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Abstract 

The Messinian Salinity Crisis (MSC) was an extreme event that affected the Mediterranean Sea during the 

late Miocene, leading to massive evaporite deposition across the basin. Here we focus on the Perales 

section (Sorbas Basin, Western Mediterranean), using calcareous nannofossil (CN) and foraminiferal 

geochemical analyses to trace the paleoenvironmental dynamics before and at the MSC onset.  

Orbital and tectonic forces drove the CN fluctuations that correlated with the lithological quadripartite 

precessional cycle. Our integrated analysis reveals that the cyclical sapropel deposition started with an 

increase in marine productivity, followed by an increase in freshwater input and the development of a 

Deep Chlorophyll Maximum (DCM). The overlying marl records the protracted freshwater input that led to 

the shallowing of the DCM, decreasing organic carbon export and promoting sea floor re-oxygenation. 

Stratification, acting as a barrier, trapped part of the riverine delivered nutrients below the photic zone. 

The subsequent gradual decrease in temperature promoted the disruption of the stratification, 

redistributing nutrients in the photic zone and promoting diatoms proliferation and the diatomite 

deposition. When the reservoir of dissolved silica was exhausted, bioturbated marl were deposited at the 

top of the cycle. 

In the last pre-evaporitic cycle (UA34) the lithological cyclicity is obliterated, however the precessional 

footprint is revealed by CN fluctuation, suggesting that sapropel-like deposition took place for most of the 

cycle. This cycle also records a succession of CN abundance peaks (MSC-CN bioevent), as already recorded 

in several section approximately at the MSC onset, suggesting that the same paleoenvironmental changes 

triggered the evaporitic phase in the whole Mediterranean. This bioevent marks the last step of water 
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exchange reduction with the Atlantic (restriction pulse), that increased the sensitivity of the Mediterranean 

to the freshwater input and the associated nutrients delivery, culminating in a further increase in marine 

productivity. 

 

1-Introduction 

The Messinian is a geological stage characterized by rapid and extreme environmental changes affecting 

the whole Mediterranean region, mostly related to the ongoing restriction of the Atlantic gateways (Flecker 

et al., 2015). The progressive restriction is suggested to be one of the main triggers of the onset of the MSC, 

which started synchronously in the whole Mediterranean at 5.97 Ma (Manzi et al., 2013). The MSC onset is 

marked by the deposition of primary gypsum at shallow to outer shelf depths and gypsum free euxinic 

shales or carbonates in deeper basins (Roveri et al., 2014 and references therein). The ongoing restriction 

amplified the sedimentary and ecological response to orbitally induced climatic variation (Hilgen and 

Krijgsman, 1999). A series of steps marking the paleoceanographic evolution before the MSC onset are 

recognised in the fossil record in many sections across the Mediterranean (Sierro et al., 2001; 2003; Blanc-

Valleron et al., 2002; Kouwhenoven et al., 2006; Iaccarino et al., 2008; Gennari et al., 2018). These major 

steps in the Mediterranean paleoceanographic evolution are dated at 7.19, 6.7, 6.4- 6.29, and 6.1-6.0 Ma 

(Kouwhenoven et al., 2006 and references therein). The second restriction at 6.7 Ma amplified the 

sensitivity of the Mediterranean to the precessional forcing, which drove the rhythmic deposition of 

sapropels at each insolation maximum (Sierro et al., 2003).  

The Sorbas Basin represents one of the most intensively studied Messinian basins (Troelstra et al., 1980; 

Martin and Braga, 1994; Baggley, 2000; Fortuin et al., 2000; Sierro et al., 2001; Sierro et al., 2003; Perez-

Folgado et al., 2003; Vazquez et al., 2003; Filippelli et al., 2003; Flores et al., 2005; Braga et al., 2006; 

Rodrìguez-Tovar et al., 2013; Clauzon et al., 2015; Modestu et al., 2017; Reghizzi et al., 2017). However, 

most of the high resolution micropaleontological studies focused only on the lower part of the UA (from 

cycle UA5 to UA8, i.e. from ≅6.6 Ma to ≅6.55 Ma) with the long-term trend toward the MSC onset being 

documented with foraminiferal and isotopic (Oxygen, Carbon and Strontium) dataset only (Sierro et al., 

2003; Reghizzi et al., 2017). This paper aims to track the environmental changes spanning the uppermost 

pre-MSC (from 6.226 Ma) and the MSC onset by comparing previously published data with newly produced 

CN abundance fluctuations and trace elements analysis of the foraminifer Orbulina universa in the Perales 

section. The sensitivity of CN as an environmental proxy in this time interval is supported by previous 

results showing CN abundance peaking (here named “MSC-CN bioevent”) approximating the time of the 

MSC onset in several Mediterranean successions (Lozar et al., 2018; Manzi et al., 2018; Lozar and Negri, 

2019). To decipher this peculiar CN signal is of a paramount importance in order to constrain which 

paleoenvironmental changes triggered the MSC onset. 
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2 Materials and methods 

2.1 Pre MSC deposits 

The Abad marls are deposited in the central part of the Sorbas Basin (Martin and Braga, 1994); they were 

deposited from the base of the Messinian and are overlain by primary evaporites of the Yesares Formation. 

Based on the different lithologies, the Abad marls can be divided into two units: the Lower Abad and the 

Upper Abad (LA and UA units, respectively; Sierro et al., 2001). Both units record the precessional signal, 

but differs in its lithological expression: the LA are characterized by an alternation of indurated, 

homogeneous whitish marls and softer homogeneous grey marls rich in planktonic foraminifers (Sierro et 

al., 2001); the UA deposits are characterized by a quadripartite cycles (sapropel - marl – diatomite - marl). 

As outlined by Sierro et al. (2001), exceptions from this rule coincide with peculiar orbital curve 

conformations, corresponding to eccentricity minima or precession/obliquity interference giving rise to low 

or high insolation amplitude.   

The sapropels in the Sorbas Basin are sandwiched between homogeneous white marl beds and consist of 

brownish laminated marls with silty to sandy thin turbidite beds intercalations. Generally, the lamination is 

well developed in the upper part of the sapropels, whereas it is weakly developed in the lower parts, where 

bioturbation is slightly more intense (Sierro et al., 2001; Flores et al., 2005). The diatomites are white, 

usually laminated and with a high abundance of diatoms frustules.  

We re-sampled the Perales A and C subsections of Sierro et al. (2001), including the transitional interval 

detailed in Manzi et al. (2013), up to the base of the lowermost PLG cycle. Regarding the UA cycles, some 

subtle differences emerged during the field work, but a robust correlation is maintained by the 

identification of thick/thin sapropelitic or diatomitic layers and by foraminiferal bioevents and trend (Fig.2). 

Taking advantage of the very good outcrop condition, we were able to produce a detailed log of the 

transitional interval (“transition to the gypsum interval” in Sierro et al., 2003; upper UA34 cycle in Manzi et 

al., 2013), which introduces new and important features, which are detailed in section 2.2. 

 

 

2.2 The UA34 case  

A general deviation from the “regular” quadripartite cycle is represented by the cycle UA34, which, from 

bottom to top, is composed of sapropel – spiculite – from weak to well laminated sapropel – limestone – 

from weak to well laminated sapropel – limestone – clay (Fig.2). The lack of the diatomitic layer and the 

weak differences, in terms of colour and lamination between sapropel and marls compared to the 

underlying cycles, complicate the recognition of the precessional forcing. The clay at the top of cycle UA34 
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is located just below the base of the poorly laminated to laminated sapropel below the base of the first 

gypsum layer.  

 

2.3 Calcareous nannofossil analysis  

Standard smear-slides were prepared for each collected sample and observed at 1250X by polarized light 

microscopy. In each slide at least 500 specimens were counted and identified. The CN preservation ranges 

from poor to good; overall cycles UA29 and UA30 are characterized by poor CN preservation. The rare and 

the extremely rare species without known paleoecological significance are not shown in figures 4.1 and 4.2. 

Reticulofenestra pseudoumbilicus < 7 µm and > 7 µm, Calcidiscus leptoporus < 7 µm and >7 µm, 

Pontosphaera multipora, Pontosphaera japonica, Discoaster variabilis, Discoaster brouweri, Discoaster 

pentaradiatus, Sphenolithus abies and Sphenolithus moriformis are included in the informal groups of R. 

pseudoumbilicus gr., C. leptoporus gr., Pontosphaera gr., Discoaster gr. and Sphenolithus gr., respectively. 

The informal group Sphenolithus gr. mainly comprises S. abies, whereas S. moriformis has a scattered 

occurrence and shows considerable abundance only in a few intervals. The presence/absence of diatom in 

the CN counting phase was performed as well. Scanning electronic microscopy (SEM) analyses were 

performed on selected samples of the cycle UA34 using a JSM-IT300LV SEM equipped with an energy-

dispersive EDS Oxford Instrument Link System microprobe (Department of Earth Sciences, University of 

Torino) 

 

2.4 Foraminiferal analysis 

In order to correlate our log with the Abad composite section published in Sierro et al. (2001), planktonic 

foraminifer assemblages were observed in some selected samples (20 samples from UA25 to UA31). About 

100 grams of sample, previously dried, were soaked in diluted H₂O₂ for one day; successively the sediment 

was washed using a 63 µm sieve, oven-dried, and dry-sieved to obtain 3 different size fractions: >500 µm, 

500-125 µm and 125-63 µm. Qualitative analyses were carried out on > 125 μm residues. A qualitative 

analysis (presence/absence) of planktic and benthic foraminifers was performed as well in the cycle UA34 

(Fig.5)., which was not the object of previous studies  

 

2.5 Orbulina universa trace element analysis: a new picking protocol  

31 samples taken throughout the studied interval (2-3 samples each cycle) were prepared for the trace 

element analyses. A major challenge of the foraminiferal trace element analyses was the poor preservation 

of the O. universa calcite shells, often filled with diagenetic calcite (Fig.3 D, E and F). This diagenetic calcite 

overprint could potentially bias the overall trace element signals inherent to the biogenic calcite of the 

foraminifer shells. To avoid this contamination, we focused only on well-preserved O. universa, using a new 

picking technique as follows: 
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-Wash the sediment in a sieve (we used the 63 µm) using ELIX water (this water is to be preferred because 

it prevents the precipitation of carbonate crystals) sprayed with a pump. 

-When the fine fraction is washed away, oven-dry the sample (70 C°). 

-Sieve the sediment of the target size range (the one we aim to measure). In this work, we focused on the 

foraminifer size between 315 and 355 µm. Take the target size fraction and put it in a beaker previously 

filled with ELIX water. Let the heavier foraminifers (filled or encrusted by secondary calcite) rapidly sink. 

- Aspirate the floating shells with a pipette. This allows capturing the lighter shells that are likely devoid of 

diagenetic calcite or sediment infill. 

-Put the captured foraminifers into a saucer and proceed to picking while the foraminifers are still wet. This 

procedure improves the possibility to pick pristine shells, since wet foraminifers (especially O. universa) 

better show their transparency, and more transparent tests are usually devoid of secondary calcite. 

We further tested the reliability of this method by checking SEM pictures of both the heavier/sinking O. 

universa (Fig.3 D, E, F) and the lighter/floating ones (Fig.3 A,B, C). The test indicates that our methodology 

assures to capture the best preserved O. universa specimens. 

 

2.6 Orbulina universa trace element analyses 

The investigated samples were composed of a minimum of 100 μg of shell calcite of O. universa picked 

from sapropel and lower marls. In most cases, the well-preserved O. universa picked did not provide the 

calcite weight needed for the analysis (100-150 µg of calcite); this restricted our analysis to only 14 samples 

in the UA23-base UA30 interval and in the transition from UA32 to UA33. The samples were cleaned 

according to the “Cd method” described by Rosenthal et al., 2004. The method consists of several steps: 

clay removal washes (water and methanol), a reductive step (ammonium hydroxide, citric acid and 

hydrazine hydrate), an oxidative step (sodium hydroxide and hydrogen peroxide), and finally a weak acid 

leach (nitric acid). The samples were analysed with an inductively coupled plasma mass spectrometer (ICP-

MS, Agilent model 7500ce) at the Autonomous University of Barcelona. The procedure of data reduction 

followed that previously establish by Yu et al., 2005. 

According to the premise that the seawater temperature is the primary control on Mg²+ incorporation in 

the foraminiferal calcite shell during the calcification process, the Mg/Ca analysis is often used as a T proxy 

(Lea et al., 1999; Elderfield & Ganssen, 2000; Erez, 2003; Barker et al., 2005). The obtained Mg/Ca values 

were converted into temperature values according to Anand et al., (2003) using the equation: 

Mg/Ca = B exp (AT) 

where Mg/Ca is the measured value from the calcite shell, A and B are constant coefficients (corrected for 

O. universa according to Anand et al., 2003 Table 3) and T is the calcification temperature. 

Early studies reported that foraminifers can sequester barium and other elements in proportion to their 

concentration in the surrounding seawater (Boyle and Keigwin, 1985; Lea and Boyle, 1991). Consequently, 
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the trace element studies are considered reliable proxies for ocean elements reconstruction in the past. 

Apart from hydrothermal vents, the major source of barium to the ocean is fluvial discharge (Martin and 

Meybeck, 1979). Moreover, the input of fluvial barium increases in the river-sea mixing zone as barium 

desorbs from the suspended load by ion exchange (e.g. Hanor and Chan, 1977). For these reasons, high 

levels of barium in surface seawater track continental inputs, consequently the measured Ba/Ca on 

foraminiferal shell is used here as a continental run-off proxy. 

 

3 Results 

3.1 Calcareous nannofossil relative abundance 

The CN assemblage is composed of 28 calcareous nannofossil taxa (appendix). CN are present throughout 

the studied interval, except in all the samples collected above the second limestone layer of cycle UA34. 

The composition of CN assemblages is cyclical and quite regularly follows the lithological cyclicity. CN 

assemblages are generally dominated by Reticulofenestra minuta, which is present in all samples and 

commonly reaches up to 60% of the total assemblage. R. minuta usually shows minimum abundance in the 

diatomite, where it is often replaced by R. pseudoumbilicus sp. and Reticulofenestra haqii. Sphenolithus gr. 

show abundance peaks in the middle-upper part of the sapropel (ca. 30%) and an abundance maximum at 

62% in the spiculite layer of the cycle UA34. Conversely, Sphenolithus gr. minimum abundance is recorded 

in the diatomite layer. Sphenolithus gr. also show a positive correlation with the temperature inferred from 

the Mg/Ca analysis. Helicosphaera carteri occurrence is scattered but shows prominent peaks in abundance 

(more than 30%) generally associated to the diatomite layer. High H. carteri abundance (55%) is found 

concurrently with a prominent Ba/Ca peak in the lower marls of the cycle UA30. Coccolithus pelagicus and 

R. pseudoumbilicus gr. show a similar trend, with peaks in abundance close to the diatomite and a 

progressive increase at the top of UA34. C. leptoporus gr. is mainly composed of large morphotye 

(according to Quinn et al., 2004), its higher abundances is generally found in the upper marls. 

Umbilicosphaera rotula abundance never exceeds 24% of the total assemblage and shows peaks 

preferentially in the upper marl-sapropel transitions. The most prominent U. rotula peaks (24% at the base 

of the sapropel in UA24; 17% and 15% in the poorly/well laminated sapropels of the cycle UA34) coincide 

with the maximum abundance of benthic foraminifers recorded by Sierro et al., 2003 and in our material 

(Fig.5). Rhabdosphaera clavigera abundance is generally low and never exceeds 4.5%, aside from the cycle 

UA28 where three different peaks are recorded (from 4.5% to 9%), occurring together with C. leptoporus 

gr. and C. pelagicus peaks. From cycle UA28 R. clavigera shows a decreasing trend toward the top of the 

section. R. haqii abundance is scattered and apparently does not correlate with the lithology. In cycles 

UA32 and UA33 the higher R. haqii abundance is recorded in few samples (from 40% to 88%). Similar to R. 

haqii, R. antarctica abundance is generally low, but shows a prominent peak (and other minor peak) in 
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cycles UA32 and UA33. Umbilicosphaera jafari abundance is generally low but occurs in high abundance in 

some discrete intervals (from UA23 to UA25 and from UA31 to UA33), exceptionally reaching 87% of the 

assemblage in the upper marl of the UA24. Pontosphaera gr. is regularly present in moderate abundance 

generally in the diatomite up to cycle UA31, where it starts to decrease. Syracosphaera sp. 1 is 

preferentially present close to or in the diatomite, with an abundance that never exceeds 22% (cycle UA28) 

and generally is below 5%. The abundance of Discoaster gr. is scattered but shows prominent peaks, 

recorded preferentially in the upper marl, up to cycle UA28; it becomes rare above this level. Intriguingly, 

Discoaster gr. are present in some levels (lower marls of the cycles UA23, UA24, UA26 and in the sapropel 

of the cycle UA31) with moderate abundance; their poor preservation and strong recrystallization hinders 

the identification at the species level and consequently the discrimination between synsedimentary and 

reworked specimens. This probably results in an underestimation of the Discoaster gr. abundance, 

especially in the upper part of the section. Thoracosphaera heimii shows a scattered abundance, with a 

maximum in abundance in UA34 (1,4%).  

The relationship between the CN assemblage and the lithological cyclicity changes in cycle UA34, where a 

sequence of abundance peaks of peculiar species (here named MSC-CN bioevent; Fig. 4) is recorded, as 

previously reported in other sections, approximating the MSC onset (Lozar et al., 2018; Lozar & Negri, 

2019). The succession of peaks in abundance is composed of: S. abies, followed by U. rotula, H. carteri. S. 

abies (during the MSC-CN bioevent the informal Sphenolithus gr. is composed entirely of S. abies) peaks 

(62%) in the spiculite layer; U. rotula shows 2 peaks (17% and 15%) recorded in poorly laminated sapropel 

and in a laminated sapropel immediately above the S. abies peak. H. carteri gradually increases at the base 

of UA34 and peaks (33%) in a poorly laminated sapropel above the U. rotula peak. Above the MSC 

bioevent, C. pelagicus and R. pseudoumbilicus gr. increase up to the second limestone of the UA34 cycle, 

where suddenly all CN disappear. 

 

 

3.2 Trace elements analysis (Mg/Ca and Ba/Ca) 

The obtained Mg/Ca values span from 1.205 mmol/mol to 3.448 mmol/mol and correspond to 

temperatures ranging from 9.5 °C to 19.7 °C. A long term temperature trend toward the MSC onset is not 

discernible in our results. The recognition of temperature trends is biased by the low stratigraphic 

resolution obtained in the upper portion of the studied section; however, it is still possible to observe 

oscillation in phase with precessional climatic variation, with higher values (17.5°C - 19.2°C) during the 

upper part of the sapropel deposition in cycles UA23, UA25 and UA33. Low temperature values are 

recorded in the middle part of the sapropel in UA28 (8.1°C) and in the upper marl roughly at the marl-
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sapropel transition in UA29 (10.4°C). The lower marls are characterized by low temperature values in the 

cycles UA23, UA24 and UA30 (7.8°C – 9.6°C), mild value in UA32 (15°C) and high value in UA28 (19.7°C). 

The Ba/Ca values generally span from 0,125 µmol/mol to 0,349 µmol/mol. The higher value (0,733 

µmol/mol) is recorded in the lower marls of the cycle UA30. The obtained Ba/Ca values are systematically 

lower compared to the O. universa Ba/Ca results obtained by Sprovieri et al. (2008; Falconara section, Sicily, 

Italy); this reflects more arid conditions in the Sorbas Basin compared to Falconara, probably due to African 

rivers influence (Griffin, 2002) in the southern Mediterranean. Subtle oscillations are recorded in the UA23-

UA29 interval, where slightly lower values are associated with the sapropels and relatively higher values are 

documented for the lower marls, with the outstanding high values of cycle UA30. 

 

4- Discussion 

4.1 Paleoecology of selected Calcareous Nannofossil taxa  

Understanding the paleoecological preferences of the species involved in the MSC-CN bioevent is of 

paramount importance for deciphering the paleoenvironmental changes occurred at, and driving the MSC 

onset. The interpretation of the Messinian CN abundance fluctuation is complicated because many of these 

species are extinct and their ecological preferences are poorly understood. Here, we discuss the 

paleoecological preferences of the CN taxa involved in the MSC-CN bioevent in the light of information 

gathered from previous studies and from this work (summarized in Fig. 7). 

Sphenolithus gr. 

A wide range of paleoecological preferences has been attributed to the extinct Sphenolithus spp. It is 

generally described as adapted to warm, stratified and oligotrophic environments during the Cenozoic 

(Perch Nielsen, 1985), from the Upper Eocene to the Upper Miocene (Mejìa-Molina et al., 2010) and during 

the Pliocene (Gibbs et al., 2004), with a deep photic zone preferred habitat (Gibbs et al., 2004). 

Furthermore, Sphenolithus gr. is also regarded to prefer either open and well oxygenated marine conditions 

during the late Paleogene (Aubry et al., 1992) or marginal environments with freshwater influxes during the 

Burdigalian of the Northern Alpine foredeep (Auer et al., 2014). During the Messinian, Sphenolithus gr. is 

widely reported in the Mediterranean pre-evaporitic marls (Blanc-Valleron et al., 2002; Kouwhenhoven et 

al., 2006; Gennari et al., 2018; Flores et al., 2005; Lozar et al., 2018) and interpreted as a deep photic zone 

dwellers (Flores et al., 2005), an opportunistic and mesotrophic taxon by Wade and Bown (2006) and 

adapted to high salinity fluctuations and to a shallow environment (Lozar et al., 2010). In the lower UA5-

UA8 cycles, maxima in Spenolithus gr. abundance occurs in the middle lower part of the sapropels, and this 

taxon is replaced in the middle-upper part by Discoaster gr. (Flores et al., 2005). 



 9 

Our data show a cyclical increase in Sphenolithus gr. abundance in the middle-upper part of the sapropels, 

however, in our samples Discoaster gr. are often poorly preserved and recrystallized, hampering the 

identification of the turnover recorded by Flores et al. (2005). Sphenolithus gr. High abundances are also 

retained in the upper marls of cycles UA27 and UA28, centred on the 6.14 Ma 100 Kyr eccentricity 

minimum, which correspond to a prolonged insolation maxima phase during an interglacial stage (Laskar et 

al., 2004). Sphenolithus gr. abundance is suppressed during the glacial isotope stages (red arrows in Fig. 4.1) 

inferred from the benthic and planktic δ18O in the Ain el Beida section (Morocco, van der Laan et al., 2005). 

In our data, Sphenolithus gr. show a positive correlation with the temperature inferred from Mg/Ca 

(despite the lower resolution of this proxy), in agreement with previous studies (Haq and Lohmann 1976; 

Lohmann and Carlson, 1981; Flores and Sierro, 1987; Flores et al., 1995; Castradori, 1998; Flores et al., 

2005); this correlation is further supported by the dominance of warm oligotrophic foraminifers, which 

indicate the formation of a strong and permanent pycnocline at depth with the subsequent stratification of 

surface waters (Sierro et al., 2003). All these features suggest a robust temperature control on Sphenolithus 

gr. abundance. This is further suggested by scarcity of these taxa in the Northern Mediterranean pre-

evaporitic successions (Piedmont basin and northern Apennines), where the Sphenolithus gr. abundance 

exceed 20% only during the MSC bioevent (see section 5.4).  

However, the notable abundance differences of the Sphenolithus gr. peaks in the sapropelitic layers of the 

adjacent Tokhni (present in all the sapropel layers) and Pissouri (low and scattered occurrence) sections in 

the eastern Mediterranean allows to rule out the temperature as the only factor controlling the abundance 

fluctuations of Sphenolithus spp. Furthermore, in the evaporitic phase of the Messinian Polemi section 

(Cyprus), Wade & Bown (2006) recorded high abundances of Sphenolithus gr. in diatom rich layer, 

suggesting the ability of this species to thrive in mesotrophic environments. Similar diatom-Sphenolithus 

coupling assemblage were found in the Moncalvo section (Lozar et al., 2018). This further suggests that 

Sphenolithus gr. abundance is not only controlled by the water temperature, but also by other 

environmental parameters, such as nutrient availability in the water column (deep vs shallow, oligotrophic 

vs eutrophic).  

 

 

Umbilicosphaera rotula 

Ziveri et al. (2004) reported that the living relatives of U. rotula, Umbilicosphaera sibogae var. sibogae and 

Umbilicosphaera sibogae var. foliosa mostly occur under oligotrophic and mesotrophic conditions, 

respectively. Guerreiro et al. (2014) suggest that Umbilicosphaera gr. is an upper photic zone dweller. Alves 

et al. (2016) use the genus Umbilicosphaera as a proxy for eutrophic conditions, due to the negative 

correlation with the oligotrophic genus Discoaster in the Miocene record of the Campos Basin (Brasil). 

Flores et al. (2005) recorded the U. rotula maximum abundance preferentially in the Sorbas upper marls. 
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These authors suggest that U. rotula was able to thrive in surface waters where nutrients become depleted 

after diatoms blooms, in a stable pycnocline development regime. In our longer record, U. rotula is present 

in the upper marls as well, but maxima in abundance are also recorded in the upper marls-sapropel 

transition (base UA24, UA29 and UA32). The upper marls-sapropel transition (especially from UA17 

upwards) are deposited under severe conditions, as suggested by the absence of planktic foraminifer, 

pointing to the ability of U. rotula to thrive also in a “stressed” environment.  The “stressed” condition may 

be related to eutrophic surface water (Sierro et al., 1999; 2003). 

The finding of U. rotula high abundance, engulfed in a silica-rich matrix arranged in clusters, in the 

sediments recording the MSC-CN bioevent (this study, Fig. 6; Pollenzo section, Natalicchio et al., 2019) 

suggests that U. rotula was mainly transported to the sea floor by sinking fecal pellets. Fecal pellets are 

component of the marine snow, formed in the upper oxygenated layers during episodes of enhanced 

productivity (Alldredge and Silver, 1988; Dela Pierre et al., 2014). The finding of benthic foraminifers such 

as Bolivina gr. and Bulimina echinata concomitant with U. rotula peaks suggests high productivity in the 

water column and high organic matter export to the sea floor. This situation is exacerbated in cycles UA24 

and UA34, where U. rotula peaks are accompanied by very abundant benthic foraminifers (Sierro et al., 

2003; this study Fig. 5). This supports our interpretation that U. rotula was able to flourish in high 

abundance in eutrophic conditions.  

 

Rhabdosphaera clavigera 

R. clavigera is a living taxon; it is reported as a warm water species that proliferates in oligotrophic surface 

conditions (Ziveri et al., 2004); it has an opportunistic behaviour and does not tolerate low light irradiance 

levels (Haidar & Thierstein, 1997; Malinverno et al., 2003); it has a preference for a stable and stratified 

water column, not tolerating turbulence (coastal proximity and/or upwelling) (Silva et al., 2008). In the late 

Quaternary sapropels, the increase of Rhabdosphaera spp. and Florisphaera profunda are positively 

correlated (Castradori, 1992; Negri et al., 1999a, b), suggesting some connection with the Deep Chlorophyll 

Maximum (DCM) development. The R. clavigera-sapropel relationship was recorded in the lower cycles of 

the UA (Flores et al., 2005), while is not evident in our results. Our data show a scattered distribution, with 

few prominent peaks (3% - 8%) in the upper and lower marls and in diatomite of cycle UA28, coinciding 

with a glacial isotope stage (Van der Laan et al. 2008). Here, R. clavigera co-occurs with C. leptoporus and C. 

pelagicus, forming an assemblage already recorded by Silva et al. (2008) in the present-day Lisbon bay. 

Both C. leptoporus gr. and C. pelagicus prefer cold-temperate water column and high to moderate nutrient 

availability (Cachão and Moita, 2000; Cachão et al., 2000; Ziveri et al., 2004; Triantaphyllou et al., 2009; 

Okada and MacIntyre, 1979; Giraudeau et al., 1993; Giraudeau and Rogers, 1994 Winter et al., 1994; Negri 

et al., 1999a). It appears that the increase in abundance of the genus Rhabdosphaera can be explained by 

opportunistic behaviour at the end of the spring bloom when nutrient levels start to become impoverished. 
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Rhabdosphaera clavigera is a minor component of the Messinian CN assemblage (Flores et al., 2005; Lozar 

et al., 2018; Lozar & Negri, 2019; this study) that rarely exceed 10% of the total assemblage. The low R. 

clavigera abundance could be the result of some seasonal bloom, occurred when the spring temperature 

are high enough, runoff is low and nutrients are depleted in the upper water column. These conditions 

were seldom achieved during the deposition of the Upper Abad when the continental run-off was low 

during insolation maxima, or the spring temperatures were high enough during insolation minima. 

 

Helicosphaera carteri 

Helicosphaera carteri is an extant species that has been documented in mesotrophic/eutrophic, hyposaline 

and turbid waters (Giraudeau et al., 1992; Ziveri et al., 2004) and estuarine environments (Cachao et al., 

2002). Its presence in the Black Sea is a further evidence of the capability to withstand salinity fluctuations. 

H. carteri also proliferates in the mid photic zone (Corselli et al., 2002; Crudeli et al., 2006) and has a 

preference for warm waters (McIntyre and Bé 1967; Brand 1994; Ziveri et al., 2004). Generally, in the 

Sorbas basin, H. carteri maxima in abundance are cyclically reached close, or in, the diatomite. Our data 

also reveal that H. carteri abundance acme occurs between UA29 and UA30, concurrently with a 

pronounced Ba/Ca peak. These finding further indicate the ability of this species to tolerate salinity 

fluctuation (or reduction in the water transparency) due to the increased continental run-off in a 

mesotrophic environment.  

 

4.2 Factors controlling the sapropels deposition in the Sorbas Basin 

According to Sierro et al. (2003) the trigger for the sapropelitic deposition was the buoyancy gain of the 

surface water that promoted density stratification of the water column and anoxic condition at the sea 

floor. This mechanism was strengthened by the still relatively high productivity, which started during the 

deposition of the diatomite/upper marls and favoured the accumulation of organic matter at the sea floor 

(Sierro et al., 2003). This interpretation is based on the observation of the foraminifers distribution and 

their stable isotope signature. The new and extended CN data add new insights and contribute to better 

understand the mechanism of Messinian sapropel formation and its evolution towards the MSC onset.  

The CN assemblages recorded at the transition from upper marls to sapropel and in the basal portion of the 

sapropel is dominated by R. minuta, U. rotula and C. leptoporus gr. Reticulofenestra minuta reflects high 

nutrient availability in the upper water column (Flores et al., 1995, 2000; Takahashi and Okada, 2000;Wade 

& Bown, 2006; Imai et al., 2013, 2015, 2017; Auer et al., 2014; Athanasiou et al., 2015) as also highlighted 

by U. rotula (see 4.1). In our results, C. leptoporus gr. specimens mainly belong to the large morphotype, 
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which proliferate today in mesotrophic environments (Ziveri et al., 2004). At the same time, the transition 

to the sapropel is also characterized by the presence of cold/eutrophic planktic foraminifers, such as T. 

quinqueloba/multiloba (above UA20; Sierro et al., 2003) and G. bulloides (below UA16). Benthic 

foraminifers are commonly dominated by high nutrient/low oxygen taxa from ca. 6.4 Ma onward (Bulimina 

gr., Bolivina gr. and Uvigerina/Rectouvigerina) (Sierro et al., 2003). Their maximum abundance is cyclically 

reached in the upper-marls, followed by a sudden drop at the sapropel inception. At the sapropel base the 

concomitance of high productivity at the sea surface, disappearance of benthic foraminifera and 

preservation of organic matter strongly suggests that the increasing export of organic carbon to the sea 

floor exceeded the threshold leading to oxygen deficiency. Moreover, oligotrophy and stratification proxies 

are commonly lacking at the sapropel inception throughout the UA. Consequently, the anoxic conditions 

reached at the sea floor were more likely related to the huge oxygen consumption of the organic matter at 

the sea bottom rather than to the stagnation of the basin, similarly to what happens today in the Oxygen 

Minimum Zone (Schimmelmann et al., 2016).  

Evidences of stratification and DCM productivity are provided by Sphenolitus gr. high abundance in 

concomitance with surface oligotrophic planktic foraminifera (e.g. O. universa) in the middle-upper 

sapropel partition, where δ18O indicates a marked increase in the freshwater input (Sierro et al., 2003; 

Perez-Folgado et al., 2003, Reghizzi et al., 2017). With the establishment of predominantly stratified 

conditions, promoted by increasing runoff at time of maximum insolation (Sierro et al., 2003), most of the 

productivity shifted down to the DCM. The establishment of a DCM is a common feature characterizing the 

water column structure during Pleistocene sapropel deposition (Kemp & Villareal, 2013; Rholing et al., 2015 

and references therein). The primary production in the DCM is mainly a new production which greatly 

enhances the export of organic matter from the photic zone when the water column is stratified and the 

surface layer is depleted in nutrients (Legendre & Le Fevre, 1989; Eppley, 1989). Among other things 

(sinking speed, coating, sorption onto mineral particles, redox condition, microbial consumption; Hedge & 

Keil, 1995; Keil & Mayer, 2004; Burdige, 2007; Keil, 2017), the efficiency of organic carbon export also 

depends on the depth of the sea floor with respect to the (photic zone) depth at which most of the 

productivity is generated. We speculate that the development of a DCM permits an efficient transfer of the 

sinking organic carbon to the sea floor, also because the organic carbon does not flow throughout the 

photic zone, where the organic matter consumption is more effective (Neuer et al., 2002; De La Rocha & 

Passow, 2007). This mechanism is further enhanced when it occurs in a shallow environment like the 

Sorbas Basin, where benthic foraminifers and field observation suggest an evolution of the paleodepth 

from a fairly deep (1100m) at the LU/UA transition to a shelf depth (ca. 150m) prior the MSC onset 

(Dronkert, 1976; Troelstra et al., 1989; van de Poel et al., 1992; Baggley, 2000; Clauzon et al., 2015; 

Modestou et al., 2015).  
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Among DCM proxies, the absence of the DCM dweller Neogloboquadrinids, in concomitance with 

Sphenolithus gr., could be the result of different temperature preferences, because the living descendant of 

the Messinian Neogloboquadrinids proliferate today in the Mediterranean when winter temperatures are 

below 14°C (Kallel et al., 1997; Sierro et al., 2003). This is evident in the the sapropel of cycle UA32, which 

corresponds to a relatively low summer insolation maxima at 65°N (Laskar et al., 2004) compared to other 

cycles, allowing the Neogloboquadrinids to be present in high abundance (Sierro et al., 2003) and 

suppressing the Sphenolithus gr. abundance. Nevertheless, a good correlation exists between the 

Sphenolithus gr. and the Neogloboquadrinids by comparison of our results with the one provided by Sierro 

et al. (2003) (UA25, UA28 and UA33 lower marls). We argue that, while stratification increased during the 

middle upper part of the sapropel formation, productivity, in part transferred to the lower photic zone, 

remained an important factor leading to the organic matter preservation at the sea floor. Overall, the fossil 

assemblage reflects high productivity and organic carbon export at the sapropel inception (anoxia 

triggering factor), and the presence of stratification and a DCM in the upper part of the sapropel (anoxia 

maintaining factor). Deviations from the pattern above described are only observed in cycles UA25 and 

UA30, where Sphenolitus gr. are present already from the base of the sapropel, like in the UA5-UA8 interval 

(Flores et al., 2005). Planktic foraminifera are in line with these deviations; in fact, Globigerinoides 

sacculifer and O. universa are dominant (>80%) in UA25 and UA30 sapropel base, respectively, indicating a 

well-established stratification with oligotrophic and warm surface waters (Sierro et al., 2003). 

 

 

4.3 Factors controlling the diatomite deposition in the Sorbas Basin 

The precessional quadripartite cycle of the pre-evaporitic Sorbas Basin represents a general deviation from 

the recurrent tripartite “Tripoli” precessional cycle outcropping in Sicily and Gavdos (Blanc-Valleron et al., 

2002; Pèrez-Folgado et al., 2003). Basically, what differentiates the Sorbas Basin is the presence of the 

lower marls sandwiched between the sapropel and the diatomite. The fossil assemblage recorded in the 

lower marls is similar to that of the upper part of the sapropel, except for the presence of 

Neogloboquadrinids and benthic foraminifers. The Ba/Ca values are cyclically slightly higher in the lower 

marls suggesting an enhanced freshwater input. All the proxies (oligotrophic planktic foraminifers, 

Sphenolithus gr., the δ18O and the Neogloboquadrinids) still point to strong stratification of the water 

column, with oligotrophic condition at the surface and the presence of a pronounced DCM during the lower 

marl deposition (Fig. 8). Notwithstanding, the return of benthic foraminifers in the lower marls (Sierro et 

al., 2003) is a clear signal of an oxygenation recovery at the sea floor. Rather than a come-back of mixing 

process that deliver oxygen at the sea bottom, it could be inferred that at this time a further shoaling of the 

nutricline occurred, as a result of the continued and enhanced riverine input started during the upper part 

of the sapropels, as also suggested by Sierro et al. (2003). The shoaling of the nutricline may result in an 
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increased distance between the DCM and the sea floor, increasing the remineralisation of the organic 

matter during its sink trough the photic zone and suppressing the export flux at the sea floor, responsible 

for the anoxic condition.  

The diatomites are generally characterized by the presence of H. carteri, C. pelagicus and R. 

pseudoumbilicus gr. among the CN, and both cold/eutrophic and warm/oligotrophic planktic foraminifers 

(decreasing warm/oligotrophic over cold/eutrophic ratio; Sierro et al., 2003). The ecological requirement 

for H. carteri are discussed above (see 4.1); C. pelagicus is referred as a cold species with the preference of 

high nutrient availability (Negri et al., 1999a, b; Ziveri et al., 2004), probably provided by upwelling (Cachão 

and Moita, 2000; Giraudeau et al., 1993; Giraudeau and Rogers, 1994), although some authors attribute to 

C. pelagicus the capability to proliferate in a wide range of salinity (from 26.9 to 36‰) (Silva et al., 2008). 

Reticulofenestra pseudoumbilicus is referred to prefer high nutrient availability, with no particular 

preferences for water temperature (Lohmann and Carlson, 1981). The coexistence of cold/eutrophic, 

warm/oligotrophic and fresh water sensitive specimens may indicate that the diatomite deposition was 

characterized by strong seasonality, with more oligotrophic surface condition associated with a DCM during 

summer, and more eutrophic surface condition during winter/spring. A strong seasonality during the 

diatomite deposition is further indicated by the presence of Thalassionema and Rhizosolenia (Pèrez-

Folgado et al., 2003) among the diatoms. In fact, Thalassionema is generally associated with surface 

productivity (McKenzie et al., 1979; Moissette and Saint Martin, 1992), conditions probably occurred during 

winter, and Rhizosolenia is generally referred as a DCM inhabitant (Margalef, 1978; Kemp and Villareal, 

2013), condition probably occurred during summer. 

According to Filippelli et al. (2003) siliceous productivity was triggered by a mechanism of enrichment in 

phosphorous, called sediment-nutrient-oxygen feedback (SNO Effect), which acted within the Sorbas Basin 

at the precessional scale. The authors suggest that during the sapropel deposition, the bottom water 

stagnation caused the build-up of phosphorous in the surface sediments, below the photic zone. This 

trapped the phosphorous reservoir below the pycnocline; the phosphorous was then injected back in the 

photic zone at the recovery of the water mixing during cold phase, resulting in an increased biosiliceous 

productivity and the consequent diatomite deposition. Supporting this scenario, we also claim that the 

dissolved silica is the main limiting nutrient for biosiliceous productivity (Ragueneau et al., 2000), and the 

preservation of the diatom frustules is strongly related to the dissolved silica content in the water column 

and in the sediments (Pellegrino et al., 2018). The dissolved silica in the ocean, like phosphorous, is mainly 

provided by continental run-off (Paytan and Karen McLaughlin, 2007; Treguer & De La Rocha, 2013; 

Pellegrino et al., 2018) and it can be associated with the phosphorous SNO effect as well, because the silica 

content in the water column increases with water depth. The dissolved silica and phosphorous were mainly 

provided by the rivers during the upper part of the sapropel and lower marl deposition, remaining trapped 

below the photic zone because of the stratification that occurred at this time. When the temperature 
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started to gradually decrease, promoting water mixing and the disruption of the stratification, the nutrients 

were distributed in the photic zone stimulating biosiliceous productivity. Moreover, the same mechanism 

suggested by Filippelli et al. (2003) at the precessional scale, may be responsible for the cyclical dissolved 

silica and phosphorous enrichment in the photic zone during an annual cycle: during spring the nutrient 

were provided by run-off and remained trapped below the photic zone during summer stratification, then 

the stratification break during autumn/winter distributed the nutrients in the photic zone. The break of the 

stratification that occur during late autumn, could promote a huge diatoms flux at the sea bottom (i.e. fall 

dump, according to Kemp et al. 2000). The rapid accumulation of diatoms at the sea floor was responsible 

of the temporary oversaturation of dissolved silica, promoting diatom frustules preservation. The 

Neogloboquadrinids are phytoplankton grazers which feeds diatoms that are adapted to exploit the DCM 

(Hemleben et al., 1989; Sierro et al., 2003). The concomitant presence of scattered diatom frustules and 

the Neogloboquadrinids during the lower marls deposition, indicate that the diatoms were present also 

during this interval, but the diatom flux at the sea floor was not sufficient to sustain the dissolved silica 

oversaturation, responsible for the diatoms preservation.  

The strong seasonal signal derived by the microfossil assemblages which characterizes the diatomites 

suggests that runoff was still important to sustain siliceous productivity by replacing the fraction of silica 

buried in the sediments. 

Above the diatomites, the upper marls are characterized by high productivity mainly confined in the surface 

water expressed by the fossil assemblage (see 4.2). Thus, the decline of the siliceous productivity (below 

the threshold of silica preservation) was related to the combination of the depletion of the silica and 

phosphorous deep reservoir (by means of the SNO effect) and the decreased runoff contribution (Sierro et 

al., 2003). The latter was a consequence of the decreasing insolation index leading to drier and colder 

conditions. 

 

 

 4.3. The sapropel UA34 case  

Differently from cycles UA1 to UA33, the cycle UA34 does not show the quadripartite pattern, as it is mainly 

made up of dark, organic-rich marls (sapropel-like), intercalated with three indurated layers (see chapter 

2.2). Increases of R. pseudoumbilicus gr. and C. pelagicus were recorded below the second limestone layer 

in organic-rich layers. In our results R. pseudoumbilicus gr. and C. pelagicus maxima abundance are 

recorded during diatomite deposition, consequently we suggest that the R. pseudoumbilicus gr. and C. 

pelagicus increases in the cycle UA34, in the poorly or well laminated sapropels below the second 

limestone layer, indicate the transition from insolation maximum to minimum. The transition from 

insolation maximum to insolation minimum is further indicated by diatoms presence, which frequently 

occurred at this level (Fig.4). We suggest that, at the time just before the MSC onset, the ongoing basin 
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restriction promoted an increase in the marine productivity resulting in an enhanced export of the organic 

matter to the sea bottom; this in turn led to anoxic bottom conditions, without the contribution of the 

stagnation of the deep water. This mechanism resulted in a constant accumulation of organic-rich 

sediments and the obliteration of the cyclic pattern observed in the older UA cycles. 

This represents another clue indicating that the stagnation of the basin played a secondary role in the 

sapropel deposition in the shallow Sorbas Basin, which is best explained by oxygen consumption at the sea 

bottom due to the high productivity and high organic matter export from the photic zone. 

 

4.4 The MSC-CN bioevent record in the Western Mediterranean  

Basically, the MSC bioevent was recorded in all land sections reporting a CN abundance record. The MSC 

bioevent consists of a succession of abundance peaks of the species S. abies, followed or accompanied by 

H. carteri, U. rotula and R. clavigera. This peculiar succession of bioevents is recorded in the Perales section 

in the cycle UA34, reinforcing the idea that the same paleoenvironmental change took place in the whole 

Mediterranean approximately at the MSC onset. Based on the reported widespread occurrence, we 

confirm that the MSC bioevent is a good proxy of the MSC onset occurrence (Lozar et al., 2018) and it also 

represents a reliable tool for deciphering the environmental changes characterizing the onset of this basin-

wide event. Information regarding the MSC-CN record across the Mediterranean and its detailed 

description are collected in Lozar and Negri (2019). 

 

4.5 Paleoenvironmental reconstruction during the MSC bioevent 

Prior to the MSC, the Mediterranean was affected by a progressive restriction of the marine connections 

with the Atlantic Ocean, commonly related to tectonic uplift processes in the gateway area (Duggen et al., 

2003; Garcia-Castellanos and Villaseñor, 2011). The first evidence of significant restriction in the 

Mediterranean–Atlantic exchange was recorded by a reduction of deep-water ventilation all over the 

Mediterranean at 7.15 Ma, after the Tortonian–Messinian boundary (Kouwenhoven et al., 1999, 2003). This 

event is also associated with the increased deposition of diatom-rich sediments (Tripoli Formation, Sicily) or 

opal-rich deposits (Upper Abad, Spain) observed between 7.15 Ma and 6.7 Ma throughout the 

Mediterranean. The widespread precipitation of authigenic calcite, dolomite and/or aragonite between 6.3 

and 5.97 Ma, immediately prior to the MSC onset, is another response to ongoing restriction (Roveri et al., 

2014). This restriction in the Sorbas Basin resulted in a shallowing of the basin (Dronkert et al., 1976; 

Troelstra et al., 1980; van de Poel et al., 1992; Baggley, 2000; Clauzon et al., 2015, Modestou et al., 2015). 

An abrupt shoaling of the water depth (from 500-300 to 200m) is recorded in Pissouri section (Cyprus; 

Kouwhenoven et al., 2006) during the MSC bioevent, found just below the “barre jaune” that precedes the 

evaporites deposition. In Banengo, Moncalvo and Pollenzo sections (Italy; Lozar et al., 2018) only few 
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precessional cycles (from 2 to 4) are present below the MSC bioevent, complicating the recognition of 

shoaling features. However, in these sections, the MSC bioevent is accompanied by the presence of benthic 

foraminifers indicating shallow water (Banengo and Moncalvo; Lozar et al., 2018) or deep outer neritic to 

bathyal environment (Pollenzo section; Lozar et al., 2018).  

As described above, the cycle UA34 of the Sorbas Basin represents the pre-evaporitic restriction acme. In 

this framework the MSC biovent, found approximately at the MSC onset in the whole Mediterranean, is 

somehow related to this restriction effect. The acme of the pre-evaporitic basin restriction had the effect of 

modifying the basin susceptibility to the fresh water and nutrient input, due to decreased dilution caused 

by the reduction of the entering Atlantic water in the Mediterranean. This ultimately had the effect of 

amplifying the (paleo) ecological signal recorded in the sediment.  

Approximately at the MSC onset, during the insolation maximum, the basin restriction in the whole 

Mediterranean, continuously affected by continental run-off, may have resulted in a reduced surface water 

buoyancy loss. The density differences between surface and intermediate waters is a recurrent feature 

reported before and during sapropel formation (Rohling et al., 2015 and references therein) and is thought 

to trigger the shoaling of the intermediate water toward the base of the photic zone, promoting new 

nutrient advection and fuelling the DCM (Rohling & Gieskes. 1989; Castradori et al., 1993; Rohling et al., 

1994; Corselli et al., 2002). These conditions could have triggered the Sphenolithus gr. peak during the MSC-

CN bioevent in the whole Mediterranean. When the protracted continental run-off further decreased the 

surface buoyancy loss and triggered a further shoaling of the DCM, Sphenolithus gr. started to decrease. 

The protracted continental run-off also resulted in an increased surface salinity fluctuation, turbidity and 

high nutrient supply, limiting the light penetration in the photic zone and constraining the productivity in 

the middle-upper photic zone. These conditions led U. rotula and H. carteri to flourish. Seasonally, when 

the spring temperatures were high enough and nutrients started to be depleted or confined to the upper 

photic zone, R. clavigera peaked.  

Above the MSC bioevent, the CN continue to be present for one precessional cycle in Tokhni section 

(Cyprus; Gennari et al., 2018), for two precessional cycles in Pollenzo section (Italy; Lozar et al., 2018), for 

ten precessional cycles in Fanantello section (Italy, Manzi et al., 2007); in Moncalvo (Italy; Lozar et al., 2018) 

only diatoms are recorded in the cycles above the MSC bioevent. In all of these sections the evaporite 

deposition is delayed and replaced by organic-rich shales and carbonate. Overall, the fossil assemblage 

following the MSC bioevent reflects eutrophic conditions (Lozar et al., 2018; Gennari et al., 2018), resulting 

from the gateway restriction amplifying the continental run-off delivery of nutrients into the receiving 

basin. We suggest that the widespread record of the MSC-CN bioevent in the Mediterranean is the fossil 

signal marking the last step of the restriction straddling the MSC onset, resulting in a widespread increase 

of marine productivity due to the overwhelming influence of the continental run-off to the basin. 
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5 CONCLUSIONS 

CN and geochemical analyses on O. universa tests were performed on the sediments spanning the MSC 

onset in the Sorbas Basin, adding new insight on the paleoenvironmental condition triggering the cyclical 

deposition of the lithological quadripartite cycle and on the MSC onset. 

Some important differences emerged between the most recent Holocene/Pleistocene sapropels deposited 

in deep water setting and the shallow Sorbas Basin sapropels. The formers were commonly characterized 

by a stratified water column at the onset of the saropelitic episode; the latter by high organic carbon export 

at the sapropel inception and by a DCM development in the middle-upper part of the sapropel. These 

differences challenged the view of a single mechanism as a trigger for the cyclical sapropel deposition 

throughout the Neogene and Quaternary Periods. Whilst the disruption of deep and intermediate water 

circulation can still be considered the driving cause for deep water Plio-Pleiostecene sapropel formation 

(Rohling et al., 2015), we point for productivity processes as more relevant in marginal and restricted 

basins, like the Sorbas Basin.  

The diatomite preservation in the geological record is related to conditions of exceptional high dissolved 

silica in the water column, that is mainly provided by the rivers. In the Sorbas Basin the increased 

freshwater input, occurred during the upper part of the sapropel and the lower marl deposition, generated 

a deep reservoir of nutrients (dissolved silica and phosphorous) that were injected in the photic zone when 

the decrease in temperature promoted the disruption of the stratification. This mechanism promoted a 

huge diatoms proliferation and the consequent diatomite deposition. When the deep reservoir of dissolved 

silica was exhausted and was not replaced by continental run-off, bioturbated marl were deposited again at 

the top of the precessional cycle. 

In the last pre-evaporitic cycle (UA34), C. pelagicus and R. pseoudoumbilicus gr. increase their abundance 

indicating a temperature decrease, a condition matching the passage from insolation maximum to 

insolation minimum. At this time, the deposition of sapropel-like layers further suggests that the deposition 

of organic-rich sediments does not necessarily require deep water stagnation.  

The cycle UA34 also records a precise sequence of CN peaks in abundance (MSC-CN bioevent); this event 

was previously reported in the Messinian sections straddling the MSC onset in the Northern and Eastern 

Mediterranean. The MSC-CN bioevent is comprised by a succession of peak abundances of Sphenolithus gr., 

followed or accompanied by U. rotula, H. carteri and R. clavigera, and represents a useful tool to 

approximate the MSC onset. This peculiar and widespread fossil signal is the result of the restriction 

affecting the Atlantic gateway, that ultimately amplified the nutrients and continental run-off susceptibility 

of the Mediterranean Basin, due to the decreased dilution effect of the Atlantic water in the recipient 

basin. The obliteration of the lithologically quadripartite cycle affecting the last pre-evaporitic cycle is also 

related to this restriction pulse. Overall, in both Eastern and Western Mediterranean the fossil signal above 
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the MSC-CN bioevent reflects the increase in marine productivity induced by the basin restriction that 

triggered the evaporitic phase.  

 

Appendix A: Taxonomic appendix: 

 

Amaurolithus delicatus (Gartner and Bukry, 1975) 

Amaurolithus primus (Bukry and Percival, 1971)  

Braarudosphaera bigelowii (Gran & Braarud 1935)  

Calcidiscus leptoporus (Murray and Blackman, 1898) 

Calciosolenia fossilis (Deflandre in Deflandre & Fert 1954)  

Coccolithus pelagicus (Wallich, 1877) 

Discoaster brouweri (Tan, 1927) 

Discoaster pentaradiatus (Tan, 1927) 

Discoaster variabilis (Martini and Bramlette, 1963) 

Discosphaera tubifera (Murray & Blackman 1898)  

Helicosphaera carteri (Wallich, 1877) 

Pontosphaera discopora (Schiller, 1925) 

Pontosphaera japonica (Takayama 1967)  

Pontosphaera multipora (Roth, 1970) 

Reticulofenestra antarctica (Haq, 1976)  

Reticulofenestra haqii (Backman, 1978) 

Reticulofenestra minuta (Roth, 1970) 

Reticulofenestra pseudoumbilicus (Gartner, 1967). 

Reticulofenestra rotaria (Theodoridis, 1984) 

Rhabdosphaera clavigera (Murray and Blackman, 1898) 

Sphenolithus abies (Deflandre and Fert, 1954) 

Sphenolithus moriformis (Brönnimann & Stradner, 1960)  

Syracosphaera pulchra (Lohmann, 1902) 

Umbilicosphaera rotula (Kkamptner, 1956) 

Umbilicosphaera jafari (Mu¨ ller, 1974) 

Thoracosphaera heimii (Lohmann 1920)  
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Highlights 

-Sapropel and diatomite deposition in the Sorbas Basin 

-The MSC-CN bioevent is recorded in the Western Mediterranean 

-The MSC-CN bioevent marks the last restriction step of the Mediterranean Basin  
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