of IDO [55], the secretion of transforming growth factor- β (TGF-β) [62]
and PD-L1 [46] by cancer cells (Figure 1D) and tumor infiltration by M2 macrophages
and T regs [45]. Higher expression of TGF-β in cancer cells is also associated with more
advanced cancer stages, possibly leading to metastasis in the regional lymphatic node. This
is likely due to the immunosuppressing role of TGF-β in the tumor microenvironment.
The TGF-β super-family is a large group of structurally associated proteins including
growth and differentiation factors. TGF-β regulates cell growth, apoptosis, differentiation
and fibrosis, plays a role in epithelial-mesenchymal transition and can stimulate tumor-
associated angiogenesis [63]. TGF-β is secreted by cancer cells and by several other cell
types present in the TME, including T regs, macrophages, platelets and fibroblasts. High
TGF-β-levels deflect naïve T cell differentiation from the TH1 effector toward the T reg
phenotype, and block antigen-presenting functions of DCs [64]. CTLs are activated through
direct antigen presentation by major histocompatibility complex (MHC) class I or through
T helper cell-mediated activation.

The presence of tumor-infiltrating lymphocytes (TILs) and their prognostic significance
in VSCC have been investigated by several authors. A study on 76 paraffin-embedded
samples of VSCC found that CD8+ and CD4+ cells were present in both cancer cell nests and
stroma, suggesting an immunological synergy, but their presence was not related to better
survival [65]. Similar results were observed by De Jong et al., who did not find a relationship
between the VSCC prognosis and the number of intratumoral CD8+ T lymphocytes and
FOXP3+ T reg lymphocytes. In addition, the authors observed a reduction in the CD8+
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lymphocytic infiltrate in tumors expressing HLA class I [66]. These results suggest that
T lymphocytes are committed to an anergic state in VSCC. However, in contrast with
previous findings, a recent study found a correlation between TILs and prognosis in early-
stage surgically treated VSCC. In particular, high intraepithelial infiltration by activated
TH lymphocytes (CD3+CD8−FOXP3−) was related to better RFS and OS, independently of
HPV and p53 status. Moreover, the percentage of TILs varied between the different VSCC
subtypes: HPV-related VSCC was most often strongly infiltrated (78%) followed by the
HPV-negative, TP53-wild type VSCC subtype (60%), whereas the lowest T cell infiltration
was observed in HPV-negative, TP53-mutated VSCC (40%) [21]. Finally, these authors
suggest that the previously reported lack of correlation between TILs and clinical outcomes
for VSCC may be due to the high heterogeneity of patients’ clinical characteristics (VSCC
etiology, tumor stage, administered treatments) as well as the methodological discrepancies
(e.g., differences in terms of analyzed areas or of analyzed T cell populations [21]).

2.3. The Role of Immune Checkpoint Regulators

Immune checkpoint regulators are critical modulators of the immune system and
play a fundamental role in controlling the tissue damage induced by immunological
responses. They are involved in self-tolerance and limitation of autoimmune reactions.
Of these molecules, the most studied are the cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) and PD-1 (also known as CD279), which belong to the CD28/CTLA-4 family of
co-stimulatory receptors.

PD-1 is a type I membrane protein expressed by immune cells that are chronically
activated (predominantly lymphocytes). Following its binding to its ligands (PD-L1 and
PD-L2), PD-1 inhibits the proliferation of cytotoxic CD8+ T lymphocytes and modulates the
release of pro-inflammatory cytokines. Furthermore, the expression of PD-1 by T regs in-
creases their immunosuppressive ability. Interactions between these PD-1 expressing cells
represent the main tumor immune escape mechanism mediated by these pathways in most
solid cancers, including gynecological tumors [67–69]. A high expression of PD-L1, the
main ligand of PD-1, is associated with increased clinical response rates and superior sur-
vival outcomes after treatment with ICIs in different tumors such as non small lung cancer
and urothelial carcinomas [70–73]. Several studies investigating oropharyngeal squamous
cell carcinomas and cervical cancer have shown that PD-L1 expression is increased in HPV-
associated tumors [74–76], but these findings are in contrast with what has been observed in
VC. In fact, PD-L1 was found to be more frequently expressed in HPV-negative VSCC cells
and its expression correlated with tumor aggressiveness, increased inguinal lymph node
involvement and poorer prognosis [46]. A recent study performed by Cocks et al. found a
worse prognosis for VSCCs with high PD-L1 and CD8 expressions [77], and Lerias et al.
confirmed a correlation between PD-L1 levels and nodal involvement [78]. Conversely, a
more favorable prognosis was observed by Sznurkowski et al., but only when PD-L1 was
expressed by peritumoral immune cells. These authors also observed greater expression
of PD-L1 in HPV-negative VSCC cells compared to HPV-positive ones [79]. However, it
should be noted that three other studies found high PD-L1 expression in the majority of
VSCCs without detecting correlations either with HPV status or prognosis [80–82].

Overall, based on the data available so far, the conflicting findings regarding the
relationship between HPV status and survival outcomes probably remain controversial
due to the heterogeneity of the study cohorts [46,79]. Nevertheless, frequent expression of
PD-L1 in VSCC has been consistently reported by many authors [80–82], supporting the
rationale of ICI-based treatments in VSCC.

2.4. Immunological Changes Induced by HPV Infections

HPV infections are related to various pathologies of the lower genital tract, ranging
from benign warts to low- and high-grade intraepithelial neoplasms and invasive tumors,
with differences related to the specific viral genotypes [83,84]. Based on DNA classification,
15 HPV subtypes (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73 and 82) are considered
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to be at high risk for the development of invasive tumors and their precursor lesions [85].
High-risk HPV infection is responsible for a significant, although minor (less than 40%)
proportion of all VCs [11,86]. After the HPV has entered the host cell, it leads to the
synthesis of two proteins called E6 and E7 which respectively bind p53 (mediating its
degradation and thus preventing apoptosis) and retinoblastoma (Rb) (a protein involved
in the regulation cell cycle) proteins, causing uncontrolled cell division (Figure 2A). The
accumulation of genetic alterations enabled by this process allows the tumor cell to acquire
immune escape mechanisms [25].
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Figure 2. Oncogenic and immune escape mechanisms in human papilloma virus (HPV)-related tumors. (A) E6 and E7
proteins contribute to averting apoptosis of infected cells and promoting cell proliferation, paving the way for neoplastic
transformation. (B) IL-6 reduces the anti-tumoral activity of T lymphocytes and promotes CCL20 expression by cancer-
associated fibroblasts and T helper 17 recruitment, also promoting cancer progression. (C) CCL2/CCR2 and MMP-9
production lead to monocyte infiltration and angiogenesis. (D) TLR4 activation promotes cancer progression through
HIF-1α induction and nitric oxygen synthesis. Abbreviations: CCL2 and 20: C-C motif chemokine ligand 2 and 20; CCR2:
C-C chemokine receptor type 2; HIF-1α: hypoxia-inducible factor-1α; IL 6: interleukin 6; IL6R: interleukin 6 receptor; iNOS:
inducible nitric oxygen synthase; MMP-9 matrix-metalloproteinase 9; NFkB: nuclear factor kappa-light-chain-enhancer of
activated B cells; pRB: retinoblastoma protein STAT3: signal transducer and activator of transcription; TH17: T helper 17;
TLR4: toll-like receptor 4, TRAF6: tumor necrosis factor receptor-associated factor 6.
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The immune response plays a fundamental role in clearing most HPV infections. In
fact, if the virus is not effectively eliminated, it can persist for years and promote the trans-
formation from normal epithelium into dysplastic lesions up to invasive tumors. Infections
by high-risk HPV are common, but fortunately only a minority of patients develop neoplas-
tic lesions [87]. HPV oncoproteins may also lead to the suppression of acute inflammatory
responses, and HPV-positive tumor cells produce only low chemokine levels [84]. Con-
versely, HPV-transformed cells induce CCL2 production in monocytes, leading to stromal
chronic inflammation through two main mechanisms (Figure 2B) [88,89]: (i) the recruitment
of additional myelomonocytes via a C-C chemokine receptor type 2 (CCR2)-dependent
autocrine mechanism; (ii) the overproduction of matrix-metalloproteinase (MMP)-9, which
favors monocyte infiltration and angiogenesis. In the HPV-positive cervical cancer microen-
vironment, a high production of IL-6 has been observed. IL-6, through the activation of
signal transducer and activator of transcription 3 (STAT3) and the suppression of nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB), promotes the reprogram-
ming of the adaptive immune cell response, resulting in a reduction of the cytotoxic activity
of CD8+ T lymphocytes and of the antineoplastic activity of TH1 cells and in an increased
expression of MPP-9 [90]. Furthermore, the release of IL-6 activates the C/EBP signaling
pathway, leading to CCL20 expression in cancer-associated fibroblasts and TH17 recruit-
ment, which promote tumor progression and angiogenesis (Figure 2C) [91]. It is also known
how HPV infection can alter the expression of TLRs and of their signaling pathways, fa-
voring the persistence of the virus. Different types of TLRs can exert an antitumor effect
or promote neoplastic progression. For instance, in HPV-related cervical cancer TLRs 1,
2, 3, 4, 5, 6 and 9 are expressed more [92,93]. In particular, the expression of TLR4 in the
uterine cervix infected by HPV is associated with cancer development and progression via
the overproduction of hypoxia-inducible factor-1α (HIF-1α) [94]. Furthermore, activation
of TLR4 leads to a high expression of iNOS through the activation of various genes (tumor
necrosis factor receptor-associated factor 6 (TRAF6), mitogen-activated protein kinase
(MAPK), NF-Kb), resulting in high levels of nitric oxide, increased HPV infectiveness and
tumor development (Figure 2D) [93,95–97].

In this context, the introduction of HPV vaccination as a primary prevention strategy
has been shown to reduce the incidence of invasive and premalignant cervical lesions
among vaccinated women [98]. A recent analysis by the Norwegian Cancer Register
estimated promising reductions of HPV-related VSCCs in the coming years thanks to this
public health program [99].

Cancer cells infected with oncogenic HPV genotypes develop a series of immune
evasion mechanisms; thus, several strategies have been investigated to tackle them by
enhancing CD4+ and CD8+ T cell responses such as gene-based, protein-based, peptide-
based and dendritic-cell-based vaccines [100]. ADXS11-011 (axalimogene filolisbac) is an
irreversibly attenuated Listeria monocytogenes (Lm) combined with a nonhemolytic fragment
of listeriolysin O (Lm-LLO) and secreting the Lm-LLO-HPV E7 fusion protein directed
against HPV-positive cancers [101]. A randomized phase 2 study evaluated its safety and
efficacy administered with or without cisplatin in women with recurrent/refractory HPV-
positive cervical cancer following prior chemotherapy and/or RT. Combined 12-month and
18-month OS rates of 34.9% (38/109 patients) and 24.8% (27/109 patients) were respectively
achieved, resulting in an approximate 1.5- to 2-fold increase in median OS rates compared
with the historical GOG series [102].

Recently, another study using the axalimogene filolisbac-based vaccine (ADXS-HPV)
in 50 patients with advanced, platinum-refractory cervical cancer, achieved a 12-month OS
of 38% (19/50 patients) [103].

3. Clinical Role of ICIs in VSCC

The KEYNOTE-028 study is a non-randomized, multicenter, multicohort phase Ib
trial on the use of pembrolizumab (a PD-1 inhibitor) in patients (N = 474) with 20 different
PD-L1-positive advanced solid cancers, including 18 VSCCs. The median OS in patients
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affected by VSCC was 3.8 months, the objective response rate (ORR) <10% and the median
progression-free survival (mPFS) <5%. Within the VSCC cohort, only one patient achieved
a partial response (PR), seven had stable disease (SD), whereas six experienced disease
progression (PD). The progression-free survival rates were 20% and 7% at 6 and 12 months,
whereas the OS rates were 42% and 28%, respectively. Concerning adverse effects (AEs), no
stratification by cancer type was made, but most of the trial participants experienced at least
one AE, in particular fatigue (35%), nausea (26%), decreased appetite (22%), diarrhea (22%)
or constipation (20%). In most of cases a G2 (36%) or G3 (39%) toxicity was reported. In this
trial, the efficacy of potential predictive biomarkers was also investigated: the presence of
a T cell-inflamed gene-expression profile, PD-L1 expression and higher tumor mutational
burden (TMB) resulted the best predictors of responses among the different types of solid
tumors. These three biomarkers were observed in 72%, 44% and 17% of VSCC patients
respectively [104].

A phase I-II study (the CheckMate 358 trial) evaluated the role of nivolumab (PD-1
inhibitor) in metastatic/recurrent cervical (N = 19) and vulvar/vaginal (N = 5) cancer.
Among vulvar/vaginal tumors a partial responder (HPV-negative VC) was reported and
12-month and 18-month OS rates of 40% and 20% were observed, with a PFS rate of 40% at
6 months [105].

Recently, a recurrent VC characterized by PD-L1 and PD-1 mutations (PD-1 positive
cells >5/high-power field (HPF) and 2+ PD-L1 positivity, high mutational load) was
successfully treated with pembrolizumab: after two cycles of immunotherapy a clinical
remission was observed, which was then confirmed by a CT scan after six cycles, which
showed a partial response according to Response Evaluation Criteria in Solid Tumours
(RECIST) criteria [106].

More recently, a single-arm phase II clinical study of pembrolizumab combined with
cisplatin and RT for women with unresectable locally advanced or metastatic VC was
proposed. This study is currently underway and recruiting patients [107]. Several pieces of
data support the use of RT in combination with ICIs. RT can trigger the expression of PD-L1
and PD-1 on tumor cells, making them targets for ICIs [108]. Furthermore, preclinical
studies on murine models showed that RT plus ICIs leads to an increase in CD8+ TILs,
a decrease in T reg lymphocytes and in MSCs, and in the upregulation of MHC class I,
favoring the activity of ICIs [107].

A summary of the reported data regarding the use of ICIs in VC is presented in Table 1.

Table 1. Studies and case reports exploring the role of Immune checkpoint inhibitors (ICIs) in
recurrent/advanced vulvar cancers (VCs).

Type of Study Antibody Clinical Setting Number of
Patients Outcomes Reference

KEYNOTE-028
Non-

randomized,
multicenter,
multicohort

phase Ib trial

Pembrolizumab
(PD-1 inhibitor) Avanced tumors 18 VSCC out of

474 tumors

PFS was 20%
and 7% at 6 and

12 months;
OS rate was 42%
and 28% at 6 and

12 months

Ott et al. [104]

CheckMate
358 trial

Phase I-II study

Nivolumab
(PD-1 inhibitor)

Metastatic/recurrent
tumors

19 cervical
tumors, 5

vulvar/vaginal
tumors

In vulvar/
vaginal cohort:

OS was 40% and
20% at 12-month

and 18 month
OS;

PFS was 40% at
6 months

Naumann et al.
[105]

Case report Pembrolizumab
(PD-1 inhibitor)

Recurrent VC
with PD-L1 and
PD-1 mutation

1
Near CR at
6 months of
treatrment

Shields et al.
[106]

Single-arm phase
II clinical study

Pembrolizumab
(PD-1 inhibitor)

Unoperable
locally advanced

or metastatic
tumors

Recruiting.
Target

enrollement:
24 patients.

Primary
endpoint: 95%

CI for ORR.
Secondary

endopint: RFS-6

Yeku et al. [107]
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Table 1. Cont.

Type of Study Antibody Clinical Setting Number of
Patients Outcomes Reference

Retrospective
series Anti-CTLA-4

Metastatic
vulvar-vaginal

melanomas
6 33% survival rate

at 1 year
Quéreux et al.

[109]

Open-label,
phase II basket

trial

Pembrolizumab
(PD-1 inhibitor)

Recurrent small
cell NET

6 cervical, 1
vulvar NETs

Median OS not
achieved
(18.8-not
reached)

OS 84.6% at
6 months

Strosberg et al.
[110]

Abbreviations: CR: complete response; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; ICIs: immune
checkpoint inhibitors; NET: neuroendocrine tumors; OS: overall survival; PD-1 programmed death 1; PD-L1:
programmed death ligand 1; PFS: progression-free survival; VC: vulvar cancer; VSCC: vulvar squamous cell
carcinoma.

4. Potential Role of ICIs in Rare Vulvar Tumor Types
4.1. Vulvar Melanoma

Melanoma is a rare neoplasm (1% of all skin cancers) with a significant clinical im-
pact due to its aggressive behavior and poor prognosis. Vulvar melanoma represents a
rare variant of the cutaneous melanoma. Classically, this tumor has been classified as a
mucosal melanoma, but recent molecular profiling data suggest that melanomas of the
lower genital tract represent a distinct category compared to other mucosal or cutaneous
melanomas [111,112]. Current evidence concerning its management strategies and thera-
peutic approaches relies on small retrospective series and extrapolation from skin melanoma
guidelines. In fact, there is no real consensus about the treatment of this neoplasm and
prognosis is poorer compared to melanomas of other sites [113–115].

Melanomas are among the most immunogenic tumors and the development of ICIs
represented a turning point in the treatment of advanced melanoma. Combined targeting
of CTLA-4 (ipilimumab) and PD-1 (nivolumab, pembrolizumab) allowed researchers to
achieve an OS of 50% in eligible patients. Furthermore, a substantial fraction of long-term
survivors seems to remain disease-free even after discountinuation of treatment. In fact,
ICI-based immunotherapy is approved by the FDA as a standard treatment for patients
with advanced or recurrent melanoma [116–118].

The TME of vulvar melanoma is poorly understood. In cutaneous melanoma, the
presence of CD8+ TILs is related to a better prognosis and the CD8+ T-cell density is a
predictive marker of response to PD-1 blockade [119,120], whereas infiltration by FOXP3+ T
regs has been shown to correlate with a worse prognosis [121]. Some studies [122,123] sug-
gest an association between PD-L1 expression and a worse prognosis in melanoma, but its
role remains controversial [124]. A recent study [123] investigated the role of immune TME
in vulvar melanoma—75 women with vulvar melanomas were included; of these, 21 of 75
(28%) and 39 of 75 (52%) developed local recurrence and distant metastasis, respectively,
and the death rate was 33% (median follow-up 26 months). A membranous and/or cyto-
plasmic PD-L1 expression by ≥ 5% of tumor cells was observed in 17 patients (23%). This
marker (p-value = 0.04), as well as a higher number of peritumoral FOXP3+ lymphocytes
(p-value = 0.004), was found to be significantly associated with better survival. This finding
is controversial and conflicts with our knowledge regarding cutaneous melanoma [121,125].
Vulvar melanoma probably represents a category of its own, compared to other subtypes of
melanocytic tumors. Another study on 14 vaginal and 37 vulvar melanomas showed high
expression of both PD-L1 (56%) and PD-1 (75%) [111]; a high expression of PD-L1 was also
reported in other series [126,127], paving the way for implementing ICIs in these tumors.

Focusing on mucosal melanomas in a small cohort of five patients affected by head
and neck mucosal melanoma, PD-L1 expression by tumor cells was <5% in all cases and no
clinical response was achieved by systemic therapy with PD-1 inhibitors [128]. A pooled
analysis took into account 889 patients (including 86 mucosal melanomas and 665 cutaneous
melanomas) who received nivolumab alone and 361 patients who received nivolumab plus



Int. J. Mol. Sci. 2021, 22, 190 12 of 23

ipilimumab (including 35 mucosal melanomas and 326 cutaneous melanomas). In patients
treated with nivolumab alone, median progression-free survivals (PFS) of 3.0 months (95%
CI, 2.2–5.4 months) and 6.2 months (95% CI, 5.1–7.5 months) with an ORR of 23.3% (95%
CI, 14.8–33.6%) and 40.9% (95% CI, 37.1–44.7%) for mucosal and cutaneous melanoma
were obtained, respectively. The median PFS in patients treated with the nivolumab
plus ipilimubab combinatiob was 5.9 months (95% CI, 2.8 months to not reached) and
11.7 months (95% CI, 8.9 to 16.7 months) for mucosal and cutaneous melanoma, with ORRs
of 37.1% (95% CI, 21.5–55.1%) and 60.4% (95% CI, 54.9–65.8%), respectively. These results
suggest the greater efficacy of combined treatment and overall worse survival outcomes
for mucosal melanomas [129]. A recent systematic review focused on the clinical outcomes
of advanced mucosal melanomas treated with ICIs—patients who received nivolumab or
pembrolizumab alone achieved an ORR higher than 15% and a median OS higher than
11 months. Patients treated with an anti-CTLA-4 plus anti-PD-1 combination achieved an
ORR > 33%, and interestingly anti-PD-1 plus RT showed an ORR > 50% [130].

Regarding low genital tract melanomas, two recurrent cases (cervical and vagi-
nal melanomas) treated with nivolumab have been recently reported and both patients
achieved disease remission [131], whereas treatment of a cervical melanoma with pem-
brolizumab did not prove effective [132]. In a small cohort of six patients with metastatic
vulvar/vaginal melanomas treated with an anti-CTLA-4 ICI, disease progression was
observed in four patients, a stable disease in one patient (maintained for 11 months)
and an important clinical response was obtained in one patient, achieving long survival
(31 months). The 1-year survival rate was 33% [109] (Table 1). As previously mentioned,
the RT plus ICIs combination can lead to important results when dealing with advanced
neoplasms. In a series of three vaginal and a cervical melanomas treated with ipilipumab
plus RT, a complete response (CR) was observed in all women after completion of treat-
ment. Later, two patients developed distant metastasis at 9 and 10 months after diagnosis,
whereas two remained disease-free at 20 and 38 months [133].

4.2. Vulvar Paget’s Disease

VPD is an extremely rare skin neoplasm, mainly affecting postmenopausal women,
defined by the World Health Organization (WHO) as “an intraepithelial neoplasm of
epithelial origin expressing apocrine or eccrine glandular-like features and character-
ized by distinctive large cells with prominent cytoplasm, referred to as Paget cells” [134].
In 2001, Wilkinson and Brown [135] proposed a classification distinguishing two differ-
ent subtypes—primary cutaneous VPD and secondary non-cutaneous VDP developing
from a digestive or urinary tumor. Cutaneous VPD can also be classified according to
the DOI—in situ (the most common form), micro-invasive (DOI ≤ 1 mm) and invasive
(DOI > 1 mm) [136].

VPD is characterized by an indolent clinical course, although the diagnosis is often
late and treatment unsatisfactory due to high relapse rates. In addition, the invasive forms
are much more aggressive than in situ and micro-invasive tumors and are characterized by
a worse survival [137–140]. The main therapy consists of an aggressive surgical excision of
which the extension depends on the specific disease spread and on patients’ characteristics, but
regardless of its type this therapy is burdened by a high rate of recurrence [137,138,140,141].

Some data are available regarding the immune TME of VPD. A study evaluated the
presence of FOXP3+ cells in 29 primary and 13 recurrent VPD tissue samples. T regs
were frequently observed at the epidermal-dermal junction, surrounded by skin without
inflammatory infiltrates and, interestingly, the authors observed a correlation between the
number of T regs, the positivity of the surgical margins and a higher recurrence rate [142].
The number of CD4+ CD22+ FOXP3+ T regs was higher in invasive extramammary PD
(EMPD) compared to in situ EMDP, whereas high numbers of CD163+ macrophages
and high MPP-9 expression were detected only in invasive EMDP [143]. Furthermore,
the activation of the receptor activator of nuclear factor kappa-B (RANK)/RANK ligand
pathway by the interaction between RANK+ macrophages and Paget cells expressing
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RANK ligand contributes to the development of an immunosuppressive environment,
emphasizing once again the ability of tumors to escape the cytotoxic immune response [144].
More recently [145], an increase in intraepithelial CD8+ and FOXP3 cells was observed in
patients with VPD treated with local application of imiquimod, an immunomodulatory
drug targeting TLR7 and leading to TH cell activation [146].

The expression of PD-L1 in Paget disease has only been investigated in recent years.
A recent analysis [147] of 21 EMPD cases, including 5 VPD cases, found that PD-L1 was
expressed only by three tumors, whereas PD-L1 expression within the tumor-associated
immune infiltrates was observed in 15 EMPD cases. Another study [148] of 48 patients
with EMPD (25 VPD) confirmed that tumor cells rarely express PD-L1, whereas PD-L2
expression was not observed in any tumor. PD-L2 was expressed occasionally by leukocytes
and PD-L1 was focally detected in TILs. The majority of cutaneous EMPDs showed high
levels of B7 family members (B7-H3 and B7-H4), melanoma-associated antigen (MAGE-A)
and New York esophageal squamous cell carcinoma 1 (NY-ESO-1) in cancer cells in both
in situ and invasive forms—currently, dozens of clinical trials evaluating drugs directed
against these molecules are underway for various tumor types, but unfortunately none
of these studies is focused on EMPD [148]. Low expression of PD-1 by cancer cells was
also noted by another study including 13 VPD and five scrotal Paget’s disease cases, but
intriguingly EMPDs showed a high tumor mutational burden (≥10 mutations/Mb) [149].
In 22 EMPD cases, no expression of PD-L1 was detected in cancer cells, but occasionally
CTLA-4 expression was observed among the tumors [150]. Finally, a large study based
on samples of 41 women affected by VPD found a positive PD-L1 expression in 10% of in
situ VPDs and in 27% of invasive-VPDs [151]. Curiously, MSI was not observed by most
authors [149,151,152], however a single study found that 8/20 EMPDs harbored germline
mutations of mismatch repair genes (MMR), five of which exhibited MSI [153].

There are currently no clinical data on the use of ICIs for treating VPD; however, a
recent, ongoing study on the role of nivolumab and ipilimumab in the treatment of rare
malignancies is including EMPD and VC cases (NCT02834013).

4.3. Neuroendocrine Tumors

Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms that arise
from aggregates of endocrine cells present in different organs, most frequently the lungs or
gastrointestinal tract. NETs are relatively rare tumors, representing less than 0.5% of all
malignant tumors, although their diagnosis has increased in recent years, probably due
to improved awareness. Most of these tumors are benign, but 12% to 22% present with
distant metastases [154,155].

In the female genital tract, NETs are extremely rare. Data from the Surveillance,
Epidemiology and End Results (SEER) registry from 1987 to 2012 showed just 559 cases of
gynecological NETs and only 39 of them involved the vulva/vagina [156]. Conversely, the
most common site is the ovary for benign carcinoids (often arising within a dermoid tumor)
and the cervix for high-grade NETs [157]. Indeed, vulvar/vaginal NETs are extremely
rare and usually consist of high-grade neuroendocrine carcinomas, whereas the vulva can
also be affected by Merkel cell carcinoma [157]. Most of the data concerning the efficacy
of ICIs in NETs derive from gastrointestinal tract neoplasms and small cell lung cancers.
Data on 107 patients affected by heavily pretreated NETs from the KEYNOTE-028 study
(NCT02054806) suggested that pembrolizumab alone has limited efficacy in this setting
(median OS (95% CI) had not been reached (18.8–not reached), whereas the 6-month OS
rate was 84.6%). Sixty-one patients achieved SD as the best response and curiously four
CRs were observed among patients with PD-L1-negative tumors [110]. Recently, an ORR
of 25% was achieved in a phase II basket trial including 32 NETs (18 high-grade and 14
low/intermediate grade) treated with the nivolumab plus ipilimumab combination—the
response rate was 8/18 (44%) among high-grade NETs, whereas no response was observed
in low/intermediate NETs [158]. An open-label, phase II basket trial of pembrolizumab
in women with recurrent small cell NETs of the lower genital tract (six cervical NETs
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and one vulvar NET) showed minimal activity in this subset of patients: after 27 weeks,
only one patient had stable disease, whereas six experienced progression [159], suggesting
a limited role for this drug in this setting, as already reported by Strosberg et al. [110]
(Table 1). Interestingly, a patient with metastatic, chemo-resistant cervical large cell NET
showed a near CR to nivolumab plus stereotactic body RT, suggesting again a role for the
ICIs plus RT combination [160].

Regarding Merkel cell carcinoma, important results have been obtained with the use
of ICIs; indeed, the FDA has approved avelumab and pembrolizumab for their treatment,
whereas the European Medicine Agency has approved avelumab only [155], but unfortunately
results concerning vulvar Merkel cell carcinomas have never been reported [161–164].

5. Conclusions and Future Directions

VCs are characterized by a series of immune escape mechanisms that confer aggres-
siveness and lead to poor clinical outcomes. Currently, data on the role of ICIs in VCs are
derived from case reports or limited series, often extrapolated from trials involving other
types of solid tumors without a careful selection of patients. Based on these data, treatment
with single ICIs has shown modest results overall, although interesting cases of disease
remission were observed when ICIs were combined with RT. In fact, the evidence, although
limited, supports the efficacy of this combination in gynecological cancers [165,166] and
two trials on VSCC and vulvar melanoma are ongoing [107,133].

Another intriguing mechanism is represented by the synergistic effect between HPV
vaccines and ICIs. Recently, a single-arm phase 2 clinical trial on recurrent HPV 16-related
tumors (22 oropharyngeal, one cervical and one anal) using ISA 101, a HPV 16-SLP vaccine
in combination with an anti-PD-1 agent (nivolumab), obtained an encouraging median
survival of 17.5 months, suggesting a benefit of this kind of combined approach [167].
Another combination that could play a role in the treatment of VCs (in particular VPD)
is represented by imiquimod plus ICIs. In selected patients, imiquimod combined with
other treatments has been shown to be effective in the local control of skin metastases
from melanoma [168] and breast cancer [169,170]. Finally, some reports show a benefit of
imiquimod-plus-ICIs combinations in advanced melanomas [171,172].

Therefore, is there a place for ICIs in VC treatment? Probably yes. ICI monotherapy
has not yielded striking results, but their combination with other agents represents a
promising avenue. Patients with VC at high risk of recurrence or with metastatic/relapsed
disease should be treated at referral institutions with high caseloads and specific experience
in the management of these tumors and ideally should be included in well-designed,
multicentric clinical trials. Specific attention should also be paid to investigating novel
potential prognostic and predictive markers that may affect the response to ICIs and other
immunotherapies (HPV status, characteristics of immune cells infiltrate, expression of
specific markers and the presence of genomic or molecular signatures).
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Abbreviations
AEs adverse effects
APC antigen-presenting cell
CCL C-C motif chemokine ligand
CCR-2 C-C chemokine receptor type 2
CPS combined positivity score
CR complete response
CTL cytotoxic T cells
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
CXCL C-X-C motif chemokine ligand
DCs dendritic cells
dMMR deficient mismatch repair
DOI depth of invasion
DSS disease-specific survival
dVIN differentiated vulvar intraepithelial neoplasia
EMPD extramammary Paget’s disease
FDA Food and Drug Administration
FIGO International Federation of Gynecology and Obstetrics
FOXP3 forkhead box P3
HIF-1α hypoxia-inducible factor-1α
HLA human leukocyte antigen
HPF high-power field
HPV human papilloma virus
ICI immune checkpoint inhibitor
IDO indoleamine 2,3-dioxygenase
IL interleukin
ILR interleukin receptor
INF-γ interferon-γ
iNOS inducible nitric oxygen synthase
LCs Langerhans cells
Lm-LLO Listeria monocytogenes-listeriolysin lipopolysaccharide
LPS lipopolysaccharide
MAGE-A melanoma-associated antigen
MAPK mitogen-activated protein kinase
MHC major histocompatibility complex
MMR mismatch repair
MMP-9 matrix-metalloproteinase 9
mPFS median progression-free survival
MSCs myeloid-derived suppressor cells
NET neuroendocrine tumor
MSI-h microsatellite instability-high
NF-kB nuclear aactor kappa-light-chain-enhancer of activated B cells
NK natural killer
NKT natural killer T cells
NY-ESO-1 New York esophageal squamous cell carcinoma 1
ORR objective response rate
OS overall survival
PAMPs pathogen-associated molecular patterns
PD progression disease
PD-1 programmed death-1
PD-L1 programmed death-ligand 1
PD-L2 programmed death-ligand 2
PFS progression-free survival
PR partial response
PRRs pattern-recognition receptors
RANK receptor activator of nuclear factor kappa-B
Rb retinoblastoma
RECIST Response Evaluation Criteria in Solid Tumours
ROS reactive oxygen species
RFS recurrence-free survival
RT radiotherapy
SD stable disease
SEER Surveillance, Epidemiology and End Results
SLP synthetic long peptide
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STAT3 signal transducer and activator of transcription 3
TAMs tumor-associated macrophages
TGF-β transforming growth factor-β
TH T helper
TH1 T helper 1
TH2 T helper 2
TILs tumor infiltrating lymphocytes
TLR toll-like receptors
TMB tumor mutational burden
TNF-α tumor necrosis factor α
TRAF6 tumor necrosis factor receptor-associated factor 6
T reg regulatory T cells
VC vulvar cancer
VHSIL vulvar high-grade squamous intraepithelial neoplasia
VPD vulvar Paget’s disease
VSCC vulvar squamous cell carcinoma
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