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Abstract

Identifying isolated teeth of fossil selachians only based on qualitative characters is some-

times hindered by similarity in their morphology, resulting often in heated taxonomic

debates. On the other hand, the use of quantitative characters (i.e. measurements) has

been often neglected or underestimated in characterization and identification of fossil teeth

of selachians. Here we show that, employing a robust methodological protocol based on

principal component and discriminant analyses on a sample of 175 isolated fossil teeth of

lamniform sharks, the traditional morphometrics can be useful to support and complement

the classic taxonomic identification made on qualitative features. Furthermore, we show that

discriminant analysis can be successfully useful to assign indeterminate isolated shark

teeth to a certain taxon. Finally, the degree of separation of the clusters might be used to

predict functional and probably also phylogenetic signals in lamniform shark teeth. However,

this needs to be tested in the future employing teeth of more extant and extinct lamniform

sharks and it must be pointed out that this approach does not replace in any way the qualita-

tive analysis, but it is intended to complement and support it.

Introduction
The fossil record of elasmobranch fishes (sharks, rays, skates) is mainly represented by isolated

teeth, which occur in marine, brackish and freshwater sediments worldwide ranging from

Devonian to Recent [1]. Although only a few exceptional fossiliferous deposits yielded com-

plete articulated chondrichthyan fishes, e.g. Devonian Cleveland Shale in Ohio, Early Jurassic

of Lyme Regis in England, Late Jurassic of southern Germany, Late Cretaceous of Lebanon,

Paleogene localities in Italy (Bolca), Germany (Grube Unterfeld Lagerstätte), and North Amer-

ica (Green River Formation) [2–6], which are of outmost importance to understand their evo-

lutionary trends, isolated teeth are often the only morphological remains that can be used

for taxonomic and systematic purposes and to interpret evolutionary trajectories in fossil
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elasmobranchs [1]. The number of publications on fossil sharks steadily increased since the

seminal work “Researches sur les poissons fossiles” published by Louis Agassiz [7, 8]. How-

ever, with the increasing number of taxa identified and erected based on teeth alone so far,

the problem of the taxonomic identification based on qualitative dental characters alone is

ever more increasing, mainly because several lineages often show similar morphological

traits that are difficult to quantify resulting in unidentified convergent patterns (compare

e.g. Cappetta’s treatises [1, 9]). This resulted several times in quite controversial discussions

about the taxonomic identity of fossil taxa. For example, although there is remarkable dis-

parity in the morphology of fossil teeth in lamniform sharks, most of the fossil taxa tradi-

tionally included within the family Odontaspididae are difficult to classify at genus level.

Recently, e.g., Purdy & Francis [10] questioned the validity of the extinct sand tiger shark

Brachycarcharias Cappetta & Nolf, 2005, a shark widely spread across the northern and

southern hemispheres during the early Paleogene [11], stating that there are no robust mor-

phological evidences to create a new genus for the species Lamna lerichei Casier, 1946. How-

ever, as pointed out by Cappetta [1] the authors never tested the validity of this taxon in

comparison with previously described taxa, which are considered synonymous. Another

study, although assuming Brachycarcharias to be valid, hypothesized that B. lericheimay

have had similar feeding and habitat preferences as the living porbeagle shark Lamna nasus
because of their similar tooth morphology [12].

Since most of the fossil lamniforms have no modern equivalents, the vast majority of taxa is

much more difficult to assign to a specific genus and often do not fit the dental design of living

genera, rendering any interpretation about their phylogenetic relationships difficult [1, 13]. In

this perspective, we expect that quantitative analyses of tooth features can help to support qual-

itative identifications, solving most of the taxonomic issues, and to hypothesize relationships

among taxa, since the dental morphology of a taxon is a complex result of different processes,

including evolutionary processes [1].

The use of biometric characters (i.e. measurements) for tooth characterization has been

often neglected or underestimated in fossil selachian taxonomy, and identification based on

qualitative and sometimes few or a restricted number of morphological characters (overall

shape, relative size, relative bending of the cusps) has been preferred so far. Only few studies

including isolated fossil elasmobranch teeth attempted quantitative approaches for taxonomic

purposes, mostly using geometric morphometrics [14–16]. More recently, Belben et al. [17]
investigated the morphospace occupation of sharks based on tooth measurements, in order to

investigate ecological replacement of top predators occurring in Moroccan marine settings

after the end-Cretaceous extinction.

The use of multivariate statistical techniques as principal component (PCA) and discrimi-

nant (DA) analyses based on a large set of different quantifiable variables (pure linear measure-

ments and angles), however, has never been used for taxonomic purposes and to identify

phylogenetic signals of isolated fossil shark teeth using both living and fossil taxa for compari-

sons employing a robust protocol and statistics for testing the validity of the method. The goal

of this paper is therefore to propose and encourage the use of traditional morphometric meth-

odologies, testing the results with robust statistical analyses, in order to provide additional sup-

port for identifying fossil shark teeth based on qualitative features, to solve contradicting

taxonomic issues, and to hypothesize phylogenetic relationships among fossil and living taxa.

For this purpose we use isolated teeth of several fossil and living representatives of lamniform

sharks. The method employed here, nevertheless, can be also adopted and modified to analyse

the taxonomy and phylogenetic relationships in other lineages.

Multivariate analyses in identification of fossil shark teeth
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Materials andmethods

Taxon sampling
In this study, the analyses were performed at genus level using one to four species as represen-

tatives of the morphology of each genus. We used this rank as standard unit for two main rea-

sons: 1) the genus is considered as a reliable taxonomic rank in biological and palaeobiological

analyses, since the concept of fossil species does not always correspond to the biological one

[18, 19]. For this reason, the use of the genus as taxonomic unit has been widely preferred with

respect to the species level in several papers focussing on biological analyses [20–23]. 2) The

majority of the elasmobranch fossil species is difficult to identify below the generic level since

most of the quantitative characters (e.g. sizes, proportions, shape, inclination of the cusp) use-

ful to describe the different parts of a tooth (e.g. main cusp, lateral casplets, root, etc) are useful

in taxonomy to identify mainly the genus. On the contrary, most of the features to discrimi-

nate fossil species are mainly based on qualitative features (e.g. presence of lingual folds, orna-

mentation, serrations), which cannot be used in a morphometric approach [1].

The present study is based on a sample of 175 isolated teeth, which previously have been

used in several studies of fossil elasmobranchs [11, 24] or photographed in museum collections

for the first time (S1 Table). This provides a well-established and reliable taxonomic frame for

testing our results. The genus-level data set is based on a sample of five fossil species of three

genera (Carcharias acutissima, C. cuspidata, C. gustrowensis, Brachycarcharias lerichei, and
Carcharomodus escheri; 5, 13, 1, 40 and 16 specimens, respectively) and complete tooth series

(including upper and lower teeth) of the extant portbeagle shark, Lamna nasus, and the sand
tiger shark, Carcharias taurus (70 and 30 specimens, respectively). These two living taxa are

used for comparisons and as control taxa, because the actual jaw position of each tooth is well

known. For extant taxa, we excluded only teeth from the lateral-most positions (those beyond

the seventh lateral tooth position) and intermediate teeth since they are not represented in the

fossil sample that was examined. We selected lamniform genera since the similarities in their

general tooth morphology can be used to test the power of our approach in detecting also min-

imal morphological differences and, at the same time, these taxa can be used as examples for

solving taxonomic debates (see Introduction). Furthermore, three indeterminate fossil teeth of

lamniform sharks from a single stratigraphic unit were included in our analyses to assess if

multivariate methods are useful to properly identify teeth based on morphometry and assign

them to a certain taxon.

For this study we only used measurements of the labial and lingual sides since these are

often the only accessible sides in fossil specimens when the teeth still are embedded in and

strictly associated to the sediment and bureaucratic rules of museum collections do not allow

to extract them from the matrix (this is the case, for example, for specimens from the Bolca

and Frauenweiler Lagerstätten, which also are included in this study). All fossil teeth were pre-

viously assigned to their respective positions using qualitative characters observed in Brachy-
carcharias, Carcharias, and Carcharomodus [1, 11, 24, 25], and subsequently compared with

the results of the morphometric approach.

Multivariate analyses
In this study we adopted two multivariate approaches. The principal component analysis

(PCA) is one of the most often used multivariate statistical methods for investigating biological

patterns and models based on large sets of correlated variables. PCA uses orthogonal transfor-

mation to convert multiple variables into a set of orthogonal uncorrelated axes, also called

principal components (or PCs), which account for as much as possible of the variance in

Multivariate analyses in identification of fossil shark teeth
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multivariate data sets, therefore reducing it to only few variables [26–33]. This approach has

been widely used in various biological and ecological studies. In particular, this method was

used to solve taxonomic issues in zoology [34–37], botany [38–41], microbiology [42], as well

as for identifying niche dynamics through the analysis of morphological or ecological traits

[33, 43, 44]. In palaeontology, PCA was successfully employed to support population or taxon

separations [6, 45, 46], to avoid taxon over-splitting [47, 48], or to investigate biotic turnovers

[17].

Discriminant analysis (DA) is used for testing hypotheses of morphologic similarities or

differences employing pairwise comparisons between two groups, by projecting a multivariate

data set down to one dimension and maximizing separation between groups separated a priori

[32, 49]. Discriminant analysis is therefore useful for testing hypotheses of morphological simi-

larities, and a significant 90% or greater separation between two groups is considered sufficient

to support the presence of two different morphotypes [50]. In palaeontology, this multivariate

approach previously has been used, for example, to test variations within a single population

and to identify isolated dinosaur teeth [51]. Other than being a support for PCA, discriminant

analysis therefore are employed herein to test if measurements are useful to identify unknown

isolated teeth, assigning them to a specific taxon, and to infer phylogenetic hypotheses [51].

The significance (p-value) of each pairwise comparison was determined using Hotelling’s t2-

test to determine significance at p< 0.05. Since the canonical variate analysis (CVA) can be

considered an extension of discriminant analysis to more than two groups [32, 52] we used

this multivariate approach to test hypotheses of morphologic similarities or differences in the

overall sample among all groups. CVA projects a multivariate dataset down to two or more

dimensions in a way that maximizes separation between three or more given groups [32].

PCA and DA protocols
A total of 14 linear measurements (in millimetres) and two angles (in degrees) were taken

from images using the software package TPSdig 2.19 [53] following the scheme applied in

some recent studies of fossil sharks [11, 24]. Measurements were taken to the nearest 0.01.

Morphometric tooth terminology is adopted and modified from Kriwet et al. [24] to which we
added new measurements that are useful also in case of incomplete specimens. The following

measurements depicted in Fig 1 are evaluated here: basal crown width (BCW), crown height

(CH), distal crown edge length (DCL), degree of slant (DS), half-crown width (HCW), inner

distal crown edge length (IDCE), inner mesial crown edge length (IMCE), height of lateral cus-

plets (LCH), width of the lateral cusplets (LCW), mesial crown edge length (MCL), height of

principle cusp (PCH), width of principle cusp (PCW), angle between root lobes (RA), root

height (RH), root width (RW), total height of the tooth (TH). Morphological terminology

mostly follows Cappetta [1].

Normal distribution of data is necessary in multivariate analyses [33]. For this reason raw

data usually cannot be used. In fact, it is often assumed that biological and even more palaeon-

tological data never follow a Gaussian distribution [54]. This is mainly due to the fact that in

palaeontological analyses, as in our case study, some data might be missing and, on the other

hand, it is very difficult to produce very large data sets that might render in some way data to

be normally distributed. This problem can be solved using two simple procedures, which are

also useful to minimize the variation caused by different sizes and ontogenies: 1) standardiza-

tion and 2) log-transformation of data. Standardization of data consists in calculating the ratio

between each trait and one of the measurements. In our study case we choose the total height

of the tooth (TH) for standardization since this trait can be recognized in all our specimens.

The choice of using TH (as sum of crown and root height) is also due to the fact that

Multivariate analyses in identification of fossil shark teeth
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standardization eliminates this trait when it is divided by itself in all specimens (TH/TH = 1).

Nevertheless, its morphological significance remains preserved since it is replaced by other

traits (e.g. crown and root heights, since TH = CH + RH; see Fig 1). Standardization is useful

to remove size effects so that shape will be the only trait analysable. In a recent study, Belben

et al. [17] performed PCA based on fossil shark tooth measurements in order to investigate the

ecological replacement in high trophic levels in marine settings. However, for their purposes,

the authors did not standardize measurements so that the main morphological variation

detected between Maastrichtian and Danian taxa was the size of the shark teeth, suggesting

that post-extinction ecosystems were dominated by significantly smaller sharks [17]. The log-

transformation of data is used here to overcome the problem of the non-normal distribution

of data by un-stretching large scales of values [33, 55]. Moreover log-transformation is also

useful to reduce considerably the variation due to ontogeny (allometric effect) since we assume

that specimens of different developmental stages are employed here [56].

By employing two different measurements (millimetres and degrees) it is necessary to test

differences in variation in using two different proxies [47, 57]. This can be done by calculating

the coefficient of variation (COV, calculated as standard deviation divided by the trait mean)

for each character (using size-corrected and log-transformed data) in order to obtain an esti-

mate of trait variability. The differences between linear measurements and angles can be then

tested using a non-parametric test as the Mann-Whitney U-test [47, 57].

The tooth shape of the various genera was studied by analysing the respective morphospaces

detected by PCA performed on standardized and log-transformed data to obtain the principal

component scores (PCs), the vectors describing the maximum variation of specimen shape.

This enables to obtain direct visual images of the spatial separation of specimens. It is a common

rule for multivariate statistical techniques to interpret only those components (usually the first

two to four) that contribute more than 5% of the total variance, since the traits associated to

other components explain only a minimum part of the variation [33, 58]. Finally, the compo-

nent loading values of the main PCs can be used to interpret the ’meaning’ of the components

that is to identify the main factors to which an axis is related [59]. The higher (or the lower) the

values, the stronger the correlation of the corresponding variable with the factor axes is.

In order to support the visual separation of the groups by PCA, significant differences can

be tested using non-parametric tests. Since it is often assumed that standard statistics that

directly compare abundance distribution (e.g. Chi-square) or parametric tests (e.g. ANOVA)

may not be useful for non-normally distributed data we use here two non-parametric tech-

niques, which do not require normal distributions. The multivariate analysis of variance (PER-

MANOVA) was applied to test similarities in-group centroid position between the different

groups representing tooth position or taxa [60]. The analysis of similarities (ANOSIM) was

employed to test quantitatively the degree of overlap between different groups [61]. ANOSIM

measures how separate groups are, on a scale of 0 (indistinguishable) to 1 (all similarities

within groups are less than any similarity between groups). The null hypotheses for PERMA-

NOVA and ANOSIM are the similarity of the group centroids, and the equal medians and

ranges for within-group ranked dissimilarities among groups, respectively [59]. Euclidean dis-

tances were chosen as distance measure for both tests and alpha was set at 0.05. All analyses

were performed using the software package Paleontological Statistics PAST [59].

Ethics statement
No permits were required for the described study, which complied with all relevant

regulations.
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Results
Among the standardized and log-transformed morphometric measurements, the degree of

slant shows the most variation (COVDS = 1.1), followed by the root angle (COVRA = 0.44). The

least variable characters are the distal crown edge length (COVDCL = 0.08) and crown height

(COVCH = 0.09). However, coefficients of variation between linear measurements and angles

are not significantly different (Mann-Whitney U-test: mean ranks 6.9 and 1.1, respectively;

p = 0.93) so they can be used together to perform multivariate analyses.

PCA on the overall sample
The PCA performed on the entire sample including all the four genera and indeterminate

specimens detected 15 PC axes, with the first three explaining more than 5% of variation and

accounting together for 93.6% of the total variability. Eigenvalues and percentage of explained

variability are represented in Table 1, whereas the morphospaces plotted on the first three axes

and variables associated with each factor axis are shown in Fig 2.

The marked monognathic heterodonty of lamniform teeth [1] contributes to the largest

amount of variation in our data set. In particular, PC1 (76.0%) is mainly related to the degree

of slant (DS). Positive values of PC1 are related to a strong inclination of the main cusp, a fea-

ture that mainly characterizes lateral teeth, whereas specimens with almost vertical cusps

mostly representing anterior or antero-lateral teeth show negative values (0–1˚ DS). The PC2

(12.1%) is mainly related to the height and width of lateral cusplets (LCH and LCW). In partic-

ular, positive scores of PC2 are related to with specimens having tall and wide cusplets (e.g.

Brachycarcharias is almost entirely confined in these values), whereas specimens having low

and narrow cusplets (e.g. the anterior teeth of Lamna and the upper lateral teeth of Carcharo-
modus) are associated with mostly negative values. PC3 (5.4%) is mainly related to the ratio

Fig 1. Morphometric tooth terminology. Abbreviations: BCW, basal crown width; CH, crown height; DCL, distal crown edge length; DS, degree
of slant; IDCL, internal distal cutting edge length (cusp only); IMCL, internal mesial cutting edge length (cusp only); LCH, height of lateral cusplets;
MCL, mesial crown edge length; PCH, height of principle cusp; PCW, width of principle cusp; RA, angle between root lobes; RH, root height; RW,
root width; TH, total height of tooth.

https://doi.org/10.1371/journal.pone.0188806.g001

Multivariate analyses in identification of fossil shark teeth
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between root height (RH) and some measurements related to the height of the main cusp (CH,

DCL and MCL). In its positive scores, specimens with very tall main cusp and low root are

located (e.g. Carcharomodus is entirely confined in these scores), whereas negative ones are

mainly related to lower crowns and higher roots (e.g. Lamna nasus specimens lie almost

entirely in these values). The quantitative occupation patterns are supported by the results of

non-parametric tests calculated along all PCs and for all possible pairwise comparisons

(Table 2).

In general, both PERMANOVA and ANOSIM clearly support different morphospace occu-

pations, suggesting that measurements are useful to separate genera. In particular, PERMA-

NOVA rejects the null hypothesis of equal group centroids (p = 0.0005), whereas ANOSIM

shows that convex hulls appear overlapped but are clearly different (R = 0.14; p = 0.0001).

However, PCA is not useful to separate indeterminate teeth from other genera or assigning

them to a certain taxon in the overall sample since all pairwise comparisons detected largely

overlap with all convex hulls (PERMANOVA and ANOSIM: p> 0.05). Discriminant analysis

of the overall sample detected through CVA (Fig 3 and Table 3) supports the hypothesis that

the four known genera are clearly different (Hotelling’s p< 0.05). However, although CVA

detected a significant separation of indeterminate teeth with those of Lamna (p< 0.05) the

approach was not useful to assign them to Brachycarcharias, Carcharias or Carcharomodus
(p> 0.05).

Brachycarcharias vs Lamna
Of the 15 axes produced by PCA for B. lerichei and L. nasus, only the first two explain more

than 5% of the variation, accounting for 91.8% of the total variability. The PC1 (82.9%) is

always related to the inclination of the cusp whereas PC2 (8.8%) is related to the height and

width of the lateral cusplets (Fig 4). Although the different tooth positions appear to be distrib-

uted along the same values of the PC1 (anterior and lower teeth in negative values, upper teeth

in positive values), the two genera appear clearly separated along the PC2, with little overlap.

In particular, Brachycarcharias mostly occupies positive values associated with taller and wider

lateral cusplets, whereas the Lamna morphospace lies in negative values linked to short and

narrow cusplets. The significant separation of the two groups in the morphospace is clearly

supported by PERMANOVA and ANOSIM (p = 0.0001). Pairwise discriminant analysis also

shows that more than 97% of teeth are correctly assigned to their a priori groups, with the

Hotelling’s t2-test suggesting a significant separation of the two morphotypes (p< 0.0001).

For this particular pairwise comparison, we used two sets of complete tooth series of L.
nasus representing an adult and a juvenile developmental stage, in order to see if the small

sized sand tiger shark Brachycarcharias [11] better overlaps the ecospace of one of the two
ontogenetic stages of L. nasus. However, as shown is Fig 4, the two individuals of Lamna are
almost entirely overlapping (although showing significant separation; ANOSIM and PERMA-

NOVA: p< 0.05) and it seems there is more overlap of the convex hull of Brachycarcharias
with that of the adult stage of L. nasus than with the convex hull of the juvenile individual.

Brachycarcharias vs Carcharias
Only the first two PCs over 15 PCs explain more than 5% of the variation, accounting together

for 91.6% of the total variability for this pairwise comparison. The main characters associated

with PC1 (80.8%) and PC2 (10.8%) are the same as those in the previous comparison (Fig 5).

Although the different tooth positions appear to be distributed along the same values of the

PC1 (anterior and lower teeth in negative values, upper teeth in positive values), the two genera

are always separated along the PC2, with little overlap in positive values of PC1, suggesting

Multivariate analyses in identification of fossil shark teeth
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that upper lateral teeth of Brachycarcharias and Carcharias have similar morphologies. How-

ever the main difference is related to the characters associated to anterior and antero-lateral

teeth. In particular, these teeth in Brachycarcharias mostly occupy the quadrant with negative

PC1 and positive PC2 values, since anterior and antero-lateral teeth of Brachycarcharias are
characterized by tall lateral cusplets. On the contrary, anterior and antero-lateral teeth of

Carcharias are located in the quadrant formed by negative values of both PCs, clearly associ-

ated with their very small cusplets. Significant separation of the two groups is supported by

PERMANOVA and ANOSIM (p = 0.0001) and by discriminant analysis. This latter shows that

97.8% of the teeth are correctly assigned to their a priori groups, with the Hotelling’s t2-test

suggesting a significant separation of the two morphotypes (p< 0.0001).

Brachycarcharias vs Carcharomodus
The PCA performed on the pairwise comparison between Brachycarcharias and Carcharomo-
dus detected 15 PCs, with only the first two explaining more than 5% of variation and account-

ing together for 90.3% of the total variability. PC1 (75.6%) is always related to the degree of

slant (DS), with positive values related to a strong distal inclination of the main cusp and nega-

tive scores related to teeth with an almost vertical cusp (Fig 6).

PC2 (14.7%) is related to the height and width of lateral cusplets (LCH and LCW), and in

part also to the root angle (RA). Positive scores of PC2 are related to specimens having higher

LCH, LCW and RA, whereas specimens having lower LCH, LCW and RA display negative val-

ues. Based on this, Brachycarcharias is thus confined in positive PC2 scores, whereas Carcharo-
modus lies along negative PC2 scores. Both PERMANOVA and ANOSIM clearly support

different morphospace occupations, suggesting that measurements are useful to separate the

two genera (p = 0.0001). Discriminant analysis shows that more than 98% of teeth are correctly

assigned to their a priori groups, which are significantly separated (Hotelling’s t2-test:

p< 0.0001).

Table 1. Principal component axes, eigenvalues and percent variation for the entire sample of 175 teeth.

PC Eigenvalue % variance Associated variables

1 0.382950 76.036 DS

2 0.061111 12.134 LCH, LCW

3 0.027375 5.435 RH, CH, DCL, MCL

4 0.014626 2.904

5 0.007384 1.466

6 0.002935 0.583

7 0.002568 0.510

8 0.001563 0.310

9 0.000865 0.172

10 0.000830 0.165

11 0.000608 0.121

12 0.000546 0.108

13 0.000158 0.031

14 0.000098 0.020

15 0.000025 0.005

https://doi.org/10.1371/journal.pone.0188806.t001

Multivariate analyses in identification of fossil shark teeth
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Fig 2. PCA.Results of PCA performed on the entire sample of standardized and log-transformed measurements for Brachycarcharias, Lamna,Carcharias
andCarcharomodus, represented as convex hulls; (A) Morphospace plotted on PC1 and PC2; (B) Morphospace plotted on PC1 and PC3; (C) Loading values
showing the variables associated with the first three PC axes.

https://doi.org/10.1371/journal.pone.0188806.g002

Multivariate analyses in identification of fossil shark teeth
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Identifying indeterminate shark teeth
Because the three indeterminate teeth show a large amount of overlap with all convex hulls of

known genera (see Figs 2 and 3), PCA and CVA are not useful in this case to confidently deter-

mine, which taxon they belong to. However, despite the amount of overlap seen in PCA and

CVA between indeterminate teeth and those of Brachycarcharias, Lamna, Carcharomodus and
Carcharias, discriminant analyses performed as single pairwise comparisons (Fig 7) show that

indeterminate teeth are significantly different from those of Lamna, Carcharomodus, and
Carcharias (p< 0.05) whereas there is a good overlap and non-significant separation with

those referred to Brachycarcharias (p> 0.05).

Discriminant analysis and associated Hotelling’s t2-test therefore suggest that unidentified

teeth can be confidently assigned to Brachycarcharias based on non-significant differences

between these two samples (p> 0.05) and on significant differences between indeterminate

teeth and those referred to Carcharias, Carcharomodus and Lamna (p< 0.05). This suggests

that although the indeterminate teeth are morphologically similar to some of the teeth of the

known genera, minimal differences in their proportions can be successfully detected by pair-

wise discriminant analyses.

Table 2. PERMANOVA and ANOSIM. Nonparametric tests used to assess significant differences in morphospace occupation between the four genera. The
significance is computed by permutation of group membership, with 9,999 replicates. Euclidean distances were chosen as a measure unit.

PERMANOVA

p-values Brachycarcharias Carcharias Carcharomodus Lamna

Indeterminate 0.7051 0.493 0.061 0.477

Brachycarcharias 0.006* 0.005* 0.007*

Carcharias 0.046* 0.018*

Carcharomodus 0.004*

F-values

Indeterminate 0.242 0.604 2.609 0.635

Brachycarcharias 6.694 6.450 6.491

Carcharias 3.392 4.740

Carcharomodus 7.158

ANOSIM

p-values Brachycarcharias Carcharias Carcharomodus Lamna

Indeterminate 0.844 0.975 0.179 0.645

Brachycarcharias 0.004* 0.002* 0.0001*

Carcharias 0.081 0.0002*

Carcharomodus 0.0002*

R-values

Indeterminate -0.134 -0.203 0.158 -0.047

Brachycarcharias 0.087 0.197 0.163

Carcharias 0.080 0.117

Carcharomodus 0.224

* indicates significant comparisons (p 0.05) thereby suggesting that groups exhibit considerably different morphospace occupation.

The overall p-values for PERMANOVA and ANOSIM are 0.0002 and 0.0001, respectively.

https://doi.org/10.1371/journal.pone.0188806.t002
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Fig 3. CVA.Results of CVA performed on the entire sample of standardized and log-transformed measurements. All genera are significantly separated
(Hotelling’s p 0.05) but the test failed to assign indeterminate teeth to a certain taxon (p 0.05).

https://doi.org/10.1371/journal.pone.0188806.g003

Table 3. CVA. Canonical variate analysis results of comparisons among Brachycarcharias,Carcharias, Carcharomodus, Lamna and indeterminate teeth.

Hotelling’s t test

p-values Brachycarcharias Carcharias Carcharomodus Lamna

Indeterminate 0.911 0.264 0.538 0.045*

Brachycarcharias 0.0001* 0.0001* 0.0001*

Carcharias 0.0001* 0.0001*

Carcharomodus 0.0001*

* indicates significant comparisons (p 0.05) obtained through Hotelling’s t test.

https://doi.org/10.1371/journal.pone.0188806.t003
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Discussion

Traditional morphometrics as tool for inferring taxonomy and phylogeny
The primary goal of this paper was to demonstrate that a quantitative approach based on tradi-

tional morphometrics is very useful to support taxon identifications. For this purpose, as case

study, we intend to finally solve a recent taxonomic debate, which involved the validity of the

extinct sand tiger shark Brachycarcharias, because Purdy & Francis [10] challenged the validity

of this taxon stating that there are no robust morphological evidences to create a new genus

for the species Lamna lerichei Casier, 1946. Furthermore, although Maisch et al. [12] consid-
ered Brachycarcharias as valid taxon, the authors suggested that it might have had similar

Fig 4. PCA.Results of the PCA performed on the standardized and log-transformed measurements for Brachycarcharias and Lamna. (A) Morphospace
plotted on PC1 and PC2; (B) Discriminant analysis results; (C) Loading values showing the variables associated with the two PC axes.

https://doi.org/10.1371/journal.pone.0188806.g004
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feeding and habitat preferences as the living porbeagle shark, Lamna nasus, because of similar

tooth morphologies. On the contrary, our analysis detected significant differences in tooth

morphologies between Brachycarcharias and Lamna, mainly due to different proportions of

the lateral cusplets with respect to the main crown. These differences in morphology also sup-

port the interpretations of Marramà et al. [11] that L. nasus is a pelagic or epipelagic lamnid

shark that is known to inhabit coastal temperate to cool waters on continental shelves, but also

occurs far offshore in ocean basins but occasionally also close inshore, from the North Atlantic

to temperate waters of the Southern Hemisphere. However, so far this species has never been

found in equatorial tropical seas [62–64]. Conversely, teeth of Brachycarcharias were

Fig 5. PCA.Results of the PCA performed on the standardized and log-transformed measurements for Brachycarcharias andCarcharias. (A) Morphospace
plotted on PC1 and PC2; (B) Discriminant analysis results; (C) Loading values showing the variables associated with the two PC axes.

https://doi.org/10.1371/journal.pone.0188806.g005
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abundantly recovered from tropical shallow to cooler deep-water deposits distributed world-

wide [11]. It is therefore most likely that Brachycarcharias was an opportunistic Palaeogene

top predator with a wide range of feeding and habitat preferences contrary to the assumptions

of Maisch et al. [12]. Moreover, Marramà et al. [11] also demonstrated that PCA is additionally

useful, at least partially, to distinguish the teeth from different jaw positions in Brachycarchar-
ias lerichei. This indicates that PCA and associated non-parametric tests actually represents a

powerful tool for identifying not only different taxa at least at genus level but also tooth posi-

tion within jaws.

Fig 6. PCA.Results of the PCA performed on the standardized and log-transformed measurements for Brachycarcharias andCarcharomodus. (A)
Morphospace plotted on PC1 and PC2; (B) Discriminant analysis results; (C) Loading values showing the variables associated with the two PC axes.

https://doi.org/10.1371/journal.pone.0188806.g006
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Although PCA results in apparent overlaps of morphotypes, discriminant analysis might be

extremely useful to support the classification of isolated indeterminate teeth through pairwise

comparisons. In fact, the combination of qualitative dental character of the three isolated teeth

collected from the Ypresian (Early Eocene) deposit of the La Meseta Formation on Seymour

Island, Antarctica (e.g. teeth up to 25 mm with fairly low triangular cusp decreasing regularly

in width; one to two pairs of well-developed lateral cusplets; root with broadly separated lobes;

upper teeth with a cusp bent distally [1, 25]) confirm the results of the discriminant analysis

and support their assignment to the extinct genus Brachycarcharias Cappetta & Nolf, 2005.

The degree of separation among tooth clusters detected by discriminant analysis can be

used as tool to reveal taxonomic entities [65] and also phylogenetic signals [51, 66, 67]. In our

case study presented here (Fig 8) all species are unambiguously identified and supported by

our analyses. The large similarities of teeth of Lamna with teeth of Carcharias rather than with

Fig 7. DA.Results of the discriminant analyses comparing indeterminate teeth with those of Brachycarcharias, Lamna,Carcharomodus andCarcharias.

https://doi.org/10.1371/journal.pone.0188806.g007
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teeth of Brachycarcharias and even more than with those of Carcharomodus, however, might

also include a functional signal in tooth morphology, since Carcharomodus is supposed to be

closely related to the extant white shark, Carcharodon carcharias [24] and closer relationships
to Lamna thus would have been expected in our analysis. Consequently, the position of Carch-
aromodus at the basis of the hierarchical classification tree (Fig 8) might indicate that the signal

here is functional rather than phylogenetic.

Consequently, the presence of a phylogenetic signal remains ambiguous because the taxo-

nomic arrangement in the classification tree is not consistent with their placement on phyloge-

netic trees. Nevertheless, the hypothetical relationships detected through the discriminant

analysis might support differences in recent studies based on morphological and molecular

data, in which Odontaspididae are revealed to be non-monophyletic [65–71] conversely to the

traditional view that both, Carcharias and Odontaspis, are distinct from all other lamniforms

using specific sets of characters [1, 72, 73]. The results thus would indicate that the Palaeogene

Brachycarcharias represents the sister taxon to a monophyletic group formed by Odontaspidae

and Lamnidae rather than being a genuine member of sand tiger sharks as traditionally

assumed [1, 25]. Nonetheless, this interpretation needs to be verified by inclusion of additional

lamniform taxa because the support (distances between taxa in the classification tree) is weak.

Therefore, we do not exclude the possibility that the similar morphologies might be the result,

at least in part, of convergent and/or parallel evolutionary processes.

Traditional vs geometric morphometrics
Traditional morphometrics is often underestimated or discarded for quantitative analyses in

paleobiology mostly because of the several cons that this approach shows with respect to geo-

metric morphometrics (e.g. measurements are highly related to size and contain little informa-

tion about the shape contained in an object, it is not possible to reconstruct graphical

representations of the shape, measurements taken from two different shapes can produce

equal results [58]). However, some of these problems can be overcome. Although measure-

ments are highly related to size, and contain little information about the shape contained in an

object, their standardization and log-transformation eliminate the size-effect, so that the only

parameter detected by the PCA will be the differences in shape. Moreover, taking a high num-

ber of measurements and producing a large data set can be useful to overcome the problem of

the non-normality in data distribution.

We demonstrated that PCA and DA are useful methods to detect minimal differences in

tooth morphologies in some selected taxa of lamniform sharks. Although a few quantitative

studies on isolated fossil teeth were performed, they were mainly based on geometric morpho-

metric approaches [15, 16]. The landmark-based approach is certainly a powerful tool to

explore geometric differences between biological forms and to detect patterns of morphospace

Fig 8. Hierarchical classification tree.Hypothetical relationships betweenCarcharomodus,Brachycarcharias,
Carcharias and Lamna based on the percentage of teeth correctly classified by discriminant analysis performed
as pairwise comparisons. All the other possible combinations (Carcharomodus/Lamna;Carcharomodus/
Carcharias) are related to a 100% of teeth correctly classified.

https://doi.org/10.1371/journal.pone.0188806.g008
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occupation related to changes in shape [58, 74, 75]. In the last years several authors have suc-

cessfully used this approach in palaeontology to avoid taxon over-splitting, to detect morpho-

space occupation and diversification through time, and to identify morphological adaptations

and evolutionary convergences, among others [22, 23, 76–80]. However, geometric morpho-

metrics sometimes might not be the most reliable choice in palaeontological analyses. The

main reason is that the landmark-based approach is extremely sensitive to deformation due to

extrinsic factors as taphonomic distortions [78]. Another problem is that geometric morpho-

metrics is intolerant of missing data, which can preclude the analysis of poorly preserved or

damaged specimens [81–84], reducing inclusion of fossilized specimens. The main limits

working with isolated fossil shark teeth is that they are often preserved damaged and therefore

incomplete, so that: 1) the number of landmarks can be insufficient to capture the whole

shape, if homologous points recognizable in all specimens have to be selected; 2) choosing a

good number of landmarks on a small well-preserved subsample might influence the results

since the sample might be not significantly large enough to perform statistical tests. It is man-

datory to use homologous landmarks or semilandmarks in all specimens examined in geomet-

ric morphometrics [58]. Incomplete specimens, lacking parts where a determinate landmark is

impossible to be imputed, cannot be used. This might be solved by eliminating a certain land-

mark from the analysis, but with consequent loss of information.

Traditional morphometrics can be therefore a good alternative to geometric morpho-

metrics when working with incomplete specimens as fossil shark teeth, which do not allow for

recognizing a significant number of homologous points. In fact, PCA replaces missing data

using pairwise substitution allowing the inclusion of partially incomplete specimens in the

sample [59]. This may allow building a larger and more robust data set, therefore enhancing

the reliability of the sample.

Conclusions
A recent controversy about the validity of the extinct sand tiger shark Brachycarcharias was the
initial trigger for analysing, through rigorous multivariate approaches and statistical tests,

whether traditional morphometrics may represent a reliable approach in supporting the taxo-

nomic identification of isolated fossil shark teeth. The large sample of isolated teeth of four living

and fossil lamniform genera used here provide the opportunity for investigating the intergeneric

variability in tooth morphologies but also in relation to their jaw positions. The multivariate anal-

yses revealed that the morphometric approach using linear and angular measurements is able to

detect significant differences among different taxa, therefore supporting the taxonomic identifica-

tion based on qualitative characters. Moreover, we demonstrated that discriminant analyses are

particularly useful to assign a set of indeterminate teeth to a certain taxon through single pairwise

comparisons. Finally, this approach provides also opportunities to further investigate possible

functional and/or phylogenetic signals in fossil shark teeth as shown from the discriminant analy-

sis comparisons of Brachycarcharias, Lamna, Carcharias, and Carcharomodus in this study. How-

ever, it must be pointed out that this approach does not replace qualitative analyses in any way,

but complements qualitative approaches and provides additional support for identifications.
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