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Abstract: The interest in the biological properties of grapevine polyphenols (PPs) in neuroprotection 

is continuously growing in the hope of finding translational applications. However, there are several 

concerns about the specificity of action of these molecules that appear to act non-specifically on the 

permeability of cellular membranes. Naturally occurring neuronal death (NOND) during cerebellar 

maturation is a well characterized postnatal event that is very useful to investigate the death and 

rescue of neurons. We here aimed to establish a baseline comparative study of the potential to 

counteract NOND of certain grapevine PPs of interest for the oenology. To do so, we tested ex vivo 

the neuroprotective activity of peonidin- and malvidin-3-O-glucosides, resveratrol, polydatin, 

quercetin-3-O-glucoside, (+)-taxifolin, and (+)-catechin. The addition of these molecules (50 μM) to 

organotypic cultures of mouse cerebellum explanted at postnatal day 7, when NOND reaches a 

physiological peak, resulted in statistically significant (two-tailed Mann–Whitney test—p < 0.001) 

reductions of the density of dead cells (propidium iodide+ cells/mm2) except for malvidin-3-O-

glucoside. The stilbenes were less effective in reducing cell death (to 51–60%) in comparison to 

flavanols, (+)-taxifolin and quercetin 3-O-glucoside (to 69–72%). Thus, molecules with a -OH group 

in ortho position (taxifolin, quercetin 3-O-glucoside, (+)-catechin, and peonidin 3-O-glucoside) have 

a higher capability to limit death of cerebellar neurons. As NOND is apoptotic, we speculate that 

PPs act by inhibiting executioner caspase 3. 

Keywords: resveratrol; polydatin; peonidin 3-O-glucoside; malvidin 3-O-glucoside; quercetin 3-O-
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1. Introduction 

We know a great deal about the chemistry of grapevine polyphenols (PPs) because they are 

widely studied for their implications in wine production and biological role in the grapevine response 

to biotic and abiotic stress. Notably, there is also a huge body of preclinical evidence on the numerous 

cellular mechanisms targeted by these substances (resveratrol, in particular) in relation to several 

pathological conditions including neurological diseases [1,2], but results are often heterogeneous or 

inconsistent. There may be several reasons for the heterogeneity and lack of consistency of in vitro 

and/or animal studies on (grapevine) PPs. First, these studies have come under heavy criticism 

because they have used artificially high doses. However, an additional and even more important 

concern is that they are unreliable because many of the effects of polyhydroxylated natural 

phytochemicals, such as resveratrol and epigallocatechin gallate, were reported to be due to aspecific 

cell membrane perturbations, rather than specific protein binding [3]. Therefore, doubts arose that 
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these molecules are pan-assay interference compounds that affect the accuracy of many assays [4,5]. 

Other more particular reasons for the divergences in the outcomes of animal experiments may be the 

following. First, researchers at times have tested the effects of pure molecules but, other times, those 

of crude plant extracts, with a substantial heterogeneity of results that have been difficult to compare 

because very often the concentrations of the individual PPs in extracts were unknown. Second, certain 

experiments used the PPs obtained from different grapevine organs, which contain very 

heterogeneous levels of these molecules, as it occurs, for example, for leaves compared to other 

organs of the grapevine [6,7]. Third, starting from different sources of PPs (wines) diverse extraction 

methods were reported to display very different degrees of efficiency, and to produce chemically 

heterogeneous extracts when the effects of three critical variables (sample volume, volume of each 

eluent, and solvent percentage in eluent) were evaluated for non-polymeric phenol and tannin 

recoveries from wine [8]. This is a very important issue to be considered when purifying PPs-

containing samples for studying biological or health-related investigations as polymeric phenols are 

not absorbed by mammalian cells but are able to bind to and affect nearly any enzyme or receptor, 

producing irrelevant results [3]. Fourth, further complexity arose from the different results that 

researchers have reported in vivo or in vitro [6]. For instance, PPs displayed a very promising in vitro 

antioxidant capacity leading to the misconception that their cellular protection was mainly due to 

direct antioxidant scavenging [9]. Rather, studies with cellular and animal models demystified this 

concept, and now we know that the mode of action of PPs goes far beyond their antioxidant potential 

but also that their brain bioavailability is very limited [10]. Last, investigators have often focused their 

attention onto one single PP or group of chemically related molecules, thus making it quite difficult 

a sound comparison of the neuroprotective potential of individual PPs. 

PPs of potential biomedical interest belong to several chemical families among which the most 

widely studied are stilbenes, anthocyanins, flavonols, and flavan-3-ols. 

Stilbenes are a group of PPs that raised much interest in viticulture, as they are involved in the 

grapevine response to biotic stress, but also and even most in biology and health science. In 

preclinical neuroscience studies, resveratrol, the most widely investigated stilbene and the prototype 

of grapevine PPs studied so far, has been reported to have neuroprotective, antioxidant and anti-

inflammatory, properties. Much of its purported benefits have been related to its ability to activate a 

family of proteins called sirtuins [11], but there is considerable conflict in the literature as regarding 

the true neuroprotective potential of these proteins [12]. The literature concerning the activation of 

sirtuin 1 (sirt1) by resveratrol is similarly controversial: the first studies indicated resveratrol as an 

activator of sirt1 [13], but subsequent experiments revealed that the stilbene-dependent activation of 

sirt1 was a technical artifact [14–16]. Resveratrol has also been touted as a treatment to slow 

physiological aging and age-related diseases including dementia and Alzheimer’s disease (AD) to 

eventually extend healthy lifespan. However, although resveratrol significantly extended lifespan in 

yeast, worms, and fruit flies [13,17], most studies reported no effect in mammals [18,19] and, very 

recently, the molecule was reported to exhibit biphasic dose-dependent effects acting as an 

antioxidant or as a pro-oxidant at low and high concentrations, respectively [20]. 

In the present study, we tested the death-combating effects of trans-resveratrol and polydatin, 

the glucose derivative of resveratrol, also termed piceid. Polydatin is generally predominant in white 

wines, whereas in red wines Z- and E-resveratrol are both quantitatively important [21]. Resveratrol 

is accumulated also in grapevine leaves, where its concentration was found to be up to ten times 

higher in organically-managed vines, respect to conventionally grown vines, and in both cases 

extracts were effective in reducing the lipid and protein damages induced by hydrogen peroxide in 

the rat brain [22]. In addition, two very recent studies have shown that polydatin protected SH-SY5Y 

neurons after rotenone treatment to model Parkinson’s disease [23] or from oxidative stress [24]. 

The efficacy of anthocyanins as potential therapeutic agents to combat neurodegeneration was 

tentatively linked to the different levels of hydroxylation in the B ring of the flavilyum ion, as it was 

suggested that the anthocyanins with a catechol moiety in their B ring could be more effective in 

neuroprotection compared to those devoid of catechol [25]. Specifically, the non-catechol 

pelargonidin 3-O-glucoside protected neurons from the oxidative stress elicited by glutamate but was 
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ineffective against nitric oxide-induced apoptosis [26], whereas the catechol-structure cyanidin 3-O-

glucoside (di-hydroxylated) was neuroprotective under both experimental conditions [27]. In 

addition, a combination of several anthocyanins was found to be protective against H2O2-induced 

oxidative stress in cultured human neuroblastoma cells [28] or C6 glial cells [29]. We here tested 

peonidin 3-O-glucoside (Pn-3OG) as the main representative of the anthocyanins in a few but locally 

very important varieties of Vitis vinifera [30] and malvidin 3-O-glucoside (Mv-3OG), quantitatively, 

without any doubt, the most important anthocyanin found in grape berries, musts and wines [31]. 

Another reason why we investigated the neuroprotective effect of Mv-3OG is that in vitro studies on 

SH-SY5Y human neuroblastoma cells [32] or C6 glial cells [29] have demonstrated protection against 

oxidative stress. However, the situation in vivo was quite different as the molecule overpassed the 

blood–brain barrier (BBB) in rats, but had no detectable effects in reducing the generation of the 

amyloid β (Aβ) peptides that are critical for the onset and progression of AD [33]. 

Flavonols are important PPs conferring to vegetal tissue high or very high antioxidant 

properties. They were protective in vitro against reactive oxygen species (ROS) challenge of SH-SY5Y 

neuroblastoma cells [32] and quercetin 3-O-glucuronide was capable to interfere with the generation 

of Aβ through the modulation of several different independent cellular mechanisms [33]. Moreover, 

quercetin 3-O-glucuronide significantly improved basal synaptic transmission in a hippocampal slice 

ex vivo preparation to model AD [33]. 

Based on these observations and on the fact that quercetin glycosides (glucoside + glucuronide) 

are, quantitatively, the most important flavonol in grape extracts and wines, we tested quercetin 3-

O-glucoside as representative of the flavonols. 

Monomeric grapevine flavan-3-ols include (+)-catechin with its diasteroisomer, (−)-epicatechin, 

and gallocatechin with its diasteroisomer epigallocatechin, differing for the level of hydroxylation in 

the B ring [34]. Monomeric flavan-3-ols were neuroprotective in a rat model of AD [35]. Therefore, 

we here have investigated (+)-catechin for its potential in limiting neuronal cell death. 

Although at present not much is known about grapevine flavanonols, (+)-taxifolin 

(dihydroquercetin) has been very recently found to protect neurons against ischemic injury in vitro 

via the inhibition of excessive ROS production and of the irreversible increase of cytosolic Ca2+ 

concentration in GABAergic hippocampal neurons subjected to oxygen and glucose deprivation 

(OGD) to mimic ischemia [36]. 

Despite the notable amount of preclinical data on these four families of PPs, human clinical 

studies are occasional and thus the true translational potential of grapevine and other PPs in clinical 

neurology remains almost fully unexplored. For example, AD patients have lower cortical levels of 

sirt1, which indirectly correlated with greater levels of Aβ plaques and tau protein tangles [11,37]. 

Conversely, subjects with mild cognitive impairment (MCI) did not show reduced cortical sirt1 levels 

[11], indirectly suggesting that preventing sirt1 decreases at early stages of dementia may help delay 

or prevent the progression to AD. However, there is no evidence that treating humans with 

resveratrol can increase sirt1 in the brain [20]. In addition, clinical trials have up to now failed to show 

ameliorations of the clinical conditions in neurological patients under a resveratrol regimen [38,39] 

or epigallocathecin gallate [40] and a recent systematic review did not find sufficient evidence to 

confirm that PPs have beneficial effects against AD and other neurodegenerative conditions [41]. 

In the attempt to shed more light onto the neuroprotective potential of some grapevine PPs of 

shared interest for the viticulturists and the neuroscientists we have devised an initial study aiming 

to clarify the intervention of these molecules in protecting neurons from naturally occurring neuronal 

death (NOND) during the course of cerebellar maturation. Given the aforementioned limitations of 

much of the preclinical studies on the subject and the difficulty in translating these studies into the 

clinics, we have limited our work to a simplified and restricted experimental paradigm that: i. 

Exploits a well-known and widely characterized model of NOND [42]; ii. Compares the effects of 

commercially available purified PPs to overcome the problems that are inherent to the different 

extraction procedures; iii. Uses a slice culture approach to better mimic the in vivo situation; and iv. 

Uses a standardized concentration of PPs (50 μM) that is well below the highest doses (200 μM and 
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above) employed in a wide number of studies in vitro [43]. We also discuss our results in relation to 

the information in the literature obtained from in vivo, ex vivo, and in vitro approaches. 

2. Results 

2.1. Effect of Ethanolic Media Onto Naturally Occurring Neuronal Death (NOND) in Postnatal Cerebellum 

During postnatal cerebellar development there is a well-characterized period of apoptotic cell 

death [42] currently referred to as naturally occurring neuronal death (NOND). NOND primarily 

affects the developing granule cells and is a massive phenomenon, so that it can be easily followed 

in slice cultures and is amenable to quantitative analysis (Figure 1A). As PPs are soluble in ethanolic 

solutions and ethanol itself induces death in neurons, we have devised a series of experiments in 

which cerebellar slices were maintained in vitro in the presence of progressively increasing 

concentrations of ethanol to assess the outcome on cerebellar NOND (Figure 1). 

 

Figure 1. Limitation of naturally occurring neuronal death (NOND) in the postnatal cerebellum after 

ex vivo treatment with polyphenols (PPs). The nuclei of dead cells are strongly fluorescent in red after 

incubation with propidium iodide (PI). PI is a fluorescent intercalating DNA stain that is not 

membrane permeable. Thus, it only enters the nucleus of damaged cells and can therefore be used to 

differentiate dead cells (apoptotic, necrotic, etc.) from healthy cells based on membrane integrity. As 

170 mM ethanol in which PPs are dissolved does not significantly alter cell death, it can be used as a 

baseline control (CTR) for the experiments to ascertain the effects of PPs onto NOND. The three panels 

are representative images of the experiments carried out with ethanol 170 mM (A) and with 

individual PPs, resveratrol 50 μM (B) and (+)-catechin 50 μM (C). 

The graphs in Figure 2A–B show the effects of 1:100, 1:50, and 1:25 ethanol in medium 

(corresponding to 170, 340, and 680 mM, respectively) on the density of dead cells after PI staining (# 

cells stained with PI/mm2). Notably, the density of dead cells (mean ± 95% CI) raised from 17.56 ± 

17.73 in plain medium, to 23.47 ± 8.76 (170 mM ethanol), 34.24 ± 2.30 (340 mM ethanol), and 78.11 ± 

22.41 (680 mM ethanol). 
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Figure 2. Descriptive exploratory statistics (A) and inferential statistics (B) of the effects of different 

ethanol concentrations in culture medium onto cerebellar naturally occurring neuronal death 

(NOND). Dead cells were stained with propidium iodide and results are expressed as means of dead 

cells/area. Two-tailed Kruskal–Wallis test and Dunn’s multiple comparison test (plain medium vs 

ethanolic media) were applied, as data did not pass the D’Agostino and Pearson normality test. * 0.05 

> P > 0.01, **** P < 0.0001. Bars are 95% CI. 

Dispersion of data in 680 mM ethanol was very likely due to the severe toxic effect of the alcohol 

onto slices that, differently from the two other experimental conditions in the study, displayed 

obvious morphological signs of tissue sufferance such as fragmentation, disaggregation, 

vacuolization, etc. It is worth noting that in vitro experiments onto cultured primary cerebellar 

granule cells demonstrated that 25 mM ethanol was already inducing death, but alcohol was 

generally used at much higher concentration (87–200 mM) to reach better statistical significance 

[44,45]. Thus, the concentration of ethanol in our PP control media is within the range of these in vitro 

experiments and compatible with that in organotypically cultured cortical neurons [46]. Yet our 

experiments show that 34 and 68 mM ethanol produced statistically significant increases in NOND, 

whereas there were no differences in the mean density of dead cells at 0 and 170 mM ethanol (mean 

± 95% CI: 17.56 ±1 7.73 (no ethanol), 23.47 ± 8.76 (170 mM ethanol), adjusted P value = 0.0815). We 

have also done a linear regression analysis to model the relationship between ethanol concentration 

in medium and cell death and found that the two variables showed a very high goodness of fit (R2= 

0.9386, Figure 3). The Pearson’s correlation coefficient was r = 0.9688. 

 

Figure 3. Linear regression curve of the density of dead cells related to different ethanol 

concentrations in culture media. Dead cells were stained with propidium iodide and results are 

expressed as means of dead cells/area. The curve demonstrates a positive correlation between the 

concentration of ethanol in medium and the density of dead cells. Slope was significantly non-zero: F 

= 30.55, P value = 0.0312. Equation: Y (dead cells/mm2) = 0.09141 × (ethanol concentration) + 11.15. Bars 

indicate 95% CI. 
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Based on these observations, we hold those experiments with PPs in which control- and PPs-

supplemented media contained 170 mM ethanol allowed us to monitor NOND appropriately and 

not ethanol-induced death. 

2.2. Effects of PPs onto NOND and Ethanol-Induced Cell Death 

Figure 1 shows, as an example, the results of incubating the organotypic cultures in the presence 

of 50 μM resveratrol (Figure 1B) or 50 μM (+)-catechin (Figure 1C). 

We have statistically tested the effects of PPs onto cerebellar NOND using two-tailed Mann–

Whitney tests (Figure 4–5). Statistics demonstrated that all PPs, except Mv-3OG (Figure 5G–H), were 

capable to reduce the density of dead cells in cerebellar cultures, with high significance. 

We also observed that all PPs were as well effective in reducing ethanol-induced cell death (F = 

15.11, P value < 0.0001) after Kruskal–Wallis test and Dunn’s multiple comparison test (P values for 

all comparisons against 680 mM ethanol as a control < 0.0001). Specifically, the mean density of dead 

cells per mm2 dropped from 78.11 (680 mM ethanol) to 16.20 (Pn-3OG), 13.59 (resveratrol), 10.53 (Q-

3OG), 9.41 (Mv-3OG) 9.15 (Cat), 3.30 (polydatin), and 1.25 (taxifolin). 

2.3. Comparison of the Effectiveness of PPs in Counteracting NOND 

As we have related the effects of each PP against its own ethanolic (Figure 4A–C, E–H) or 

aqueous (Figure 4D) control, our experimental setup did not allow for correctly performing multiple 

comparison tests to make statistical inferences about the existence of possible differences in 

neuroprotective activities among the molecules used in this study. Nonetheless, we have calculated 

the ratios of the density of dead cells in controls and in the presence of each PPs (Figure 5A–C, E–H) 

and, thus, the per cent reduction of cell death for each molecule (Table 1). It is noteworthy that among 

the PPs here studied, the stilbenes (resveratrol and polydatin) appeared to be less effective in 

reducing cell death in comparison to Cat (a flavan-3-ol), Q-3OG (a flavonol), (+)-taxifolin (a 

flavanonol), and Pn-3OG (an anthocyanin). These four molecules, in fact, displayed very close 

percentages of reduction of cell death (69–72%) that were by far higher than those calculated for the 

stilbenes (51–60%). A remarkable observation was that, albeit in a statistically not significant way, 

aqueous Mv-3OG only reduced the density of death cells to 40% and even increased it to 127% in 

ethanolic solution. 

Table 1. Percentages of reduction of the density of dead cells in controls (a) and after incubation in 

PPs (b) containing media. 

PPs 

Density of dead cells  

(PI+ cells/mm2) 
Ratio (b/a) 

control (a) PP (b) (c) 

Pn-3OG 57.43 16.2 0.28 

(+)-Catechin 31.32 9.15 0.29 

Taxifolin 4.128 1.249 0.30 

Q-3OG 34.04 10.53 0.31 

Resveratrol 34.04 13.59 0.40 

Polydatin 6.78 3.298 0.49 

Mv-3OG 

(Water) 
17.56 9.41 0.54 
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Figure 4. Descriptive exploratory statistics of the effect of different polyphenols (A = resveratrol; B = 

polydatin; C = Mv-3OG (malvidin 3-O-glucoside); D = aqueous medium-dissolved Mv-3OG; E =Pn-

3OG (peonidin 3-O-glucoside); F = Q-3OG (quercetin 3-O-glucoside); G = (+)-catechin; H = taxifolin) 

on cerebellar naturally occurring neuronal death (NOND). Dead cells were stained with propidium 

iodide and results are expressed as means of dead cells/area with 95% CI. Scatter graphs show the 

dispersion and variability of data. Abbreviations: CTRL = control medium containing 170 mM 

ethanol; CTRL (w) = control medium (aqueous). 
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Figure 5. Inferential statistics of the effects of different polyphenols (A = resveratrol; B = polydatin; C 

= Mv-3OG (malvidin 3-O-glucoside); D = aqueous medium-dissolved Mv-3OG; E =Pn-3OG (peonidin 

3-O-glucoside); F = Q-3OG (quercetin 3-O-glucoside); G = (+)-catechin; H = taxifolin) on cerebellar 

naturally occurring neuronal death (NOND). Dead cells were stained with propidium iodide and 

results are expressed as means of dead cells/area. The two-tailed Mann-Whitney test was applied, as 

data did not pass the D’Agostino and Pearson normality test. *** 0.0001 > P > 0.001, **** P < 0.0001. 

Bars are 95% CI. All PPs except Mv-3OG (C-D) reduced NOND in cerebellar slices. Abbreviations: 

CTRL = control medium containing 170 mM ethanol; CTRL (w) = control medium (aqueous). 
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3. Discussion 

In this study, we have analyzed the neuroprotective effects of seven different PPs among those 

known to be present at higher concentration in grapevine. 

Cell death in the postnatal cerebellum is a well-known physiological neurodevelopmental event 

mainly affecting the cerebellar granule cells that are the largest population of neurons in central 

nervous system (CNS). Being they so numerous, NOND of the granules is a massive phenomenon, 

and occurs in a quite restricted and tightly regulated temporal window [47]. Therefore, the use of 

postnatal cerebellar cortex organotypic cultures offers an adequate tool to study the neuroprotective 

potential of PPs in a controlled experimental setup [42]. 

Using this approach, we have demonstrated that all PPs studied here, except Mv-3OG, were 

capable to reduce NOND with statistical significance. We have also proved that all molecules without 

exceptions were also effective in counteracting the neurotoxic effects of 680 mM ethanol, a very high 

concentration in relation to studies on the toxic effects of alcohol. 

We will first discuss our results in relation to the suitability of the ex vivo approach to investigate 

grapevine PPs neuroprotection, then we will briefly consider the PPs’ chemical structure and 

antioxidant activities and finally take into consideration the biological relevance of our findings. 

3.1. Suitability of the Ex Vivo Approach to Study the Neuroprotective Effects of Grapevine PPs 

As summarized in the Introduction, preclinical works aiming to characterize the biological and 

protective activity of PPs in the frame of neurodegeneration/inflammation display several limitations 

to the point that there is a strong debate onto their real translational relevance. We here used an ex 

vivo method to get rid of some of these limitations. Yet the use of organotypic cultures is not free of 

problems and does not represent a situation without controversies. We are aware of the shortcomings 

of our approach that paves the way for future better-focused pharmacological studies in vivo. Still, 

we believe it useful to discuss here the main problems related to the (generally) scarce bioavailability 

of PPs after in vivo administration. Taking resveratrol (and the stilbenes in more general terms) as 

the paradigmatic PP, its quantity in red wines is usually around 0.6 mg/L [21] but stilbenes can be up 

to 35 mg/L in certain Piedmont’s red wines and autochthonous Uvalino, in particular, contains up to 

100 mg/L of resveratrol [48,49]. These figures correspond to concentrations of 2.6, 135, and 438 μM, 

respectively. Indeed, data are very dissimilar between studies and substantial differences exist in the 

reported concentrations of the several PPs that may be present in wines. It is thus remarkable that 

those of most PPs here studied (other than resveratrol) range in wines from 45 to above 750 μM 

[50,51]. To this, one must add that different wines have different profiles of PPs deriving from grape 

seeds, skins, and pulps [52]. However, one can reasonably conclude that in wine the molar contents 

of many of the PPs that we have studied, except for resveratrol but not in the autochthonous 

Piedmont Uvalino, are above those used ex vivo in our study. 

Yet, the real issue is the bioavailability of PPs and, primarily, the brain concentration that they 

may reach in vivo. Indeed, Tomé-Carneiro et al. [43], in reviewing preclinical and clinical studies on 

resveratrol, evidenced that the former often used concentrations up to 200 μM but that resveratrol, 

quercetin, and catechin and their metabolites were scant in both plasma and urine (max 2 μM). 

Therefore, from these (and other) considerations they concluded that most studies in vitro were 

irrelevant. 

Comparing our figures with those obtained from other preclinical surveys is not easy principally 

because, in most cases, results are expressed as the PP quantity in relation to brain weight, a very low 

quantity indeed, in the order of ng or even pg/mg of nervous tissue [53]. A more rigorous comparison 

takes into consideration the PPs concentration in the cerebrospinal fluid (CSF), which bathes the brain 

in vivo similarly to medium in our cultures. No resveratrol was detected in CSF after intravenous 

infusion in rat, but, after nasal delivery in chitosan-coated lipid microparticles, resveratrol reached a 

Cmax after 60 min of 9.7 ± 1.9 μg/mL [54], corresponding to 34–51 μM. 

Data onto the CSF content of PPs are scarce, but this paper strongly indicates that by choosing 

an appropriate pharmacological preparation as well as an efficient route of administration it is 

possible to achieve brain concentrations of resveratrol (and other PPs) comparable with those here 
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used ex vivo. This is an important result supporting the relevance ex vivo approaches to study PPs 

neuroprotection. 

3.2. The Relationship Between PPs Chemical Structure and Neuroprotective Effects 

The increasing interest in PPs extracted from vegetal matrix in relation to neuroprotection is 

primarily due to their widely established antioxidant capacity (AOC) that, following several different 

cellular mechanisms and pathways, may be beneficial to neurons [6,9]. In turn, AOC depends on the 

chemical structure of individual PPs. In addition, the molecular composition influences the 

bioavailability of PPs, as different aglycones display distinct efficiencies in cellular 

transport/absorption [55]. In vivo, bioavailability refers to the fraction of a drug/molecule that, after 

absorption, reaches unchanged the systemic circulation. When dealing with CNS, drugs/molecules 

must be able to also cross the BBB for reaching the nervous tissue and thence exert their biological 

activities [56]. In a system ex vivo, BBB is not an issue, yet PPs need to be able to cross cell membranes 

to reach intracellular compartments and have some sort of efficacy. Other issues that are irrelevant 

to the present discussion, as we have at the moment tested each PP separately, is the possible synergy 

or antagonism among different families of PPs that are present in grapevine extracts [57] as well as 

the degree of polymerization of certain natural compounds, such as proanthocyanidins and 

copigments [58]. 

Among the PPs studied, we have here observed that the flavonoids were more effective than the 

stilbenes in protecting cells from death, except for Mv-3OG (see below). 

Pn-3OG (anthocyanin) and Q-3OG (flavonol), both glucosides and di-substituted (Figure 6), 

showed a very high and statistically significant capacity to reduce NOND, of 72% and 69% respect to 

the corresponding control, and were among the most effective PPs in this study. We have here used 

these two PPs in glucoside form for three reasons. First, previous studies have reported that flavonoid 

glucosides can be absorbed as such without the need to be hydrolyzed to an aglycone [55]. Second, 

glucosides showed significantly higher transport efficiency than galactosides [55]. Third, they very 

likely enter the BBB as such, beside as glucuronide form, as demonstrated for anthocyanins [6]. Our 

results indicate that nor the glycosylation of the C ring of a di-substituted flavonoid form or its 

methylation (in 3′ of the B ring like in Pn-3OG respect to Q-3OG) negatively influenced the capability 

to reduce NOND. The anthocyanin Pn-3OG appeared to be the most effective in limiting not only 

NOND but also to counteract the adverse effects of high concentrations of ethanol in media. 

Therefore, it might be postulated that the B ring level of hydroxylation not alone but together with 

the total unsaturation of the C ring, typical of the anthocyanin molecules [59,60], are the key elements 

for explaining the capacity of Pn-3OG to drastically limit neuronal cell death in our ex vivo paradigm. 

The flavonoids (+)-catechin and (+)-taxifolin are also among the PPs demonstrating the highest 

efficacy in reducing NOND. They are aglycones, but, like Pn-3OG and Q-3OG, di-hydroxylated, in 

the B ring (Figure 6). 

(+)-taxifolin (flavanonol) and Q-3OG displayed similar capacities to limit NOND, 69 and 70% 

respectively. The two molecules share identical hydroxylation of the B ring but two different 

unsaturations in C (Figure 6). In addition, (+)-catechin, (+)-taxifolin, and Q-3OG have an ortho-

hydroxyl in B, which is usually the initial target of antioxidants [61]. 

The null effect exerted by Mv-3OG on NOND but not on ethanol-induced cell-death could be 

ascribed to several factors, among which is the tendency of tri-hydroxylated anthocyanins to degrade 

in vitro more rapidly than mono and di-hydroxylated anthocyanins [29] and the limited efficiency in 

cell transport of glucosides respect to galactosides [55]. 

Thus, there may be several chemical features of the different flavonoids that, in theory, 

contribute to the neuroprotective effects observed in this study, but additional observations will be 

required to substantiate a significant correlation with some or all of them. 

The two stilbenes, resveratrol, and its glycoside (polydatin, also called piceid) were undoubtedly 

less effective in counteracting NOND. Yet, resveratrol capacity to limit cell death was higher respect 

to that of the corresponding glucoside. One of the main antioxidant mechanisms of resveratrol is 

based on the presence of two -OH groups in the ring B [62]. Besides, in the comparison vs quercetin, 
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quercetin has a further reactive -OH in position 3′, which is absent in resveratrol. Thus, the resveratrol 

chemical structure may justify a lower AOC respect to that of other PPs, particularly some of the 

flavonoids that we have tested here. 

3.3. Clues for In Vivo Neuroprotection 

We have here tested PPs in a controlled environment ex vivo. In such a setup, advantages mainly 

derive from the possibility to manipulate carefully and specifically the system according to the 

experimenter’s need, whereas disadvantages derive largely from the lack of information about 

bioavailability, metabolism and capability of crossing the BBB, i.e., the group of data that can be 

gathered only in vivo. Yet our approach permitted to provide an empirical demonstration that all PPs 

studied here were capable to cross cell membranes and to interfere with NOND. In addition, a great 

advantage in the specific use of postnatal cerebellar cultures is that cell death in this system is chiefly 

governed by the intracellular levels of caspase-3 (CASP3), one of the most important executioner 

caspases in apoptosis [47]. Although it is difficult to make direct comparisons due to the extreme 

variability of approaches, still one observes that all PPs that we have studied have been demonstrated 

to interact with CASP3 in vitro and/or in vivo not only in neurons but also in neuronal-like cells 

(Table 2). Remarkably, it should also be added that most of these molecules appeared to inhibit the 

activity of CASP3 after Aβ toxicity, a hallmark of AD [63]. 

Table 2. Experimental studies demonstrating an inhibition of caspase-3 (CASP3)-mediated apoptosis 

after treatment with plant PPs. Abbreviations: Aβ = amyloid-beta; APP = amyloid precursor protein; 

IRI = ischemia/reperfusion injury; OGD = oxygen/glucose deprivation; LPS = lipopolysaccharide; N/A 

= not/applicable; PS1 = presenilin 1. 

PPs 
Type of 

study 
Organ/tissue/cell/Species Death inductor  Ref 

Resveratrol 
In vitro 

PC12 cells/Rat Aβ [64] 

Primary cortical neurons/Rat Aβ [65] 

661W photoreceptor cells/Mouse  Blue light [66] 

SH-SY5Y cells/human  Ethanol [67] 

In vivo Brain/Rat Ethanol  [67] 

Polydatin 

In vitro PC12 cells/Rat Aβ [64] 

In vivo 
Primary cortical neurons/rat Aβ [65] 

Rat models of Parkinson’s disease Rotenone [68] 

Anthocyanins 

mix)  

In vitro 

Hippocampal HT22 cells/Mouse Aβ [69] 

RGC-5/Mouse H2O2 or Tunicamycin [70] 

Primary hippocampal 

neurons/Rat 
Ethanol [71] 

In vivo 

APP/PS1 mouse model of AD  N/A [69] 

Brain/Rat LPS [72] 

Hippocampus/Rat Ethanol [73] 

Peonidin In vitro RGC-5/Mouse Tunicamycin [70] 

Malvidin In vitro 661W photoreceptor cells/mouse  Blue light [66] 

Quercetin 

In vitro 

Primary cortical neurons/Rat* Aβ [74] 

Primary hippocampal 

neurons/Rat 
OGD [75] 

In vivo 

Brain/Rat IRI [75] 

Hippocampus/Mouse IRI [76] 

Brain/Rat IRI [77] 

Epicatechin 
In vivo Brain/Rat LPS [78] 

In vitro Auditory cells Cisplatin [79] 

Epigallocatechin 

In vitro SH-SY5Y cells/human  Aβ [80] 

In vivo APP/PS1 mouse model of AD  
Tunicamycin or 

Tapsigargin 
[80] 

Taxifolin In vitro PC12 cells/Rat Proteasome inhibition [81] 
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4. Materials and Methods 

4.1. PPs 

We tested seven different PPs belonging to five main groups present in wine and grapevine 

extracts (Figure 6): two anthocyanins, peonidin 3-O-glucoside (Pn-3OG) and malvidin 3-O-glucoside 

(Mv-3OG), two stilbenes, resveratrol (Res) and resveratrol-3-O-β-D-glucopyranoside (polydatin), one 

flavonol [quercetin 3-O-glucoside (Q-3OG), purchased as quercetin 3-O-glucopyranoside], one 

flavan-3-ol, (+)-catechin (Cat) and one flavanonol (2R,3R)-dihydroquercetin [(+)-taxifolin]. All PPs 

were purchased from Extrasynthèses (Genay, France). Stock solutions (5 mM) were prepared in 

absolute ethanol and/or water (for Mv-3OG only). Given the pilot nature of this work and the 

heterogeneity of results arising from the different wine PPs extraction procedures (see Introduction), 

we decided not to devise experiments using mixtures of PPs as these mix should more properly been 

produced once their (relative) concentrations in the territorial wines of interest will be fully 

established. 

 

Figure 6. Chemical formulas of the PPs used to study neuroprotection in postnatal cerebellum. 

4.2. Animals 

In this study, we used twenty-five 7-day-old mice. All animal procedures obtained authorization 

by Italian Ministry of Health and the Bioethics Committee of the University of Turin and were carried 

out according to the guidelines and recommendations of the European Union (Directive 2010/63/UE) 

as implemented by current Italian regulations on animal welfare (DL n. 26-04/03/2014). We kept the 

number of mice to the minimum necessary for statistical significance and we made all efforts to 

minimize animal suffering during sacrifice. We wanted to gather new information about the 

biological function(s) of grapevine PPs in a more complex system than primary neuronal cultures/cell 

lines, where interactions between different cell types are lost. Therefore, mice were employed; yet the 

use of an approach ex vivo permitted a reduction in their number according to the 3Rs principles. 
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4.3. Preparation of Cerebellar Cultures 

Mice were euthanized with an overdose of intraperitoneal sodium pentobarbital. The brain was 

quickly removed and placed in ice cooled Gey’s solution (Sigma Chemicals, St. Louis, MO) 

supplemented with glucose and antioxidants (for 500 mL: 50% glucose 4.8 mL, ascorbic acid 0.05 g, 

sodium pyruvate 0.1 g). The cerebellum was then isolated and immediately sectioned in 350 μm 

parasagittal slices with a McIlwain tissue chopper (Brinkmann Instruments, Westbury, NY), while 

submerged in a drop of cooled Gey’s solution. Three cerebellar slices were plated onto Millicell-CM 

inserts (Millipore, Billerica, MA). Each insert was subsequently placed inside a 35 mm Petri dish 

containing 1 mL of culture medium. Medium composition was 50% Eagle basal medium (BME, Sigma 

Chemicals, Merck, Darmstadt, Germany), 25% horse serum (Gibco®, Life Technologies™, Carlsbad, 

CA), 25% Hanks balanced salt solution (HBSS, Sigma Chemicals, Merck, Darmstadt, Germany), 0.5% 

glucose, 0.5% 200 mM L-glutamine, and 1% antibiotic/antimycotic solution. Cultures were incubated 

at 34° C in 5% CO2 for 4 days in vitro (DIV) before being treated with PPs. 

4.4. Preparation of PPs-Containing Media, Incubation of Cultures with PPs and Staining of Dead Cells 

Except for Mv-3OG that could also be directly dissolved in water, all other PPs were not soluble 

in water and were added to the culture medium from ethanolic stock solutions. Culture media 

containing 50 μM of each of the PPs were prepared by dissolving 10 μL 100% ethanol stock solutions 

in 1 mL medium. The same volume of ethanol was added to control media. In the case of Mv-3OG 

we prepared culture media both from ethanolic and aqueous stocks. 

As alcohol is known to be toxic to neurons, we devised an ad hoc series of experiments to 

ascertain the effects of ethanol onto neuronal survival at the concentration necessary to prepare the 

PPs containing media (170 mM–corresponding to 10 μL ethanol/1 mL medium). In these experiments, 

we also incubated some cerebellar cultures in 340 mM or 680 mM ethanol (i.e., 20 or 40 μL ethanol/1 

mL medium). 

At DIV 5 cerebellar cultures were subdivided in five groups and incubated into: i. Fresh plain 

medium (control for ethanol toxicity at 170 mM); ii. medium with 170 mM ethanol (control medium 

for PPs experiments); iii. Medium with 340 mM ethanol; iv. medium with 680 mM ethanol; and v. 

Medium containing 50 μM of each PP dissolved in ethanol (at a 170 mM final concentration). After 

24 h, cultures were incubated for 10 min in medium containing 1.5 mM propidium iodide (PI) to 

visualize the dead cells. We decided to employ PI, a general marker of cell death rather than focusing 

onto a more specific assay because there are severe concerns about the specificity of action of several 

plant PPs onto animal cells [3]. In addition, the number of cellular mechanisms that have been put 

into play for explaining the numerous purported actions of resveratrol and other vegetal PPs is so 

high that virtually all the major cell pathways appeared to be involved [82], at times with opposite 

effects [20]. In addition, PI is widely used to stain dead cells as it is extruded from live cells with an 

intact membrane irrespective of the mechanism and type of death [83] and PI-based experiments thus 

offered prompt and, very importantly, comparable readouts of the effect of each PP onto NOND, 

independently from its mechanism(s) of action. 

After three washes in plain medium, cultures were fixed for 60 min in 4% paraformaldehyde 

dissolved in 0.1 M phosphate-buffered saline (PBS) pH 7.4–7.6. They were then washed in PBS (2 × 

10 min) and double-distilled water (2 × 5 min) and finally mounted in fluorescence-free medium 

(Vectashield® Antifade Mounting Medium, Vector Laboratories, Burlingame, CA). Slices were then 

photographed using a Leica DM6000 wide-field fluorescence microscope (Leica Microsystems, 

Wetzlar, Germany) with a 20 × lens. For each slice, three randomly selected microscope fields (0.3084 

mm2) were photographed at a resolution of 1392 × 1040 pixels and PI-stained nuclei were counted 

with the “Count Particles” function of the ImageJ software (NIH, Bethesda, MD, USA) in an interval 

of area size between 12.56 and 78.50 μm2 (corresponding to a particle diameter of 4–10 μm). Results 

were expressed as the number of PI-stained cells (nuclei)/mm2, i.e., density of PI-stained cells (nuclei). 
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4.5. Statistical Analysis 

GraphPadPrism®7 (GraphPadSoftware, San Diego, CA, USA) was used for statistical analyses. 

These included I. Linear regression analysis and Pearson’s correlation test on the effects of different 

ethanol concentrations on the density of dead cells in cultures. II. D’Agostino and Pearson omnibus 

normality test to check for normally distributed data. III. Unpaired two-tailed Mann–Whitney test to 

make comparisons between two groups (control and PP-treated cultures). 

Multiple comparisons for control experiments with different ethanol concentrations were made 

using the non-parametric Kruskal–Wallis test followed by Dunn’s multiple comparisons test. 

5. Conclusions 

In conclusion, we here demonstrate the usefulness of the ex vivo approach to study the 

neuroprotective potential of grapefruit PPs. Further studies will be required to confirm the relevance 

of our experiments in vivo considering the well-known problems regarding the bioavailability of 

these molecules following conventional pharmacological administration. 
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