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BACKGROUND: The presence of single-nucleotide polymorphisms (SNPs) within the 30-untranslated regions of genes could affect the

binding between a microRNA (miRNA) and its target, with consequences on gene expression regulation. Considering the important

role of miRNAs in carcinogenesis, it is hypothesized here that these SNPs could also affect the individual risk of colorectal cancer

(CRC). METHODS: To test this hypothesis, a list was developed of 140 somatically mutated genes deduced from previous works on

the mutome of the CRC. A further selection was conducted of SNPs within target sites for miRNAs that are expressed only in the col-

orectum (the colorectal microRNAome) and having adequate population frequencies. This yielded 12 SNPs that were genotyped in a

case-control association study on 717 colorectal cases and 1171 controls from the Czech Republic. RESULTS: Statistically significant

associations were found between the risk of CRC and the variant alleles of KIAA0182 (rs709805) (odds ratio ¼ 1.57; 95% confidence

interval ¼ 1.06-2.78, for the variant homozygotes) and NUP210 genes (rs354476) (odds ratio ¼ 1.36; 95% confidence interval ¼ 1.02-

1.82, for the variant homozygotes). CONCLUSIONS: The results support the study hypothesis and highlight the importance of SNPs

within miRNA-dependent regulatory regions. Further studies on the role exerted by NUP210 and KIAA0182 in colorectal carcinogene-

sis are warranted. Cancer 2012;118:4670-80. VC 2012 American Cancer Society.
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Colorectal cancer (CRC) is the thirdmost common cause of cancer death in the world. There is a consistent body of evidence
from prospective studies to indicate that a high glucidic diet,1 high consumption of fat and red meat,2 and obesity are posi-
tively associated with CRC risk.3 Conversely, the use of nonsteroidal anti-inflammatory drugs4 and the consumption of bras-
sica vegetables5 significantly reduce the risk for this cancer. Genetic factors can also contribute in modulating risk of CRC. In
fact, high-risk allelic variants are responsible for familial cases (such as in familial amyloid polyneuropathy or hereditary non-
polyposis colorectal cancer), whereas in the sporadic forms, the risk can be modulated by low-risk variants (genetic polymor-
phisms). Recently, several genome-wide association studies were performed and risk alleles were identified,6-9 such as those
reviewed by Houlston et al.10 The genome-wide association studies offer the advantage of exploring thousands of loci with-
out the need to establish any a priori hypothesis. However, they also suffer from some limitations, including the need for
adjustment of the P values for multiple testing (lowering the power of the study) and the difficulty of interpreting the results
or generating any hypothesis on anonymous markers associated with risk.11 In this context, the studies carried out on candi-
date genes under the classical hypothesis ‘‘common allele, common disease’’ may provide advantages.12 Actually, these studies
helped detect the null genotype of the gene GSTM1 (glutathione S-transferase mu 1),13 and specific single-nucleotide poly-
morphisms (SNPs) within, eg,MTHFR (methylene tetrahydrofolate reductase),NOD2 (nucleotide-binding oligomerization
domain 2),14 or TP53 (tumor protein p53)15 as risk factors for CRC.

Gene deregulation is one of the key mechanisms by which cells can progress to cancer. The post-transcriptional regu-
lation carried out by microRNAs (miRNAs) is one of the most interesting and powerful of these mechanisms.16 SNPs can
reside within the genes encoding for miRNAs or within the target sequences at the 30-untranslated regions (30-UTRs);
thus, they can affect the strength of the binding between an miRNA and its target.17,18 As a result, SNPs can affect gene
regulation, and therefore it is conceivable that these SNPs could be associated with a differential risk of cancer, as shown in
a previous study.19 Following this concept, we report here a case-control association study on CRC where SNPs were
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selected on the basis of their potential effect on the differ-
ent binding between miRNAs and their targets. In order
to restrict the analysis to SNPs with a high likelihood of
being associated with the risk of CRC, we reviewed the lit-
erature and filtered the results using a series of stringent a
priori hypotheses.

Initially, we started from a list of 140 somatically
mutated genes thought to be crucial in driving the devel-
opment of CRC (Table 1). These genes derive from the
analysis of the mutome, where 20,857 transcripts from
18,191 genes were sequenced in 11 patients with CRC.20

Then, we predicted in silico the target sequences for the
miRNAs within the 30-UTRs and indexed all the SNPs
falling within these targets. Finally, we considered only
those polymorphisms affecting the binding with miRNAs
expressed specifically in the colon and rectum (Table 1),
according to the colorectal microRNAome from Cum-
mins et al.21 Thus, the overlap between the mutome and
the microRNAome data sets allowed the selection of only
12 SNPs. These SNPs were checked for their association
with the risk of CRC in a case-control study on 717 CRC
cases and 1171 controls from the Czech Republic.

MATERIALS AND METHODS

Study Population

Cases were patients with histologically confirmed CRC
recruited between September 2004 and February 2009
from 9 oncological departments in the Czech Republic:
Prague (2 departments), Benešov, Brno, Liberec, Ples, Přı́-
bram, Ústı́ nad Labem, and Zlı́n. During this period, a
total of 968 cases provided blood samples. This study
includes 717 subjects (74% of the whole set) who were
able to be interviewed, provided biological samples, and
who were genotyped appropriately. The mean age at diag-
nosis of the patients was 61.9 years.

Controls were 739 hospital-based volunteers with
negative colonoscopy results for malignancy or idiopathic
bowel diseases (cancer-free colonoscopy inspected con-
trols [CFCCs]). CFCCs were selected among individuals
admitted to the same hospitals during the same period of
recruitment of the cases. The reasons for undergoing the
colonoscopy were: 1) positive fecal occult blood test, 2)
hemorrhoids, 3) abdominal pain of unknown origin, and
4) macroscopic bleeding. Cases and CFCCs had the same
inclusion and exclusion criteria. Among 739 CFCCs, 502
(83.1%) showed complete covariates and valid genotypes
and were analyzed in this study. The mean age at the time
of sampling was 55.8 years.

A second group of controls consisted of 669 healthy
blood donor volunteers (HBDV) collected from a blood

donor center in Prague. All individuals were subjected to
standard examinations to verify the health status for blood
donation (detailed blood count, urinary examination,
blood pressure, and general examination). The sample
collection was performed at the same time as that of the
other 2 study groups above. The mean age at the time of
sampling was 49.2 years. All subjects were informed and
provided written consent to participate in the study and
to approve the use of their biological samples for genetic
analyses, according to the Helsinki declaration. The
design of the study was approved by the local ethics com-
mittee. Cases and controls were personally interviewed by
trained personnel using a structured questionnaire to
determine demographic characteristics and potential risk
factors for CRC. Study subjects provided information on
their lifestyle habits, body mass index, diabetes, and fam-
ily/personal history of cancer. A portion of the cases and
controls presented here were also analyzed in previous
association studies.22,23

Selection of Candidate Genes

Wood et al carried out a mutome study on 11 patients
with CRC.20 In order to discriminate between passenger
and driver mutations, each mutation was further verified
in an independent series of 96 patients with CRC. Wood
et al20 reported a list of 140 candidate genes (‘‘CAN-genes’’
in Table 1) for driving carcinogenesis in the colorectum.
The initial selection of the present study was based on this
list.

Selection of MicroRNA Targets

We selected the 30-UTRs of the 140 ‘‘CAN-genes’’,
according to the University of California Santa Cruz ge-
nome browser (http://genome.ucsc.edu). Then, the puta-
tive miRNA binding sites were identified by means of
specialized algorithms: miRBase (http://www.mirbase.
org/),24 miRanda (http://www.microrna.org/),25 Micro-
Inspector (http://mirna.imbb.forth.gr/microinspector/),26

Diana-Micro-T (http://www.diana.pcbi.upenn.edu/
cgi-bin/micro_t.cgi),27 and TargetScan Human 5.1
(http://www.targetscan.org/),28 using the default parame-
ters included in the software.

Selection of SNPs

The predicted miRNA binding sites were screened for the
presence of SNPs by an extensive search in the SNP data-
base (dbSNP; http://www.ncbi.nlm.nih.gov/SNP/). As a
result, we found 61 SNPs within 31 genes. In order to
have an appropriate statistical power, we excluded the
SNPs having the minor allele frequency lower than 0.24
in Caucasians, and 37 SNPs were retained (Table 2).
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Table 1. List of 140 Candidate (CAN)-Genes for Colorectal Cancer20 and 190 MicroRNAs Expressed in the Colorectum21 From
Which the Single-Nucleotide Polymorphism Selection Was Based

CAN-Genes Selected (Colorectal Mutome)

ABCA1 CD109 GALNS LGR6 PLCG2 TAF2

ABCB11 CHL1 GLI3 LMO7 PRDM9 TBX22

ACSL5 CHR415SYT GNAS MAP1B PRKD1 TCERG1L

ADAM19 CLSTN2 GPR112 MAP2 PTEN TCF7L2

ADAM29 CNTN4 GPR158 MAP2K7 PTPRD TGFBR2

ADAMTS18 COL3A1 GRID1 MAPK8IP2 PTPRS TGM3

ADAMTS20 CPAMD8 GRM1 MCM3AP PTPRU TIAM1

ADAMTSL3 CSMD3 GUCY1A2 MGC20470 RASGRF2 TLR9

ADARB2 CUTL1 HAPIP MKRN3 RET TNN

AGC1 CX40.1 HAPLN1 MMP2 ROBO1 TP53

AKAP12 DPP10 HIST1H1B MYO18B RUNX1T1 UHRF2

AKAP6 DSCAML1 IGFBP3 MYO5C SCN3B UQCRC2

ALK DTNB IGSF22 MYOHD1 SEC8L1 ZNF262

APC EDD1 IRS4 NAV3 SEMA3D ZNF442

ARHGEF10 EPHA3 ITGAE NF1 SFRS6 ZNF521

ATP11A EPHB6 K6IRS3 NOS3 SH3TC1

ATP13A1 ERCC6 KCNQ5 NTNG1 SHANK1

ATP13A5 EYA4 KIAA0182 NUP210 SLC22A15

BCL9 F8 KIAA0367 OR51E1 SLC29A1

C10orf137 FBN2 KIAA0556 P2RX7 SMAD2

C13orf7 FBXW7 KIAA1409 PCDH11X SMAD3

C14orf115 FLJ10404 KIAA2022 PCDHA9 SMAD4

C15orf2 FLJ13305 KRAS PIK3CA SMTN

C1QR1 FLNC LAMA1 PKNOX1 SORL1

CACNA2D3 FN1 LCN9 PLB1 STAB1

miRNA Expressed in Colorectum (the Colorectal MicroRNAome)

MIR-21 MIR-27B MIR-218 LET-7C MIR-18B MIR-302C

MIR-200A LET-7F MIR-130A MIR-193B MIR-302B MIR-302D

MIR-200C MIR-374 MIR-93 MIR-223 MIR-199B MIR-135A

MIR-143 MIR-18A MIR-182 MIR-186 MIR-499 MIR-30A-3P

MIR-200B LET-7A MIR-210 MIR-342 MIR-409-3P MIR-20B

MIR-27A MIR-335 MIR-150 MIR-199A MIR-425 MIR-495

MIR-24 MIR-92 MIR-15B MIR-181B MIR-153 MIR-148B

MIR-26A MIR-106B LET-7I MIR-214 MIR-205 MIR-184

MIR-145 MIR-15A MIR-320 MIR-99B MIR-219 MIR-204

MIR-101 MIR-33 MIR-424 MIR-148A MIR-324-5P MIR-299-5P

MIR-194 MIR-372 MIR-301 MIR-497 MIR-339 MIR-326

MIR-192 MIR-23B MIR-142-5P MIR-331 MIR-138 MIR-34C

MIR-451 MIR-373 MIR-429 MIR-7 MIR-181D MIR-379

MIR-22 MIR-30B MIR-96 MIR-34A MIR-410 MIR-382

MIR-103 MIR-126 MIR-151 MIR-155 MIR-422B MIR-449

MIR-16 MIR-19A MIR-375 MIR-128B MIR-190 MIR-512-1 5P

MIR-25 MIR-30C MIR-9 MIR-128A MIR-378 MIR-512-2 5P

MIR-141 MIR-26B MIR-371 MIR-135B MIR-367 MIR-494

MIR-29B MIR-32 MIR-215 MIR-152 MIR-146B MIR-498

MIR-30E-5P MIR-125B MIR-100 MIR-98 MIR-132 MIR-502

MIR-142-3P MIR-221 MIR-133A MIR-450 MIR-377 MIR-507

MIR-191 MIR-107 MIR-28 LET-7E MIR-124A MIR-517A

MIR-193A MIR-29C MIR-30E-3P MIR-125A MIR-299-3P MIR-517C

MIR-144 MIR-10A MIR-203 MIR-136 MIR-452 MIR-518B

MIR-222 MIR-181A LET-7D MIR-183 MIR-501 MIR-520D

MIR-19B MIR-17-5P MIR-95 MIR-197 MIR-514 MIR-520G

MIR-30D LET-7B MIR-140 MIR-363 MIR-213 MIR-520H

MIR-31 MIR-20A MIR-196B MIR-139 MIR-345 MIR-521

MIR-30A-5P MIR-17-3P MIR-338 MIR-106A MIR-381 MIR-525

MIR-23A MIR-195 MIR-365 MIR-185 MIR-224 MIR-525

LET-7G MIR-1 MIR-149 MIR-181C MIR-296

MIR-29A MIR-130B MIR-330 MIR-188 MIR-302A
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Table 2. Selected Single-Nucleotide Polymorphisms (SNPs) with Minor Allele Frequency (MAF) > 0.25 and SNPs in MicroRNA
Targets

Gene
ID

SNPs in the
30-UTR
(Generic)

Variation MAF
(Caucasian)

miRNA From the
MicroRNAome21

Predicted to
Bind the Target

DGwt
(kcal/mol)

DGvar
(kcal/mol)

DDG |DDG| |DDG|Tot

ABCA1 rs4149338 C/T 0.28 none

rs4149339 C/T 0.42 none

ABCB11 rs496550 G/A 0.40 miR-363 (microInspector) �13,18 �12.35 þ0.83 0.83 0.83

rs473351 G/A 0.43 miR-182 (microInspector) �18,17 �14.45 þ3.72 3.72 3.72

rs495714 A/G 0.40 miR-324-3p (TargetScan

Human 5.1)

�10,58 �15.77 �5.19 5.19 6.07

miR-196b (microcosm;

microInspector)

�19,60 �19.16 þ0.44 0.44

miR-196a (micoInspector) �16,60 �16.16 þ0.44 0.44

ACSL5 rs8624 C/T 0.30 none

ADAMTSL3 rs2135551 A/G 0.29 none

ADARB2 rs1046914 A/G 0.35 none

rs904960 C/T 0.35 miR-32 (microcosm;

microInspector)

�15.20 �15.72 �0.52 0.52 2.34

miR-25 (microInspector) �17.89 �17.01 þ0.88 0.88

miR-367 (microInspector) �14.15 �13.74 þ0.41 0.41

miR-363 (microInspector) �14.04 �14.57 �0.53 0.53

rs1129227 T/C 0.32 none

ATP11A rs3742232 T/C 0.41 none

C1QR1 rs2749813 G/A 0.36 none

rs6076019 T/C 0.45 none

CD109 rs3012518 G/A 0.44 miR-299-3p (TargetScan

Human 5.1)

�18.94 �17.74 þ1.20 1.20 1.20

CSMD3 rs5894075 G/T 0.32 none

DSCAML1 rs2925768 G/A 0.38 none

EPHA3 rs7650466 C/T 0.29 none

EYA4 rs3734279 C/T 0.38 miR-203 (TargetScan

Human 5.1)

�8.80 �8.64 þ0.16 0.16 0.16

GALNS rs1141390 T/C 0.25 none

IGSF22 rs2289965 A/G 0.25 miR-142-3p (TargetScan

Human 5.1)

�14.63 �14.24 þ0.39 0.39 1.65

miR-324-5p

(microInspector)

�19.70 �18.44 þ1.26 1.26

KIAA0182 rs8571 G/A 0.37 none

rs709805 G/A 0.35 miR-324-3p

(microInspector)

�25.78 �24.07 þ1.71 1.71 1.71

KRAS rs712 T/G 0.39 miR-200b (TargetScan

Human 5.1)

�10.19 �10.51 �0.32 0.32 1.13

miR-429 (TargetScan

Human 5.1)

�9.20 �9.58 �0.38 0.38

miR-200c (TargetScan

Human 5.1)

�11.28 �11.45 �0.17 0.17

miR-193b (TargetScan

Human 5.1)

�9.83 �10.09 �0.26 0.26

rs12245 T/A 0.44 none

MAP2K7 rs3679 C/T 0.35 none

MMP2 rs7201 A/C 0.50 none

NUP210 rs1048650 C/T 0.47 miR-22 (miRAnda) �19.97 �20.57 �0.60 0.60 0.60

rs354476 T/C 0.48 miR-125a (DianaMicroT) �13.27 �13.32 �0.05 0.05 0.86

miR-125b (DianaMicroT;

microInspector)

�10.84 �10.03 þ0.81 081

PKHD1 rs2784198 C/A 0,38 none

PKNOX1 rs2839629 G/A 0,45 miR-18a (miRAnda) �15.46 �15.18 þ0.28 0.28 0.67

miR-18b (miRAnda) �14.87 �14.48 þ0.39 0.39

rs378528 C/T 0,28 none

rs2839628 C/G 0,26 none

rs2839628 C/G 0,26 none

SMAD3 rs2278670 C/T 0,28 none

rs3743343 T/C 0,27 none

TGM3 rs214832 C/T 0,43 none

rs214831 G/A 0,36 none

For each SNP in miRNA targets, the DG was calculated (COFOLD software, Vienna Package).

miRNA indicates microRNA; UTR, untranslated region.



As a third criterion of selection, we kept only those
SNPs within target sites for miRNAs specifically expressed
in CRC. These miRNAs were taken from a study on the
microRNAome of the colorectum by Cummins et al21 (the
list is shown in Table 1). Thus, only 12 SNPs were selected
and verified in the case-control association study (Table 2).

SNP Genotyping

GenomicDNAwas isolated from peripheral blood lympho-
cytes, using standard procedures. The DNA samples from
cases and controls were randomly placed on plates where an
equal number of cases and controls could be run simultane-
ously. Genotyping of the 12 selected SNPs was carried out
by using the KASPar chemistry (KBioscience, Hoddesdon,
UK), which is a competitive allele-specific polymerase chain
reaction (PCR) SNP genotyping system that uses fluores-
cence resonance energy transfer quencher cassette oligonu-
cleotides. The reaction employed the KASP 2� Reaction
Mix, KASPar primers and probes, water, and 5 ng of DNA
for 10 lL of reaction and a standard PCR protocol available
from KBioscience. Duplicate samples (5%), no-template
controls in each plate, and Hardy-Weinberg equilibrium
tests were used as quality control tests.

Bioinformatics

For the selected SNPs, the algorithm RNAcofold (http://
rna.tbi.univie.ac.at/cgi-bin/RNAcofold.cgi) was run to
assess the Gibbs binding free energy (DG, expressed in kil-
ojoules per mole), both for the common and the variant
alleles. The algorithm RNAcofold computes the hybridiza-
tion energy and base-pairing pattern of 2 RNA sequen-
ces.29 The difference of the free energies between the 2
alleles was computed as ‘‘variation of DG’’ (ie, DDG) (Ta-
ble 2). Because the neighbor sequence of each SNP can be
a target for different miRNAs, we calculated the sum of
the absolute values of DDGs for each SNP (ie, |DDG|tot¼
R |DDG|) (Table 2). The |DDG|tot should be considered
as a sort of ‘‘disturbance index’’ predicting the likelihood
for a given SNP to affect the function of the 30-UTR, and
it allows a ranking of SNPs for their relevance, as illus-
trated in previous studies.30,31

Vectors Employed and In Vitro Assays

We PCR-amplified both the common and variant 30-
UTR regions of the NUP210 and KIAA0182 genes. The
amplification was done using 2 primers having a sequence
of 6 bases to their 50 ends, recognized by the restriction
enzyme SacI ! gagctc (forward primer) and XhoI !
ctcgag (reverse primer). The PCR products were cloned in
the pUC57 vectors. Successively, the plasmids were
cleaved with SacI and XhoI, and the inserts were cloned
downstream from a reporter vector containing the firefly

luciferase (Photinus pyralis) and the Renilla luciferase
(Renilla reniformis) genes (pmiR-GLO vector; Promega,
Madison, Wis). Caco2, HCT116_p53 WT, and
HCT116_p53�/� cell lines were plated at a density of
approximately 2 � 105 cells per well in 6-well plates and
incubated overnight at 5%CO2, 37

�C in a humidified in-
cubator. They were transiently transfected in 12 lL of
PolyFect transfection reagent (2 mg/mL; Qiagen Spa,
Italy) and 1.5 lg of luciferase/Renilla chimeric construct,
according to the manufacturer’s protocols. Each experi-
mental point was repeated 6 times, and the experiment
was repeated 3 times. Forty-eight hours after transfection,
cells were lysed with 500 lL of 1� passive lysis buffer
(dual-luciferase reporter assay kit; Promega, USA) after
washing with phosphate-buffered saline. Cells were lysed
for 15 minutes at room temperature, transferred to 1.5-mL
microcentrifuge tubes, vortexed briefly, and centrifuged at
13,000 rpm for 30 seconds to pellet cell debris. Superna-
tants were transferred to clean tubes and used for the mea-
sure of activity of firefly and Renilla luciferases, using a
dual-luciferase reporter assay kit and a luminometer (Bert-
hold Technologies, Germany). The firefly luciferase (Luc)
reporter was measured first by adding Luciferase Assay Rea-
gent II (LARII). After the measurement of the firefly lumi-
nescence, this reaction was quenched, and the Renilla
luciferase (Ren) reaction was simultaneously initiated by
adding Stop & Glo Reagent (dual-luciferase reporter assay
kit; Promega). The measurements of the luminescence of
luciferase and Renilla of the nontransfected cells (back-
ground) were subtracted to the values obtained for the
transfected cells with the pmiR-GLO vector containing the
30-UTR. The luminescence of the Renilla luciferase was
used as the reference value to calculate the value of firefly
luciferase (Luc/Ren ratio of luminescence).

This ratio (Luc/Ren) was compared to the one
obtained for the transfection with the pmiR-GLO vector
without 30-UTR (empty vector (EV)).

Statistical Analyses

To verify whether the genotypes were in Hardy-Weinberg
equilibrium in controls, we used the chi-square test (1
degree of freedom), with a type-I alpha error of 0.05. The
multivariate logistic regression analysis (MLR) was used
to test the association between genotypes and risk of
CRC. The covariates included in the model were: sex, age,
smoking habit (nonsmokers vs smokers and ex-smokers),
body mass index, any positive familial history of CRC,
education level (high, intermediate, and low), and living
area (country, town neighborhood, and town). The indi-
vidual SNPs were input in the MLR analysis; however, 3
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and 2 SNPs were genotyped for ABCB11 and NUP210,
respectively. Thus, we first reconstructed the individual
haplotypes for these 2 genes with the software Fast-
phase,31 then we calculated the linkage disequilibrium
(LD) between SNPs and found that they were strongly
associated with each other (r2 > 0.85). Thus, we used the
SNPs that showed the highest values of |DDG|tot (ie,
rs354476 for NUP210 and rs495714 for ABCB11)
because the others were almost completely tagged by
them. The association between SNPs and CRC risk was
calculated, by estimating the odds ratio (OR) and its 95%
confidence interval (CI), adjusted for both continuous
and discontinuous covariates, as linear variables (the
adjusted OR). For all genotypes, we performed the Coch-
ran-Armitage trend test32 in order to detect the best
genetic model (dominant, additive, recessive), and the
one with the highest likelihood was input in the MLR
analysis. The statistical threshold of significance was set at
0.05; however, the more restrictive Bonferroni correction
was applied. In this case, because of the strong LD
between SNPs, only 9 completely independent statistics
were performed on the genotypes, and this value was used
for the Bonferroni correction (P threshold ¼ 5.56 �
10�3). For the in vitro assays, the ratio of the measure-
ments of fluorescence (Luc/Ren), subtracted of the back-
ground, were compared among cell lines and between
genotypes (for each gene) using the multifactor analysis of
variance (MANOVA). All statistical tests were 2-tailed
and were carried out using Statgraphics Centurion soft-
ware (StatPoint Technologies, Warrenton, Va).

RESULTS

Study Group and Genotype Analysis

Table 1 shows the initial list of genes, whereas Table 2
shows the calculations of the selected SNPs for their

|DDG|tot. The definitive number of subjects for whom all
the data were available accounted for 717 cases and 1171
controls. Among the controls, 502 were CFCCs and 669
were HBDVs. The quality control of genotypes was
assured (>99% concordance) and all the SNPs were in
Hardy-Weinberg equilibrium (data not shown). The
SNPs within ABCB11 and NUP210 were analyzed for
their LD, and the haplotypes are reported in Table 3. The
SNPs within ABCB11 and withinNUP210 show a strong
LD to each other (r2 > 0.85), with the prevalence of 2
main haplotypes for each gene. Thus, for further analyses,
as ‘‘tagging SNP’’ for each gene, we used the SNP showing
the highest |DDG|tot (Table 2).

The characteristics of the study population as well as
the outcomes from MLR analyses are given in Table 4.
When the CFCCs were used as reference group, the risk
of CRC was associated in a statistically significant way
with an increased age and a positive history of smoking
habit: the cases were, on average, approximately 6 years
older than CFCCs, whereas the never-smokers repre-
sented 51.2% of the cases and 58.8% of the controls. Two
genotypes were also associated with CRC risk: the AA
homozygotes for rs709805 (KIAA0182) showed an OR of
1.72 (95% CI ¼ 1.06-2.78; P ¼ 2.8 � 10�2), as com-
pared to the GGþGA group, and the CC homozygotes
for rs354476 (NUP210) had an OR of 1.36 (95% CI ¼
1.02-1.82; P¼ 4.5� 10�3), compared with the TTþTC
group. This latter SNP was also significantly associated
with the risk of CRC after applying the Bonferroni correc-
tion. The fact that only the homozygotes were the geno-
types at risk prevented us from finding a statistically
significant difference between alleles, when the analyses
were carried out on per-allele bases (rs709805, minor al-
lele frequency ¼ 0.29 and 0.26; rs354476, 0.48 and 0.45
among cases and controls, respectively). When the

Table 3. Haplotype Analyses of ABCB11 and NUP210 Loci

Locus Haplotype
(Code)

Frequency
(All Samples)

SNP1 SNP2 SNP3

ABCB11 rs496550 rs495714 rs473351

1 0.526 G A G

2 0.461 A G A

3 0.012 A G G

4 0.001 G G G

Linkage Disequilibrium vs SNP2: D0¼1; r2¼0.995 vs SNP3: D0¼1; r2¼0.949

vs SNP3 D0¼1; r2¼0.954

NUP210 rs354476 rs1048650

1 0.526 T C

2 0.436 C T

3 0.038 C C

Linkage Disequilibrium vs SNP2: D0¼1; r2¼0.86

SNP indicates single-nucleotide polymorphism.
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Table 4. Characteristics of Colorectal Cancer Patients and Control Subjects and Adjusted Odds Ratio (OR) and 95% Confidence
Interval (CI) Following Multivariate Logistic Regression Analysis

Characteristic Cases
n (%)

CFCCs
n (%)

Adjusted
OR (95% CI)

P CFCC1HBDV
n (%)

Adjusted
OR (95% CI)

P

Sex
Male 429 (59.8) 274 (54.6) Ref 645 (55.1) Ref

Female 288 (40.2) 228 (45.4) 0.91 (0.71-1.18) .48 526 (44..9) 1.08 (0.86-1.36) 0.51

Age (average) 61.9 55.8 1.05 (1.04 -1.06) <10�6 52.0 1.09 (1.08-1.11) <10�6

£45 years old 56 (7.8) 110 (21.9) 429 (36.6)

>45 years old 765 (92.2) 392 (78.1) 742 (63.4)

Smoking habit
Nonsmokers 367 (51.2) 295 (58.8) Ref 686 (58.6) Ref

Smokers 1 Ex-smoker 350 (48.8) 207 (41.2) 1.41 (1.10-1.82) 7.8�10�3 485 (41.4) 1.48 (1.18-1.84) 5.4�10�4

BMI (average) 26.3 26.0 0.98 (0.96-1.02) 0.58 26.2 0.99 (0.97-1.02) 0.43

BMI £ median (26.2) 410 (57.2) 255 (50.8) 637 (54.4)

BMI > median (26.2) 307 (42.8) 247 (49.2) 534 (45.6)

Positive familial history of CRC
Yes 117 (16.3) 77 (15.3) Ref 119 (10.2) Ref

No 600 (83.7) 425 (84.7) 0.85 (0.61-1.18) 0.32 1052 (89.8) 0.56 (0.41-0.76) 2.3�10-4

Education
High 112 (15.6) 94 (18.7) Ref 292 (24..9) Ref

Intermediate 385 (53.7) 272 (54.2) 1.32 (0.94-1.87) 0.12 697 (59.6) 1.50 (1.12-2.01) 6.6�10-3

Low 220 (30.7) 136 (27.1) 1.23 (0.84-1.81) 0.29 182 (15.5) 1.74 (1.23-2.45) 1.6�10-3

Living area
Country 193 (26.9) 123 (24.5) Ref 219 (18.7) Ref

Town/country 111 (15.5) 102 (20.3) 0.74 (0.51-1.08) 0.12 150 (12.8) 0.87 (0.60-1.24) 0.45

Town 413 (57.6) 277 (55.2) 0.97 (0.72-1.31) 0.86 802 (68.5) 0.64 (0.49-0.84) 1.2�10�3

KRAS rs712
G/G 239 (33.3) 160 (31.9) Ref 364 (31.1) Ref

G/T 341 (47.6) 238 (47.4) 0,87 (0,66-1,14) 0.33 571 (48.8) 0.83 (0.65-1.06) 0.14

T/T 137 (19.1) 104 (20.7) 0,86 (0,61-1,21) 0.38 236 (20.1) 0.91 (0.67-1.24) 0.55

KIAA0182 rs709805
G/G 367 (51.2) 268 (53.4) 622 (53.1)

G/A 283 (39.5) 206 (41.0) 474 (10.5)

G/G 1 G/A 650 (90.7) 474 (94.4) Ref 1096 (93.6) Ref

A/A 67 (9.3) 28 (5.6) 1.72 (1.06-2.78) 2.8�10�2 75 (6.4) 1.57 (1.05-2.33) 2.7�10�2

IGSF22 rs2289965
A/A 301 (42.0) 211 (42.0) Ref 458 (39.1) Ref

G/A 323 (45.0) 232 (46.2) 0,97 (0,75-1,26) 0.83 550 (47.0) 0.94 (0.74-1.18) 0.60

G/G 93 (13.0) 59 (11.8) 1,10 (0,75-1,64) 0.62 163 (13.9) 1.00 (0.71-1.41) 0.99

CD109 rs3012518
G/G 284 (39.6) 202 (40.2) Ref 486 (41.5) Ref

G/A 345 (48.1) 236 (47.0) 1,03 (0,79-1,33) 0.83 520 (44.4) 1.11 (0.88-1.40) 0.38

A/A 88 (12.3) 64 (12.8) 0,99 (0,67-1,47) 0.98 165 (14.1) 0.96 (0.68-1.35) 0.82

PKNOX1 rs2839629
G/G 224 (31.2) 161 (32.1) Ref 372 (31.8) Ref

G/A 365 (50.9) 242 (48.2) 1,06 (0,80-1,39) 0.70 568 (48.5) 1.04 (0.82-1.33) 0.75

A/A 128 (17.9) 99 (19.7) 0,96 (0,67-1,36) 0.81 231 (19.7) 0.93 (0.68-1.28) 0.65

ADARB2 rs904960
T/T 336 (46.9) 216 (43.0) Ref 532 (45.5) Ref

T/C 306 (42.7) 234 (46.6) 0,88 (0,68-1,13) 0.32 524 (44.7) 0.94 (0.75-1.18) 0.59

C/C 75 (10.5) 52 (10.4) 0,94 (0,62-1,43) 0.77 115 (9.8) 0.96 (0.66-1.39) 0.83

EYA4 rs3734279
C/C 261 (36.4) 182 (36.3) Ref 458 (39.1) Ref

C/T 345 (48.1) 245 (48.8) 1,03 (0,79-1,35) 0.82 545 (46.5) 1.16 (0.92-1.47) 0.21

T/T 111 (15.5) 75 (14.9) 1,58) 0.65 168 (14.3) 1.17 (0.84-1.64) 0.36

(Continued)
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CFCCs were pooled with the HBDV control group, the
statistically significant association between the carriers of
the rare allele for the SNP rs709805 within KIAA0182
and the risk of CRC was confirmed. In this case, the
adjusted OR for the rare homozygotes is 1.57 (95% CI¼
1.05-2.33; P¼ 2.7� 10�2). A negative familial history of
CRC was also found to be associated with a reduced risk
of CRC (OR ¼ 0.56; 95% CI ¼ 0.41-0.76), a trend (not
statistically significant) observed also when only CFCCs
were used.

Because 2 genotypes were associated with the risk of
CRC, we carried out in vitro assays to investigate whether

these SNPs could have some direct functional role in the
regulation of expression (ie, translation) of KIAA0182
and NUP210. For KIAA0182, we assayed rs709805,
whereas for NUP210, we tested rs354476. The pmiR-
GLO carrying both luciferase reporter gene and Renilla
reference gene was chimerized by placing either the com-
mon or the variant form of the KIAA0182 and NUP210
30-UTRs at the 30 end of the luciferase gene. Thus, the
measurements of luminescence for luciferase were indica-
tive of the intensity of its expression, depending on the 30-
UTR that was adopted. These measurements were com-
pared to the internal reference (Renilla). Because the same
vector carries both luciferase and Renilla genes, the experi-
mental variability was greatly reduced compared with the
typical experiments where 2 independent vectors are
cotransfected. This allowed a more precise evaluation of
the slight differences in the biological activity of the tested
alleles. The background measurements of the lumines-
cence of luciferase and Renilla were subtracted from the
values obtained after transfection, and their ratio (lucifer-
ase/Renilla) was compared to the EV (vector not chimer-
ized). Three cell lines derived from CRC were used:
Caco2, HCT p53wt (wild-type for p53), and HCT
p53�/� (lacking a functional p53). The results from 3
independent experiments (with 6 replicates for each
point) are reported in Figure 1. Each luciferase/Renilla ra-
tio is given as percent of the maximal intensity obtained
with the EV (luciferase without 30-UTR) within each
experiment. In fact, at least in these series of experiments,
the addition of a 30-UTR at the luciferase gene led to a sig-
nificant reduction of the luciferase expression. This could
be due to a less stable messenger RNA, to the presence of
negative regulators acting on the chimeric 30-UTR

Table 4. Characteristics of Colorectal Cancer Patients and Control Subjects and Adjusted Odds Ratio (OR) and 95% Confidence
Interval (CI) Following Multivariate Logistic Regression Analysis (Continued)

Characteristic Cases
n (%)

CFCCs
n (%)

Adjusted
OR (95% CI)

P CFCC1HBDV
n (%)

Adjusted
OR (95% CI)

P

NUP210 rs354476
T/T 195 (27.2) 140 (27.9) 318 (27.2)

T/C 358 (49.9) 272 (54.2) 605 (51.6)

T/T1T/C 553 (77.1) 412 (82.1) Ref 923 (78.8) Ref

C/C 164 (22.9) 90 (17.9) 1.36 (1.02-1.82) 4.5�10�3 248 (21.2) 1.15 (0.88-1.49) 0.30

ABCB11 rs495714
A/A 201 (28.0) 162 (32.3) Ref 329 (28.1) Ref

A/G 357 (49.8) 230 (45.8) 1.24 (0.94-1.65) 0.13 575 (49.1) 1.09 (0.85-1.41) 0.50

G/G 159 (22.2) 110 (21.9) 1.15 (0.82-1.62) 0.42 267 (22.8) 1.05 (0.77-1.43) 0.76

Total 717 502 1171

Statistically significant results are shown in bold. Only the best genetic model is given (recessive for rs354476 NUP210 and rs709805 KIAA00182).

BMI indicates body mass index; CFCC, cancer-free colonoscopy inspected controls; HBDV, healthy blood donor volunteers.

Figure 1. Luciferase/Renilla luminescence ratio is expressed
as percent of the luminescence of the empty vector (EV),
within each experiment. Six independent replicates in 3 inde-
pendent experiments are summarized as mean values (�
standard errors). The 3 cell lines employed in each experi-
ment consistently show a reduced expression of luciferase,
and the multifactor analysis of variance, considering all the
results and cell lines together, shows a statistically significant
difference between rs354476-C and rs354476-T (P ¼ .0037).
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(eg, miRNAs), or to some other unknown mechanisms.
The C-to-T point mutation of rs354476 (NUP210)
resulted in a reduction of the expression of luciferase in all
3 cell lines employed. The average luciferase expression
with the common C allele of NUP210 was 53%, whereas
it was 41.1% with the T allele, as compared to the EV.
The MANOVA showed that the differences of the ratios
between the C and the T alleles obtained by combining all
the 3 cell lines are statistically significant (P¼ .0035). For
KIAA0182, we observed a modest increase of the variant
A allele (22.6%) compared with the common G allele
(18.7% respect to the EV), but the ratios were not statisti-
cally significant (MANOVA, P¼ .378).

DISCUSSION
In this work, we combined the information provided by
the CRC mutome20 with those from the micro-
RNAome,21 and we extracted 12 SNPs that have a poten-
tial role in affecting the regulation of 9 candidate genes
(namely ABCB11, ADARB2, KRAS, KIAA0182, IGSF22,
CD109, NUP210, PKNOX1, and EYA4), thereby poten-
tially affecting the individual risk of CRC. Actually, we
found an increased risk for the rs709805 within the
KIAA0182 gene in a population of cases and controls (ei-
ther CFCCs or HBDVsþCFCCs) from the Czech
Republic, the country with the highest incidence of CRC
worldwide. A further association between rs354476
within NUP210 and risk of CRC was significant only
when considering the CFCC group. In this study, 2 dif-
ferent control populations were chosen. The inclusion of
colonoscopy-negative individuals as controls (CFCCs)
ensured cancer-free control individuals, because the nega-
tive result of colonoscopy serves as best available proof of
CRC absence. Because the selection of these controls may
not necessarily represent the healthy general population,
we decided to expand the group by also including healthy
individuals recruited from blood donor centers (HBDVs).
However, it should be stressed that the HBDVs differ
from cases for several covariates. There is a meaningful
share of people with a younger age and a higher educa-
tional level than cases and HBDVs were mainly from the
Prague district, whereas cases were collected from
throughout the country. Thus, there could be explana-
tions why the association with the SNP rs354476 within
NUP210 was not confirmed in the combined analysis
(still maintaining the same trend). When cases were com-
pared with the CFCCs, who share more similarities with
CRC cases, the association between NUP210 and CRC
was strong enough to survive to the Bonferroni correction.
Thus, it could be speculated that NUP210 constitutes a

risk factor for CRC when other preexisting predisposing
conditions, such as inflammation or organ dysfunctions,
are present.

In order to further interpret our results, we ques-
tioned whether the 9 candidate genes were actively tran-
scribed in the normal colonic mucosa. In fact, the
selection of these ‘‘CAN-genes’’ by Wood et al20 was
based on the resequencing of exonic regions, regardless
the actual expression of the genes in the colon. By brows-
ing the database of the University of Tokyo, Japan (http://
www.lsbm.org/site_e/database/index.html), we found
that only KRAS, KIAA0182, and NUP210 are signifi-
cantly expressed in the normal colonic mucosa. It is re-
markable to note that 2 of 3 SNPs that compiled all the
criteria related with the mutome, microRNAome, and
transcriptome were associated with the risk of CRC.
When the predicted biological effect (ie, the |DDG|tot of
Table 2) was examined, the rs709805 within KIAA0182
ranks as fourth, whereas the rs354476 (NUP210) ranks as
eighth, but they ascended in rank to the second and third
place, respectively, after filtering for the transcriptome. In
vitro assays carried out to test the differences between the
common and variant 30-UTRs of NUP210 and
KIAA0182 showed that the T allele of rs354476
(NUP210) was associated with a reduced expression of
the reporter gene. This preliminary evidence does not
prove any role of the predicted miRNAs in a differential
regulation of NUP210. However, this finding highlights
the fact that the alternative 30-UTRs, placed into a ‘‘nor-
mal’’ cellular context and exploiting the ‘‘normal’’ cellular
machineries, have different capacities in determining the
levels of expression of NUP210. We employed colorectal
cell lines, and it is conceivable that these cell lines express
a set of miRNAs similar to that of normal colorectal cells.
However, we cannot say whether miRNAs, messenger
RNA stability, or other mechanisms are involved in the
observed genotype-dependent differential expression of
NUP210. No clear evidence came from the assay carried
out on the KIAA0182 30-UTR. KIAA0182 maps at
16q24.1 and, as suggested by its designation, it belongs to
a family of more than 2000 genes. It encodes a putative
genetic suppressor element 1 protein and it might exhibit
RNA-binding activity.33 However, there is little informa-
tion about this gene, whereas more is known about
NUP210. This gene maps at 3p25.1 and encodes the nu-
clear pore glycoprotein-210 (gp210) involved in the struc-
tural organization of the nuclear pore complex.34

Interestingly, during mitosis, Ser1880 of gp210 is phos-
phorylated by the cyclin B-p34cdc235 and an increased
expression of NUP210 was found in cervical cancer.36
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According to The Roche Cancer Genome Database
(http://rcgdb.bioinf.uni-sb.de/MutomeWeb/), somatic
mutations within KIAA0182 and NUP210 were already
described not only for CRC (KIAA0182 ¼ c.366_dupC
and c.1879_C>T encoding for p.R627W; NUP210 ¼
c.2951G>A encoding for R984H; c.923 C>T encoding
for S308L; IVS6-3C>T) but also for malignant mela-
noma (KIAA0182 ¼ c.2172C>T; NUP210 ¼
c.3447C>T). The presence of somatic mutations in the
same genes in different types of cancer reinforces the hy-
pothesis that these genes play an important role in human
carcinogenesis. NUP210 and KIA0182 were also pro-
posed among the biomarkers for human CRC (eg, see
www.wipo.int/patentscope/search/en/WO2006081248).
According to our results, it is likely that functional SNPs
could modulate the normal levels of these proteins. There-
fore, knowledge of the effects of the SNPs is also very im-
portant to appropriately set the correct thresholds to
distinguish normal concentrations from pathological
ones.

In conclusion, this hypothesis-driven study carried
out using all the latest ‘‘-omics’’ information available
from the literature suggests for the first time that the regu-
lation of NUP210 and KIAA0182 may be important for
modulating the risk of CRC. Future work is warranted to
validate the results in other populations and to explore
further the biological significance of the mentioned SNPs.
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