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Abstract

We consider the classical instantonic contribution to the open string configuration associated with three 
D-branes with relative rotation matrices in SO(4) which corresponds to the computation of the classical 
part of the correlator of three non Abelian twist fields. We write the classical solution as a sum of a product 
of two hypergeometric functions. Differently from all the previous cases with three D-branes, the solution 
is not holomorphic and suggests that the classical bosonic string knows when the configuration may be 
supersymmetric. We show how this configuration reduces to the standard Abelian twist field computation. 
From the phenomenological point of view, the Yukawa couplings between chiral matter at the intersection 
in this configuration are more suppressed with respect to the factorized case in the literature.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and conclusions

The study of viable phenomenological models in the framework of String Theory often in-
volves the analysis of the properties of systems of D-branes. Clearly the inclusion of the physical 
requirements needed for a consistent theory deeply constrains the possible scenarios. In particu-
lar the chiral spectrum of the Standard Model acts as a strong restriction on the possible D-brane 
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setup. Intersecting branes represent a relevant class of such models with interacting chiral mat-
ter.

In this paper we focus on the development of technical tools for the computation of Yukawa in-
teractions for D-branes at angles [1–10]. These couplings, as well as the study of flavor changing 
neutral currents [11], are crucial in determining the validity of the different models. Moreover, 
several similar computations heavily require the ability to compute correlation functions of twist 
fields and excited twist fields and Green functions in the presence of twists.

The computation of the correlation functions of Abelian twist fields is the subject of a vast and 
solid literature and play a prominent role in many scenarios, such as magnetic branes with com-
muting magnetic fluxes [12–16], strings propagating in a gravitational wave background [17–20], 
D-brane bound states [21–23] and tachyon condensation in Superstring Field Theory [23–26]. 
A similar investigation can be extended to the properties of excited twist fields even though they 
are slightly more subtle to treat and hide many more delicate aspects [27–32]. Nonetheless, many 
results were found starting from the old dual models up to more modern interpretations of String 
Theory [33,34]. The generalization of the correlation function of pure twists fields to an arbi-
trary number of plain and excited twist fields (in combination with the usual vertex operators) 
is however more recent [35–37] and blends the CFT techniques with the path integral approach 
and the study of the Reggeon vertex [38–42]. The same result has also been recovered in the 
framework of the canonical quantization [43] and shows a global picture behind the computation 
of the correlators instead of a case-by-case dependence.

In the framework of intersecting D6-branes at angles we study the case of the D-branes whose 
relative rotations are non Abelian and, as a consequence, present non Abelian twist fields at the 
intersections. We try to understand the subtleties and technical issues arising from such scenario 
which has been studied only in few cases: in older days in the formulation of non Abelian orb-
ifolds [44–47] and more recently for a D-branes system whose relative rotations are in SU(2)

[48].
The configuration for which we develop the technical tools needed to study the Yukawa 

couplings is three D6-branes inside R1,9 with an internal space of the form R4 × R
2, prior to 

compactification to a torus, where the branes are embedded as lines in R2 and as bi-dimensional 
surfaces inside R4. In particular we focus on the relative rotations which characterize each brane 
in R4 with respect to the others. They will generally be non commuting SO(4) matrices.

In this paper we study the classical solution of the bosonic string which governs the behavior 
of the correlator of twist field and consequently the Yukawa couplings. In fact, once we separate 
the classical contribution of the string from the quantum fluctuations, using the path integral 
approach, we can write the correlator of NB twist fields as〈

NB∏
t=1

σM(t)
(xt )

〉
=N

({
xt ,M(t)

}
1≤t≤NB

)
e
−SE

({
xt ,M(t)

}
1≤t≤NB

)
,

where M(t) (1 ≤ t ≤ NB ) are the monodromies induced by the twist fields, NB is the number of 
D-branes (and their intersections) and xt are the interaction points on the string worldsheet. Even 

though the quantum corrections in N
({

xt ,M(t)

}
1≤t≤NB

)
are crucial to the complete determi-

nation of the correlator, the classical contribution to the Euclidean action represents the leading 
term of the Yukawa couplings. In this paper we address only this point in order to better under-
stand the differences from the usual factorized case and generalize the results of the previous 
analysis on non Abelian rotations of the branes. We will not consider the quantum corrections 
since they cannot be computed with the actual techniques and their determination requires the 
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computation of the 4 twists correlator which requires knowledge of the connection formula for 
Heun functions which is not known.

In the second section of this paper we study the boundary conditions for the open string 
describing the D-branes embedded in R4. We first define the embedding of a brane locally in 
a well adapted frame of reference where all branes have the same embedding conditions, then 
we connect all these local descriptions using a global coordinate system. In this reference frame 
each brane is rotated with respect to the others and this gives raise to monodromies of the doubled 
string coordinate fields.

In the third section we choose the monodromies in SO(4) and we rewrite the bound-
ary conditions problem in spinor representation by means of the local isomorphism SO(4) ∼=
SU(2) × SU(2). In doing so we recast the issue of finding the solution intended as 4 real vector 
in the search of two solutions in the fundamental of SU(2), one for each SU(2).

In the fourth section we solve the previous problem of finding two functions transforming as 
a vector of SU(2) by means of a basis of hypergeometric functions. In particular we show how 
to relate the parameters of the rotations and the parameters of the hypergeometric equation and 
the fact that a rescaling factor is needed with respect to the conventionally normalized basis of 
solutions of the hypergeometric equation. Given the infinite number of solutions representing 
the same rotations and labeled by the choice of integer factors, we isolate the correct and finite 
number of solutions, actually two, by looking for independent hypergeometric functions and a 
finite Euclidean action.

The fifth section is dedicated to recovering the previous results from the general case. We com-
pute the Abelian limit of the monodromies and we connect the parameters of the SU(2) × SU(2)

to the usual parameters used in the geometrical construction. We then show how the known result 
follows naturally and we encounter the same analyticity properties of the field which have been 
shown in the past. We check also that the case of SU(2) monodromies is smoothly recovered.

Eventually, in the last section we give a natural interpretation of the result highlighting the 
key differences between the case of Abelian twist fields and the general setup and showing the 
physical consequences on the Yukawa couplings. The final result shows a substantial difference 
between the Abelian and the non Abelian case and even between the SU(2) × SU(2) and SU(2)

cases. In the Abelian formulation the contribution of the Euclidean action is exactly the area of 
the triangle formed by the intersecting branes in R2, that is the string worldsheet is completely 
contained inside the polygon and the action is indeed proportional to its area. In the non Abelian 
case, even though the three intersection points still define a 2-dimensional plane in R4, the string 
worldsheet is no longer flat and spans a larger area with respect to the previous case. Intuitively, 
because of the non Abelian nature of the D-brane rotation, the string has to bend in order to 
stretch between the branes and cannot entirely reside on a flat surface. The difference between 
the SO(4) and SU(2) cases is more subtle: in the SU(2) case there exist complex coordinates for 
R4 for which the classical string solution is holomorphic in the upper half plane while in SO(4)

case this does not happen. The reason of this can probably be traced back to supersymmetry, 
even if we are dealing with the bosonic part only. In fact, for branes rotated by SU(2) elements, 
part of the spacetime supersymmetry is preserved. The further suppression with respect to the 
Abelian case of the Yukawa interactions represents the physical interpretation of the result.

2. D-brane configuration and boundary conditions

Even though we are ultimately interested to the framework of superstrings and D6-branes 
intersecting at angles in the internal space, we will focus on the bosonic string embedded in 
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R
1,d+4. The branes are seen as 2-dimensional Euclidean planes in R4 times possible further 

dimensions in R1,d . We then specifically concentrate on the Euclidean explicit solution for the 
classical bosonic string in this scenario.

The mathematical analysis is however more general and can be applied to any Dp-brane 
embedded in a generic Euclidean space Rq . The full classical solution can in principle be written 
also in this case provided one can find the explicit form of the basis of functions with the proper 
boundary and monodromy conditions. This is possible in the case of three intersecting branes 
but in general it is an open mathematical issue. In fact, in the case of three branes with generic 
embedding we can usually connect a local basis around one intersection point to a local basis 
around a second intersection point, the third depending on the first two intersections, by means 
of Mellin-Barnes integrals. This way the solution can be explicitly and globally constructed. 
However, with more than three D-branes (consequently, intersection points) the situation is by 
far more difficult since the explicit form of the connection formulas is not known and therefore 
we cannot write any local basis with respect to the others. Hence the global solution cannot be 
fully specified.

2.1. Intersecting D-branes at angles

First of all we describe more precisely the embedding of the D-branes in R1,d+4 associated 
to the Euclidean space R4 which is the main focus of this paper. Let NB be the total number of 
D-branes and t = 1, 2, . . . , NB be an index defined modulo NB to label them, then we can de-
scribe one of those D-branes in a well adapted system of coordinates XI

(t), where I = 1, 2, 3, 4, 
as:

X3
(t) = X4

(t) = 0. (2.1)

That is, we choose X1
(t) and X2

(t) to be the coordinates parallel to the brane labeled with D(t)

while X3
(t) and X4

(t) are the coordinates orthogonal to it.
This well adapted reference coordinates system is connected to the global R4 coordinates XI , 

which we use to study the entire set of D-branes, as:

XI
(t) = (R(t)

)I
J

XJ − gI
(t) for I, J = 1, 2, 3, 4, (2.2)

where R(t) represents the rotation of the D-brane D(t) and g(t) its translation with respect to the 
origin of the global set of coordinates (see Fig. 1 for a 2-dimensional example). While we could 
naively consider R(t) ∈ SO(4), rotating separately the subset of coordinates parallel and orthog-
onal to the D-brane does not affect the embedding and it just amounts to a trivial redefinition of 
the initial well adapted coordinates. Therefore R(t) is actually defined in the Grassmannian:

R(t) ∈ SO(4)

S (O(2) × O(2))
, (2.3)

that is we need only consider the left coset where R(t) is a representative of an equivalence 
relation of the form

R(t) ∼O(t)R(t),

where the S (O(2) × O(2)) element O(t) is defined as

O(t) =
(

O‖
(t)

O⊥

)

(t)
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Fig. 1. Geometry of branes at angles in the factorized case: branes are embedded in the plane R2 as lines. Here, the 
geometrical interpretation of g(t) is straightforward and such that g⊥

(t)
≥ 0 and we describe the planar rotation R(t)(α(t)) ∈

SO(2)U(1) by means of a single parameter −1 ≤ α(t) < 1.

with O‖
(t)

∈ O(2), O⊥
(t) ∈ O(2) and det(O(t)) = 1. Here we adopted a shorthand notation which we 

will use again later: the superscript ‖ represents any of the coordinates parallel to the brane, while 
⊥ any of the orthogonal directions. Notice that we write S (O(2) × O(2)) and not SO(2) ×SO(2)

since the additional Z2 group can be used to set g⊥
(t) ≥ 0.

2.2. Boundary conditions for branes at angles

We now consider the implications of the embedding of the branes on the boundary conditions 
of the open strings. Let τE = iτ be the Euclidean time direction, then we define the usual upper 
plane coordinates:

u = x + iy = eτE+iσ ∈ H ∪ {z ∈C | Im z = 0} ,

u = x − iy = eτE−iσ ∈ H ∪ {z ∈C | Im z = 0} ,

where H = {z ∈C | Im z > 0} is the upper complex plane, H = {z ∈ C | Im z < 0} is the lower 
complex plane and u = u∗ by definition. In the conformal coordinates u and u, D-branes are 
mapped to the real axis Im z = 0 and we use the symbol D(t) to specify both the brane and the 
interval representing it on the real axis of the upper half plane:

D(t) = [xt , xt−1
]
,

where t = 2, 3, . . . , NB and xt < xt−1. The points xt and xt−1 represent the worldsheet inter-
section points of the brane D(t) with the branes D(t+1) and D(t−1) respectively. With this choice 
we have to consider carefully the interval 

[
x1, xNB

]
representing the brane D(1): since the branes 

are defined modulo NB , as shown in Fig. 2, it actually is:

D(1) = [x1,+∞) ∪ (−∞, xNB

]
.

In the global coordinates system XI (I = 1, 2, 3, 4), associated to the subspace R4 ⊂R
1,d+4

where branes are generically rotated by a non Abelian rotation, the relevant part of the string 
action in conformal gauge is:
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Fig. 2. Each interval 
[
xt , xt−1

]
for t = 2, 3, . . . , NB defines the brane D(t) . The brane D(1) is actually defined on the 

union of the intervals 
(−∞, xNB

]
and [x1,+∞).

SR4 = 1

2πα′

∫∫
H

d2u∂XI ∂XI =

= 1

4πα′

∫∫
R×R+

dx dy

((
∂XI

∂x

)2

+
(

∂XI

∂y

)2)
,

(2.4)

where d2u = du du = 2 dx dy and

∂ = ∂

∂u
= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂ = ∂

∂u
= 1

2

(
∂

∂x
+ i

∂

∂y

)
.

Clearly, the equations of motion in these coordinates are:

∂∂XI (u,u) = 1

4

(
∂2

∂x2 + ∂2

∂y2

)
XI (x + iy, x − iy) = 0, (2.5)

and their solution factorizes as usual in left and right moving parts:

XI (u,u) = XI
L(u) + XI

R(u).

The information on the D-branes is in the boundary conditions which we now discuss.
In the well adapted coordinates, where the embedding is given by (2.1), we describe an open 

string with one of the endpoints on the brane D(t) through the relations:

∂σX
i
(t)(τ,σ)

∣∣∣
σ=0

= ∂yX
i
(t)(u,u)

∣∣∣
y=0

= 0 for i = 1, 2, (2.6)

Xm
(t)(τ,0) = Xm

(t)(x, x) = 0 for m = 3, 4, (2.7)

where x ∈ D(t) = [xt , xt−1
]

and the index i labels the Neumann boundary conditions associated 
with the parallel directions while m labels the Dirichlet coordinates associated to the normal 
ones. As argued in the previous section, this well adapted set of coordinates is connected to the 
global coordinates XI as in (2.2).

In order to deal with the presence of gm
(t) in (2.2) and (2.7) and to get simpler boundary condi-

tions, we consider the derivative along the boundary direction of (2.7) in such a way to remove 
the dependence on the translation gm

(t). This procedure produces simpler boundary conditions 
which are nevertheless not equivalent to the original ones: they will be recovered later by adding 
further constraints. The simpler boundary conditions for the global coordinates are:



164 R. Finotello, I. Pesando / Nuclear Physics B 941 (2019) 158–194
(
R(t)

)i
J

∂σX
J (τ,σ)

∣∣∣
σ=0

= 0 for i = 1, 2,(
R(t)

)m
J

∂τX
J (τ,σ)

∣∣∣
σ=0

= 0 for m = 3, 4.

In the upper half plane coordinates and using the solution of the equations of motions they be-
come:(

R(t)

)i
J

(
∂XJ

L(x + i0+) − ∂XJ
R(x − i0+)

)
= 0 for i = 1, 2,(

R(t)

)m
J

(
∂XJ

L(x + i0+) + ∂XJ
R(x − i0+)

)
= 0 for m = 3, 4,

where x ∈ D(t).
Introducing the matrix

S =

⎛⎜⎜⎝
1

1
−1

−1

⎞⎟⎟⎠ , (2.8)

we can write the full boundary conditions (not just the simplified version we have just discussed) 
in terms of discontinuities along the branes and space time interactions points as:{

∂XI
L(x + i0+) = (U(t)

)I
J

∂XJ
R(x − i0+) for xt ≤ x < xt−1

XI (xt , xt ) = f I
(t)

, (2.9)

where

U(t) = R−1
(t) SR(t) ∈ SO(4)

S(O(2) × O(2))
(2.10)

and f(t) is the target space embedding of the worldsheet interaction point between the brane D(t)

and D(t+1). Given its definition, it is trivial but nonetheless critical to show that U(t) satisfies

U(t) = U−1
(t) = UT

(t).

On the other hand, another key point is the fact that f(t) recovers the apparent loss of infor-
mation on the translation g(t). Consider for instance the embedding equations (2.7) for any two 
intersecting branes D(t) and D(t+1), then introducing the auxiliary quantities

R(t,t+1) =
(

Rm
(t)

Rn
(t+1)

)
∈ GL4(R) for m,n = 3,4,

G(t,t+1) =
(

gm
(t)

gn
(t+1)

)
∈R

4 for m,n = 3,4,

we compute the intersection point as:

f(t) = (R(t,t+1)

)−1 G(t,t+1).

The result shows that information on the parameter g(t) is recovered through the global boundary 
conditions in the second equation of (2.9).
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2.3. Doubling trick and branch cut structure

In going from the boundary conditions (2.6) and (2.7) to (2.9) we introduced discontinuities 
across each D-brane thus defining a non trivial cut structure on the complex plane. We introduce 
the doubling trick to deal with fields which take values on the whole complex plane by gluing 
the relations along an arbitrary but fixed D-brane D(t):

∂X (z) =
{

∂XL(u) if z = u and Im z > 0 or z ∈ D(t)

U(t)∂XR(u) if z = u and Im z < 0 or z ∈ D(t)

. (2.11)

Let

U(t,t+1) = U(t+1)U(t),

Ũ(t,t+1) = U(t)U(t)U(t+1)U(t),

then we restate the boundary conditions in terms of the doubling field:

∂X (xt + e2πi (η + i0+)) = U(t,t+1)∂X (xt + η + i0+), (2.12)

∂X (xt + e2πi (η − i0+)) = Ũ(t,t+1)∂X (xt + η − i0+), (2.13)

for 0 < η < min (|xt−1 − xt |, |xt − xt+1|) in order to consider only the two intersecting D-branes 
D(t) and D(t+1). The matrices U(t,t+1) and Ũ(t,t+1) represent the non trivial monodromies, conse-
quence of the rotation of the branes and their boundary conditions. Notice however that they are 
somewhat special SO(4) matrices and in section 3.3 we give the general parametrization in term 
of SUL(2) × SUR(2) parameters. Given the non Abelian characteristic of the rotations, there 
are two different monodromies depending on the base point: one for paths starting in the upper 
plane H and one for paths starting in H. As a consequence of the nature of the rotations of the 
D-branes, a path on the complex plane enclosing all the branes simultaneously does not show 
any monodromy:

NB∏
t=1

U(t−t,t+1−t) =
NB∏
t=1

Ũ(t+t,t+1+t) = 14,

where t is, as always, defined modulo NB . These relations reveal that the complex plane has 
branch cuts running between the branes, at finite, as shown in Fig. 3. We therefore translated the 
rotations of the D-branes in terms of U(t,t+1) and Ũ(t,t+1) which are the matrix representation of 
the homotopy group of the complex plane with the described branch cut structure.

As a consistency check of the procedure, the string action (2.4) can be computed in terms of 
the new doubling field: the map

xt + η ± i0+ 
→ xt + e2πi (η ± i0+)

must leave the action invariant since it does not depend on the branch cut structure in the first 
place. In fact, it is easy to show that

S = 1

4πα′

∫∫
C

dz dz∂X T (z)U(t)∂X (z),

where d2z = dz dz = 2 dx dy, is left untouched by the map.
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Fig. 3. The appearance of non trivial discontinuities or monodromies on the branes shows that the complex plane has 
a branch cut structure. The particular nature of the rotations of the D-branes is such that the branch cuts run along the 
boundary between finite points. Here we show the case of four D-branes, i.e. NB = 4.

3. D-branes at angles in spinor representation

In the previous section we showed how to encode the rotations of the D-branes in matrices 
representing the non trivial monodromies of the doubling field. In order to find a solution to the 
equations of motion with the boundary conditions determined by the brane rotations, we should 
now find an explicit solution ∂X (z) such the non trivial monodromies in (2.12) and (2.13) can 
be reproduced.

At first analysis ∂X (z) is a 4-dimensional real vector which has NB non trivial monodromies 
factors represented by 4 × 4 real matrices, one for each interaction point xt . The solution to the 
string equations of motion is therefore represented by four linearly independent functions with 
NB branch points. We can try to look for them among the solutions to fourth order differential 
equations with NB finite Fuchsian points. This is however an open mathematical problem in its 
general statement: the basis of such functions around each branch point are usually complicated 
and defined up to several free parameters. Moreover, and more importantly, the connection be-
tween any two of these basis is an unsolved mathematical problem. Using contour integrals and 
representing the functions as Mellin-Barnes integrals it might be possible to solve the issue in 
the very special case NB = 3 but it is certainly not the best course of action.

On the other hand our main interest is to find a solution precisely for NB = 3. We then use the 
isomorphism

SO(4) ∼= SU(2) × SU(2)

Z2

in order to restate the problem of finding a 4-dimensional real solution to the equations of motion 
to a quest for a 2 × 2 complex matrix. This matrix can be seen as a linear superposition of tensor 
products of two (complex) vectors in the fundamental representation of two different SU(2). 
We can think of these vectors as a solution to a second order differential equation with three 
Fuchsian points, possibly the hypergeometric equation. Our task is then to map the original 
SO(4) monodromies into two sets of SU(2) monodromies and then to find the corresponding 
parameters of the hypergeometric functions.

3.1. Review of the isomorphism

In order to carry out the computations we consider the isomorphism between SO(4) and two 
different copies of SU(2). Here we sketch how operatively the isomorphism works in order to fix 
our notations while in Appendix A we review it in more details.
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We first consider a basis

τ = (i12,σ)

where σ is a vector containing the usual Pauli matrices. We then choose to parameterize any 
matrix of SU(2) with a 3-dimensional vector

n ∈
{(

n1, n2, n3
)

∈R
3 | 0 ≤ n ≤ 1

2
and n ≡ n′ when n = n′ = 1

2

}
, (3.1)

such that:

U(n) = cos(2πn)12 + i
n · σ
n

sin(2πn) ∈ SU(2), (3.2)

where n = ‖n‖ so that the following properties hold:

(U(n))∗ = σ2U(n)σ2 = U(̃n), (3.3)

(U(n))† = (U (̃n))T = U(−n), (3.4)

−U(n) = U(̂n), (3.5)

where ̃n = (−n1,+n2,−n3
)

and ̂n = − 
( 1

2 − n
)

n/n.
We then define a new set of coordinates X(s) in this representation:

X(s)(u,u) = XI (u,u)τI , (3.6)

where a rotation of SUL(2) × SUR(2) acts as1

X′
(s)(u,u) = UL(n)X(s)(u,u)U

†
R(m)

and it is equivalent to a 4-dimensional rotation(
X′(u,u)

)I = RI
J (n,m)XJ (u,u),

where

RIJ (n,m) = 1

2
tr(τ†

IUL(n)τJ U
†
R(m)) ∈ SO(4).

We can therefore work directly on a representation of SUL(2) × SUR(2) since we have built 
an isomorphism which maps the two sets of three real parameters of SU(2) matrix (encoded in 
the vectors n and m) to a SO(4) matrix which is in fact described by six real parameters. Notice 
that there is a residual Z2 symmetry acting as {UL,UR} ↔ {−UL,−UR} so that we can fix the 
first non vanishing component of n to be positive. The correct isomorphism is therefore:

SO(4) ∼= SUL(2) × SUR(2)

Z2
.

1 In the following we write UL(n) and UR(m) even if it is not necessary to specify whether the group element is in the 
left or right SU(2) since the parameters are explicitly given.



168 R. Finotello, I. Pesando / Nuclear Physics B 941 (2019) 158–194
3.2. Doubling trick and rotations in spinor representation

In the light of the possibility to use the spinor representation of the rotations to find the solu-
tions to the equations of motion of the classical bosonic string, we need to reproduce (2.11) as 
two separate SU(2) rotations. Consider then:

∂X(s)(z) =
{

∂X(s), L(u) if z ∈ H or z ∈ D(t)

UL(n(t))∂X(s), R(u)U
†
R(m(t)) if z ∈ H or z ∈ D(t)

, (3.7)

where ∂X(s)(z), ∂X(s), L(u) and ∂X(s), R(u) are 2-dimensional square matrices in the sense of 
(3.6).

As in the real representation, we read the discontinuities on the branes with respect to the brane 
D(t) in terms of monodromies of ∂X (z), leaving the branch cut structure and the homotopy group 
considerations unchanged as long as we consider both left and right sectors of SUL(2) × SUR(2)

at the same time. In particular, let 0 < η < min (|xt − xt−1|, |xt+1 − xt |), then we find:

∂X(s)(xt + e2πi (η + i0+)) = L(t,t+1)∂X(s)(xt + η + i0+)R†
(t,t+1), (3.8)

∂X(s)(xt + e2πi (η − i0+)) = L̃(t,t+1)∂X(s)(xt + η − i0+)R̃†
(t,t+1), (3.9)

where:

L(t,t+1) = UL(n(t+1))U
†
L(n(t)),

L̃(t,t+1) = UL(n(t))U
†
L(n(t))UL(n(t+1))U

†
L(n(t)),

R(t,t+1) = UR(m(t+1))U
†
R(m(t)),

R̃(t,t+1) = UR(m(t))U
†
R(m(t))UR(m(t+1))U

†
R(m(t)).

In the spinor representation the action (2.4) becomes

S = 1

4πα′

∫∫
H

d2u tr(∂X(s)(u) · ∂X
†
(s)(u))

or, in terms of the doubling fields:

S = 1

8πα′

∫∫
C

d2z tr(UL(n(t))∂X(s)(z)U
†
R(m(t))∂X †

(s)(z)). (3.10)

Even in this case, the map xt + η ± i0+ 
→ xt + e2πi (η ± i0+) does not generate additional 
contributions, leaving the action unchanged.

3.3. Special form of SU(2) matrices for branes at angles

We now show that the SU(2) involved in the branes at angles are of a very special form. For 
the left SU(2) sector we have:

L(t,t+1) = UL(n(t,t+1)) = −v(t+1) · v(t) + i(v(t+1) × v(t)) · σ,

with v2
(t) = 1, and similarly for the right sector. This follows from the fact that the SO(4) matrix 

U(t) defined in (2.10) has also special properties and hence the corresponding the SUL(2) ×
SUR(2) element (UL(n(t)), UL(m(t))) is special. In particular for the left part we have
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UL(n(t)) = iv(t) · σ, v2
(t) = 1, (3.11)

since U2
(t) = 14 implies U2

L = ±12 and similarly for the right part. In fact the matrix S in (2.8) can 
be represented as UL = UR = iσ1, then any matrix UL(n(t)) is of the form UL(n(t)) = U(r(t)) ·
(iσ1) · U†(r(t)), for some r(t) as follows from (2.10). Now this matrix has vanishing trace and 
squares to −12 hence the term proportional to 12 in the expression of the generic SU(2) element 
given in (3.2) vanishes and therefore n(t) = 1

4 so that (3.11) follows.

4. The classical solution

4.1. The choice of hypergeometric functions

As anticipated in the previous section, the spinorial representation entails using SU(2) ma-
trices: it greatly simplifies the search for the basis of functions satisfying the desired boundary 
conditions. Fixing the SL2(R) invariance naturally leads to consider a basis of hypergeometric 
functions in order to reproduce the monodromy matrices in (3.8) and (3.9). Specifically, since we 
are interested in a solution with NB = 3, we fix the three intersection points xt−1, xt+1 and xt to 
ωt−1 = 0, ωt+1 = 1 and ωt = ∞ respectively through the map:

ωu = u − xt−1

u − xt

· xt+1 − xt−1

xt+1 − xt

(4.1)

The new cut structure for this choice is presented in Fig. 4 and fixes arg(ωt − ωz) ∈ [0,2π) for 
t = t − 1, t + 1. We then choose for example t = 1.

The natural choice of the functions to reproduce the given monodromies is a basis of hyper-
geometric functions. In particular we define:

F(a, b; c; z) =
+∞∑
k=0

(a)k(b)k

�(c + k)
· zk

k! = 1

�(c)
2F1(a, b; c; z),

where 2F1(a, b; c; z) is the usual Gauss hypergeometric function and �(s) is the Euler Gamma 
function. With this choice, F(a, b; c; z) is well defined for any value of a, b and c (not simply 
when c is a strictly positive integer, as in the definition of the Gauss hypergeometric function). 
We then choose:

B0(z) =
(

F(a, b; c; z)
(−z)1−cF (a + 1 − c, b + 1 − c;2 − c; z)

)
(4.2)

as a basis of hypergeometric functions around z = 0, with a branch cut on the interval [0,+∞). 
The choice of the branch cuts follows from the cut on [1,+∞) coming from F(a, b; c; z) which 
has a singularity at z = 1 and the cut on [0,+∞) descending from (−z)1−c, given the usual cut 
for zα on the negative axis.

As we previously observed, the homotopy group of the branch cut plane, a sphere with three 
marked points, is such that a path enclosing all the singularities is homotopically trivial. There-
fore the corresponding product of the monodromy matrices (in the inverse order with respect 
to the products of paths) is the unit matrix. That is, let M±

ωt
be the monodromy matrix which 

represents the homotopy loop around ωt (M+ represents a path starting in H and M− a path 
with base point in H). Then they satisfy:

M+M+M+ =M− M−M− = 12 (4.3)
0 1 ∞ ∞ 1 0
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Fig. 4. Fixing the SL2(R) invariance for NB = 3 and t = 1 leads to a cut structure with all the cuts defined on the real 
axis towards ωt = ∞.

which shows that we can recover the matrix of the monodromy factors in ωt+1 = 1 as a product 
of monodromies around 0 and ∞ given the properties

M+
0 =M−

0 =M0,

M+∞ =M−∞ =M∞.

These matrices are an abstract representation of the monodromy group since they are in an arbi-
trary basis: to have an explicit representation we need to fix an explicit basis.

Using the basis around z = 0 in (4.2), it is straightforward to find the explicit representation 
M0 of the abstract monodromy M0:

M0 =
(

1
e−2πic

)
. (4.4)

In order to compute the monodromy matrix M∞ at ∞ in the basis (4.2), it is best to first compute 
the explicit monodromy representation M̃∞ of the abstract monodromy M∞ in the canonical 
basis of hypergeometric functions around z = ∞:

B∞(z) =
(

(−z)−aF (a, a + 1 − c;a + 1 − b; z−1)

(−z)−bF (b, b + 1 − c;b + 1 − a; z−1)

)
.

Then we use how this basis is connected by the matrix

C = π

sin(π(a − b))

( 1
�(b)�(c−a)

− 1
�(a)�(c−b)

1
�(1−a)�(b+1−c)

−
�(1−b)�(a+1−c)

)
, (4.5)

to B0(z) = CB∞(z) in order to compute the explicit monodromy representation M∞. In fact, 
performing the loop around the infinity as z → ze−i2π, we find

M̃∞ =
(

e2πia

e2πib

)
,

and finally

M∞ = CM̃∞C−1. (4.6)
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4.2. The monodromy factors

The stage being set, our task is now to reproduce the monodromies of the doubling field 
in spinor representation (3.8) (we do not need to consider (3.9) since they are the same mon-
odromies) by taking tensor products of two basis of hypergeometric functions: the first basis 
reproduces the monodromies defined as L and the second one those defined as R.

In principle there can be several combinations of parameters of the hypergeometric function 
yielding the same monodromies, therefore we consider the full solution2 to be a linear superpo-
sition of all possible contributions:

∂X (z) = ∂ωz

∂z

∑
l,r

clr∂Xl,r (ωz). (4.7)

Explicitly we write any possible solution in a factorized form as

∂Xl,r (ωz) = (−ωz)
Alr (1 − ωz)

BlrB(L)
0, l (ωz)B(R)

0, r (ωz)
T , (4.8)

where l and r label the possible parameters associate with the left and right hypergeometric. We 
have also introduced the left basis element

B(L)
0, l (ωz) = D

(L)
l B

(L)
0, l (ωz) =

=
(

F(al, bl; cl;ωz)

K
(L)
l (−z)(1−cl )F (al + 1 − cl, bl + 1 − cl;2 − cl;ωz)

) (4.9)

where

D
(L)
l =

(
1

K
(L)
l

)
∈ GL2(C) (4.10)

is a relative normalization of the two components of each basis. The right sector follows in a 
similar way. These may be different for each solution. Notice that the matrices D(L)

l do not fix 
an absolute factor which is contained in clr but only the normalization of one component of the 
basis with respect to the other.

After the determination of the possible solutions, we need to select the truly independent ones 
and among them those with a finite action. It will turn out actually to be easier to determine the 
solutions with finite action and then verify that they are independent.

4.2.1. Fixing the parameters in the most obvious case
We now determine the possible ∂Xl,r (ωz) which have the right monodromies. We will do this 

for the most general SU(2) matrices despite the fact the ones involved in our problem are of a 
very special form.

In order to reproduce the monodromies, consider the matrices in (4.4) and (4.6). We impose:⎧⎪⎪⎨⎪⎪⎩
D(L)M

(L)
0

(
D(L)

)−1 = e−2πiδ
(L)
0 L(n0)

D(R)M
(R)
0

(
D(R)

)−1 = e−2πiδ
(R)
0 R∗(m0) = e−2πiδ

(R)
0 R(m̃0)

e2πi(Alr−δ
(L)
0 −δ

(R)
0 ) = 1

, (4.11)

2 In the following we use only the spinor representation and for simplicity we write ∂X (z) instead of ∂X(s)(z).
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⎧⎪⎪⎨⎪⎪⎩
D(L)M

(L)∞
(
D(L)

)−1 = e−2πiδ
(L)∞ L(n∞)

D(R)M
(R)∞
(
D(R)

)−1 = e−2πiδ
(R)∞ R∗(m∞) = e−2πiδ

(R)∞ R(m̃∞)

e2πi(Alr+Blr−δ
(L)∞ −δ

(R)∞ ) = 1

, (4.12)

where we defined

L(n0) = L(t−1,t) = UL(n(t))U
†
L(n(t−1)),

L(n∞) = L(t,t+1) = UL(n(t+1))U
†
L(n(t)),

R(m0) =R(t−1,t) = UR(n(t))U
†
R(n(t−1)),

R(m∞) =R(t,t+1) = UR(n(t+1))U
†
R(n(t)).

That is we highlighted the dependence on the parameters of the SU(2) matrices on the ωt inter-
action point instead of the branes between which the interaction develops.

Notice that the range of definition of δ(L)
0 is

α ≤ δ
(L)
0 ≤ α + 1

2
,

i.e. the width of the range is only 1
2 and not 1 as one would naively expect since ei4πδ

(L)
0 is 

the determinant of the right hand side of the first equation in (4.11). We will choose α = 0 for 
simplicity. The same is true for all the other additional parameters δ(R)

0 and δ(L, R)∞ .
As we are interested in relative rotations of the branes, we can fix the rotation in ωt−1 = 0 to 

be in the maximal torus of SUL(2) × SUR(2) without loss of generality. Stated otherwise, since 
we have two independent groups we can choose the orientation of both the vectors n0 and m0. 
In particular we set:

n0 = (0,0, n3
0) ∈R

3 where 0 < n3
0 <

1

2
, (4.13)

m̃0 = (0,0,−m3
0) ∈R

3 where 0 < m3
0 <

1

2
, (4.14)

where the case n3
0 = 0 is excluded because we consider a non trivial rotation. We take the param-

eters of the rotation in ω = ∞ to be the most general

n∞ = (n1∞, n2∞, n3∞),

m̃∞ = (−m1∞,m2∞,−m3∞),

even if we can set n2∞ = 0 (and also m2∞ = 0) because, after fixing n0, we can still perform U(1)

rotations which leave it invariant but mix n1∞, n2∞. We nevertheless keep the general expression 
in order to check our computations.

As we show in Appendix B, solving (4.11) and (4.12) links the parameters of the hyperge-
ometric function to the parameter of the rotations, thus reproducing the boundary conditions of 
the intersecting D-branes through the non trivial monodromies of the basis. We find:

a
(L)
l = n0 + (−1)f

(L)

n1 + n∞ + a
(L)
l where a

(L)
l ∈ Z,

b
(L)
l = n0 + (−1)f

(L)

n1 − n∞ + b
(L)
l where b

(L)
l ∈ Z,

c
(L)
l = 2n0 + c

(L)
l where c

(L)
l ∈ Z,

δ
(L) = n0,
0
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δ(L)∞ = −n0 − (−1)f
(L)

n1,

K
(L)
l = − 1

2π2 �(1 − a
(L)
l )�(1 − b

(L)
l )�(a

(L)
l + 1 − c

(L)
l )�(b

(L)
l + 1 − c

(L)
l ) ×

× sin(πc
(L)
l ) sin(π(a

(L)
l − b

(L)
l ))

n1∞ + i n2∞
n∞

,

where f (L) ∈ {0, 1} and we also introduced the norm n1 of parameters of the rotation around 
ωt+1 = 1, that is n1, which depends on the other parameters through:

cos(2πn1) = cos(2πn0) cos(2πn∞) − sin(2πn0) sin(2πn∞)
n3∞
n∞

. (4.15)

This relation follows from (4.3) for the monodromy M+
1 = M−1

0 M−1∞ and the standard composi-
tion rule for the SU(2) parameters given in (A.5). The same relations for the right sector follow 
under the exchange (L) ↔ (R) and n ↔ m̃.

The other parameters Alr and Blr are then a consequence of the previous results and the 
equations (4.11) and (4.12):

Alr = n0 + m0 +Alr ,

Blr = (−1)f
(L)

n1 + (−1)f
(R)

m1 +Blr

where Alr ∈ Z and Blr ∈ Z.

4.2.2. Solutions with different f (L) and f (R) are the same
As we see from the equations above the parameters of the hypergeometric function are still 

affected by some ambiguities: the choice of f (L) and f (R) seems an arbitrary decision leading 
to an undefined solution. However we can use the properties of the hypergeometric functions to 
show that any choice of their values does not affect the final result. Specifically, we could choose 
to start with certain values but we can recover the others through:

P

⎧⎨⎩
0 1 ∞
0 0 a z

1 − c c − a − b b

⎫⎬⎭= (1 − z)c−a−bP

⎧⎨⎩
0 1 ∞
0 0 c − b z

1 − c a + b − c c − a

⎫⎬⎭ ,

where P is the Papperitz-Riemann symbol for the hypergeometric functions. This way we can 
assign any of the possible values to f (L) and f (R) and then recover the other identifying:

f (L)′ = 1 + f (L) mod 2

a′
l = cl − bl ,

b′
l = cl − al ,

c′l = cl ,

A′
lr =Alr ,

B′
lr =Blr − a

(L)
l − a(R)

r − b
(L)
l − b(R)

r + c
(L)
l + c(R)

r ,

and similarly the parameters of the right sector. This means that the choice of f (L,R) is simply a 
convenient relabeling of parameters. In what follows we choose f (L) = f (R) = 0 for simplicity.

As previously stated, in order to get a well defined solution we must impose some constraints 
on the hypergeometric parameters. Specifically we require:
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c
(L)
l /∈ Z,

a
(L)
l + b

(L)
l /∈ Z+ 1

2
.

All these relations link the parameters of the hypergeometric function to the monodromies 
associated to the boundary conditions of the intersecting D-branes. They are however more gen-
eral than actually needed: the number of parameters necessary to fix our configuration is 6 (i.e. 
n3

0, n
1∞, n3∞ and m3

0, m
1∞, m3∞), since as noticed before we can always fix n2∞ = m2∞ = 0. This is 

a consequence of the fact that all parameters depend on the moduli, exception made for K(L) and 
K(R) which depend on n1∞ + in2∞ and m1∞ + im2∞. Performing a SUL(2) and SUR(2) rotation 
around the third axis and a shift of the parameters δ∞, the phases of K can then be made to 
vanish.

4.2.3. The importance of the normalization factors K
Using the Papperitz-Riemann symbol the solutions found can be symbolically written as

(−ω)A(1 − ω)B×

× P

⎧⎨⎩
0 1 ∞
n0 n1 n∞ + a(L) ω

−n0 + 1 − c(L) −n1 − a(L) − b(L) + c(L) −n∞ + b(L)

⎫⎬⎭×

× P

⎧⎨⎩
0 1 ∞

m0 m1 m∞ + a(R) ω

−m0 + 1 − c(R) −m1 − a(R) − b(R) + c(R) −m∞ + b(R)

⎫⎬⎭ .

(4.16)

This is exactly what one would have expected but the parameters K cannot be guessed from the 
P symbol. They nevertheless play a very important role for the consistency of the solution.

Hypergeometric functions can be connected by relations between contiguous functions. It is 
indeed possible to show that any hypergeometric function F(a+a, b+b; c+ c; z) can be written 
as a combination of F(a, b; c; z) and any of its contiguous functions [49]. For example we could 
consider:

F(a + a, b + b; c + c; z) = h1(a, b, c; z)F (a + 1, b; c; z) + h2(a, b, c; z)F (a, b; c; z),
(4.17)

where h1(a, b, c; z) and h2(a, b, c; z) are in C[ 1
1−z

, 1
z
, z], i.e. they are finite sums of integer (both 

positive and negative) powers of z and negative powers of 1 − z. For simplicity let:

F = F(a, b; c; z),
F (a + k) = F(a + k, b; c; z),
F (b + k) = F(a, b + k; c; z),

. . .

Similarly we use the shorthand notation3 for the vector:

3 Here we are a sloppy in writing Ka,b,c since it depends on a phase which is not a function of a, b, c. See (4.15) and 
(B.16).
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B0(a, b, c; z) =
(

F(a, b; c; z)
Ka,b,c(−z)(1−c)F (a + 1 − c, b + 1 − c;2 − c; z)

)
. (4.18)

Then we can algorithmically use relations such as

(c − a)F (a − 1) + (2a − c + (b − a)z)F − a(1 − z)F (a + 1) = 0.

(b − a)F + aF(a + 1) − bF(b + 1) = 0,

(c − a − b)F + a(1 − z)F (a + 1) − (c − b)F (b − 1) = 0,

(a + (b − c)z)F − a(1 − z)F (a + 1) + (c − a)(c − b)zF (c + 1) = 0,

(c − a − 1)F + aF(a + 1) − F(c − 1) = 0,

(4.19)

in order to eliminate unwanted integer factors from each parameter and to keep only F and any 
of its contiguous functions.

Now B0, considered as whole and made of two independent hypergeometric functions, is a 
basis element for the possible solutions of the classical and quantum string e.o.m. Using any 
relation in (4.19) we can change a, b or c by ±1 in a coherent way in both hypergeometric 
functions, then the result must still be a linear combination of solutions B0. For example from 
the first equation in (4.19) we expect:

(c − a)B0(a − 1) + (2a − c + (b − a)z)B0 − a(1 − z)B0(a + 1) = 0, (4.20)

which can be used to lower and rise a. This relation holds only because of the presence of K . In 
fact the coefficients in this equation are exactly equal to those in the relation for F for the first 
component of B0 but this is a non trivial fact for the second component where the factor K plays 
a fundamental role.

In a similar way, even if more complicated to prove, the relation which is needed to lower c
which reads:

(a − c)(b − c)B0(c + 1) + (a + (b − c)z)B0 − a(1 − z)B0(a + 1) = 0. (4.21)

4.3. Constraints from the finite euclidean action

In the previous section we found all the most obvious possible solutions to the classical string 
e.o.m. However we should look for a solution with finite action, thus restricting our attention to 
such property.

In principle it would be obvious to use (4.19) to restrict the possible arbitrary integers entering 
the solution to

a(L) ∈ {−1,0} ,

b(L) = 0,

c(L) = 0,

and analogously for the right counterparts and then to use (4.17) to write the possible solution as

∂X (z) = ∂ωz

∂z
(−ωz)

n0+m0(1 − ωz)
n1+m1×

×
∑

a(L,R)∈{−1,0}
h(ωz,a

(L,R))×

×B(L)
(a(L) + a(L), b, c;ωz)

(
B(R)

(a(R) + a(R), b, c;ωz)
)T

.

(4.22)
0 0
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We should finally find an explicit form for h(ωz, a(L,R)) which yield a finite action.
It turns however out to be by far simpler to use the symbolic solution (4.16) to find the possible 

basis elements with finite action. Actually finding the possible solutions with finite action can be 
recast to the issue of finding finite solution, i.e. such that the field ∂X (z) is finite by itself. The 
latter formulation is by far simpler than the former since it is linear while the former is quadratic. 
From (3.10) it is clear that the action can be expressed as the sum of the product of any possible 
couple of elements of the over-complete expansion of the solution (4.7). Therefore we must exam 
all the possible behaviors of any couple ∂Xl1r1(z)∂Xl2r2(z). In proximity of any singular point 
the behavior of any element of solution (4.7) can be easily read from its symbolic representation 
given by (4.16) and it is of the form:

∂X (z) ∼ ω
Ct
t

(
ω

kt1
t

ω
kt2
t

)(
ω

ht1
t ω

ht2
t

)
for ωz → ωt .

It is then easy to verify that imposing the convergence of the action both at finite and infinite 
intersection points yields the same constraints as imposing the convergence at any point of the 
classical solution (in spinor representation as follows from (3.7))

X(s)(u,u) = f(t−1) (s) +
u∫

xt−1

du′∂X (u′) + U
†
L(n(t))

ū∫
xt−1

dū′∂X (ū′) UR(m(t)), (4.23)

where ft−1 (s) = f I
t−1τI . They are:

Ct + kti + htj > −1, i, j ∈ {1,2}, ωt ∈ {0,1},
Ct + kti + htj < −1, i, j ∈ {1,2}, ωt = ∞.

(4.24)

To explain the approach in the easiest setup let us consider the case where the right rotation is 
trivial. In this case (4.16) becomes

(−ω)A(1 − ω)B×

× P

⎧⎨⎩
0 1 ∞
n0 n1 n∞ + a(L) ω

−n0 + 1 − c(L) −n1 − a(L) − b(L) + c(L) −n∞ + b(L)

⎫⎬⎭ .
(4.25)

Then it is easy to see that the only possible solution compatible with (4.24) is

P

⎧⎨⎩
0 1 ∞

n0 − 1 n1 − 1 n∞ + 1 ω

−n0 −n1 −n∞ + 2

⎫⎬⎭ , (4.26)

i.e. a(L) = −1, b(L) = 0, c(L) = 0, A = −1 and B = −1. In the general case the situation is more 
complicated one could think that taking the product (4.26) and the corresponding solution for 
the right sector would yield the answer. Unfortunately it is not the case since for ω = 0 we get 
C0 + h01 + k01 = n0 + m0 − 2 < −1. To find the solution however we start from such product 
and we try to move integer factors between indices and between the left and right solutions. For 
each possible case the solution is unique and it is given by
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1. n0 > m0 and n1 > m1

P

⎧⎨⎩
0 1 ∞

n0 − 1 n1 − 1 n∞ + 1 ω

−n0 −n1 −n∞ + 2

⎫⎬⎭ P

⎧⎨⎩
0 1 ∞

m0 m1 m∞ ω

−m0 + 1 −m1 −m∞ + 1

⎫⎬⎭ .

(4.27)

2. n0 > m0, n1 < m1 and n∞ > m∞

P

⎧⎨⎩
0 1 ∞

n0 − 1 n1 n∞ ω

−n0 −n1 −n∞ + 2

⎫⎬⎭ P

⎧⎨⎩
0 1 ∞

m0 m1 − 1 m∞ + 1 ω

−m0 −m1 −m∞ + 1

⎫⎬⎭ . (4.28)

3. n0 > m0, n1 < m1 and n∞ < m∞

P

⎧⎨⎩
0 1 ∞

n0 − 1 n1 n∞ + 1 ω

−n0 −n1 −n∞ + 1

⎫⎬⎭ P

⎧⎨⎩
0 1 ∞

m0 m1 − 1 m∞ ω

−m0 −m1 −m∞ + 2

⎫⎬⎭ . (4.29)

4. n0 < m0, n1 > m1 and n∞ > m∞

P

⎧⎨⎩
0 1 ∞
n0 n1 − 1 n∞ ω

−n0 −n1 −n∞ + 2

⎫⎬⎭ P

⎧⎨⎩
0 1 ∞

m0 − 1 m1 m∞ + 1 ω

−m0 −m1 −m∞ + 1

⎫⎬⎭ . (4.30)

5. n0 < m0, n1 > m1 and n∞ < m∞

P

⎧⎨⎩
0 1 ∞
n0 n1 − 1 n∞ + 1 ω

−n0 −n1 −n∞ + 1

⎫⎬⎭ P

⎧⎨⎩
0 1 ∞

m0 − 1 m1 m∞ ω

−m0 −m1 −m∞ + 2

⎫⎬⎭ . (4.31)

6. n0 < m0, n1 < m1

P

⎧⎨⎩
0 1 ∞
n0 n1 n∞ ω

−n0 −n1 −n∞ + 1

⎫⎬⎭ P

⎧⎨⎩
0 1 ∞

m0 − 1 m1 − 1 m∞ + 1 ω

−m0 −m1 −m∞ + 2

⎫⎬⎭ . (4.32)

We can summarize the parameters which follows from the previous list and enter the solution in 
Table 1, where the obvious symmetry in the exchange of n and m becomes manifest.

4.4. The basis of solutions

In the previous section we have produced one solution for each possible ordering of the nt
with respect to mt. This seems the end of the story but there are actually other solutions and 
they are connected to the Z2 in the isomorphism between SO(4) and SU(2) × SU(2)/Z2. Given 
any solution which is fixed by (n0, n1, n∞) ⊕ (m0, m1, m∞) we can replace any couple of n
and m by n̂ and m̂ and produce an apparently new solution. For example we could consider 
(̂n0, ̂n1, n∞) ⊕ (m0, ̂m1, ̂m∞). The necessity of changing a couple is because the monodromies 
are constrained by (4.3). On the other hand the previous substitution would change the SO(4)

in both ω = 0 and ω = ∞: it does not represent a new solution. We are left therefore with three 
possibilities besides the original one:
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Table 1
Integer shifts entering the hypergeometric parameters.

A B a(L) b(L) c(L) a(R) b(R) c(R)

n0 > m0 n1 > m1 n∞ ≶ m∞ −1 −1 −1 0 0 0 +1 +1
n0 > m0 n1 < m1 n∞ > m∞ −1 −1 −1 +1 0 0 0 +1
n0 > m0 n1 < m1 n∞ < m∞ −1 −1 0 0 0 −1 +1 +1
n0 < m0 n1 > m1 n∞ > m∞ −1 −1 −1 +1 +1 0 0 0
n0 < m0 n1 > m1 n∞ < m∞ −1 −1 0 0 +1 −1 +1 0
n0 < m0 n1 < m1 n∞ ≶ m∞ −1 −1 0 +1 +1 −1 0 0

(̂n0, n̂1,n∞) ⊕ (m̂0, m̂1,m∞),

(̂n0,n1, n̂∞) ⊕ (m0, m̂1, m̂∞),

(̂n0,n1, n̂∞) ⊕ (m0, m̂1, m̂∞). (4.33)

Finally we want to gauge fix the Z2 by letting n3
0, m

3
0 > 0 as required by (4.13) and (4.14). This 

eliminates the first two possibilities. We are therefore left with two possible solutions

(n0,n1,n∞) ⊕ (m0,m1,m∞),

(n0, n̂1, n̂∞) ⊕ (m0, m̂1, m̂∞), (4.34)

that is the original one and one which is obtained by acting with a parity-like operator P2 on the 
rotation parameters at ω = 1, ∞ on both left and right sector at the same time. In order to accept 
it as a further possible solution, we should now verify its independence with respect to the first 
one.

Actually looking to Table 1 we see that there are only two different cases up to left-right 
symmetry. The first case is{

(n0 > m0, n1 > m1, n∞ > m∞) , (n0 > m0, n̂1 < m̂1, n̂∞ < m̂∞)
}
, (4.35)

which is mapped to{
(n0 < m0, n1 < m1, n∞ < m∞) , (n0 < m0, n̂1 > m̂1, n̂∞ > m̂∞)

}
, (4.36)

by the left-right symmetry. The second one is{
(n0 > m0, n1 > m1, n∞ < m∞) , (n0 > m0, n̂1 < m̂1, n̂∞ > m̂∞)

}
, (4.37)

which is mapped to{
(n0 < m0, n1 < m1, n∞ > m∞) , (n0 < m0, n̂1 > m̂1, n̂∞ < m̂∞)

}
, (4.38)

by the left-right symmetry.
Let us now exam the two solutions in the two cases. We first perform a generic computation 

which is common to the two cases and then we explicitly specialize it. Computing the hyperge-
ometric parameters for the first solution leads to:⎧⎨⎩

a(L) = n0 + n1 + n∞ + a(L)

b(L) = n0 + n1 − n∞ + b(L)

c(L) = 2n0 + c(L)

,

⎧⎨⎩
a(R) = m0 + m1 + m∞ + a(R)

b(R) = m0 + m1 − m∞ + b(R)

c(R) = 2m0 + 1 + c(R)

, (4.39)
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where the values of the constants can be read from Table 1. Then we compute the K(L) and K(R)

factors using (4.15). Therefore the first solution is:

∂ωχ1 =(−ω)n0+m0−1(1 − ω)n1+m1−1×

×
(

F(a(L), b(L); c(L);ω)

K(L)(−ω)1−c(L)
F (a(L) + 1 − c(L), b(L) + 1 − c(L);2 − c(L);ω)

)

×
(

F(a(R), b(R); c(R);ω)

K(R)(−ω)1−c(R)
F (a(R) + 1 − c(R), b(R) + 1 − c(R);2 − c(R);ω)

)T

. (4.40)

The parameters of the second solution read⎧⎨⎩
â(L) = n0 + n̂1 + n̂∞ + â(L) = c(L) − a(L) + a(L) − c(L) + â(L) + 1
b̂(L) = n0 + n̂1 − n̂∞ + b̂(L) = c(L) − b(L) + b(L) − c(L) + b̂(L)

ĉ(L) = 2n0 + ĉ(L) = c(L) − c(L) + ĉ(L)

,

⎧⎨⎩
â(R) = m0 + m̂1 + m̂∞ + â(R) = c(R) − a(R) + a(R) − c(R) + â(R) + 1
b̂(R) = m0 + m̂1 − m̂∞ + b̂(R) = c(R) − b(R) + b(R) − c(R) + b̂(R)

ĉ(R) = 2m0 + ĉ(R) = c(R) − c(R) + ĉ(R)

. (4.41)

We see that the two cases differ only for the constants and not for the structure.

4.4.1. Case 1
We start with the case n0 > m0, n1 > m1 and n∞ > m∞ for which the second solution is 

n0 > m0, n̂1 < m̂1 and n̂∞ < m̂∞ The parameters for the second are explicitly⎧⎨⎩
â(L) = c(L) − a(L)

b̂(L) = c(L) − b(L)

ĉ(L) = c(L)

,

⎧⎨⎩
â(R) = c(R) − a(R)

b̂(R) = c(R) − b(R) + 1
ĉ(R) = c(R) + 1

. (4.42)

The K factors are

K̂(L) = K(L), K̂(R) = K(R)

a(R)(c(R) − b(R))
. (4.43)

Using Euler relation

F(a, b; c;ω) = (1 − ω)c−a−bF (c − a, c − b; c;ω), (4.44)

we can finally write the second solution as

∂ωχ2 =(−ω)n0+m0−1(1 − ω)n1+m1×

×
(

F(a(L), b(L); c(L);ω)

K(L)(−ω)1−c(L)
F (a(L) + 1 − c(L), b(L) + 1 − c(L);2 − c(L);ω)

)

×
(

F(a(R) + 1, b(R); c(R) + 1;ω)

K̂(R)(−ω)−c(R)
F (a(R) + 1 − c(R), b(R) − c(R);1 − c(R);ω)

)T

, (4.45)

in which the left basis is exactly equal to the first solution while the right basis differs for a(R) →
a(R) + 1 and c(R) → c(R) + 1.
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4.4.2. Case 2
Consider now the second case n0 > m0, n1 > m1 and n∞ < m∞. For the second solution we 

have n0 > m0, n̂1 < m̂1 and n̂∞ > m̂∞ and the parameters are explicitly⎧⎨⎩
â(L) = c(L) − a(L) − 1
b̂(L) = c(L) − b(L) + 1
ĉ(L) = c(L)

,

⎧⎨⎩
â(R) = c(R) − a(R)

b̂(R) = c(R) − b(R)

ĉ(R) = c(R)

. (4.46)

The K factors are

K̂(L) = K(L) (b
(L) − 1)(c(L) − a(L) − 1)

a(L)(c(L) − b(L))
, K̂(R) = K(R). (4.47)

Using Euler relation we can finally write the second solution for the second case as

∂ωχ2 =(−ω)n0+m0−1(1 − ω)n1+m1×

×
(

F(a(L) + 1, b(L) − 1; c(L);ω)

K̂(L)(−ω)1−c(L)
F (a(L) + 2 − c(L), b(L) − c(L);2 − c(L);ω)

)

×
(

F(a(R), b(R); c(R);ω)

K(R)(−ω)1−c(R)
F (a(R) + 1 − c(R), b(R) + 1 − c(R);2 − c(R);ω)

)T

, (4.48)

in which the right basis is exactly equal to the first solution while the left basis differs for a(L) →
a(L) + 1 and b(L) → b(L) − 1.

4.5. The solution

In the previous section we have shown that there are two independent solutions, therefore the 
general solution for ∂ωχ obviously reads

∂ωχ = C1∂ωχ1 + C2∂ωχ2. (4.49)

Therefore the final solution depends now only on two complex constants, C1 and C2 which 
we can fix imposing the global conditions in (2.9), i.e. the second equation for all t ’s in the 
solution (4.23). Since the three target space intersection points always define a triangle on a 
2-dimensional plane, we can impose the boundary conditions knowing two angles formed by 
the sides (i.e. the branes between two intersections) and the length of one of them. We already 
fixed the parameters of the rotations, then we need to compute the length of one of the sides,
and consider, for instance, the length of the side X(xt+1, xt+1) − X(xt−1, xt−1): Explicitly we 
impose the four real equations in spinorial formalism

1∫
0

dω∂ωX (ω) + U
†
L(n(t))

1∫
0

dω̄∂ωX (ω̄) UR(m(t)) = f(t+1) (s) − f(t−1) (s), (4.50)

where we have used the mapping (4.1) to write the integrals directly in ω variables. This equation 
has then enough degrees of freedom to fix completely the two complex parameters C1 and C2, 
thus completing the determination of the full solution in its general form.
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5. Recovering the SU(2) and the Abelian solution

Before analyzing further the result, we first show how this general procedure automatically 
includes the solution with both pure SU(2) and Abelian rotations of the D-branes. The Abelian 
solution emerges from the general construction as a limit and replicates the known result for 
Abelian SO(2) × SO(2) ⊂ SO(4) rotations in the case of a factorized space R4 =R

2 ×R
2.

5.1. Abelian Limit of the SU(2) monodromies

We want now to compute the parameter n1 when we are given two Abelian rotation in ω = 0
and ω = ∞ using the standard expression for two SU(2) element multiplication given in (A.5). 
We can summarize the results in Table 2. Notice that under the parity P2 the previous four cases 
are grouped into two sets {n1 = n0 + n∞, n̂1 = −n0 + n̂∞} and {n1 = 1 − (n0 + n∞), n̂1 =
+n0 − n̂∞}. This can be also seen geometrically since the first group corresponds to the same 
geometry which is depicted in Fig. 5 while the second in Fig. 6. Arbitrarily fixing the orientation 
of D(3) we can in fact obtain these geometrical interpretations and since n3

0 > 0 we can fix the 
orientation of D(1). The orientation of D(2) is then fixed relatively to D(1) by the sign of n3∞. The 
sign of n3

1 then follows.
The usual Abelian convention is more geometrical and visual therefore it does not distinguish 

between the possible orientations of the branes while this group approach does. In fact comparing 
all possible brane orientations and the ensuing group parameter n3 with the usual angles used 
in the Abelian configuration depicted in Fig. 7 we see that relation between the usual Abelian 
parameter ε(t) and the group one n3

t is given by

εt = n3
t + θ(−n3

t ), (5.1)

when all m = 0.

5.2. Abelian limit of the left solutions

Then we can compute the basis element for any entry of the Table 1 for any possible value of 
n1 as given in Table 2. Here we consider for simplicity the left sector of the solution: everything 
can be stated in the same way for the right sector.

It turns out that either K = 0 or K = ∞. In the latter case we can absorb the infinite divergence 
in a constant term in front of the solution and effectively use:

D |K=0 =
(

1
0

)
, (5.2)

D |K=∞ =
(

0
1

)
. (5.3)

The result is then given in Table 3. In this table we have left some hypergeometrics in their 
symbolic form. However all of them are elementary functions since either a or c − b is equal to 
−1.

5.3. The SUL(2) limit

We can recover the previously computed non Abelian SU(2) solution by considering mt ∼ 0: 
this is case 1 of section 4.4. The first thing we notice is that the left solution B(L) is always the 
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Table 2
Abelian limit of SU(2) monodromies.

n0 n∞ n1 n1
∑

t n(t)

n0k n∞k n0 + n∞ < 1
2 n0 ≶ n∞ n0 + n∞ −n1k 0

n0k n∞k n0 + n∞ > 1
2 n0 ≶ n∞ 1 − (n0 + n∞) +n1k k

n0k −n∞k n0 + n∞ ≶ 1
2 n0 > n∞ n0 − n∞ −n1k 0

n0k −n∞k n0 + n∞ ≶ 1
2 n0 < n∞ −n0 + n∞ +n1k 0

Fig. 5. The Abelian limit when the triangle has all acute angles. This corresponds to the cases n0 +n∞ < 1
2 and n0 < n∞

which are exchanged under the parity P2. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 6. The Abelian limit when the triangle has one obtuse angle. This corresponds to the cases n0 + n∞ > 1
2 and 

n0 > n∞ which are exchanged under the parity P2.

Fig. 7. The geometrical angles used in the usual geometrical approach to the Abelian configuration do not distinguish 
among the possible branes orientations. In fact we have 0 ≤ α < 1 and 0 < ε < 1.

same and matches the previous computation. Despite so, the right sector seems to give different 
solutions when different Abelian limits are taken. Actually, examining all the possible solutions,4

we get that all of them give the same answer in the limit mt → 0, i.e. both B(R) = (1, 0)T and 
B(R) = (0, 1)T . The only difference is which solution is obtained from the case n0 > m0, n1 > m1

4 We write possible because the m1 = 1 − (m0 + m∞) case is not.
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Table 3
Abelian limit of the solutions.

(a(L),b(L), c(L)) n1 B(L) T (z)

(−1,0,0) n0 + n∞
(
(1 − z)−2 n∞−2 n0+1 ,0

)
1 − (n0 + n∞) (1,0)

n0 − n∞
(

0, (−z)1−2 n0
)

−n0 + n∞ (1,0)

(−1,1,0) n0 + n∞ (F (2n∞ + 2n0 − 1,2n0 + 1,2n0, z) ,0)

1 − (n0 + n∞) (1,0)

n0 − n∞
(

0, (−z)1−2 n0
)

−n0 + n∞
(

0, (1 − z)2 n0−2 n∞ (−z)1−2 n0
)

(0,0,0) n0 + n∞
(
(1 − z)−2 n∞−2 n0 ,0

)
1 − (n0 + n∞)

(
0, (1 − z)2 n∞+2 n0−2 (−z)1−2 n0

)
n0 − n∞

(
(1 − z)2 n∞−2 n0 ,0

)
−n0 + n∞ (1,0)

(−1,1,1) n0 + n∞
(
(1 − z)−2 n∞−2 n0+1 ,0

)
1 − (n0 + n∞) (1,0)

n0 − n∞
(

0,F (−1,1 − 2n∞,1 − 2n0, z) (−z)−2 n0
)

−n0 + n∞
(

0, (1 − z)−2 n∞+2 n0+1 (−z)−2 n0
)

(0,0,1) n0 + n∞
(

0, (−z)−2 n0
)

1 − (n0 + n∞)
(

0, (1 − z)2 n∞+2 n0−1 (−z)−2 n0
)

n0 − n∞
(

0, (−z)−2 n0
)

−n0 + n∞ (1,0)

(0,1,1) n0 + n∞
(
(1 − z)−2 n∞−2 n0 ,0

)
1 − (n0 + n∞)

(
0, (1 − z)2 n∞+2 n0−2 (−z)−2 n0

)
n0 − n∞

(
0, (−z)−2 n0

)
−n0 + n∞

(
0, (1 − z)2 n0−2 n∞ (−z)−2 n0

)

and n∞ > m∞ or from the n0 > m0, n̂1 < m̂1 and n̂∞ < m̂∞. In any case we get a factorized 
solution of the form B(L)(C, C′)T which is what expected since the right sector plays no role.

5.4. Relating the Abelian angles with the group parameters

Using the explicit expression for the SO(4) and SU(2) × SU(2) it is easy to verify that when 
the left and right SU(2) parameters are �n = n3�k and �m = m3�k the rotation in plane 14 is a SO(2)

element 
(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)
with angle θ = n3 − m3 and the one in plane 23 is with angle 

θ = n3 + m3.
Comparing with the case with m = 0 given in (5.1) we can then guess that the general relation 

between the group parameters and the usual Abelian angles is given by

εt = n3 − m3 + θ(−(n3 − m3)),
t t t t
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ϕt = n3
t + m3

t + θ(−(n3
t + m3

t )). (5.4)

5.5. Recovering the Abelian result: an example

In order to show how the Abelian limit works we consider the following example. We take 
case 1 as in section 4.4.1 with n1 = 1 − (n0 + n∞) and m1 = −m0 + m∞, which leads to two 
independent rational functions of ωz:

∂X (ωz) =
(

i∂Z̄ 1̄(ωz) ∂Z2(ωz)

∂Z̄ 2̄(ωz) i∂Z1(ωz)

)
=

=
(

i∂(X 1(ωz) − iX 4(ωz)) ∂(X 2(ωz) + iX 3(ωz))

∂(X 2(ωz) − iX 3(ωz)) i∂(X 1(ωz) + iX 4(ωz))

)
=

=
(

0 C1 (−ωz)
ε0−1(1 − ωz)

ε1−1

0 C2 (−ωz)
−ϕ0(1 − ωz)

−ϕ1

)
, (5.5)

where C1, C2 are constants as in (4.49). This is the known result for the Abelian case, where we 
have two different U(1) sectors undergoing two different rotations U1(1) × U2(1) ⊂ SUL(2) ×
SUR(2). In the previous expression we have used (5.4) to write the relation between the usual 
Abelian angles and the group parameters as

ε0 = n0 − m0, ε1 = n1 − m1, ε∞ = n∞ + m∞,∑
t

εt = 1 (5.6)

and

ϕ0 = n0 + m0, ϕ1 = n1 + m1, ϕ∞ = n∞ − m∞,∑
t

ϕt = 2, (5.7)

in order to approach the usual notation in the literature. As usual ∂Z1(ωz) �= [∂Z 1̄
(ωz)]∗. We 

can now build the Abelian solution to show the characteristic analytical structure of the Abelian 
limit. Explicitly we get(

iZ̄1̄(u, ū) Z2(u, ū)

Z̄2̄(u, ū) iZ1(u, ū)

)
=
⎛⎝ if̄ 1̄

(t−1)
+ i
∫ ω̄ū

0 dω∂Z1 f 2
(t−1)

+ ∫ ωu

0 dω∂Z2

f̄ 2̄
(t−1)

+ ∫ ω̄ū

0 dω∂Z2 if 1
(t−1)

+ i
∫ ωu

0 dω∂Z1

⎞⎠ , (5.8)

where for simplicity we have chosen R(t) = 14 so that U(t) in (2.10) is mapped to the SU(2) ×
SU(2) element (iσ1, iσ1). Notice however that nt = n3

t k implies that v3
(t)

= 0 in (3.11) and hence 
that UL and UR are always off diagonal and therefore their action on (5.5) is to fill the first 

column. From the previous relations we see the usual holomorphicity Z
1̄
(u) = (Z1(u)

)∗
of the 

sector with 
∑

t εt = 1 and Z
2̄
(u) = (Z2(u)

)∗
of the sector with 

∑
t ϕt = 2.

5.6. Abelian limits

Following the example of the previous section it is possible to consider both cases given in 
Section 4.4.1 and Section 4.4.2 for all possible combinations of the expression of n1 and m1 for 



R. Finotello, I. Pesando / Nuclear Physics B 941 (2019) 158–194 185
a total of 2 · 4 · 4 possible combinations. In all cases but 6 the solution in spinorial formalism is a 
2 × 2 matrix which has two non vanishing entries and hence two independent Abelian solutions. 
In the remaining 6 cases the matrix has only one non vanishing entry but the constraints on n and 
m are incompatible and therefore they should not be considered. The 6 inconsistent combinations 
are for case 1 when {n1 = n0 + n∞, m1 = 1 − (m0 + m∞)} and {n1 = 1 − (n0 + n∞), m1 =
1 − (m0 + m∞)} and for case 2 when n1 = −n0 + n∞.

6. The physical interpretation

In this section we would like to show some simple consequences of the explicit classical 
solution for the phenomenology of the branes at angles models. In particular we will focus on 
the value of the action which plays a fundamental role in the hierarchy of the Yukawa couplings.

6.1. Rewriting the action

Once the solution to the boundary conditions has been found, it is possible to compute the 
classical action to show its contribution to the correlation functions of twist fields and Yukawa 
couplings. We use the equations of motion (2.5) to simplify as much as possible the computation 
of the action (2.4) and get:

4πα′ S |on-shell = i

3∑
t=1

∑
m∈{3,4}

g(t), m

xt−1∫
xt

dx
(
R(t)

)
m I

(
X′

L(x) − X′
R(x)

)I ∣∣∣
y=0+ , (6.1)

where I = 1, 2, 3, 4 and m = 3, 4 are the transverse directions in the well adapted frame with 
respect to the brane. Moreover, since the total number of D-branes is defined modulo NB = 3, 
the interval defining D(1) is split on two separate intervals, namely:

[x1, x3] = [x1,+∞) ∪ (−∞, x3] ,

as it is visually shown in Fig. 3. To proceed further we notice that for xt < x < xt−1 we have:

X(x + iy, x − iy) = X∗(x + iy, x − iy) ⇒ X∗
L(x − iy) = XR(x − iy) + Y(t),

where Y(t) is a constant factor which cannot depend on the particular brane D(t) and must be a 
real. From the continuity of XL(u) and XR(u) on the worldsheet intersection point we get

lim
x→x+

t

X(x, x) = lim
x→x−

t

X(x, x)

which does not allow Y(t) to depend on the brane while the reality of X(u, u) implies that ImY =
0. Then (6.1) becomes:

4πα′ S|on-shell = −2
3∑

t=1

∑
m∈{3,4}

g(t), m Im
(
R(t)

)
m I

XI
L(x + i0+)

∣∣∣x=xt−1

x=xt

= −2
3∑

t=1

g
(⊥)
(t), I

ImXI
L(x + i0+)

∣∣∣x=xt−1

x=xt

∈ R, (6.2)

where g(⊥)
(t), I =∑m∈{3,4}

(
R−1

(t)

)
I m

g(t), m is the transverse shift of D(t) in global coordinates and 

because of this is perpendicular to f(t−1) − f(t) which is tangent to D(t), i.e.
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g
(⊥)
(t), I (f(t−1) − f(t))

I = 0. (6.3)

6.2. Holomorphic case

In this case there exist global complex coordinates for which the string solution is holomor-
phic, i.e.

Zi(u, ū) = Zi
L(u), Z̄ī (u, ū) = Z̄ī (ū) =

(
Zi

L(u)
)∗

, (6.4)

where i = 1 in the Abelian case and i = 1, 2 in the SU(2) case. In these cases we have f i
(t) =

Zi
L(xt + i0+) and because of this the previous equations (6.3) and (6.2) become

Re
(
g

(⊥)
(t), i (f(t−1) − f(t))

i
)

= 0

4πα′ S|on-shell = −2
3∑

t=1

Im
(
g

(⊥)
(t), i (f(t−1) − f(t))

i
)

, (6.5)

where the last equation shows that the action can be expressed only using the global data.
In the Abelian case where i = 1 we can further simplify the action and give a clear geomet-

rical meaning. We notice that given to complex numbers a, b ∈ C such that Re(a∗b) = 0 then 
Im(a∗b) = ±|a||b|. This can be seen either by direct computation or by using a U(1) rotation to 
set b equal to |b|. Since the action is positive then we can write

S|on-shell = 1

2πα′
3∑

t=1

1

2
|g(⊥)

(t) | |f(t−1) − f(t)|, (6.6)

where a factor 1
2 comes from raising the g(⊥)

(t) i=1 complex index. We now see that the right hand 
side is the sum of the areas of the triangles having as base the interval between two intersection 
points on a given brane D(t) and as height the distance between the brane and the origin as shown 
in Fig. 1.

For the SU(2) case we can use a SU(2) rotation to bring (f(t−1) −f(t))
i to the form ‖f(t−1) −

f(t)‖δi
1, then each term of the action can be interpreted again as an area of a triangle where the 

distance between the interaction points is the base. Also in this case a kind of flatness is playing 
a role to give the value of the action.

6.3. The general non Abelian case

In the general case there does not seem to be any possible way of computing the action (6.2)
in term of the global data. It does not seem to be any kind of flatness involved and probably the 
action is bigger than in the holomorphic case since the string is no longer confined to a plane and, 
given the nature of the rotation, its worldsheet has to bend in order to be attached to the brane as 
pictorially shown in Fig. 8 in the case of a 3-dimensional space. The general case we considered 
then differs from the known factorized case by an additional contribution in the on-shell action 
which can be intuitively understood as a small “bump” of the string worldsheet in proximity of 
the boundary.

The physical consequence is an exponential suppression of the contribution of the classical ac-
tion to the correlators of twist fields and to the Yukawa coupling with respect to the holomorphic 
case.
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Fig. 8. This is a pictorical 3-dimensional representation of two D2-branes intersecting in the Euclidean space R3 along 
a line (in R4 the intersection is a point since the co-dimension of each brane is 2): since it is no longer constrained on 
a bi-dimensional plane, the string must be deformed in order to stretch between two consecutive branes. Its action will 
therefore be larger than the planar area.
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Appendix A. The isomorphism in details

In this appendix we discuss our conventions for SU(2) and show the details on the construc-
tions of the isomorphism between SO(4) and a class of equivalence of SU(2) × SU(2).

A.1. SU(2) conventions

We choose to parameterize any SU(2) matrix with a vector n ∈R
3 such that:

U(n) = cos(2πn)12 + i
n · σ
n

sin(2πn), (A.1)

where n = ‖n‖ and 0 ≤ n ≤ 1
2 with the identification of all n when n = 1

2 since in this case 
U(n) = −12. The parametrization is such that:

(U(n))∗ = σ2U(n)σ2 = U(̃n), (A.2)

(U(n))† = (U (̃n))T = U(−n), (A.3)

−U(n) = U(̂n) (A.4)

where ̃n = (−n1,+n2,−n3
)

and ̂n = − 
( 1

2 − n
)

n/n.
The product of two elements is given by U(n ◦ m) = U(n)U(m) or more explicitly by:

cos(2π‖n ◦ m‖) = cos(2πn) cos(2πm) − sin(2πn) sin(2πm)
n
n

· m
m

,

sin(2π‖n ◦ m‖) n ◦ m
‖n ◦ m‖ = cos(2πn) sin(2πm)

m
m

+ sin(2πn) cos(2πm)
n
n

.
(A.5)
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A.2. The isomorphism

Let I = 1, 2, 3, 4 as in the main text and define:

τI = (i12,σ) ,

where σ = (σ1,σ2,σ3
)

are the usual Pauli matrices. It is then easy to show that:

(τI )
† = ηIJ τI ,(

τI
)∗ = −σ2τIσ2,

(A.6)

where ηIJ = diag(−1, 1, 1, 1). We have the following useful relations:

tr(τI ) = 2iδI1,

tr(τIτJ ) = 2ηIJ ,

tr(τI (τJ )†) = 2δIJ .

Now consider a vector in this spinor representation:

X(s) = XIτI .

We can recover its components using the previous properties:

XI = 1

2
δIJ tr(X(s) (τJ )†) = 1

2
ηIJ tr(X(s)τJ ).

If the vector XI is real, using the properties in (A.6), then we have

X
†
(s) =XIηIJ τJ = 1

2
tr(X(s)τI )τ

I ,

X∗
(s) = − σ2X(s)σ2.

(A.7)

A rotation in the spinor representation is defined as:

X′
(s) = UL(n)X(s)U

†
R(m) (A.8)

and it is equivalent to:(
X′)I = RI

J XJ (A.9)

through

RIJ = 1

2
tr((τI )

† UL(n)τJ U
†
R(m)). (A.10)

R is indeed the matrix we are looking for since

tr(X′
(s)X

′ †
(s)) = tr(X(s)X

†
(s)) ⇒ RI KR∗

J K = δI J .

It is then necessary to show that R is a real matrix. From the second equation in (A.6) and the 
first equation in (A.4) we get:

RNM = 1
ηNIηMJ tr(τ†

IURτJ U
†
L) = 1

tr(τNURτ
†
MU

†
L) = (RNM)∗.
2 2
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The property R ∈ SO(4, R) can also be shown by a direct computation of the determinant using 
the parametrization of the SU(2) matrices: we find

det(R) = 1.

Moreover the explicit choice of the basis τ ensures R to be a real matrix.
Since {UL,UR} and {−UL,−UR} generate the same SO(4) matrix then the correct isomor-

phism takes the form:

SO(4) ∼= SU(2) × SU(2)

Z2
.

Appendix B. The parameters of the hypergeometric function

B.1. Consistency conditions for U(2) and U(1, 1) monodromies

In the main text we have set

DM∞ (D)−1 = e−2πiδ∞L(n∞), (B.1)

where L(n∞) is a SU(2) matrix. This is a somewhat strong statement which may imply and 
implies some consistency conditions. The previous equation implies

[DM∞ (D)−1]† = [DM∞ (D)−1]−1, (B.2)

which can be rewritten as

M̃−1∞ C†D†DC = C†D†DC M̃−1∞ . (B.3)

Since M̃∞ is a generic diagonal matrix the previous equation implies that the off-diagonal ele-
ments of C†D†DC must vanish. This means that

|K|−2 = −C21C∗
22

C11C∗
12

=

= − �∗(a)�(b)�(c − a)�∗(c − b)

�(1 − a)�∗(1 − b)�∗(1 − c + a)�(1 − c + b)
=

= − 1

π4 |�(a)�(b)�(c − a)�(c − b)|2×
× sin(πa) sin∗(π(c − a)) (sin(πb) sin∗(π(c − b)))∗. (B.4)

For real a, b and c this means that

sin(πa) sin(π(c − a)) sin(πb) sin(π(c − b)) < 0. (B.5)

The previous equation is invariant under integer shift of any of the three parameters therefore we 
can limit to consider what happens to the fractional parts 0 ≤ {a}, {b}, {c} < 1. Finally we get 
that the previous equation, i.e. the original position of having U(2) monodromies requires

either 0 ≤ {b} < {c} < {a} < 1 or 0 ≤ {a} < {c} < {b} < 1. (B.6)

Should we require the monodromies be in U(1, 1), as required by moving rotated branes, then 
we would get
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|K|−2 = +C21C∗
22

C11C∗
12

, (B.7)

which would imply

either 0 ≤ {c} < {a}, {b} < 1 or 0 ≤ {a}, {b} < {c} < 1. (B.8)

B.2. Fixing the parameters

In this appendix we show in a detailed way how to compute the parameters of the basis of 
hypergeometric functions we used in the main text. The relation between such parameters and 
the SU(2) matrices are computed requiring that the monodromies induced by the choice of the 
parameters equal the monodromies of the rotations of the D-branes.

The monodromy in ωt−1 = 0 is simpler to compute since we chose L(n0) and R(m̃0) to be 
diagonal. We impose:(

1

e−2πic(L)

)
= e−2πiδ

(L)
0

(
e2πin0

e−2πin0

)
,(

1

e−2πic(R)

)
= e−2πiδ

(R)
0

(
e−2πim0

e2πim0

)
,

where n3
0 = n0 and m3

0 = m0 with 0 ≤ n0, m0 < 1 with the conventions of (4.13) and (4.14). In 
the left sector we therefore find:

δ
(L)
0 = n0 + k

δ
(L)
0

, where k
δ
(L)
0

∈ Z,

c(L) = 2n0 + kc, where kc ∈ Z.
(B.9)

Since ei4πδ
(L)
0 is the determinant of the right hand side the range of definition of δ(L)

0 is α ≤ δ
(L)
0 ≤

α + 1
2 since 0 ≤ n0 < 1

2 we can simply take α = 0 and set

δ
(L)
0 = n0.

Analogous results hold in the right sector. From the third equation in (4.11) and from the first 
equation in (B.9) we find:

−A + n0 + m0 ∈ Z.

We now need to fix the 6 parameters a(L), b(L), δ(L)∞ , B and |K(L)|, T (L). Our strategy is 
first to find 3 equations to determine a(L), b(L), δ(L)∞ and then fix the remaining ones. Clearly 
everything holds true also for the right sector. All these equations follow from imposing the 
requests (4.12). The first two equations for a(L), b(L), δ(L)∞ follow easily by considering the trace 
of (4.12):

eiπ(a(L)+b(L)) cos(π(a(L) − b(L))) = e−2πiδ
(L)∞ cos(2πn∞),

which translates into:

δ(L)∞ = −1

2
(a(L) + b(L)) + 1

2
k
δ
(L)∞

, where kδ∞ ∈ Z,

a(L) − b(L) = 2(−1)p
(L)

n∞ + k (L)(−1)q
(L) + 2k′ , where k′ ∈ Z,
δ∞ ab ab
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with p(L), q(L) ∈ {0,1}. A change of value of p(L) corresponds to an exchange between a and 
b: since the hypergeometric function is symmetric in a and b we can fix p(L) = 0. Redefining k′
we can always set q(L) = 0, hence we can write

a(L) − b(L) = 2n∞ + k
δ
(L)∞

+ 2kab, where kab ∈ Z. (B.10)

A discussion of the possible values of k
δ
(L)∞

is analogous to what done for the monodromy around 

ωt−1 = 0 but with an important difference: 1
2(a(L) + b(L)) may a priori take values in an interval 

of width 1. Because of this since also in this case we have α ≤ δ
(L)∞ ≤ α + 1

2 with α a priori
arbitrary we cannot choose k

δ
(L)∞

= 0 but we have to consider k
δ
(L)∞

= 0, 1.
We then find a third relation by considering:

Im

(
e+2πiδ

(L)∞ D(L)M(L)∞
(
D(L)

)−1
)

11
= Im (L(n∞))11 .

With the help of

detC = sin(πc(L))

sin(π(a(L) − b(L)))
,

and the second equation in (B.9) and (B.10), it leads to:

cos
(
π(a(L) + b(L) − c(L))

)= (−1)
kc+k

δ
(L)∞ cos

(
2πA(L)

)
,

where

cos
(
2πA(L)

)= cos(2πn0) cos(2πn∞) − sin(2πn0) sin(2πn∞)
n3∞
n∞

. (B.11)

The rotation parameter in the third interaction point ωt+1 = 1 is connected with the previous 
expression as

cos
(
2πA(L)

)= cos(2πn1).

Then we can write:

a(L) + b(L) − c(L) = 2(−1)f
(L)

n1 + kc + k
δ
(L)∞

+ 2kabc, where kabc ∈ Z,

with f (L) ∈ {0,1}.
We then fix the B parameter in the third equation of (4.12) requiring:

A + B − n0 − m0 − (−1)f
(L)

n1 − (−1)f
(R)

m1 ∈ Z.

We can summarize the results so far as

a = n0 + (−1)f
(L)

n1 + n∞ + ma,

b = n0 + (−1)f
(L)

n1 − n∞ + mb,

c = 2n0 + mc,

δ
(L)
0 = n0,

δ(L)∞ = −n0 − (−1)f
(L)

n1 + mc + 2mδ

A = n0 + m0 + mA,

B = (−1)f
(L)

n1 + (−1)f
(R)

m1 + mB,
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where all the factors m are integers.
Finally we determine K(L). To this purpose we consider:(

D(L)M∞
(
D(L)

)−1
)

21
= e−2πiδ

(L)∞ (L(n∞))21 , (B.12)

and get:

K(L) = − 1

2π2 �(1 − a(L))�(1 − b(L))�(a(L) + 1 − c(L))�(b(L) + 1 − c(L)) ×

× sin(πc) sin(π(a − b))
n1∞ + in2∞

n∞

= − (−1)ma+mb+mc

2π2 �(1 − a(L))�(1 − b(L))�(a(L) + 1 − c(L))�(b(L) + 1 − c(L)) ×

× sin(2πn0) sin(2πn∞)
n1∞ + in2∞

n∞
. (B.13)

B.3. Checking the consistency of the solution

Given the previous solution we can now check the consistency condition (B.6) with the help 
of (A.5). Another way of performing this check is to compute K(L) from(

D(L)M∞
(
D(L)

)−1
)

12
= e−2πiδ

(L)∞ (L(n∞))12 , (B.14)

instead of (B.12). The result is

1

K(L)
= (−1)ma+mb+mc

2π2 �(a(L))�(b(L))�(−a(L) + c(L))�(−b(L) + c(L)) ×

× sin(2πn0) sin(2πn∞)
n1∞ − in2∞

n∞
. (B.15)

This expression and (B.13) are compatible only if

(n1∞)2 + (n2∞)2

n2∞
= −4

sin(πa) sin(π(c − a)) sin(πb) sin(π(c − b))

sin2(πc) sin2(π(a − b))
. (B.16)

Notice that this equation may be true only if the constraint found before and expressed in (B.5)
is true. To proof it we rewrite (B.11) as

(n3∞)2

n2∞
= (cos(π(a − b)) cos(πc) − cos(π(a + b − c)))2

sin2(πc) sin2(π(a − b))
, (B.17)

and then we verify that the sum of the right hand side of this equation and the right hand side of 
(B.16) is equal to 1.
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