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Abstract

Bayesian estimation of nonparametric mixture models strongly relies on available
representations of discrete random probability measures. In particular, the order of
the mixing weights plays an important role for the identifiability of component-specific
parameters which, in turn, affects the convergence properties of posterior samplers.
The geometric process mixture model provides a simple alternative to models based on
the Dirichlet process that effectively addresses these issues. However, the rate of decay
of the mixing weights for this model may be too fast for modeling data with a large
number of components. The need for different decay rates arises. Some variants of the
geometric process featuring different decay behaviors, while preserving the decreasing
structure, are presented and investigated. An asymptotic characterization of the num-
ber of distinct values in a sample from the corresponding mixing measure is also given,
highlighting the inferential implications of different prior specifications. The analysis
is completed by a simulation study in the context of density estimation. It shows that
by controlling the decaying rate, the mixture model is able to capture data with a large
number of components.

1 Introduction

Mixture models have been subject of interest in many and different contexts due to their
flexibility. Their study can be traced back to the work of Pearson [1894]. Extensive accounts
can be found, e.g., in Titterington et al. [1985], McLachlan and Peel [2000] and Frühwirth-
Schnatter [2006]. A mixture density can be written as

f(y) =

m∑
j=1

wjκ(y;xj), (1)
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where (w1, . . . , wm) are the mixture weights, i.e. non-negative values summing up to one,
and κ is a density function in y with parameter xj . According to the employed methodology
the number of components, m, in the mixture can be finite or infinite and (wj , xj) fixed or
random. It is useful to describe the mixture density (1) in terms of an underlying mixing
measure, that is

f(y) =

∫
X
κ(y;x)p̃(dx), p̃(·) =

m∑
j=1

wjδxj
(·), (2)

where p̃ defines a random discrete probability measure on X. Here, (wj)j≥1 is a sequence of
(0, 1)-valued random variables summing up to one almost surely (a.s.), and (xj)j≥1 is a se-
quence of independent and identically distributed (iid) random variables from a non-atomic
distribution ν0, and both sequences are taken as independent. Under a Bayesian nonpara-
metric framework, i.e. when m = ∞, Lo [1984] studied model (2) when p̃ is given by
the Dirichlet process [Ferguson, 1973]. The model, known as the Dirichlet process mixture
model, gained huge popularity with the work by Escobar and West [1995], where a con-
crete computational implementation was presented. This model is nowadays widely used in
practice thanks also to the availability of effective algorithms.

There are different strategies to provide explicit constructions for the sequence (wj).
Perhaps, one of the most popular approaches is the so-called stick-breaking representation,
where weights are defined as

w1 = v1, wj = vj
∏
l<j

(1− vl) j ≥ 2, (3)

for (vj)j≥1 a sequence of independent (0, 1)-valued random variables. The only restriction
for this construction is that

∑
i≥1 logE(1−vi) = −∞ [Ghosal and van der Vaart, 2017]. The

Dirichlet process mixture model is recovered by setting vj to be iid and beta distributed of
parameters (1, c) for some c > 0 that corresponds to the total mass parameter of the Dirichlet
process. This model constitutes the most representative example of mixture densities in
Bayesian nonparametrics, and many other models, with a more complex weight structure,
have been conceived based on it; see, e.g. Shi et al. [2019], Quinlan et al. [2018], Nguyen
[2010], Griffin and Steel [2011] and Scarpa and Dunson [2014]. Furthermore, their range of
application is very wide; Gutiérrez and Quintana [2011] and Wade et al. [2014], to mention
just a few, made use of these different models.

A second approach is to makem random in (2), and specify the distribution of (w1, . . . , wm)

conditional on m. The resulting model can be expressed as a mixture of finite mixtures. A
standard choice for the distribution of (w1, . . . , wm) is the symmetric Dirichlet distribution
[see, for example Richardson and Green, 1997]. The resulting random discrete probability
measure p̃ can be seen to belong to the family of Gibbs-type prior with negative parameter
[c.f. De Blasi et al., 2013].

A somewhat different direction in defining a mixture model (2) has been taken by
Fuentes-García et al. [2010]. It entails a simple structure for the weights, simpler in that
their randomness is determined by a single random parameter. It starts with a finite mixture
model with equal weights,

f(y|r) =
1

r

r∑
i=1

κ(y;xi). (4)

Next, let the number of components r be distributed according to π(·; θ), a probability mass
on Z+ whose parameter θ is random. Then, marginalizing over the distribution of r, one
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obtains

f(y) =

∞∑
r=1

π(r; θ)f(y|r) =

∞∑
r=1

π(r; θ)

r

r∑
i=1

κ(y;xi) =

∞∑
j=1

wjκ(y;xj),

which is an infinite mixture density with random weights given by

wj =

∞∑
r=j

π(r; θ)

r
, j = 1, 2, . . . . (5)

An important characteristic of this construction is that the weights are decreasing a.s., i.e.
wj > wj+1, for all j ≥ 1. Note that those obtained through the stick-breaking representation
(3) are not stochastically ordered, rather only in the mean: E[wj ] > E[wj+1]. Indeed, the
distribution of the weights of the Dirichlet process in decreasing order is known as the
Poisson–Dirichlet distribution [Kingman, 1993, Section 9.6], however such a representation
is not useful for estimation purposes. In the case of mixture of finite mixtures, a similar
marginalization argument as in (5) will not yield decreasing weights. To see why, let m ∼
π(m) in (1) and (w1,m, . . . , wm,m) be the weights in (1) with the dependence in distribution
on m made explicit in the notation. For example, take (w1,m, . . . , wm,m) ∼ Dir(γ, . . . , γ),
so that wj,m ∼ beta(γ, (m− 1)γ) for j = 1, . . . ,m. Marginalization over the distribution of
m yields

f(y) =

m∑
j=1

w′jκ(y;xj), w′j =

∞∑
m=j

wj,mπ(m), j = 1, 2, . . . ,

where, however, the equality in distribution w′j+1
d
= w′j−wj,jπ(j) does not imply w′j > w′j+1

a.s. anymore.
Going back to model (5), for the specific case where r follows a negative binomial dis-

tribution with integer parameter s = 2, the weights are found to have a closed form given
by

wj = p(1− p)j−1, j = 1, 2, . . . ,

with p ∈ (0, 1). See Section 2 for details. The resulting random probability measure p̃,
known as the geometric process, is obtained by having p = w1 random with some prior
distribution. It is important for this prior distribution to be supported on (0, 1) so that, in
particular, P (w1 < ε) > 0 for every ε > 0, since the latter has been shown to guarantee that
the random probability measure p̃ has full support on the space of distributions over the
reference space X, cf. Corollary 3 in [Bissiri and Ongaro, 2014]. The corresponding mixture
model represents a simpler yet appealing alternative to models like those based on the stick-
breaking representation. Indeed, the geometric process has been successfully applied in
different problems; besides density estimation [Fuentes-García et al., 2010], it has been used
in regression [Fuentes-García et al., 2009], dependent models [Mena et al., 2011, Hatjispyros
et al., 2018], classification [Gutiérrez et al., 2014], and others. Furthermore, having the
weights decreasingly ordered alleviates the label switching effect in the implementation of
the posterior sampler and allows for a better interpretation of the weight of each component
within the whole sample, thus improving the identifiability of the mixture model [Mena
and Walker, 2015]. However, the rate of decay of the weights (wj)j≥1 can be too rapid
for modeling data with a large number of components. In fact, in these cases an accurate
reconstruction of the data generating density requires the mixture to feature far too many
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components with small weights, which affects the convergence of the posterior sampler.
Hence, it is important to derive alternative models with a more flexible rate of decay.

In this paper, we explore some other sequences of mixing weights derived from con-
struction (5). In Section 2, we present two specific cases, one of them can be thought as
a generalization of the geometric process. A discussion on the asymptotic behavior for the
expected number of groups, as the sample size increases, in a species sampling model set-
ting is presented in Section 3. This illustrates the effect of the decaying rate of the weights
when a multinomial sampling from the mixing distribution is considered. Section 4 provides
a Markov Chain Monte Carlo (MCMC) algorithm (with further details given in the Ap-
pendix), and in Section 5, we perform a simple yet effective simulation study in the context
of density estimation with univariate as well multivariate data. This study showcases how
to tune the decreasing weights structure to reconstruct the data generating density. Some
concluding remarks are provided in Section 6.

2 Extensions of the geometric process

The construction in (5) relies on the choice of the distribution π(·; θ) of r. As mentioned
in the Introduction, the geometric process corresponds to a particular instance of π(·; θ).
Here we provide details of the latter derivation and explore other choices of π(·; θ) that
yield different decay behaviors. The distribution of the weights is determined by the prior
distribution on the weight parameter θ. In particular, as mentioned above, it is important
that the prior on θ yields P (w1 < ε) > 0 for every ε > 0 as this guarantees the full support
of p̃.

We consider two different specifications for the distribution π(·; θ) of r: the negative
binomial and the Poisson distributions. In both cases, we modify the support by excluding
the value zero, in order to apply construction (5). As for the former, let a random variable
X follow a shifted negative binomial distribution, X ∼ NB1(s, p), with parameters (s, p),
for s > 0 and 0 < p < 1, if its probability distribution is given by

π(x; s, p) =

(
x+ s− 2

x− 1

)
ps(1− p)x−1, x = 1, 2, . . . . (6)

Furthermore, E(X) = 1 + (1 − p)s/p, and Var(X) = (1 − p)s/p2. Substituting π(·; s, p) in
(5), we obtain

wj =
1

j

(
j + s− 2

j − 1

)
ps(1− p)j−1

2F1(j + s− 1, 1, j + 1; 1− p), (7)

for j = 1, 2, . . . , where

2F1(a, b, c; z) =

∞∑
k=0

(a)k↑(b)k↑
(c)k↑

zk

k!
,

is the Gaussian hypergeometric function, and (x)n↑ denotes the Pochhammer symbol defined
as (x)n↑ = x(x+1) · · · (x+n−1) with the convention (x)0↑ = 1. The formula above simplifies
when s is an integer. By direct calculation involving the geometric series, s = 2 leads to

wj =
∑
r≥j

1

r
rp2(1− p)r−1 = p2(1− p)j−1

∑
i≥0

(1− p)i

= p2(1− p)j−1 1

p
= p(1− p)j−1, j = 1, 2, . . . ,
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that is the geometric distribution. An explicit form is also obtained for s = 3 by exploiting
the derivative of the geometric series to get

wj = p(1− p)j−1 1 + jp

2
, j = 1, 2, . . . . (8)

Similar formulae can be obtained for s = 4, 5, . . . by taking further derivatives. We set θ = p

and endow it with a prior distribution. In all cases, when p is random with distribution
supported on (0, 1), w1 is is supported on (0, 1) too, hence p̃ has full support.

The second case is based on the Poisson distribution. Performing the same shift as before,
we say that a random variable X follows a shifted Poisson distribution, X ∼ Poi1(λ), with
parameter λ > 0, if its probability distribution is such that

π(x;λ) =
λx−1e−λ

(x− 1)!
, x = 1, 2, . . . . (9)

Moreover, E(X) = 1+λ and Var(X) = λ. In this case, setting θ = λ in (5), the correspond-
ing weights become

wj =
Γ(j)− Γ(j, λ)

λΓ(j)
, (10)

for j = 1, 2, . . . , where Γ(a, z) is the (upper) incomplete Gamma function, which has the
following representation, for any positive integer a,

Γ(a, z) =
Γ(a)

ez

a−1∑
k=0

zk

k!
.

Note that, having λ supported on R+ implies that w1 is supported on (0, 1), as limλ↓0 Γ(j, λ) =

Γ(j) and limλ→∞ Γ(j, λ) = 0, and the full support of p̃ follows.
For these cases the decay rate varies according to the value of their corresponding weight

parameters θ. In Figure 1, different examples for these two cases are displayed. A conve-
nient way of characterizing the tail behavior of the weights is in terms of the asymptotic
distribution of the random variable denoting the number of distinct values Kn observed in
a n-sample from p̃. In the next section, we use Karlin’s theory to show how heavy tailed
weights correspond to more new values as n increases, i.e. to a faster rate of increase in Kn.

3 Asymptotic behavior of E(Kn) in species sampling prob-
lems

An key characteristic to investigate for discrete random probability measures is the distribu-
tion of the (random) number Kn of distinct values in a sample from the probability measure
and, in particular, how it increases as the sample size, n, increases. Understanding such a
behavior is crucial for effective modeling with discrete random probability measures. See,
e.g., [Lijoi et al., 2007a,b, Lijoi, Antonio and Nipoti, Bernardo and Prünster, Igor, 2014,
De Blasi et al., 2015]. Here we discuss the asymptotic behavior of Kn in a species sampling
problem context by focusing on the geometric process and its negative binomial extensions
discussed in Section 2. The following notation is adopted throughout the section: for two
sequences (an), (bn), an = O(bn) means that |an| ≤ C|bn| for all sufficiently large n and for
some positive constant C independent of n; an ∼ bn means that an/bn → 1 as n → ∞;
when (an), (bn) are random, an ∼a.s. bn means that an/bn → 1 almost surely.
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(a) NB weights for p = 0.2 and different values of s:
1, 2, 5, 10 and 25.
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(b) NB weights for p = 0.5 and different values of s:
1, 2, 5, 10 and 25.
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(c) NB weights for p = 0.8 and different values of s:
1, 2, 5, 10 and 25.
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(d) Poisson weights for different values of λ: 0.1,
1, 5, 10 and 20.

Figure 1: Illustration of the different decay rates for the negative binomial (NB) and Poisson
constructions of the mixing weights. For the NB case, the geometric process (s = 2) is
displayed in red. Points are connected by straight lines for visual simplification.

Let wj = p(1 − p)j−1, j = 1, 2, . . ., p ∈ [0, 1], be the geometric probabilities and φ(p)

be the prior density on the success probability of the geometric distribution. Accordingly,
here Kn denotes the number of distinct values generated by n draws from the geometric
process. The distribution of Kn is determined by the process of random sampling and the
randomness of the (wj). In order to study E(Kn), we exploit the law of total expectation
by considering first the so called occupancy problem in the case of fixed weights. To this
aim, the key quantity to consider is the number of geometric probabilities not smaller than
x ∈ (0, 1), which is found to be

−→ν (x, p) := #{j : p(1− p)j−1 ≥ x} =

⌊
log(x/p)

log(1− p) + 1

⌋
1(p≥x).

Here bxc is the integer part of x and 1A(·) is the indicator function of set A. Let E(Kn|p)
be the number of distinct values in an iid sample of size n from the geometric distribution
of parameter p. According to Karlin [1967], E(Kn|p) ∼a.s. −→ν

(
1
n , p) as n → ∞, so by the

law of total expectation and Fubini theorem,

E(Kn) ∼ I
(

1
n

)
, where I(x) =

∫ 1

0

−→ν (x, p)φ(p)dp. (11)

Hence the asymptotic behavior of E(Kn) depends on the limiting behavior of the integral
I(x) for x ↓ 0. For illustration, let φ(p) be the uniform distribution on (0, 1). In order to

6



study the limiting behavior of I(x) as x ↓ 0, by a change of variable, it is sufficient to focus
on

J(x) =

∫ log 1/x

0

(
log

1

x
− t
)

df(t), where
df(t)

dt
=

e−t

− log(1− e−t)
,

as J(x) ≤ I(x) ≤ 1 − x + J(x). The integral J(x) corresponds to the Riemann-Liouville
integral, or fractional integral, 1f(·) of f(t), according to the definition

αf(x) =
1

Γ(α+ 1)

∫ x

0

(x− t)αdf(t),

evaluated at log 1/x. According to Bingham et al. [1987, Page 58], for f(t) non decreasing
with f(0) = 0, f is regularly varying at infinity with exponent β iff αf(x) is regularly varying
at infinity with exponent α+ β and each implies

αf(x)

xαf(x)
→ Γ(β + 1)

Γ(α+ β + 1)
.

In the present case, df(t)/dt behaves like a distribution function on R+, so we have β = 1.
It follows that 1f(·) is regularly varying at infinity with exponent α+β = 2 and the constant
of proportionality is Γ(β+ 1)/Γ(α+β+ 1) = 1/2, so that J(x) ∼ (log 1/x)2/2 as x→ 0 and
we conclude that

E(Kn) ∼ 1

2

(
log n

)2
,

in contrast to E(Kn|p) ∼ 1
| log(1−p)| log n in the fixed (wj) case. Faster (slower) rates are

obtained by changing the prior φ(p) so to shift mass to lower (higher) values of p. It can be
shown that, for p d

= e−X for X ∼ gamma(a, 1), a > 0,

E(Kn) ∼ 1

a(a+ 1)
(log n)a+1.

For the Dirichlet process case with total mass parameter c > 0, the asymptotic behavior of
E(Kn) is known to be proportional to c log n [Korwar and Hollander, 1973]. In our case, by
tuning the prior φ(p), a whole range of logarithmic behaviors can be achieved. See Figure 2
for an illustration. Other examples of growth rates different than log n can be found in
Camerlenghi et al. [2019] and Gnedin et al. [2006].

Recall that the geometric process corresponds to construction (5) when the distribution
of r is shifted negative binomial with s = 2, cf. (6). Next we investigate next the asymptotic
behavior of E(Kn) for s larger than 2. A comparison with the geometric process case is
meaningful only if made for a fixed prior φ(p), so for illustrative purposes we stick to the
uniform prior here. As mentioned in the previous section, the weights (wj) admit an explicit
form for an integer s, as the tools developed above, based on the quantity −→ν (x, p), can be
carried out. We report here a result for the case s = 3, cf. (8), but similar results are believed
to hold for s larger than 3. It says that the leading term in the asymptotic expansion of
E(Kn) is not affected by the value of s, specifically,

E(Kn)− 1

2

(
log n

)2
= O(log n log log n).

Performing an analogous study for the Poisson case is difficult with the present techniques
due to the formula of the weights (wj). The asymptotic evaluation of E(Kn) is still of type
(11), namely

E(Kn) ∼
∫ 1

0

−→ν (1/n, λ)φ(λ)dλ, −→ν (x, λ) = #
{
j : Γ(j)−Γ(j,λ)

λΓ(j) ≥ x
}
,
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(b) Asymptotic behavior of E(Kn). The case
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Figure 2: Geometric weights and asymptotic behavior of E(Kn) where the prior for p is
given by e−X with X ∼ gamma(a, 1). Different values for a were used: 1, 2, 5,

7 and 10. Points are connected by straight lines for visual simplification.

where φ(λ) is the prior on the mean parameter λ of the Poisson distribution and −→ν (x, λ) is
the number of weights wj not smaller than x according to (10). Unfortunately, the lack of
an explicit form of wj makes the evaluation of the integral in the display above hard. We
will further research this direction elsewhere.

4 Sampling scheme for density estimation

In this section, we provide an MCMC algorithm to draw samples from the posterior dis-
tributions of interest. A mixture model of the form of (4) can be written hierarchically
as

yi|x, ri, di ind∼ κ(yi;xdi), i = 1, . . . , n

di|ri ind∼ U(di; 1, ri)

ri|θ iid∼ π(ri; θ, ψ)

xj
iid∼ ν0(xj ; ξ), j = 1, . . . ,m

θ ∼ φ(θ;ω),

for m := max(r1, . . . , rn), and where U(·; 1, r) is the uniform distribution on the set of
integers {1, 2, . . . , r}, ν0 is a non-atomic distribution (identified by its corresponding density
function) and ψ, ξ and ω are known finite dimensional parameters. Variables (d1, . . . , dn)

are membership variables associating each observation yi to the dith mixture component.
The distributions π and φ are chosen according to the negative binomial or Poisson case.
Therefore, we can implement a Gibbs sampler whose full conditional distributions are the
following:
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1. the full conditional for the kernel parameter is

p(xj | · · · ) ∝ ν0(xj ; ξ)
∏
di=j

κ(yi;xj),

for j = 1, . . . ,m.

2. For the membership variables, we have

p(di| · · · ) ∝ κ(yi;xdi)1(1 ≤ di ≤ ri),

for i = 1, . . . , n.

3. For the integer-valued ri, the full conditional is given by

p(ri| · · · ) ∝
π(ri; θ, ψ)

ri
1(ri ≥ di).

4. Finally, parameter θ is updated by

p(θ| · · · ) ∝ φ(θ;ω)

n∏
i=1

π(ri; θ, ψ).

The last two steps are different for the negative binomial and the Poisson case, as detailed
next.

Negative binomial case Assuming ri ∼ NB1(s, p) for i = 1, . . . , n, so that θ = p and
ψ = s, and p ∼ beta(α, β), the conditional distributions are

p(ri| · · · ) ∝
(
ri + s− 2

ri

)
(1− p)ri1(ri ≥ di),

that is, a negative binomial distribution with parameters (s− 1, p) truncated at di, and

p(p| · · · ) ∝ psn+α−1(1− p)
∑n

i=1 ri+β−n−1,

which is a beta distribution with parameters (sn+α,
∑n
i=1 ri+β−n). A simulation procedure

for the truncated distribution is presented in A.

Poisson case If it is assumed ri ∼ Poi1(λ) for all i = 1, . . . , n, so that θ = λ (no ψ needed
here), and λ ∼ gamma(γ, δ), the corresponding conditional distributions are

p(ri| · · · ) ∝
λri

ri!
1(ri ≥ di),

which is a Poisson distribution with parameter λ truncated at di, and

p(λ| · · · ) ∝ λ
∑n

i=1 ri+γ−n−1e−(δ+n)λ,

a gamma distribution with parameters (
∑n
i=1 ri+γ−n, δ+n). In A, a procedure to simulate

from the truncated distribution is also described.
Regarding the density estimation, we use the following Monte Carlo estimator

f̂(y) =
1

T

T∑
t=1

m(t)∑
j=1

w
(t)
j κ(y;x

(t)
j ), (12)
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where the mixing weights are computed using either (7) (or explicit formulae like (8) for
integer-valued s) together with the sampled p(t) or (10) together with the sampled λ(t), and
m(t) = max(r

(t)
1 , . . . , r

(t)
n ) is the number of kernel parameters x(t)

j sampled at iteration t.
As mentioned in the Introduction, having a mixing measure p̃ with heavy tailed weights is

expected to provide a better density estimate with data featuring a large group structure. In
the next section, we explore the performance of the models under study with both univariate
and multivariate simulated data in this setting.

5 Simulation study

5.1 Univariate case

We use a Gaussian kernel with unknown mean and variance, so κ(y;xj) = N(y;µj , 1/τj). A
normal–gamma prior with parameters (m, c, a, b) is used for the parameters (µj , τj), that is

p(µj , τj) = N(µj ;m, c/τj)Ga(τj ; a, b).

Thus, the posterior distribution is conjugate with parameters (m′, c′, a′, b′) given by

m′ =
cnj ȳj +m

cnj + 1
, a′ =

nj
2

+ a,

c′ =
c

(cnj + 1)
, b′ =

nj(ȳj −m)2

2(cnj + 1)
+
Sj
2

+ b,

where ȳj = 1
nj

∑
di=j

yi, Sj =
∑
di=j

(yi − ȳj)2 and nj =
∑n
j=1 1(di = j).

Given this model, we test the two cases under different scenarios, i.e. using two datasets.
The first dataset is a sample of size 1 000 from the following mixture of 5 components:

f(y) = 39
100N(y; 3, 1) + 21

100N(y; 5.5, 4) + 15
100N(y; 15, 1)+ (13)

10
100N(y; 20, 0.25) + 15

100N(y; 22, 16).

The second dataset consists also on a sample of size 1 000, but from a mixture with 10 com-
ponents:

f(y) =

10∑
j=1

1

10
N(y; 6j − 33, 1). (14)

For both datasets, 50 000 iterations of the MCMC scheme were obtained; the first 30 000

of them were discarded. We assign vague priors by setting (m, c, a, b) = (0, 1000, 0.01, 0.01)

for the kernel hyperparameters, and letting p ∼ beta(1, 1), i.e. uniformly distributed on
(0, 1), for the negative binomial case, and λ ∼ gamma(0.01, 0.01) for the Poisson case.
Additionally, we fix the second parameter for the negative binomial case, s, taking the
values 1, 2 (corresponding to the geometric process), 5, 10 and 25.

Figures 3 and 4 display the estimated density for each dataset and each scenario. Fur-
thermore, for the case with a large number of components, model (14), Figure 5 displays the
estimated and true mixing weights (panel 5a) and the estimated posterior distribution of
Kn (panel 5b). For the sake of comparison, we also include the density estimator obtained
from the Dirichlet process mixture model with a fixed total mass parameter c. This was
implemented via a slice sampler [Kalli et al., 2011], and we use the same MCMC specifica-
tions, and prior settings; additionally, the total mass parameter c was fixed in such a way
that E(Kn) matches the true number of components.

10



Examining the results for the first dataset, drawn from model (13), the posterior density
estimations for the data with a relatively small number of components are all similar (Fig-
ure 3). However, for the second dataset featuring a larger number of components (model 14),
the density estimates show more evident differences (Figure 4). Indeed, in order to capture
the density that features a relatively large number of similar modes, a flexible weight struc-
ture plays a crucial role. One can appreciate that, for the scenarios where the posterior
mixing weights have a heavy tailed weights decay (Figure 5a), the estimated weight com-
ponents replicate better those of the data generating process and the posterior distribution
of Kn moves towards the true number of components as the weight tail gets heavier (Fig-
ure 5b). The Dirichlet model instead underestimates Kn while failing to reconstruct three
of the ten modes of the data generating density, cf. Figure 4. This is due to the mixing
weights decreasing too fast, cf. Figure 5a, so the posterior mixing measure is unable to place
enough mass at each of the ten modes.

Here, it is worth emphasizing that these results get closer to Feller [1943] desirable
interpretation, of the estimated mixing weights of a mixture model representing the true
proportions, a feature that is rarely recovered with other mixture model approaches. For
the negative binomial case, this effect is achieved for big values of s; actually, it can be
appreciated that as it increases, the density estimator adjusts better to the original function.
The above observation clearly ponders over the flexibility of the model to adapt a small or
large number of components. For instance, in the Poisson case, where the bigger the λ,
the heavier-tailed weights decay (cf. Figure 1d), placing a prior on λ allows the model to
adapt to the required tail behavior. Similar adaptation follows as one varies the value for
s. Indeed, if we let p = 1− λ

s+λ , for some λ, s > 0, then 0 < p < 1. Hence, if we set (p, s),
the parameters of the NB1 probability function (6), we have(

x+ s− 2

x− 1

)
ps(1− p)x−1 =

λx−1

(x− 1)!

Γ(x+ s− 1)

(s+ λ)x−1Γ(s)

(
1 +

λ

s

)−s
.

Taking its limit as s → ∞, the middle term converges to one, whereas for the last term,
we have

(
1 + λ

s

)−s → e−λ. Thus, the probability function (9), i.e. the shifted Poisson
distribution Poi1, is recovered. This tells us that when randomizing the parameters we can
achieve similar adaptation in the tails with either model, negative binomial or Poisson.

5.2 Multivariate case

We now explore the performances of the negative binomial mixture models in a mul-
tivariate setting in comparison with the Dirichlet model. A bivariate Gaussian kernel
κ(y;xj) = N(y;µj ,Σj) is used, so xj = (µj ,Σj), where the mean vector µj and the co-
variance matrix Σj are both unknown, and a conjugate normal-inverse Wishart prior with
parameters (m,Λ, v) is chosen, that is

p(µj ,Σj) = N(µj ,m,Σj)iW (Λ−1, v).

Thus, the corresponding posterior distribution, a normal-inverse Wishart, has parameters
(m′,Λ′, v′) given by

m′ =
m+ nj ȳj
nj + 1

, Λ′ = Λ + Sj +
nj

nj + 1
(ȳj −m)(ȳj −m)T ,

v′ = v + nj ,

11
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(a) Estimated density for the NB case with s = 1 , and s = 5 .
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(b) Estimated density for the NB case with s = 10 , and s = 25 .
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(c) Estimated density for the Poisson case (black), geometric, s = 2, (red/short dash) and Dirichlet
(blue/long dash) processes.

Figure 3: Estimated density of the dataset drawn from model (13) for each prior specifica-
tion.

where ȳj = 1
nj

∑
di=j

yi, Sj =
∑
di=j

(yi − ȳj)(yi − ȳj)T and nj =
∑n
j=1 1(di = j). Conver-

gence of the MCMC sampler is monitored by computing the Hellinger distance. Recall that
the Hellinger distance, H, between two densities f and g is defined as

H2(f, g) =
1

2

∫ (√
f(y)−

√
g(y)

)2
dy = 1−

∫ √
f(y)g(y)dy.

Thus, at each MCMC iteration, this distance is computed taking f to be the data generating
density and g := f̂ , the estimated density in Equation (12).

Similarly to the previous illustration (model 14), a sample of size 900 is drawn from the

12
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(a) Estimated density for the NB case with s = 1 , and s = 5 .
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(b) Estimated density for the NB case with s = 10 , and s = 25 .
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(c) Estimated density for the Poisson case (black), geometric, s = 2, (red/short dash) and Dirichlet
(blue/long dash) processes.

Figure 4: Estimated density of model (14) for each prior specification.

mixture model
f(y) =

1

9

∑
µ1∈M

∑
µ2∈M

N((µ1, µ2), I), (15)

for M = {−6, 0, 6} and I the identity matrix. Regarding the hyperparameters that deter-
mine the distribution of the weights, α, β for the negative binomial and the total mass c
for the Dirichlet, we fix them so that E(Kn) ∈ {3, 9, 100} a priori. This is accomplished
by resorting to the asymptotic evaluations laid out in Section 3 for the negative binomial.
Specifically, we compute the integrals as in (11) by Monte Carlo averaging so to tune the
parameters of the prior on the parameter p. In the Dirichlet case, the explicit formula
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(a) Mixing weights, wj . The true mixing weights,
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(b) Distribution of the number of components, Kn.

Figure 5: Posterior results for each prior specification of model (14): negative binomial case
for different values of s: 1, 5, 10 and 25, and Poisson case (solid black). The
geometric, s = 2, (red/short dash) and Dirichlet process (blue/long dash) are also displayed.
Points are connected by straight lines for visual simplification.

E(Kn) =
∑n
i=1 c/(c+ i− 1) has been used instead. The kernel hyperparameters are

m = (−0.0485,−0.0103), Λ =

(
25.3187 0.2742

0.2742 25.2321

)
, and v = 4.

First values are the sample mean and sample covariance matrix for m and Λ, respectively;
the value for v allows to have a flat density.

Figure 6 shows the computed distances at each MCMC iteration. The effect of s is
apparent: as it increases, the distance decreases faster. This effect is also detectable in
the estimated density. The estimated densities for the case E(Kn) = 3, where the smallest
distances were obtained, are depicted in Figure 7. These were obtained using 2 000 iterations
after a burn-in of 8 000. The Dirichlet model is outperformed by all other models in overall
accuracy and convergence of the MCMC sampler when E(Kn) is set to 3 or 9, and by the
negative binomial model with s = 5, 10, 25 when E(Kn) = 100.

6 Concluding remarks

Decreasing-weight mixture models represent an appealing alternative to other infinite-mixture
counterparts like those based on the stick-breaking representation. The simulation studies
show that a flexible structure in the decreasing mixing weights improves the accuracy of pos-
terior estimates and enhance the convergence of the posterior sampler, in particular when
the data feature a large component structure. Such flexibility can be achieved by widening
the choices of the prior on r in the construction of the weights (5) or by selecting a suitable
prior for the hyperparameter p in the geometric process. An important finding is that slowly
decreasing weights are required in cases where the underlying mixture density is made of
many components.

The improvement in the convergence of the posterior sampler is related to the gain
in identifiability of the mixture when the weights are decreasing. This is explained by a
reduction of the region of the parameter space that the sampler has to explore. Out of
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Figure 6: Hellinger distance, computed by iteration, for each MCMC specification of
model (15) using negative binomial weights. Different values of s were used: 1, 5,

10 and 25. The geometric, s = 2, (solid/red) and Dirichlet (blue/dotted) processes
are also is displayed.

the many alternatives to the Dirichlet process, very few can be implemented via marginal
samplers, that is a sampler that integrates out the mixing weights (wi). When it comes to
conditional samplers, it is well known that they suffer from the so called label switching
effect, which consists of the posterior of (wi, xi) exhibiting multiple modes. This is due to
the fact that the augmentation of (wj) in the conditional methods makes the infinite mixture
weakly identifiable since there is a non-null probability of both wi > wj and wi < wj for i, j
close to each other. Cf. the discussion in Papaspiliopoulos and Roberts [2008]. The presence
of multiple modes in the posterior of wi deteriorates the mixing of the sampler since it has to
explore different and possibly far away regions of the parameter space. This is typically the
case for mixing measures with stick-breaking representation, where the weights are ordered
only in the expected value.

Another way of looking at this problem is in terms of the presence of gaps in the labeling
of (wi, xi) across iterations of the sampler, cf. Mena and Walker [2015]. As explained in
Fuentes-García et al. [2010], the original idea behind the geometric process was to alleviate
this problem, by creating a model without such gap structure. However the decay of the
weights in the geometric process might be too fast to accommodate datasets with many
components. Thus there is a concrete need for models, which exhibit decreasing weights as
the geometric process, but a slower rate of decay like the ones explored in this paper.
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y

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.0040.006

0.006

0.006

0.0
06

0.0
06

0.006

0.006

0.00
6

0.006

0.
00

8

0.
00

8
0.

00
8

0.
00

8

0.008

0.
00

8

0.01

0.
01

0.
01

2

−5 0 5

−10

−5

0

5

10
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Figure 7: Contour plots for the estimated density of model (15) using negative binomial
weights for different values of s and hyperparameters fixed such that E(Kn) = 3 a priori.
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A Simulation of truncated distributions

In this section, we provide a sampling scheme to simulate from left-truncated Poisson and
negative binomial distributions.

A.1 Truncated Poisson distribution

Suppose a random number x from a truncated Poisson distribution is required. A random
variable X ∼ Poi(λ), with λ > 0, has probability mass function given by

f(x) =
λx

x!
e−λ1(x ≥ 0).

If truncation is from the right, namely there is a τ ∈ Z+ such that Pr(X > τ) = 0, simulation
from it is straightforward since the resulting density has a finite support {0, 1, . . . , τ}. On
the other hand, truncation from the left presents some issues, but these can be resolved via
data augmentation, which can be done by means of a Gibbs sampler.

Suppose X is a random variable distributed Poisson with parameter λ and left-truncated
at τ ∈ Z+, that is, Pr(X < τ) = 0. Using a Gibbs sampler, it is required to sample from a
density proportional to λx/x!1(x ≥ τ). Notice first that

1

x!
=

1

(x− τ)!

(x− τ)!

x!
=

1

(x− τ)!

Γ(x− τ + 1)

Γ(x+ 1)

Γ(τ)

Γ(τ)
=

β(x− τ + 1, τ)

Γ(τ)(x− τ)!
, (16)

where β(a, b) =
∫ 1

0
za−1(1 − z)b−1dz is the beta function. Using data augmentation with

z ∼ beta(x− τ + 1, τ), the sampler has to simulate from the bivariate density

p(x, z) ∝ λx

(x− τ)!
zx−τ (1− z)τ−11(x ≥ τ).

From this, the full conditional distribution for x is given by

p(x|z) ∝ (λz)x−τ

(x− τ)!
1(x ≥ τ),

which corresponds to a Poisson distribution with parameter λz shifted at τ . Therefore, a
Gibbs sampler draws values at iteration t as follows:

z(t) ∼ Be(x(t−1) − τ + 1, τ),

x(t) ∼ Poi(λz(t)) + τ,

for an initial value x(0) and given λ and τ .

A.2 Truncated negative binomial distribution

In a similar way to the truncated Poisson distribution, simulating from a right-truncated
distribution is straightforward, but not when it is left-truncated. The negative binomial
probability mass function is given by

f(x) =

(
x+ r − 1

x

)
pr(1− p)x1(x ≥ 0),

for r > 0 and 0 < p < 1.
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Suppose that it is required to sample from a negative binomial distribution left-truncated
at τ ∈ Z+. This can be also done using a Gibbs sampler. In order to do it, notice that
using (16),

p(x) ∝ β(x− τ + 1, τ)Γ(x+ r)

(x− τ)!
(1− p)x1(x ≥ τ).

If the beta and gamma functions are substituted by their integral expressions, the resulting
density is

p(x, z, v) ∝ (1− p)x
(x− τ)!

zx−τ (1− z)τ−1vx+r−1e−v1(x ≥ τ),

and the full conditional distribution of x is

p(x|z, v) ∝ ((1− p)vz)x−τ
(x− τ)!

e−(1−p)vz1(x ≥ τ),

which is a Poisson distribution with parameter (1− p)vz and shifted at τ . Therefore, using
data augmentation, with z ∼ beta(x− τ + 1, τ) and v ∼ gamma(x+ r, 1), a Gibbs sampler
draws values at iteration t as follows:

z(t) ∼ Be(x(t−1) − τ + 1, τ),

v(t) ∼ Ga(x(t−1) + r, 1),

x(t) ∼ Poi((1− p)z(t)v(t)) + τ,

for an initial value x(0), and where r, p and τ are given values.
To the best of our knowledge, there is only one alternative procedure for sampling from

these left-truncated distributions [Geyer, 2007], based on rejection sampling, but the accep-
tance ratio is low for some parameter values.
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