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The constrained transport (CT) method reflects the state of the art numerical technique for 
preserving the divergence-free condition of magnetic field to machine accuracy in multi-
dimensional MHD simulations performed with Godunov-type, or upwind, conservative 
codes. The evolution of the different magnetic field components, located at zone interfaces 
using a staggered representation, is achieved by calculating the electric field components 
at cell edges, in a way that has to be consistent with the Riemann solver used for the 
update of cell-centered fluid quantities at interfaces. Albeit several approaches have been 
undertaken, the purpose of this work is, on the one hand, to compare existing methods 
in terms of robustness and accuracy and, on the other, to extend the upwind constrained
transport (UCT) method by Londrillo & Del Zanna (2004) [22] and Del Zanna et al. (2007) 
[23] for the systematic construction of new averaging schemes. In particular, we propose a 
general formula for the upwind fluxes of the induction equation which simply involves 
the information available from the base Riemann solver employed for the fluid part, 
provided it does not require full spectral decomposition, and 1D reconstructions of velocity 
and magnetic field components from nearby intercell faces to cell edges. Our results are 
presented here in the context of second-order schemes for classical MHD, but they can 
be easily generalized to higher than second order schemes, either based on finite volumes 
or finite differences, and to other physical systems retaining the same structure of the 
equations, such as that of relativistic or general relativistic MHD.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamics (MHD) is the basic modelization framework to treat plasmas at the macroscopic level, that is 
neglecting kinetic effects and as a single fluid, an approximation commonly used for applications to laboratory, space and 
astrophysical plasmas. Magnetic fields and currents created by the moving charges play a fundamental role in the dynamics 
of the fluid, which is considered to be locally neutral, and the set of hydrodynamical (Euler) equations must be supple-
mented by the magnetic contributions to the global energy and momentum, and by a specific prescription for the evolution 
of the magnetic field itself, the so-called induction equation, that is Faraday’s law combined to a constitutive relation be-
tween the current and the electric field (Ohm’s law).
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In extending the same numerical techniques employed for the Euler equations to multi-dimensional MHD, a major chal-
lenge dwells in preserving the divergence-free constraint of the magnetic field which inherently follows from the curl-type 
character of Faraday’s law. This is especially true for Godunov-type shock-capturing schemes based on the properties of the 
hyperbolic set of conservation laws, let us call them standard upwind procedures, where spatial partial derivatives do not 
commute when discontinuities are present and spurious effects (numerical magnetic monopoles) arise.

The research in this field, which is crucial for building accurate and robust finite-volume (FV) or finite-difference (FD) 
shock-capturing numerical codes for computational MHD, started more than twenty years ago and several different methods 
have been proposed. Here, for sake of conciseness, we simply refer the reader to the paper by Tóth (2000) [1] for a com-
prehensive discussion and comparison of the early schemes. Summarizing in brief, among the proposed solution methods 
are schemes based on the cleaning of the numerical monopoles, either by solving an elliptic (Poisson) equation and remov-
ing the monopole contribution from the updated fields [2], or by adding specific source terms and an additional evolution 
equation for the divergence of B itself to preserve the hyperbolic character of the MHD set [3–5]. Other methods evolve in 
time the vector potential [6,7] or use different alternatives, such as for the so-called flux distribution schemes [8].

Conversely, a radically different strategy is adopted in the so-called constrained transport (CT) methods. These schemes 
all rely on the curl-type nature of the induction equation and on its discretization based on Stokes’ theorem (rather than 
on Gauss’ one as needed for the equations with the divergence operator), as first realized in pioneering works where 
the evolution equation for the magnetic field alone was solved [9–12]. The CT method was later extended to the full 
MHD system of hyperbolic equations in the context of Godunov-type schemes [13–15]. In FV-CT schemes, magnetic field 
components are stored as surface integrals at cell interfaces as primary variables to be evolved via the induction equation, 
while the corresponding fluxes are line-averaged electric field (namely electromotive force, emf) components located at cell 
edges, to recover the discretized version of Stokes’ theorem. By doing so, the solenoidal constraint can be preserved exactly 
during time evolution.

A major difficulty of the CT formalism is the computation of upwind-stable emf components located at zone-edges [15]. 
This can be achieved either by properly averaging the interface fluxes computed when solving the 1D Riemann problems at 
zone interfaces, or by using genuine (but much more complex) 2D Riemann solvers computed directly at cell edges [16–19]. 
In the latter case the dissipative part of the multidimensional emf can be shown to behave as a proper resistive term for the 
induction equation [20]. As far as the former (simpler) case is concerned, in the original work by [15] the emf was obtained 
as the arithmetic of the four upwind fluxes nearest to the zone edge. It was then recognized (e.g. [21]) that this approach 
has insufficient numerical dissipation and it does not reduce to the plane-parallel algorithm for grid-align flow. Gardiner & 
Stone (2005) [21] suggested that this issue could be solved by doubling the dissipation and introduced a recipe to construct 
a stable and non-oscillatory upwind emf with optimal numerical dissipation based on the direction of the contact mode. 
This approach (here referred to as the CT-Contact method) is, however, mainly supported by empirical results as there is 
no formal justification that the emf derivative should obey such selection rule. In addition, the method can be at most 
2nd-order accurate thus making the generalization to higher-order methods not feasible.

A rigorous approach to this problem for both FV and FD Godunov-type schemes for computational MHD was originally 
proposed by Londrillo and Del Zanna (2004) [22] with their upwind constrained transport (UCT) method. According to the 
UCT methodology, the continuity property of the magnetic field components at cell interfaces (which follows from the 
solenoidal constraint) is considered as a built-in condition in a numerical scheme, enabling face-centered fields to be evolved 
as primary variables. At the same time, staggered magnetic field components enter as single-state variables in the fluid 
fluxes at the corresponding cell interfaces, and as two-state reconstructed values at cell edges in the four-state emf for 
the induction equation. Time-splitting techniques should be avoided as they prevent exact cancellation of ∇ · B terms at 
the numerical level. The emf components constructed using information from the four neighboring upwind states must 
also automatically reduce to the correct 1D numerical fluxes for plane parallel flows and discontinuities aligned with the 
grid directions. According to the authors, these are the necessary conditions to preserve the divergence-free condition and to 
avoid the occurrence of numerical monopoles that may arise while computing the divergence of fluid-like fluxes numerically. 
In the original work of [22], a second-order FV scheme based on Roe-type MHD solver (UCT-Roe) and a high-order scheme 
based on characteristic-free reconstruction and a two-wave HLL approximate Riemann solver (UCT-HLL) were proposed.

The UCT-HLL scheme was further simplified by Del Zanna et al. (2007) [23] in the context of general relativistic MHD, 
and recipes were given to build a FD UCT schemes of arbitrary order of accuracy by testing several reconstruction methods. 
High-order FD-CT methods were also recently proposed by [24] who, instead, constructed the emf by simply doubling 
the amount of numerical dissipation. While FD approaches are based on a point value representation of primary variables 
and avoid multi-dimensional reconstructions, FV-CT schemes of higher than 2nd-order accuracy are much more arduous to 
construct albeit they are likely to increase robustness, see the review by Balsara [25] and references therein. Efforts in this 
direction were taken by Balsara (2009) [26,27] in the context of ADER-WENO FV schemes who designed genuinely third-
and fourth-order spatially accurate numerical methods for MHD. More recently, fourth-order FV schemes using high-order 
quadrature rules evaluated on cell interfaces have been proposed by Felker & Stone (2018) [28] and Verma (2019) [29]. 
Here the construction of the higher-order emf follows the general guidelines of the UCT-HLL (or Lax-Friedrichs) approach 
introduced by [23] and later resumed for truly 2D Riemann problem by [16].

The goal of the present work is to systematically construct UCT schemes for classical MHD, using a variety of 1D Riemann 
solvers avoiding the full spectral resolution in characteristic waves, and providing the correct averaging recipes to build the 
four-state emf fluxes at zone edges, extending the scheme by [23] to less dissipative solvers like HLLD [30], where the 
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Riemann fan is split into four intermediate state to include also the contact and Alfvénic contributions, other than simply 
the fast magnetosonic ones. This novel UCT scheme is tested by performing several multi-dimensional numerical tests, and 
comparison is also made with other CT popular schemes based on emf averaging, including the simple arithmetic averaging 
method, those based on doubling the diffusive contribution of 1D fluxes, as in [21], the above mentioned UCT-HLL one, and 
a novel UCT version of the GFORCE scheme by [31].

Our paper is structured as follows. In §2 we introduce the basic CT discretization and general notations while in §3 we 
review basic averaging CT schemes. The UCT method and the original Roe and HLL schemes are discussed in §4, while the 
new UCT-based composition formulae are presented in §5. Numerical benchmarks are introduced in §6 and a final summary 
is reported in §7.

2. Notations and general formalism for CT schemes

The ideal MHD equations are characterized by two coupled sub-systems, one for the time evolution of the set of conser-
vative hydro-like flow variables (mass, momentum and energy densities denoted, respectively, with ρ , ρv and E ):

∂U

∂t
+ ∇ · F = 0, where U =

⎛
⎜⎜⎝

ρ

ρv

E

⎞
⎟⎟⎠ , F =

⎛
⎜⎜⎝

ρv

ρvv − BB + Ipt

(E + pt)v − (v · B)B

⎞
⎟⎟⎠

ᵀ

, (1)

and an induction equation for the evolution of the magnetic field

∂B

∂t
+ ∇ × E = 0, (2)

where the curl operator appears instead of a divergence and where the electric field E = −v × B is not a primary variable, 
depending on the flow velocity and the magnetic field, but its components have to be considered as the fluxes for the 
magnetic field itself. Here v = (vx, v y, vz) is the fluid velocity vector, pt = p + B2/2 is the total (thermal + magnetic) 
pressure, while the total energy density adds up kinetic, thermal and magnetic contributions:

E = 1

2
ρv2 + p

� − 1
+ B2

2
, (3)

� is the specific heat ratio for an adiabatic equation of state.
Note that a factor 1/

√
4π has been reabsorbed in the definition of B while the electric field E embodies the speed of 

light (E → cE). Due to the commutativity of analytical spatial derivatives, the induction equation (2) implicitly contains the 
solenoidal condition for the magnetic field

∇ · B = 0, (4)

that if true for t = 0 must be preserved during the subsequent time evolution. The peculiar structure of the MHD system and 
the existence of the above non-evolutionary constraint makes it difficult to extend straightforwardly the methods developed 
for the Euler equations to MHD, especially for upwind schemes where Riemann solvers have to be modified in order to 
adapt to the curl operator and where numerical derivatives do not commute and spurious magnetic monopoles could 
arise.

Here we adopt a Cartesian coordinate system, with unit vectors êx = (1, 0, 0), êy = (0, 1, 0) and êz = (0, 0, 1), uniformly 
discretized into a regular mesh with coordinate spacing �x, �y and �z. Computational zones (or cells) are centered at 
(xi, y j, zk) and delimited by the six interfaces orthogonal to the coordinate axis aligned, respectively, with (xi± 1

2
, y j, zk), 

(xi, y j± 1
2
, zk) and (xi, y j, zk± 1

2
). CT-based schemes for MHD are characterized by a hybrid collocation for primary variables, 

those to be evolved. While flow variables are zone-centered, here labeled as Uc where the c subscript is a shorthand 
notation for (i, j, k), magnetic fields have a staggered representation and are located at zone interfaces. Numerical fluxes for 
flow variables are also collocated in these points, where Riemann solvers will be computed, whereas magnetic fluxes (the 
electric field components) are computed at zone edges, as shown in Fig. 1. To simplify the notations, from now on these 
staggered electromagnetic quantities will be indicated as

B f ≡

⎛
⎜⎜⎝

Bx f

By f

Bz f

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

Bx,i+ 1
2 , j,k

B y,i, j+ 1
2 ,k

Bz,i, j,k+ 1
2

⎞
⎟⎟⎠ , Ee ≡

⎛
⎜⎜⎝

Exe

Eye

Eze

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

Ex,i, j+ 1
2 ,k+ 1

2

E y,i+ 1
2 , j,k+ 1

2

Ez,i+ 1
2 , j+ 1

2 ,k

⎞
⎟⎟⎠ , (5)

where the subscripts x f , y f and z f identify the spatial component as well as the face-centered staggered location inside 
the control volume, i.e., x f ≡ {x, (i + 1 , j, k)}, y f ≡ {y, (i, j + 1 , k)}, and z f ≡ {z, (i, j, k + 1 )}. Likewise, the components and 
2 2 2
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Fig. 1. Right: positioning of MHD variables in the CT formalism. Staggered magnetic field components (blue) are face-centered, the electromotive force is 
edge-centered (red) while remaining hydrodynamical quantities are located at the zone center (green). Right: Top view of the intersection between four 
neighbor zones: N, S, E and W indicate the four cardinal directions with respect to the zone edge (here represented by the intersection between four 
neighbor zones), Rx(Fy f ) and Ry(Fx f ) are 1-D reconstruction operators applied to each zone face while F denotes a generic flux component computed 
during the x− (F ≡ −F

[B y ]
x f

) or y− sweep (F ≡ F [Bx]
y f

), see Eq. (16). (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

corresponding positions of the different edge-centered electric field components are labeled as xe ≡ {x, (i, j + 1
2 , k + 1

2 )}, 
ye ≡ {y, (i + 1

2 , j, k + 1
2 )}, and ze ≡ {z, (i + 1

2 , j + 1
2 , k)}. This subscript notation extends also to arrays and scalar quantities 

in general by discarding the spatial component (e.g. “x” or “y”) when unnecessary, e.g., Ux f = Ui+ 1
2 , j,k . This should not 

generate confusion as its employment will be clear from the context. We will also make frequent use of the backward 
difference operators �x , �y , and �z , defined as

�x Q c ≡ Q c − Q c−êx
, �y Q c ≡ Q c − Q c−êy

, �z Q c ≡ Q c − Q c−êz
, (6)

where Q can be any quantity, here with cell-centered representation Q c . These � operators can be equivalently applied to 
face-centered Q f or edge-centered Q e values.

In the context of a finite-volume (FV) approach, conserved variables are evolved in terms of their volume (or zone-) 
averages Uc , implying a surface-averaged representation of the fluxes at zone interface, as required by direct application of 
Gauss’ theorem:

F̂x f = 1

�y�z

∫
êx · F

(
U (xi+ 1

2
, y, z, t)

)
dy dz ,

F̂y f = 1

�z�x

∫
êy · F

(
U (x, y j+ 1

2
, z, t)

)
dz dx ,

F̂z f = 1

�x�y

∫
êz · F

(
U (x, y, zk+ 1

2
, t)

)
dx dy .

(7)

Conversely, magnetic field components B f , having a staggered representation, are also interpreted as face-averages and are 
updated using a discrete version of Stokes’ theorem. The line-averaged electric field Ee effectively behaves as electromotive 
force (emf), so the numerical fluxes for the magnetic field are commonly referred to emf components in the literature:

Êxe = 1

�x

∫
Ex(x, y j+ 1

2
, zk+ 1

2
, t)dx ,

Êye = 1

�y

∫
E y(xi+ 1

2
, y, zk+ 1

2
, t)dy ,

Êze = 1
∫

Ez(xi+ 1 , y j+ 1 , z, t)dz .

(8)
�z 2 2
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The semi-discrete FV version of any CT numerical scheme is then the following:

dUc

dt
= −

(
�x F̂x f

�x
+ �y F̂y f

�y
+ �z F̂z f

�z

)
,

dBx f

dt
= −

(
�y Êze

�y
− �z Êye

�z

)
,

dBy f

dt
= −

(
�z Êxe

�z
− �x Êze

�x

)
,

dBz f

dt
= −

(
�x Êye

�x
− �y Êxe

�y

)
,

(9)

Notice that no approximation has been made so far. The condition

d

dt

(
�x Bx f

�x
+ �y By f

�y
+ �z Bz f

�z

)
= 0 (10)

is thus valid exactly, and at any time the discrete version of the solenoidal constraint is ensured to machine accuracy (if so 
for at the initial condition).

To second-order accuracy, a midpoint quadrature rule is typically used to evaluate, e.g., F̂x f with its point value obtained 
by means of a 1D Riemann solver at cell interfaces (the base scheme). For higher than 2nd order schemes, F̂x f is obtained 
by suitable quadrature rules, see e.g. [32,28,29]. Another option is to use high-order finite-difference (FD) schemes for 
which primary variables are stored as point-values in the same positions imposed by the CT method, and where multi-
dimensional averaging is not needed [33,23]. However, for sake of clarity and simplicity, in the following we limit our 
analysis to second-order schemes, so that FV and FD schemes basically coincide and the averaging operations are simply 
omitted in our notations.

2.1. Approximate Riemann solvers for the base scheme

CT schemes for MHD must be coupled to the Godunov-type method to solve the hyperbolic sub-system of Euler-like 
partial differential equations for Uc (the base scheme). The inter-cell fluxes F̂x f , F̂y f and F̂z f are evaluated by solving 
a Riemann problem between left and right states reconstructed from the zone average to the desired quadrature point. 
For the midpoint rule, left and right states can be obtained using one-dimensional upwind reconstruction techniques. For 
instance, at an x-interface,

U L
x f

= R+
x (Uc) , U R

x f
= R−

x

(
Uc+êx

)
, (11)

where R±
x () is an operator in the x direction giving the reconstructed value at the right (+) or left (−) interface with 

respect to the cell center, with the desired order of accuracy and possessing monotonicity properties. Left and right states 
in the other directions are obtained similarly. Reconstruction is best carried on primitive or characteristic variables as it is 
known to produce less oscillatory results.

After the reconstruction phase, one needs to solve the Riemann problem, a procedure that in modern shock-capturing 
schemes for MHD is hardly ever achieved using exact nonlinear solvers. Approximate Riemann solvers provide inter-cell 
fluxes generally written as the sum of a centered flux terms and a dissipative term

F̂x f = Fx f − �x f , (12)

where Fx f is the centered flux term while �x f is the (stabilizing) dissipative term. Consider, for instance, the Roe Riemann 
linear solver, based on the decomposition of variables into characteristics. In this case the two terms are

Fx f = 1

2

(
F L

x f
+ F R

x f

)
, �x f = 1

2
R|Λ|L ·

(
U R

x f
− U L

x f

)
, (13)

where F L,R
x f

= êx · F(U L,R
x f

) are the left and right fluxes, R = R(U roe) and L = L(U roe) are the right and left eigenvector 
matrices defined in terms of the Roe average state U roe (note that RL = LR = I) while |Λ| = diag(|λ1|, ..., |λk|) is a diagonal 
matrix containing the eigenvalues in absolute value.

A different averaging procedure is obtained in the case of HLL schemes [34], where the inter-cell numerical flux is 
expressed through a convex combination of left and right fluxes plus a diffusion term

F̂x f =
αR

x F L
x f

+ αL
x F R

x f

R L
−

αR
x αL

x (U R
x f

− U L
x f

)

R L
, (14)
αx + αx αx + αx
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where αR
x = max(0, λR

x f
) ≥ 0 and αL

x = − min(0, λL
x f

) ≥ 0, with λR
x f

the rightmost (largest) characteristic speed and λL
x f

the 
leftmost (smallest with sign, not in terms of its absolute value) characteristic speed. The HLL flux can be derived from 
an integral relation [35] and approximates the inter-cell flux with a single intermediate state when λR

x f
≥ 0 and λL

x f
≤ 0, 

while retaining pure upwind properties when the two speeds have the same sign, hence F̂x f ≡ F L
x f

or F̂x f ≡ F R
x f

. The HLL 
flux is known to be quite dissipative compared to the Roe one, especially for second order schemes, but the simplicity 
of component-wise resolution, possibly combined to higher-order reconstruction, has received considerable attention since 
[33].

The simplest solver that does not require the full characteristic decomposition is the Rusanov one, or local Lax-Friedrichs, 
which simply replaces the eigenvalue matrix with |Λ| = I|λmax|, where λmax is the maximum local spectral radius. In this 
case �x f = |λmax|(U R

x f
− U L

x f
)/2. Notice that the Rusanov flux can also be derived as a particular case of the HLL one, when 

−λL
x f

= λR
x f

= |λmax|, hence αL
x = αR

x = |λmax|. Other alternatives to the Roe solver, avoiding the full spectral decomposition 
but still relying on the knowledge of the characteristic speeds, are the HLLC [35–37] and HLLD [30] solvers, for a better 
resolution with respect to HLL of contact and Alfvénic jumps, respectively. These solvers will be discussed in better details 
in the next sections.

It is worth noticing that also multidimensional Riemann solvers for the induction equation allow the numerical flux 
to be decomposed into centered and dissipative terms, as shown in the work by Balsara, see [38,20]. The parabolic terms 
arising from the dissipative terms are equivalent to a physical conductivity which makes the discretization of the induction 
equations numerically stable. In this context, an attractive approach to the Riemann problem is provided by the so-called 
HLLI solver, accounting for multiple intermediate characteristic waves [39,20].

3. CT schemes based on emf averaging

The set of conserved variables Uc may be extended to include the zone-centered representation of magnetic field com-
ponents as well, usually provided by simple spatial average from the two neighboring faces along the relevant direction 
at the beginning of any timestep. The solution to the full Riemann problem (8 equations and variables for 3D MHD) thus 
provides point-value upwind fluxes for the zone-centered magnetic field as well. Indeed, indicating with a square bracket 
the flux component we make the formal correspondences

F [Bx]
x = 0 , F [Bx]

y = Ez , F [Bx]
z = −E y ,

F
[B y]
x = −Ez , F

[B y ]
y = 0 , F

[B y]
z = Ex ,

F [Bz]
x = E y , F [Bz]

y = −Ex , F [Bz]
z = 0 ,

(15)

where Fx = êx · F and so forth. This formal analogy holds for the upwind fluxes F̂ as well. The electromotive force at cell 
edges can thus be obtained by taking advantage of the upwind information already at disposal during the 1D Riemann 
solver, thus avoiding more complex 2D Riemann problems (for a detailed discussion see the review by Balsara [25] and 
also [26] for extensions to higher orders). To ease up the notations, we consider a top-view of a cell edge representing the 
intersection of four zones (Fig. 1b) and label the left and right states along the y-coordinate as south (S) and north (N). 
Similarly, left and right states in the x-direction are labeled with west (W ) and east (E) with respect to the intersection 
point. We then define the S and N states reconstructed along direction y (see the vertical arrows in the cited figure) and 
the W and E states reconstructed along direction x (the horizontal arrows) as

E S
z = R+

y

(
−F

[B y ]
x f

)
, E N

z = R−
y

(
−F

[B y ]
x f +êy

)
, E W

z = R+
x

(
F [Bx]

y f

)
, E E

z = R−
x

(
F [Bx]

y f +êx

)
, (16)

and likewise, for the dissipative part of numerical fluxes we let

φ S
x = R+

y

(
�

[B y]
x f

)
, φN

x = R−
y

(
�

[B y ]
x f +êy

)
, φW

y = R+
x

(
�[Bx]

y f

)
, φE

y = R−
x

(
�

[Bx]
y f +êx

)
. (17)

When not directly available, the diffusion terms at cell faces can generically be obtained as the difference between the 
centered contribution and the numerical flux, that is

�
[B y]
x f

= F
[B y ]
x f

− F̂
[B y ]
x f

, �[Bx]
y f

= F [Bx]
y f

− F̂ [Bx]
y f

. (18)

The generalization to the 3D case is easily obtained by cyclic permutations. Different emf averaging procedures have been 
proposed for CT schemes, outlined in what follows.

3.1. Arithmetic averaging

Arithmetic averaging, initially proposed by [15], is probably the simplest CT scheme and can be trivially obtained by 
taking the arithmetic average of the upwind fluxes obtained at the four nearest emf sharing the same zone edge:
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Êze = 1

4

(
− F̂

[B y ]
x f

− F̂
[B y ]
x f +êy

+ F̂ [Bx]
y f

+ F̂ [Bx]
y f +êx

)
. (19)

Despite its simplicity, as pointed out by several authors [see, e.g. 33,21], this approximation suffers from insufficient dissi-
pation and thus spurious numerical oscillations in several tests, yielding, for 1D plane-parallel flows along the grid Cartesian 
axes, half of the correct value.

3.2. The CT-Contact scheme

Gardiner & Stone [21] suggested that the CT algorithm could be cast as a spatial integration procedure. The reconstruction 
can be operated from any one of the four nearest face centers to the zone edge. Choosing the arithmetic average leads, in 
our notations, to the following expression for the zone-centered emf:

Êze = Êarithm
ze

+ �y

8

[(
∂ Ez

∂ y

)S

−
(

∂ Ez

∂ y

)N
]

+ �x

8

[(
∂ Ez

∂x

)W

−
(

∂ Ez

∂x

)E
]

, (20)

where Êarithm
ze

is the arithmetic average, Eq. (19). In the original work by [21], various ways for obtaining the derivatives 
are discussed, although an optimal expression based on the sign of the fluid velocity is suggested. This gives an upwind-
selection rule which is essentially based on the speed of the contact mode leading to stable and non-oscillatory results, 
yielding

(
∂ Ez

∂ y

)S

= 1 + sx f

2

(
F̂ [Bx]

y f
− F [Bx]

y,c

�y/2

)
+ 1 − sx f

2

⎛
⎝ F̂ [Bx]

y f +êx
− F [Bx]

y,c+êx

�y/2

⎞
⎠ , (21)

where sx f = sign( F̂ [ρ]
x f

) while F
[B y ]
y,c = (êy · F(Uc))

[B y ] is the B y component of the flux evaluated at the cell center. Similarly:

(
∂ Ez

∂x

)W

= 1 + sy f

2

⎛
⎝− F̂

[B y]
x f

− F
[B y]
x,c

�x/2

⎞
⎠+ 1 − sy f

2

⎛
⎝−

F̂
[B y ]
x f +êy

− F
[B y ]
x,c+êy

�x/2

⎞
⎠ . (22)

Similar expressions can be obtained at the North (N) and East (E) edges. Although there is no formal justification that 
the electric field derivative should obey such selection rule, this algorithm has been found to yield robust and stable results 
in practice. The scheme correctly reduces to the base upwind method for grid-aligned planar flows and, as also pointed out 
by [28], it is at most of second-order spatially accurate given the way the derivatives in Eq. (21)-(22) are computed. We 
rename here this method as the CT-Contact scheme.

3.3. The CT-Flux scheme

From the previous considerations, it appears that a cost-effective and straightforward possibility is to double the weights 
of the dissipative flux terms. The edge-centered emf can then be obtained by separately reconstructing the centered flux 
terms and dissipative contributions from cell faces to the edge, using Eq. (16) and (17). These contributions are then added 
with the correct weights so as to reduce to plane-parallel flows for 1D configurations. This leads to

Êze = 1

4

(
E N

z + E S
z + E E

z + E W
z

)
+ 1

2

(
φ S

x + φN
x

)
− 1

2

(
φW

y + φE
y

)
, (23)

where the different Ez are the centered contributions obtained using Eq. (16). This approach, named here CT-Flux, has been 
recently adopted by [24] in designing high-order finite difference scheme. Note that the staggered magnetic fields are not 
employed when reconstructing from the face to the corner.

4. The upwind constrained transport (UCT) method: original framework

The CT discretization scheme outlined so far allows to preserve exactly the solenoidal condition for the magnetic field 
but this is not enough to avoid the presence of spurious magnetic monopole terms when computing the magnetic forces, if 
fluxes are calculated by using reconstructed values of the magnetic field components as for the other fluid variables. As first 
realized in [33] and systematically demonstrated in [22], the only way to properly take into account the specific smoothness 
properties of the divergence-free B vector in Godunov-type schemes for MHD is to follow these guidelines:

1. magnetic field components do not possess a left and right representation at the cell interface along the corresponding 
direction (upwind reconstruction is not needed). Hence a CT staggering is their appropriate discretization as primary 
variables, the time evolution must be performed for these magnetic field components at their staggered locations;
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2. only staggered field components must be present in the definition of the fluid numerical fluxes in the corresponding 
inter-cell positions, in order to avoid the formation of magnetic monopoles;

3. a four-state Riemann solver for the induction equation is needed, as explained below;
4. time integration must avoid time-splitting techniques.

4.1. The UCT-Roe scheme

With the Roe formalism, the solution to the Riemann problem at zone interfaces is obtained from independent 1D 
matrices describing characteristic modes propagating as planar waves [22]. The flux components entering the induction 
equation can be expressed through a linear combination of 1-D upwind fluxes along the intersecting direction. It is a main 
feature of the UCT method that this combination follows a proper upwind selection rule, since a same flux component at 
the same collocation point results to have two independent representations in terms of characteristic wave fans [22]:

Êze = 1

4

(
E SW

z + E S E
z + E N E

z + E NW
z

)
+ 1

2

(
φ S

x + φN
x

)
− 1

2

(
φW

y + φE
y

)
, (24)

where the different Ez at the intersection point are obtained by separate reconstruction of the velocity along the x- and y-
directions from the nearest zone center and of the staggered fields in the transverse one from the adjacent interface, e.g., 
E SW

z = −v SW
x BW

y + v SW
y B S

x . The expression above clearly shows that the centered and dissipative terms are represented as 
a four-state function and two-point average in the orthogonal coordinate. Alternatively, one may also use

Êze = −1

2

[
(vx B y)

W + (vx B y)
E
]
+ 1

2

[
(v y Bx)

S + (v y Bx)
N
]
+ 1

2

(
φ S

x + φN
x

)
− 1

2

(
φW

y + φE
y

)
, (25)

where, e.g., vx = (v L
x + v R

x )y f /2 while v y = (v L
y + v R

y )x f /2. For multidimensional FV schemes solving the Riemann problem 
at the cell corners, these terms are already at disposal at desired location. For Godunov-type schemes relying on face-
centered flux computation, the evaluation of the Roe dissipative terms can become a rather consuming task since, in the 
UCT formalism, both zone-centered hydrodynamical variables and staggered magnetic fields needed to be reconstructed 
towards at a cell edge. This turns out to be more costly than interpolating just the dissipative terms from the interfaces 
using Eq. (17)). In the UCT-Roe scheme, the dissipative terms are obtained, e.g.,

φ S
x = 1

2

∑
κ

|λκ |(Lκ · �U )S R S
κ . (26)

The eigenvector matrices should be computed by properly averaging the adjacent L/R reconstructed states whereas jumps 
of conserved variables are split into a hydrodynamic (Uh) and magnetic part as �U S = {U S E

h − U SW
h , B E

y − BW
y }.

While the Roe solver preserves all stationary wave families, it is also prone to numerical pathologies. In this respect, the 
HLLI Riemann solver of [39] (and its multidimensional extension of [20]) offers an interesting alternative to overcome these 
problems. This will be addressed in a forthcoming paper.

4.2. The UCT-HLL scheme

In the case of component-wise Riemann solvers, only magnetic field and velocity components are required at the cell 
edge (or a combination of them), thus reducing the amount of transverse reconstructions. An attractive choice is the UCT-
HLL scheme of [22] in which the edge-centered electric field evaluates to

Êze = α+
x α+

y E SW
z + α+

x α−
y E NW

z + α−
x α+

y E S E
z + α−

x α−
y E SW

z

(α+
x + α−

x )(α+
y + α−

y )
+ α+

x α−
x

α+
x + α−

x

(
B E

y − BW
y

)
− α+

y α−
y

α+
y + α−

y

(
B N

x − B S
x

)
, (27)

where α+
x is computed through some averaging procedure between the north and south faces Here we adopt α+

x =
max(0, λR

x f
, λR

x f +êy
), α−

x = − min(0, λL
x f

, λL
x f +êy

). A variant of this scheme proposed by [23], more economical in terms 
of storage and computations, employs the transverse velocities being entirely analogous to Eq. (27):

Êze = −α+
x (vx B y)

W + α−
x (vx B y)

E − α+
x α−

x (B E
y − BW

y )

α+
x + α−

x
+ α+

y (v y Bx)
S + α−

y (v y Bx)
N − α+

y α−
y (B N

x − B S
x )

α+
y + α−

y
, (28)

where, e.g., (vx B y)
W = vW

x BW
y while the upwind transverse velocities at an x-interface are first computed as

vt,x f =
α+

x vL
x f

+ α−
x vR

x f

α+
x + α−

x
· êt , (29)

for t = y, z and then properly reconstructed in the transverse directions.
The previous formalism may be further developed and extended to other Riemann solvers as well. This is discussed in 

the next section.
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5. The UCT method: a novel generalized composition formula for Jacobian-free Riemann solvers

We now present a general formalism for constructing emf averaging schemes with in-built upwind dissipation properties 
and using component-wise Riemann solver, that is, not directly employing characteristic information. Our starting point is 
the definition of the inter-cell numerical flux function for which we assume the approximate form given by Eq. (12). We 
shall also assume that the dissipative terms of the induction system can be expressed as linear combinations of the left and 
right transverse magnetic field components alone and that, by suitable manipulation, the induction fluxes can be arranged 
as

F̂ [Bt ]
x f

= aL
x F L

x f
+ aR

x F R
x f

− (dR
x B R

t − dL
x B L

t ) , (30)

where F = vx Bt − vt Bx is the induction flux, t = y, z labels a transverse component at an x-interface, while aL
x + aR

x = 1. 
Analogous expressions are obtained at y- or z-interfaces. The precise form of the coefficients as

x and ds
x where s = L, R

depends, of course, on the chosen Riemann solver. Consider, for instance the Rusanov Lax-Friedrichs solver; in this case one 
has the simple expressions

aL
x = aR

x = 1

2
, dL

x = dR
x =

|λmax
x f

|
2

, (31)

where |λmax
x f

| is the largest characteristic speed (in absolute value) computed from the L/R states at the interface, e.g., 
|λmax

x f
| = max(|λL

x f
|, |λR

x f
|). Likewise, the HLL solver (Eq. (14)) can be rewritten in the form given by Eq. (30) with coefficients

aL
x = αR

x

αR
x + αL

x
= 1

2
+ 1

2

|λR
x f

| − |λL
x f

|
λR

x f
− λL

x f

, aR
x = αL

x

αR
x + αL

x
= 1

2
− 1

2

|λR
x f

| − |λL
x f

|
λR

x f
− λL

x f

, dL
x = dR

x = αR
x αL

x

αR
x + αL

x
, (32)

where αL,R
x are given after Eq. (14).

With these assumptions, the edge-centered emf with the desired upwind properties can be constructed from (30) as

Êze = −
[
(ax vx B y)

W + (ax vx B y)
E
]
+
[
(ay v y Bx)

N + (ay v y Bx)
S
]
+
[
(dx B y)

E − (dx B y)
W
]
−
[
(dy Bx)

N − (dy Bx)
S
]

,

(33)

where the transverse velocities are reconstructed from the interface values given (unless otherwise stated) by Eq. (29)
whereas flux and diffusion coefficients aW ,E

x and dW ,E
x are computed by combining the corresponding expressions obtained 

at x-interfaces with a 1D Riemann solver, e.g.,

dW
x =

dL
x f

+ dL
x f +êy

2
, dE

x =
dR

x f
+ dR

x f +êy

2
. (34)

Similarly, we obtain dN,S
y by averaging the diffusion coefficients at y-faces:

dS
y =

dL
y f

+ dL
y f +êx

2
, dN

y =
dR

y f
+ dR

y f +êx

2
. (35)

Other forms of averaging for these coefficients - based on the upwind direction or by maximizing the diffusion terms - are 
of course possible. However, for the present work, we will employ the simple averaging given by Eq. (34) and (35) for both 
the a and d coefficients.

In the next sections we derive the coefficients also for other Riemann solvers, namely, the HLLC, HLLD and the GFORCE 
schemes. From now on, we specialize to an x-interface and drop the x f subscript for ease of notations as it should now be 
clear from the context.

5.1. The UCT-HLLC scheme

The HLLC solver (see [40] for the original formulation) describes the Riemann fan in terms of three waves consisting of 
two outermost fast modes separated by a middle contact wave. Extensions to ideal MHD have been developed by Gurski 
[36] and Li [37]). Both formulations, however, fail to satisfy exactly the full set of integral relations across the Riemann fan1

and the resulting numerical schemes are prone to instabilities. A consistent formulation has been presented by Mignone & 
Bodo [42] showing that, for non-zero normal magnetic field (Bx �= 0), the solution must assume continuity of the transverse 
fields across the middle wave. The HLLC flux for the induction system can be written in the form (30) as

1 For a detailed mathematical analysis, see section 3.3 of [41] and the discussion on page 82 in the book by [42].
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F̂ = 1

2

[
F L + F R − |λL |

(
B∗L

t − B L
t

)
− |λ∗|

(
B∗R

t − B∗L
t

)
− |λR |

(
B R

t − B∗R
t

)]
, (36)

where F = vx Bt − vt Bx while λ∗ is the speed of the contact mode. Since B∗L
t = B∗R

t holds across the middle wave, it is easily 
verified from Eq. (36) that this method produces the same coefficients as the HLL solver (Eq. (32)) and thus an equivalent 
amount of numerical diffusion.

However, for Bx = 0, the HLLC solver admits a jump in the transverse magnetic field across the middle wave. In particular 
(see also Sec. 4.2 of [30]) it is easy to show that

B∗s − Bs = Bsχ s , where χ s = − vs
x − λ∗

λs − λ∗ . (37)

Working out the explicit expressions leads to the following flux and diffusion coefficients,

aL = aR = 1

2
, ds =

( |λ∗| − |λs|
2

)
χ s + |λ∗|

2
. (38)

As we shall see later, the expressions in this degenerate case will be useful to obtain the correct singular limit in the HLLD 
solver.

5.2. The UCT-HLLD scheme

The HLLD (see [30] and [43] for adiabatic and isothermal MHD, respectively) approximates the Riemann fan with a five-
wave pattern that includes two outermost fast shocks propagating with speed λL and λR , two rotational waves λ∗L and 
λ∗R separated, in the adiabatic case, by a contact wave in the middle moving at speed λ∗ . Across the contact mode, when 
Bx �= 0, the transverse components of magnetic field Bt ≡ B y, Bz are continuous. For our purposes, we conveniently rewrite 
the HLLD flux for the induction system in the form (Eq. (30)) as

F̂ = 1

2

[
F L + F R − |λL |

(
B∗L

t − B L
t

)
−
∣∣∣λ∗L

∣∣∣ (B∗∗
t − B∗L

t

)
−
∣∣∣λ∗R

∣∣∣ (B∗R
t − B∗∗

t

)
− |λR |

(
B R

t − B∗R
t

)]
(39)

where F = vx Bt − vt Bx and we have assumed B∗∗R
t = B∗∗L

t = B∗∗
t . The rotational modes are given by

λ∗L = λ∗ − |Bx|√
ρ∗L

, λ∗R = λ∗ + |Bx|√
ρ∗R

, (40)

where ρ∗s = ρs(λs − vs
x)/(λ

s − λ∗) and λ∗ = mhll
x /ρhll. Here the suffix “hll” labels a specific component of the HLL interme-

diate state, obtained from the integral form of the Riemann fan:

U hll = λR U R − λL U L + F L − F R

λR − λL
. (41)

From Eq. 45 and 47 of Miyoshi & Kusano [30] together with of the expressions above, we rewrite the jumps of Bt across 
the outermost fast waves (s = L, R) as

B∗s
t − Bs

t = Bs
tχ

s , where χ s = (vs
x − λ∗)(λs − λ∗)

(λ∗s − λs)(λ∗s + λs − 2λ∗)
. (42)

The state in the ∗∗ region can be identified with the HLL average (Eq. (41)) beyond the Alfvén modes:

B∗∗
t = λ∗R B∗R

t − λ∗L B∗L
t + F ∗L − F ∗R

λ∗R − λ∗L
, (43)

where F ∗s can be replaced with the jump conditions across the fast waves, i.e., F ∗s = F s + λs(B∗s
t − Bs

t ). The dissipative 
terms in the HLLD flux (39) can now be expressed as a linear combination of Bs

t alone. After some tedious but otherwise 
straightforward algebra, one finds that the coefficients needed in Eq. (30) can be written in the form

aL = 1 + ν∗

2
, aR = 1 − ν∗

2
, ds = 1

2
(νs − ν∗)χ̃ s + 1

2

(|λ∗s| − ν∗λ∗s) , (44)

where χ̃ s = (λ∗s − λs)χ s , while

νs = |λ∗s| − |λs|
λ∗s − λs

= λ∗s + λs

|λ∗s| + |λs| , ν∗ = |λ∗R | − |λ∗L |
λ∗R − λ∗L

= λ∗R + λ∗L

|λ∗R | + |λ∗L | . (45)

Note that the diffusion coefficients defined in Eq. (44) are well-behaved when λ∗s → λs which typically occurs in the 
limit of zero tangential field and B2

x � �p. In this limit, in fact, χ̃ s → (vs
x −λ∗)/2 and νs = ±1. On the other hand, particular 
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care must be given to the degenerate case Bx → 0, in which the two rotational waves collapse onto the entropy mode: 
λ∗R , λ∗L → λ∗ . In this situation, χ̃ s → (vs

x − λ∗) remains regular but the coefficient ν∗ given in Eq. (45) becomes ill-defined 
at stagnation points (ν∗ ∼ vx/|vx|) and one should rather resort to a three-wave pattern in which the tangential field is 
discontinuous across λ∗ . This limit is embodied by the HLLC solver, Eq. (38), and can be recovered by setting ν∗ = 0 in the 
expressions above. In practice we switch to the degenerate case whenever the difference between the two rotational modes 
falls below a given tolerance:

ν∗ =
⎧⎨
⎩

|λ∗R | − |λ∗L |
λ∗R − λ∗L

if |λ∗R − λ∗L | > ε|λR − λL | ,
0 otherwise ,

(46)

with ε = 10−9. This concludes the derivation of the UCT-HLLD averaging scheme for adiabatic MHD.
A couple of remarks are worth making. First, if the base Riemann solver is not the HLLD, the proposed emf averaging-

scheme can still be employed provided that the contact and Alfvén velocities are locally redefined using Eq. (40) and the 
following expressions for consistency reasons. Second, in the case of isothermal MHD our derivation still holds although the 
χ s coefficients are different. This case is discussed in Appendix A.

5.3. The UCT-GFORCE scheme

In its original formulation [31], the Generalized First ORder CEntered (GFORCE) flux is obtained from a weighted average 
of the Lax-Friedrichs (LF) and Lax-Wendroff (LW) fluxes,

F̂ = ωg F LW + (1 − ωg)F LF , (47)

where F LW = F (U LW) and

U LW = U L + U R

2
− τ

2
(F R − F L) , F LF = F L + F R

2
− 1

2τ

(
U R − U L

)
, (48)

are, respectively, the LWs flux and state and the LF flux. In Eq. (47), ωg ∈ [0, 1] is a weight coefficient usually chosen to 
satisfy monotonicity requirements. This yields, according to [31],

ωg ≤ 1

1 + cg
, (49)

where 0 ≤ cg ≤ 1 is the Courant number. The FORCE flux is recovered with ω = 1/2 and it is precisely the arithmetic 
mean of the Lax-Friedrichs and the Lax-Wendroff fluxes. In the original formulation τ = �t/�x although here, in order to 
minimize the amount of numerical dissipation, we choose τ as the inverse of the local maximum signal speed, τ = 1/|λmax|.

Specializing to a magnetic flux component, we re-write the GFORCE flux at a zone interface as

F̂ x = −vt Bx + 1

2
B L

t

[
ωvLW

x + (1 − ω)v L
x

]
+ 1

2
B R

t

[
ωvLW

x + (1 − ω)v R
x

]
− (dR B R

t − dL B L
t ) , (50)

which now closely relates to the form given by Eq. (30) with aL
x = aR

x = 1/2, provided that we redefine the transverse 
velocities as

vt = ω
(

vLW
t − τx

2
�v y vLW

x

)
+ (1 − ω)

(
v L

y + v R
y

2

)
(51)

and the diffusion coefficients as

ds = ω
τx

2
vs

x vLW
x + (1 − ω)

|λx|
2

. (52)

The Lax-Wendroff velocities can be obtained zone interfaces as vLW
k = mLW

k /ρLW where momentum components and density 
are calculated using the first of (48). Similar quantities are obtained at y- and z-interfaces by suitable index permutation. 
At the practical level, the UCT-GFORCE scheme is therefore obtained by storing, during the Riemann solver call at any given 
interface, the transverse velocities vt as well as ds with s = L, R .

6. Numerical benchmarks

In what follows we compare different emf-averaging schemes in terms of accuracy, robustness and dissipation properties. 
Our selection includes:

• Thew arithmetic averaging, given by Eq. (19);
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Fig. 2. Magnetic energy (normalized to the maximum initial value) maps for the field loop test using the linear scheme at t = 2. The six panels show the 
results obtained with different e.m.f. averaging schemes, indicated in the upper left portion of the panel.

• the CT-Contact emf averaging, given by Eq. (20);
• the CT-Flux emf, given by Eq. (23);
• the UCT-HLL scheme following our new composition formula, Eq. (33) with coefficients given by Eq. (32). Extensive 

numerical testing (including several other additional tests not shown here) has demonstrated our formulation of UCT-
HLL scheme yields essentially equivalent results to the original formulation (Eq. (28)).

• the newly proposed UCT-HLLD scheme, given by Eq. (33) together with Eq. (44) and Eq. (45);
• the novel UCT-GFORCE scheme, defined by Eq. (33) with transverse velocity and diffusion coefficients given by Eq. (51)

and (52).

During the comparison we will employ the same base scheme for all emf averaging methods. The base scheme is chosen 
to be either the 2nd-order Strong Stability-Preserving (SSP) Runge Kutta scheme [44] with piecewise linear reconstruc-
tion or the 3rd-order Runge-Kutta time-stepping with the 5th-order monotonicity-preserving spatial reconstruction [45], 
first introduced in the context of relativistic MHD flows by [23]. Although both base schemes are second-order accurate 
(reconstructions are applied direction-wise), the latter has reduced dissipation properties when compared to the former.

Unless otherwise stated, an adiabatic equation of state with specific heat ratio � = 5/3 is adopted. The interface Riemann 
solver is either the Roe solver of [46] or the HLLD solver of [30], depending on the test, while the CFL number is Ca = 0.4
in 2D and Ca = 0.3 in 3D, unless otherwise stated.

6.1. Field loop advection in two and three dimensions

As a first test, we consider the advection of weakly magnetized field loop in both 2D and 3D. In the limit of a pressure-
dominated plasma, the magnetic field is essentially transported as a passive scalar and the upwind properties of any 
multidimensional scheme can be easily inspected.

In the 2D version, computations are carried out on the rectangle x ∈ [−1, 1] and y ∈ [−1/2, 1/2] using both the 2nd
and 3rd order base-schemes covered by a uniform grid of 128 × 64 zones. The initial condition consists of a medium with 
constant density and pressure, ρ = p = 1 while the magnetic field is initialized through the z-component of the vector 
potential:

Az(x, y) =
{

A0(R − r) if r < R

0 otherwise ,
(53)

where A0 = 10−3, R = 0.3 while r = √
x2 + y2. The velocity is constant and equal to v = 2êx + êy so that the system is 

uniformly advected along the main diagonal. Periodic boundary conditions are imposed on all sides and the base scheme 
employs the Riemann solver of Roe is used for all computations.

Results are shown in Fig. 2 and 3 for the 2nd- and 3rd-order schemes, respectively. The amount of numerical diffusion, 
mostly discernible from the smearing of the loop edges, is primarily determined by the choice of the reconstruction scheme. 
The smearing is greatly reduced with a higher than 2nd-order reconstruction. However, the choice of the averaging scheme 
shows striking differences in the shape of the loop. Arithmetic averaging performs the worse, indicating large-amplitude 
oscillations already visible with the linear scheme and corrupting the loop shape even more when a higher-order recon-
struction is employed. Some oscillations are also present in the CT-Flux scheme while the remaining averaging methods 
show oscillation-free behavior, thus indicating a sufficient amount of dissipation. A more quantitative analysis is provided in 
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Fig. 3. Same as Fig. 2 but for RK3 time stepping and MP5 reconstruction.

Fig. 4. Magnetic energy decay for the 2D field loop test using the 2nd (left) and 3rd (right) order scheme. The different curves have been normalized to the 
initial energy and correspond to Arithmetic (black), CT-Contact (green), CT-Flux (cyan), UCT-HLL (orange), UCT-HLLD (red) and UCT-GFORCE (purple).

Fig. 4 where we plot the total integrated magnetic energy as a function of time for the selected schemes. The decay provides 
a measure of the scheme dissipation properties but not necessarily of its stability. Indeed, arithmetic averaging exhibits the 
smallest decay rate while, at the second-order level, CT-Contact and CT-Flux provide the optimal level of dissipation. On 
the other hand, with a higher-order reconstruction, the newly proposed UCT-HLLD scheme provides the lesser amount of 
dissipation, still ensuring stability of the integration, while CT-Contact yields slightly more diffusive results.

Computations have been repeated using a three-dimensional configuration as described in [47] (see also [48] and, more 
recently, [24]). The domain is now chosen to be x, y ∈ [−1/2, 1/2] and z ∈ [−1, 1] with periodic boundary conditions and 
uniform flow velocity v = (1, 1, 2). The initial magnetic field can be obtained by rotating the original 2D frame by an angle 
γ around the y axis. The relation between the unrotated coordinates (x′, y′, z′) and the actual computational coordinates 
(x, y, z) is given by⎧⎪⎪⎨

⎪⎪⎩
x′ = x cosγ + z sinγ

y′ = y

z′ = −x sinγ + z cosγ .

(54)

Coordinates in the primed frame must satisfy periodicity in the range x′/L′
x ∈ [−1/2, 1/2], y′/L′

y ∈ [−1/2, 1/2]. This is 
achieved by modifying

x′ ← x′ − L′
x floor

(
x′

L′
x

+ 1

2

)
, y′ ← y′ − L′

y floor

(
y′

L′
y

+ 1

2

)
, (55)

where L′
x = 2/

√
5, L′

y = 1. We then define the vector potential in the primed frame using Eq. (53) with x′ and y′ used as 
arguments. The inverse transformation is applied in order to recover the magnetic vector potential in the rotated frame:



Fig. 5. Volume rendering of the magnetic energy at t = 1 for the 3D field loop test using the 2nd-order scheme. The panel order is the same used for Fig. 2
and the corresponding emf-averaging scheme is reported in the top left corner of each panel. While the color-scale has been chosen to be the same for all 
plots, the maximum and minimum values are reported below the legend.

A = A′
z(− sinγ , 0, cosγ ) . (56)

We choose γ so that tanγ = 1/2.
Figs. 5 and 6 show volume renderings of magnetic pressure (for different emf) at t = 1 obtained, respectively, with the 

2nd- and 3rd-order base schemes and a resolution of 64 ×64 ×128 zones. Our results agree with the 2D expectations show-
ing a very similar trend. Arithmetic averaging still yields insufficient dissipation leading to severe distortions and oscillations 
which are amplified when switching from the 2nd- to the 3rd-order scheme. This eventually leads to the formation of an 
unstable checkerboard pattern (top left panel of Fig. 6) and the disruption of the loop. Modest fluctuations are also visible 
with the CT-Flux, although integration (with both the 2nd- and 3rd-order schemes) remains stable. The decay of magnetic 
energy, shown in the top panels of Fig. 7, confirms the same trend already established in the 2D case although discrepancies 
between schemes are less pronounced in the 3D case. As pointed out by [47], the component of magnetic field along the 
loop cylindrical axis should be zero analytically. At the numerical level, however, this is verified only at the truncation level 
of the scheme as indicated by the bottom panels in Fig. 7, where we plot the error 

〈|B ′
z|
〉
/B0 for the different schemes. The 

CT-Contact and CT-Flux yield larger errors (apart from arithmetic averaging which yields the worse results) and discrepan-
cies become more evident with the 3rd-order scheme. Overall, the three UCT averaging schemes (UCT-HLLD, UCT-GFORCE 
and UCT-HLL) perform best. It is worth pointing out that the employment of RK time stepping adopted here avoids the 
complexities - generally inherent with corner-transport-upwind schemes [47,48] - in the calculation of the interface states, 
since primitive variables need not be evolved through a separate normal predictor step and no balancing source term is 
required in a fully conservative evolution scheme.
14 A. Mignone, L. Del Zanna / Journal of Computational Physics 424 (2021) 109748
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Fig. 6. Same as Fig. 5 but for RK3 time stepping and MP5 reconstruction.

Fig. 7. Top panels: Magnetic energy decay (normalized to the initial value) as a function of time for the 3D field loop test. Left and right panels correspond 
to the 2nd and 3rd order schemes while color (reported in the legend) keeps the same convention used in Fig. 4 (arithmetic averaging has been omitted 
due to large errors). Bottom panels: normalized evolution of the axial component of magnetic field (B ′

z) for selected schemes.
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Fig. 8. Left: thermal pressure maps for the current sheet problem at t = 30 using the different emf-averaging schemes reported in each panel. Magnetic 
field lines are over-plotted. Results have been produced using the 2nd-order base scheme with the Roe Riemann solver and a resolution of 128 × 64 zones. 
Right: magnetic energy (normalized to its initial value) as a function of time. The dotted orange line corresponds to the UCT-HLL scheme with resolution 
four times larger. The color convention (reported in the legend) is the same one adopted in previous plots.

6.2. Magnetized current sheet

We now consider a particularly interesting configuration where the amount of numerical dissipation introduced by either 
the base scheme or the emf-averaging procedure (or both) is crucial in determining the system evolution. The computational 
domain is initially filled with plasma at rest (v = 0) having uniform density ρ = 1 and a Harris current sheet is used for the 
magnetic field:

B(y) = B0 tanh
( y

a

)
êx , (57)

where B0 = 1 and a = 0.04 is the current sheet width. An equilibrium configuration is constructed by counter-acting the 
Lorentz force with a thermal pressure gradient,

p(y) = B2
0

2
(β + 1) − Bx(y)2

2
, (58)

where β = 2p∞/B2
0 = 10 is the initial plasma-beta parameter. The equilibrium magnetic field is perturbed with

δB = εB0

[
−1

2
ky sin

(
1

2
ky y

)
cos (kxx) êx + kx cos

(
1

2
ky y

)
sin (kxx) êy

]
, (59)

where kx = 2π/Lx , ky = 2π/L y while ε = 10−3 is the initial amplitude. In order to fulfill the divergence-free condition 
to machine accuracy, we differentiate the vector potential δAz = εB0 cos(ky y/2) cos(kxx) in order to produce the desired 
perturbation. We employ a rectangular box defined by x ∈ [−1, 1] and y ∈ [− 1

2 , 12 ] with periodic boundary conditions in 
the x-direction and reflective conditions at the top and bottom boundaries. We carry out two sets of computations at the 
resolution of 128 × 64 zones using the 2nd-order base scheme with the Riemann solver of Roe (first set) and the HLLD 
solver (second set) at cell interfaces.

We begin our discussion by pointing out that, in absence of a physical resistivity, the previous (unperturbed) equilibrium 
is a stationary solution of the ideal MHD equations and any dissipative process should be absent. In practice, however, 
the discretization process introduces a numerical viscosity/resistivity which allows the current sheet to reconnect to some 
extent.

Thermal pressure maps are shown for different emf methods on the left side of Fig. 8 at t = 30 using the base scheme 
with the Roe solver. The plot on the right side shows the corresponding volume-integrated magnetic energy as a function 
of time. Magnetic reconnection takes place more rapidly for the UCT-HLL emf followed by UCT-GFORCE, Arithmetic, CT-
Flux, CT-Contact eventually leading to the formation of a large magnetic island located across the vertical boundaries. The 
rate at which field dissipation occurs depends on the amount of numerical viscosity diffusion: more dissipative schemes will 
trigger reconnection events earlier. Results obtained with the UCT-HLLD scheme, in fact, show that the amount of dissipation 
is considerably reduced and the layer remains more stable, as one would expect for an ideal system. This conclusion is also 
supported by a high-resolution run (512 × 256 zones) with the UCT-HLL method (dotted orange line on the right side) 
indicating that magnetic field dissipation takes place at later times.
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Fig. 9. Same as Fig. 8 but this time using the 2nd-order base scheme with the HLLD Riemann solver.

When the base Riemann solver is switched to HLLD (Fig. 9), no significant change is found for the UCT schemes. However, 
the solution obtained with the CT-Contact (and, to a lesser extent, with the CT-Flux) emf-averaging is now considerably 
different, bearing closer resemblance with the UCT-HLLD scheme. The magnetic energy now remains nearly constant not 
only for the UCT-HLLD scheme (red curve) but also with the CT-Contact emf (green curve). This apparently odd behavior 
may be understood by inspecting the amount of numerical dissipation inherited by the CT-Contact (or CT-Flux) scheme 
from the base 1D solver. When the Roe Riemann solver is employed, contributions to the diffusion term are given by jumps 
in magnetic field and thermal pressure when sweeping along the y-direction. These contributions enter in the momentum 
flux and the induction system as well. Conversely, with the 1D HLLD Riemann solver, dissipation terms are proportional to 
the jump in magnetic field only and this contribution is confined to the electric field alone. The CT-Contact scheme will 
therefore carry different amount of numerical viscosity depending on which 1D Riemann solver is selected. Conversely, the 
UCT-HLLD introduces the same amount of numerical viscosity regardless of the 1D base Riemann solver. From the discussion 
after Eq. (45), the order of magnitude of the dissipation term is χ̃ ≈ (vx − λ∗) ≈ O (ε) and thus smaller when compared to 
the Roe dissipation matrix.

This test clearly substantiates that the choice of the emf averaging scheme is as crucial as the choice of the interface 
Riemann solver in the evolution of magnetized systems.

6.3. Orszag Tang vortex

The Orszag-Tang is a standard numerical benchmark in the context of the ideal MHD equations and although an exact 
solution does not exist, its straightforward implementation has made it an attractive numerical benchmark for inter-scheme 
comparison. The problem consists of a doubly-periodic square domain, x, y ∈ [0, 2π ] with uniform density and pressure, 
ρ = 25/9 and p = 5/3 with velocity and magnetic field vectors given by

v = − sin(y)êx + sin(x)êy , B = − sin(y)êx + sin(2x)êy . (60)

Albeit most numerical schemes gives comparable results at time t = π , the subsequent evolution has been discussed by few 
authors (see, e.g., [49–52]). Here we carry out such investigation by considering a later evolutionary time, t = 2π and by 
comparing different sets of emf-averaging schemes with grid resolution of 1282 or 2562 grid zones. We employ both the 
2nd- and 3rd-order base schemes using the HLLD Riemann solver. As we shall see, the choice of the numerical method can 
appreciably impact the evolution of the system at this later time.

The initial vorticity distribution spins the fluid clockwise leading to the steepening of density perturbations into shocks 
around t ∼ 0.8. The dynamics is then regulated by multiple shock-vortex interactions leading, by t ∼ 2.6 to the formation of 
a horizontal current sheet at the center of the domain. Here magnetic energy is gradually dissipated and the current sheet 
twists leading, at t = 2π to the structures observed in Fig. 10 and 11 for the 2nd-order and 3rd-order base schemes with 
resolution of 1282 and 2562 zones, respectively.

The most noticeable difference lies at the center of the computational domain where the formation of a magnetic island 
(an O-point) can be discerned when using the Arithmetic, CT-Contact or UCT-HLLD averaging schemes while it is absent 
from the other solvers. The presence of the central island may be attributed to the amount of numerical resistivity that 
can trigger tearing-mode reconnection episodes across the central current sheet, resulting in a final merging in this larger 
island. For sufficiently low numerical dissipation, all schemes should eventually exhibit such a feature. This may appear in 
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Fig. 10. Pressure map distributions for the Orszag-Tang vortex at t = 2π using the 2nd-order scheme with a grid resolution of 128 × 128 zones. The top 
(bottom) row shows the results obtained with Arithmetic, CT-Contact and CT-Flux (UCT-HLL, UCT-HLLD and UCT-GFORCE) schemes.

Fig. 11. Same as Fig. 10 but for the 3rd-order scheme with 256 × 256 grid zones.

contradiction with what required for the magnetized sheet test, where the initial equilibrium was expected to be stable in 
ideal MHD. Here, however, the situation is highly dynamic with the central current sheet undergoing a fast thinning process 
(induced by converging shock fronts), and it is known that only in the presence of a sufficiently high local Lundquist number 
(i.e. low numerical dissipation in the ideal MHD case of this test) the tearing instability is expected to develop on the ideal
(Alfvénic) timescales, see [53] and [54].



Table 1
Normalized pressure maximum μp = pmax/ 〈p〉 for the Orszag-Tang vortex at t = 2π using selected CT 
averaging techniques (columns) and different base-schemes and resolution (rows). An island forms only 
when μp � 2.

Scheme Res. Arithmetic CT-Contact CT-Flux UCT-HLL UCT-HLLD UCT-GFORCE

RK2+Lin 1282 2.16 2.49 1.40 1.21 2.54 1.25
RK2+Lin 2562 2.78 2.78 2.27 1.44 2.90 2.13
RK3+MP5 1282 2.52 3.45 2.09 1.30 3.33 2.03
RK3+MP5 2562 2.89 4.29 3.29 3.75 4.31 3.87

In our computations we found that Arithmetic averaging, CT-Contact and UCT-HLLD show the formation of the central 
islands for the two resolutions considered here with both the 2nd- and 3rd-order schemes. A quantitative comparison is 
given Table 1 where we list the values of μp = pmax/ 〈p〉 for different computations. Here pmax is the maximum pressure 
value in the region 4π/10 < x, y < 6π/10 while 〈p〉 is the average value in the entire computational domain. For μp � 2
no island is formed, while for μp � 2 the island extent is roughly proportional to μp . CT-Contact and UCT-HLLD perform 
similarly yielding the smallest amount of dissipation while retaining numerical stability (no negative pressure has been 
encountered). The UCT-HLL scheme is the most diffusive scheme showing the formation of the central O-point only with 
2562 zones and MP5 reconstruction. The UCT-GFORCE scheme performs similarly to the CT-Flux average and it is superior 
to the UCT-HLL scheme. Note that the value of μp increases by more than ∼ 30% when doubling the resolution for all 
methods except for arithmetic averaging which, on the other hand, yields insufficient dissipation as witnessed by several 
pressure fixes with the 3rd-order scheme at the highest resolution employed.

Finally, it is worth to mention that the employment of the Roe Riemann solver (instead of HLLD) in the 3rd-order base 
scheme lead to integration failures with the Arithmetic and CT-Flux averaging schemes. No sign of numerical instability was 
discerned with the other emf-solvers.

6.4. Three-dimensional blast wave

To assess the robustness of the proposed averaging schemes in a strongly magnetized plasma, we now analyze the blast 
wave problem in three dimensions. Despite its simplicity, the blast wave problem is a particularly effective benchmark 
in testing the solver ability at handling MHD wave degeneracies parallel and perpendicularly to the field orientation. Our 
configuration recalls the original paper of Balsara & Spicer [15] where it was first introduced and it consists of a unit cube 
filled with constant density ρ0 = 1 and pressure p0 = 0.1, threaded by a uniform magnetic field

B = B0 (sin θ cosφ, sin θ sinφ, , cos θ) , (61)

where B0 = 100/
√

4π , θ = π/2 and φ = π/4. The plasma β in the ambient medium is therefore β ≈ 2.5 ×10−4 making this 
test particularly challenging. A sphere with radius r = 0.1 is filled with a much higher pressure, p1 = 103, and the system 
is evolved until t = 0.01. We adopt an adiabatic equation of state with specific heat ratio 1.4 and set outflow boundary 
conditions everywhere. The MHD equations are solved on the unit cube [−1/2, 1/2]3 using the 2nd-order base scheme 
with the Roe Riemann solver and different emf-averaging schemes with a resolution of 1923 zones. As in the original paper 
by [15], in order to avoid the occurrences of negative pressures,2 the total energy density after each step has to be locally 
redefined by replacing, in the magnetic term, the zone-centered magnetic field (updated using a standard Godunov-step) 
with the arithmetic average of the staggered fields, E ← E − (B2

c − B
2
f )/2 where, e.g., Bx = (Bx f + Bx f −êx

)/2.
The four leftmost panels of Fig. 12 show 2D maps, taken as xy slices at z = 0, of various gas-dynamical quantities 

obtained with the UCT-HLLD solver. The explosion is delimited by an outer fast forward shock and the presence of a 
magnetic field makes the propagation highly anisotropic by compressing the gas in the direction parallel to the field. In 
the perpendicular direction the outer fast shock becomes magnetically dominated with very weak compression. Results 
reproduced with the other emf schemes are also very similar.

A more careful comparison, shown in the top rightmost panel, reveals some differences in the magnetic energy plot 
along the main diagonal in the z = 0 plane. Here a dip is formed around xd ≈ 0.2, where xd is the distance from a point 
on the diagonal to the coordinate origin. The dip becomes more pronounced as the numerical dissipation of scheme is 
reduced. Indeed, UCT-HLL yields the highest minimum followed by UCT-GFORCE, CT-Contact, CT-Flux and UCT-HLLD. This 
trend is confirmed at twice the grid resolution (3842 zones, dotted black line), leading to the formation of an even deeper 
sag. Finally, in the bottom rightmost panel we compare the density profiles along the z-axis for different schemes, showing 
only minor differences.
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Fig. 12. Results for the 3D blast wave problem at t = 0.01 using 1923 grid zones. In the four leftmost panels we show 2D colored maps at z = 0 of density 
and log pressure (top), specific kinetic energy and magnetic energy (bottom) obtained with the UCT-HLLD scheme. In the top right panel we plot the 
magnetic energy densities along the main diagonal (xd = x

√
2) at z = 0 obtained with different emf solvers (solid colored lines reported in the legend). The 

dotted black line indicates the solution obtained with the UCT-HLLD solver at twice the resolution. In the bottom right panel we plot 1D slices of density 
along the vertical axis. The color pattern is the same already used in other figures.

Fig. 13. Growth rates, measured as δv y = (max(v y) − min(v y))/2, for the 2D KH instability. Top panels: δv y for the 2nd- and 3rd-order schemes using the 
different emf solvers at the resolution of 128 × 256 zones. Bottom panels: δv y for the 2nd- and 3rd-order schemes using 256 × 512 zones.
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6.5. Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability (KH) is driven by the relative motion between two fluids. In the presence of a magnetic 
field aligned with the flow direction, the instability is typically reduced by the stabilizing action of magnetic tension. In the 
following test, we consider a 2D Cartesian domain x ∈ [0, 1], y ∈ [−1, 1] initially setup to contain a velocity shear layer,

vx = M

2
tanh(y/a) , (62)

where M is the sonic Mach number while a = 0.01 is the shear width. We normalize velocities to the speed of sound (ρ = 1, 
p = 1/�) while the magnetic field is aligned with the flow direction, B = B0êx while the field strength is parametrized using 
the Alfvén velocity, B0 = v A

√
ρ . A random perturbation is applied to seed the instability,

v y = εM exp
[
−(y/20a)2

]
, (63)

where ε ∈ [−10−5, 10−5] is a random number. The boundary conditions are periodic in the x-direction while a reflective 
boundary is applied at y = ±1. We tune up the parameters by choosing M = 1, v A = 1/2 and by integrating the MHD equa-
tions until t = 50 using the HLLD Riemann solver in the base scheme. This choice of parameters makes the test particularly 
severe since the configuration is only weakly unstable. The maximum growth rate that can fit in the computational box, 
indeed, has been found by repeating the linear analysis of Miura & Pritchett (1982) [55] yielding Im(ωa/cs) ≈ 0.395 × 10−2, 
where ω is the growth rate. Computations are repeated using two different grid resolutions, Nx = 128 and Nx = 256
(N y = 2Nx) so that the shear width is resolved on ∼ 4 and ∼ 8 zones, respectively.

Fig. 13 shows the perturbation growth, measured as δv y = (max(v y) −min(v y))/2, as a function of time for the 2nd and 
3rd-order base schemes and the selected emf averaging solvers. Perturbations grow linearly until the system turns into a 
nonlinear phase around t ∼ 37. At low resolution, the UCT-HLL scheme fails to evolve into a fully developed unstable state, 
the UCT-GFORCE yields a reduced instability growth while only with the CT-Contact, CT-Flux and UCT-HLLD perturbations 
follow a linear amplification phase in closer agreement with the analytical prediction. Here we find Im(ω) ≈ 0.35 and 
Im(ω) ≈ 0.31 − 0.33 for the 2nd- and 3rd-order schemes, respectively. Growth rates slightly lower when switching to 
higher-order reconstruction owing, at this poor resolution, to the excitation of short-wavelength perturbation modes with 
smaller growth rates. Better convergence is achieved at twice the resolution where, for the 2nd-order scheme, we find 
0.38 � Im(ω) � 0.40 whereas, for the 3rd-order method, values move closer yielding a reduced inter-scheme dispersion 
with 0.38 � Im(ω) � 0.39. The converged growth rate, at the resolution of 512 × 1024, is Im(ω) ≈ 0.393.

Finally, in Fig. 14, we show colored maps of B2/ρ for the 2nd-order (low resolution, top panels) and the 3rd-order (high 
resolution, bottom panels) computations at t = 50. Note that no sign of instability is visible at low resolution for the UCT-
HLL and UCT- GFORCE schemes. On the other hand, the instability is fully developed and comparable results are obtained at 
twice the resolution with the 3rd-order base scheme for all emf methods.

6.6. Magnetorotational instability in the ShearingBox model

As a final application we compare the different emf solvers by investigating the nonlinear evolution of the magneto-
rotational instability (MRI) in the shearing-box approximation model. The implementation of the shearing-box equations 
(which provides a local Cartesian description of a differentially rotating disk) for the PLUTO code may be found in [56]. The 
initial background state consists of a uniform density distribution, ρ0 = 1, and a linear velocity shear v = −q�xêy . Here � =
1 is the orbital frequency while q = 3/2 - typical of a Keplerian profile - gives a local measure of the differential rotation. 
A net magnetic flux threads the computational domain and it is initially aligned with the vertical direction, B = B0êz with 
strength

B0 = cs

√
2ρ0

β
. (64)

We choose cs = 4.88 (isothermal sound speed) and β = 8 × 103 so that we fit approximately one most unstable MRI 
wavelength in the vertical direction, [57,58]. The shearing-box equations are solved on a 3D Cartesian box with x, y ∈
[−2L, 2L] and z ∈ [−L/2, L/2] with periodic boundary conditions in the vertical and azimuthal (y) directions while shearing-
sheet conditions are imposed at the x-boundaries. Integrations are carried at the resolution of 144 × 144 × 36 zones for 
≈ 100 rotations (tstop = 628) using the Roe Riemann solver with an isothermal equation of state. We employ the orbital 
advection scheme to subtract the linear shear contribution from the total velocity so that the MHD equations are evolved 
only in the residual velocity, thus giving a substantial speedup of the algorithm, see [56].

The initial transient phase is accompanied by an exponential growth of the magnetic field followed by a transition to a 
nonlinear turbulent state. The vertical component of magnetic field at t = 628 is shown in Fig. 15, comparing the results 

2 No scheme preserves energy positivity without energy correction for this test, not even with a minmod limiter.
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Fig. 14. Final evolutionary stage (t = 50) for the 2D Kelvin-Helmholtz test. Colored maps show B2/ρ for selected emf with the 2nd-order scheme using 
128 × 256 zones (top) and the 3rd-order scheme with 256 × 512 grid points (bottom).

Fig. 15. Three-slice cut of Bz at t = 628 for the shearingbox test problem, using the CT-Contact (left), UCT-HLLD (middle) and UCT-HLL (right) schemes.

obtained with the CT-Contact, UCT-HLLD and UCT-HLL schemes. The maps indicate qualitative larger amount of fine-scale 
structure with the formers with respect to the latter. A more quantitative measure is provided by the plots of the volume-
integrated Maxwell stress wxy = − 

〈
Bx B y

〉
- normalized to ρ0c2

s - as a function of time shown in the left panel of Fig. 16. 
The time-averaged stress value, in the range �t/2π ∈ [10, 100], is wxy ∼ 0.21 for UCT-HLLD, ∼ 0.20 for the CT-Contact and 
CT-Flux schemes. Lower values, respectively equal to ∼ 0.07 and ∼ 0.10, are found when using the UCT-HLL or UCT-GFORCE 
methods.

Previous studies (see, e.g., [58]) indicate that stresses increase with resolution and should eventually converge as the 
mesh spacing becomes sufficiently fine. In this sense, lower values of wxy imply larger numerical diffusion. This conclusion 
is supported by computations carried out at twice the resolution (288 × 288 × 72) using the UCT-HLL and UCT-HLLD emf-
averaging schemes, for which the stresses are plotted in the right panel of Fig. 16. In this case the time-averaged value of 
wxy increases to ∼ 0.10 (for UCT-HLL) and to ∼ 0.27 (for UCT-HLLD).
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Fig. 16. Maxwell stresses (normalized to ρ0c2
s ) as a function of time for the 3D shearingbox model. In the left panel we compare five different averaging 

schemes at the nominal resolution of 1442 × 36 zones while in the right panel the comparison is repeated with results obtained at twice the resolution 
with UCT-HLL and UCT-HLLD. Different colors correspond to different emf-averaging schemes (as reported in the legend).

7. Summary

The systematic construction and comparison of averaging schemes to evaluate the electromotive force (emf) at zone 
edges in constrained transport MHD has been the subject of this work. The upwind constrained transport (UCT) formalism, 
originally developed by [22], has been reconsidered under a more general perspective where the edge-averaged electric field 
can be constructed using the information available from 1D face-centered, component-wise Riemann solvers. This approach 
offers enhanced flexibility allowing new upwind techniques to be incorporated in CT-MHD schemes at the modest cost of 
storing transverse velocity, weight coefficients for the fluxes and diffusion terms for the magnetic field.

Four popular schemes, namely Arithmetic, CT-Contact, CT-Flux and UCT-HLL, together with two novel algorithms have 
been presented and compared in terms of accuracy, robustness and dissipation properties. Among the newly introduced 
schemes, the UCT-HLLD and UCT-GFORCE schemes build into the UCT framework the proper combination of upwind fluxes 
derived, respectively, from the HLLD Riemann solver of [30] and the GFORCE scheme of [31]. Through a series of 2D and 3D 
numerical tests and benchmark applications, our conclusions can be summarized as follows:

• The choice of emf averaging procedure at zone edges can be as crucial as the choice of the Riemann solver at zone 
interfaces of the underlying base scheme. This becomes particularly true in problems where the magnetic field has a 
dominant role on the system dynamics.

• Averaging schemes with insufficient dissipation (arithmetic averaging) may easily corrupt the solution leading to spuri-
ous numerical artifacts or to the occurrences of nonphysical values such as negative pressures.

• The simple recipe of doubling the dissipation term (e.g. CT-Flux and CT-Contact), suggested by the need recovering 
the proper directional biasing for grid-aligned configurations, still represents an efficient and valid option, although not 
strictly compliant with the UCT formalism.

• The newly proposed UCT-HLLD scheme presents low-diffusion and excellent stability properties when used in conjunc-
tion with the HLLD Riemann solver as well as the Roe solver. The amount of numerical dissipation is comparable to 
or even lower to the CT-Contact scheme with the advantage that UCT-HLLD can be extended to higher than 2nd-order 
schemes.

• The UCT-GFORCE scheme, also introduced here for the first time, has dissipation properties intermediate between the 
UCT-HLL and UCT-HLLD (or CT-Contact) averaging schemes.

Contrary to non-UCT schemes, where the amount of numerical dissipation is inherited from the base Riemann solver 
applied at zone-interfaces, our formulation yields a one-valued independent and continuous numerical flux function with 
stable upwind properties along each direction. Whether this is an advantage or not should be discerned for the particular 
application at hand.

Albeit our results have been presented in the context of 2nd-order schemes in which the Riemann solver is applied 
at cell interfaces, our formulation can be naturally extended to higher than 2nd-order finite-volume of finite-difference 
schemes.

Obviously, the component-wise Riemann solvers employed dimension-by-dimension as in the present work, in spite 
of their simplicity, may not be the optimal choice (as opposed to truly multidimensional solvers) in situations requiring 
unstructured triangular or geodesic meshes to treat geometrically complex MHD flows [e.g. 19,59].

Forthcoming works will extend this formalism to the relativistic case as well, along the lines of [60,23,41,61], aiming at 
improving on the simple HLL choice which is nowadays the adopted standard [e.g. 62].
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Appendix A. Derivation of the UCT-HLLD scheme for isothermal MHD

The wave pattern emerging from the solution of the Riemann problem in isothermal MHD differs from its adiabatic 
counterpart for the absence of the contact or entropy mode. The HLLD flux can still be written in the Roe-like form (39)
but the jump conditions are different, as shown by Mignone (2007) [43]. Eq. (44) and (45) still have the same form but the 
coefficient χ s needed in our Eq. (42) is different. In particular, from Eq. 32-33 of [43], we find the following expression:

χ s = ρs(λs − vs
x) − B2

x

ρ∗(λs − λ∗L)(λs − λ∗R)
− 1 , (A.1)

where

λ∗L = u∗ − |Bx|√
ρ∗ , λ∗R = u∗ + |Bx|√

ρ∗ (A.2)

are the Alfvén velocities, u∗ = F hll/ρhll and ρ∗ = ρhll is the density inside the Riemann fan.
From Eq. (A.2), one clearly has that λ∗R + λ∗L = 2u∗ and B2

x = ρ∗(λ∗s − λ∗)2. This allows us to write the χ̃ s coefficients 
needed in Eq. (44) as

χ̃ s = (vs
x − u∗)(λs − u∗)
λ∗s + λs − 2u∗ . (A.3)
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