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Abstract A number of policies proposed to increase

soil organic matter (SOM) content in agricultural land

as a carbon sink and to enhance soil fertility. Relations

between SOM content and crop yields however remain

uncertain. In a recent farm survey across six European

countries, farmers reported both their crop yields and

their SOM content. For four widely grown crops

(wheat, grain maize, sugar beet and potato), correla-

tions were explored between reported crop yields and

SOM content (N = 1264). To explain observed

variability, climate, soil texture, slope, tillage inten-

sity, fertilisation and irrigation were added as co-

variables in a linear regression model. No consistent

correlations were observed for any of the crop types.

For wheat, a significant positive correlation (p\ 0.05)

was observed between SOM and crop yields in the

Continental climate, with yields being on average

263 ± 4 (95% CI) kg ha-1 higher on soils with one

percentage point more SOM. In the Atlantic climate, a

significant negative correlation was observed for

wheat, with yields being on average 75 ± 2

(95%CI) kg ha-1 lower on soils with one percentage

point more SOM (p\ 0.05). For sugar beet, a

significant positive correlation (p\ 0.05) between
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SOM and crop yields was suggested for all climate

zones, but this depended on a number of relatively low

yield observations. For potatoes and maize, no signif-

icant correlations were observed between SOM con-

tent and crop yields. These findings indicate the need

for a diversified strategy across soil types, crops and

climates when seeking farmers’ support to increase

SOM.

Keywords Soil organic matter � Crop yield �
Europe � Arable farming � Survey

Introduction

Agricultural science has a long history of searching for

correlations between soil organic matter (SOM)

content and soil fertility (Russell 1977). SOM is found

to affect soil water retention (Nyamangara et al. 2001;

Zebarth et al. 1999), nutrient availability and the

suppression of pests and soil borne diseases (Asirifi

et al. 1994; Darby et al. 2006). While all these

processes are beneficial for crop yields, the size of

these benefits remains uncertain.

More recently, a number of studies attempted to

quantify the direct benefits of SOM on crop yields.

Several studies found a significant positive correlation

(de Moraes Sa et al. 2014; Lucas and Weil 2012;

Oldfield et al. 2019, 2020). However, others indicate

that no significant effect of SOM on crop productivity

could be found (Hijbeek et al. 2017a; Loveland and

Webb 2003; Schjønning et al. 2018). These diverging

findings call for a deeper search to understand the

conditions under which SOM may contribute to

improved soil fertility and crop yields.

Most of the mentioned studies used field or pot

experiments. Findings in controlled experiments may

however deviate from farmers’ experience in the field

with more varying circumstances and less controlled

management. The inclusion of farmers’ experiences

would add a valuable dimension to the available data

on SOM and crop yields. Even more so, because the

benefits of SOM depend on farm management, as

more intensive management and reliance on technical

means reduce dependence of crop yield on SOM

functions (van Noordwijk et al. 1997).

Next to management, the beneficial effect of SOM

on crop yields depends on climates and soil types.

Increase in SOM content may also have potentially

negative effects: slow nutrient mineralisation by

organic matter, for example, might not supply nutri-

ents at the precise moments when the crop needs those

nutrients leading to potentially larger nutrient losses

(Chen 2006).

In a recent large-scale farm survey across Europe,

farmers were asked to report their average SOM

content and crop yields. Analysis of these data could

give further insight in the relationship between SOM

and crop yields under actual farming conditions,

taking into account the variation in climates, soil types

and cultivated crops. Using these data, we aim to

answer the following three research questions:

1. Can correlations be found between SOM content

and crop yields under current European farming

practices, based on farmers’ observations?

2. What is the influence of climate, slope, soil texture

and crop type on the correlation between SOM and

crop yields?

3. How is the correlation between SOM and crop

yields affected by farm management such as

irrigation, tillage intensity and fertiliser use?

Material and methods

Study area

The relationship between SOM content and crop

yields was analysed based on a farm survey conducted

in 2013 as part of the European Catch-C project. Farm

survey data for the following six countries was used:

Austria, Belgium, Germany, Spain, Italy and the

Netherlands. For each country, details on climates and

respondents are listed in Table 1. Methodology related

to the findings presented here is described below; more

details about the Catch-C farm survey are described by

Bijttebier et al. (2015).

Analysis of survey data

Main variables

The two main variables used for our analysis were

observed yield (tonnes ha-1) from the crops of interest

and the reported average SOM content (%) across the

whole farm. Representative crop yields for the last
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years were asked. To obtain a substantial sample size,

the analysis was done for four widely cultivated crops:

grain maize, wheat, sugar beet and potato. Reported

SOM content was often based on soil tests. If farmers

were uncertain about their SOM level, they were given

the option to leave the question open. The latter was

much more apparent in countries where less knowl-

edge was available to farmers about their soil status

(e.g. Spain).

Biophysical co-variables

To explain correlations between SOM and crop yields,

soil texture, slope and climate were included as

biophysical co-variables. For soil texture, farmers

indicated the farm area consisting of sand, loam or

clay soils (1, 2 and 3 respectively). Following, in our

analysis we calculated an average value for soil texture

per farm. So for example, a farm with 50.0% sandy

soils and 50.0% loamy soils would get an average

texture value of 1.5. For slope, a similar procedure was

followed with 1 indicating level land (0%) to 5 a steep

slope ([15%).

Climate type was based on the climate zones

described by Metzger et al. (2005). To create a larger

sample size per climate zone, they were aggregated

into an Atlantic (Atlantic north; Atlantic central),

Continental (Continental; Pannonian) and Mediter-

ranean (Mediterranean north; Mediterranean south)

zone.

Farm management co-variables

Irrigation, tillage practice and fertiliser use were

included as management co-variables. A weighted

tillage intensity value was calculated similar to the

other weighted values resulting in a value between 1

and 3; 1 meaning solely no tillage and 3 meaning

solely ploughing. Irrigation was indicated by yes or

no: a farm with or without irrigation use.

Fertiliser use was reported in amounts of slurry,

farm yard manure, compost and mineral fertiliser. All

fertiliser types were converted into kg N ha-1 yr-1,

using N coefficients (nitrogen fertiliser replacement

value) based on literature (Supplementary Table 1).

Mineral fertiliser was reported in kg N ha-1 yr-1.

Data organization and outlier removal

To increase the accuracy of reported SOM contents,

farmers could indicate if they were uncertain about the

average SOM content of their farm. Farmers who did

Table 1 Climate zones, number of survey respondents, average SOM content and reported crop yields per country

Country Climate zone # Farmers

(response

rate)

Average

SOM

content (%)

Average wheat

yield (tonnes

FM ha-1 yr-1)

Average maize

yield (tonnes

FM ha-1 yr-1)

Average sugar

beet yield

(tonnes FM

ha-1 yr-1)

Average Potato

yield (tonnes

FM ha-1 yr-1)

Austria Continental 48 (*) 3.01

(N = 30)

6.29 (N = 25) 10.38 (N = 16) 72.75 (N = 15) 45.71 (N = 7)

Belgium Atlantic 983

(26%)

2.73

(N = 322)

9.00 (N = 111) 11.44

(N = 159)

71.25 (N = 64) 44.01

(N = 170)

Germany Atlantic

Continental

439(16%) 3.35

(N = 260)

7.26 (N = 190) 9.83 (N = 31) 66.75 (N = 83) 40.87 (N = 49)

Spain Mediterranean 208 (*) 1.70

(N = 34)

3.00 (N = 3) 13.00 (N = 2) – –

Italy Mediterranean 310 (*) 2.68

(N = 100)

5.53 (N = 40) 11.08 (N = 47) 55.75 (N = 4) –

Netherlands Atlantic 621

(10%)

3.77

(N = 516)

9.20 (N = 340) 12.30 (N = 33) 80.39 (N = 367) 51.70

(N = 246)

Total 2609 3.26

(N = 1262)

8.31 (N = 709) 11.26

(N = 288)

76.77 (N = 533) 47.71

(N = 470)

N indicates the sample size

*Response rate is not known in these areas
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not indicate their average SOM content, or were

uncertain about it, were excluded from analysis. In

addition, SOM values above 12.0% were removed (as

this might refer to a peat soil; N = 96). Soil organic

carbon, which is used in Germany and Belgium, was

converted into SOM using the conventional factor of

1.724 (Pribyl 2010). Soils containing less than 0.1%

SOM were considered outliers and also removed from

analysis (N = 9). Because we were interested in the

shape of the point cloud, we only removed extreme

crop yield outliers per country [Q3 ? 3*inter quartile

range (IQR)], which were considered biophysically

impossible (N = 28). Outliers of total effective fer-

tiliser application were removed using 3.0*IQR

(759 kg N ha-1 yr-1; N = 47).

Statistical analyses

Multiple linear regression and model selection

First, QQ-plots were made to assess if the data was

normally distributed (Supplementary Figure S1). To

assess the influence of SOM and different co-variables

on crop yields, multivariate analyses were performed

for each crop using the car package for R (Fox 2018),

according to the following equation:

Yield� SOM þ climate þ textureþ slope
þ tillageintensityþ effectivefertiliser þ irrigation
þ e:

ð1Þ

Initially a full model (Eq. 1, including all co-

variables) was run. Following, the explanatory power

of the full model was compared with a reduced model

(excluding SOM as an explanatory variable) to assess

the added value of SOM to explain observed crop

yields. Using this approach however bears a risk of

overfitting the data. To account for overfitting,

corrected Akaike information criterion (AICc) can

be used to evaluate the explanatory power of statistical

models and the relevance of co-variables.

Subsequently, a model selection was performed

using AICc for each crop to assess variable impor-

tance, and specifically the importance of SOM in

explaining crop yields. To this end, the dredge

function from the MuMIn package for R-studio

(Barton 2019) was used. Based on the AICc values

(Giraud 2014) a model ranking was made. For all crop

types, multiple top ranking models could be consid-

ered as the ‘best’ model, as their explanatory value

was similar (DAICc\ 2). The mean effect size of

SOM on crop yield and corresponding 95% confidence

intervals were calculated across these top ranking

models. The first best model for every crop was further

checked for significance using an Anova type 3

table [for models with interactions, from the car

package (Fox 2018)].

Quantile regression

Linear regression does not investigate the shape of the

point cloud from the data. To investigate if SOM

influences minimum or attainable crop yields (the

shape of the point cloud), a quantile regression was

performed using the Quantreg package from Koenker

et al. (2019). Quantile regression is similar to linear

regression, but only investigates a certain part of the

data. Lower and upper quantiles of the data were

investigated: tau = 0.1 and 0.9. In this study, the 0.1

quantile gives an indication for minimum yield of a

crop for a certain SOM content. The 0.9 quantile gives

an indication for the attainable yield at a certain SOM

content. Whether slopes of the lower and upper

quantiles were significantly different from zero was

assessed using the ‘NID’ method to calculate standard

errors (Koenker et al. 2019).

Results

Reported SOM contents and crop yields

Shares of respondents that reported SOM content

differed per country: in the Netherlands, the response

proportion was the largest (83.1%) and in Spain it was

lowest (16.3%). The average SOM content varied

from 1.7% in Spain to 3.8% in the Netherlands. For all

countries combined, the average SOM content was

3.26% (Table 1), with a median of 2.59% SOM.

The highest average crop yields were observed in

the more northern European countries, the lowest in

Spain and Italy. This was not the case for maize, with

maize yields in Italy and Spain being similar to the

more northern European countries. Among the respon-

dents in Spain, none of the farmers cultivated potato or

sugar beet (Table 1). The average reported crop yields

in this survey differed less than 15.0%, both positive
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and negative, from national statistics averages

(EUFADN 2019) for all countries, except for wheat

yield in Austria (22.7% higher reported average yield).

SOM and crop yields

Wheat yields were significantly correlated with SOM

content using simple linear regression (p\ 0.05), but

the size and the direction differed per climate zone: the

correlation being negative in the Atlantic climate, and

positive in the Continental climate (Fig. 1). For the

other crops, no correlation was observed using simple

linear regression.

To assess the influence of SOM on crop yields when

including effects of all co-variables (such as soil

texture), a multivariate regression was done. Descrip-

tive information about the co-variables can be found in

supplementary Table S2. When comparing a full

model (Eq. 1, with SOM as an explanatory variable)

with a reduced model (without SOM as an explanatory

variable), no differences were found in the total

explanatory value. R2 adjusted was the largest for

wheat with (0.5497) and without SOM (0.5503). In all

cases, R2 adjusted were similar between the full model

and the reduced model, with the largest difference for

maize (0.0236).

Based on AICc values, a model ranking was made

(Supplementary Table 3). The number of top ranking

models having a similar AICc value differed per crop

type (wheat N = 8; maize N = 3; sugar beet N = 5 and

potato N = 21). For wheat, maize and sugar beet,

SOM was included as an explanatory variable for crop

yields in all the top ranking models. For potato, SOM

was included as an explanatory variable in more than

Fig. 1 Influence of climate on the relation between SOM and

wheat yield (a), maize yield (b), sugar beet yield (c) and potato

yield (d). The data points for yield are given different colours

and shapes per climate: Green square = Mediterranean, Blue

circle = Continental and Red triangle = Atlantic. The coloured

lines indicate significant simple linear regression for each

climate zone. The black dotted lines indicate two quantiles of the

data (tau = 0.1 and 0.9)
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half of the top ranking models. However, only for

wheat and sugar beet the effect size of SOM on crop

yield was significant. For these two crops, the effect

sizes within the top ranking models with a similar

AICc value is provided in Supplementary Tables 4 and

5.

Correcting for the influence of other co-variables,

across the different multiple regression models, wheat

yields were on average 263 ± 4 (95% confidence

interval—CI) kg ha-1 higher on soils with one

percentage point more SOM in the Continental

climate. In the Atlantic climate, wheat yields were

on average 75 ± 2 (95%CI) kg ha-1 lower on soils

with one percentage point more SOM (p\ 0.046).

Sugar beet yield was positively correlated with SOM

in all climate zones (p = 0.016), with on average

1007 ± 157 (95% CI) kg yield increase per percent-

age point SOM. However, this value depended on a

small number of low yield observations. Excluding

these points (N = 9) resulted in more similar top

ranking models. SOM was included in 11 of the 20 top

ranking models only, with yields being on average

75 ± 279 (95% CI) kg higher per percentage point

SOM in all climate zones. For potato and maize, there

was no significant effect of SOM on crop yields when

correcting for the influence of other co-variables.

The models with highest AICc value (Table 2;

Supplementary Table 3) were selected to further

analyse the role of SOM, as they are similar

(DAICc\ 2) to the other best models. For wheat,

interactions between SOM and climate, and SOM and

tillage intensity were included in the selected best

model. For maize, interactions between SOM and

climate, and SOM and effective fertiliser were

included (Table 2). For all crop types, crop yields

differed significantly between climate zones.

Another notable result is the effect of soil texture

and tillage on sugar beet yield, i.e. a finer soil texture

and more intensive tillage was correlated with higher

sugar beet yield (Table 2). The effect of soil texture did

not depend on the low yield observations, but tillage

did (p = 0.076 without low yield observations). For

potato, more intensive tillage was also correlated with

higher yields.

Effect of SOM on minimum and attainable yields

For wheat, the lower quantile of yields had a

significant positive slope (p\ 0.001, dotted line inT
a
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Fig. 1). This shows that for wheat, higher SOM is

correlated with a higher minimum yield. There was no

significant effect on attainable or minimum yield for

the other crops investigated. The lower quantile of the

sugar beet data had a close to significant positive slope

(p = 0.067).

Discussion

Correlations between SOM and yields differ

per crop type and climate zone

Our results show that, when present, correlations

between reported SOM and crop yields differ per crop

type and climate zone. In other cases, such correlations

were absent. The negative correlation between SOM

content and observed wheat yields in the Atlantic

climate correspond well to recent findings for Den-

mark of Schjønning et al. (2018) and Oelofse et al.

(2015) who found a negative effect of SOM content on

potentials yields in the same climate. The positive

correlations found between SOM and sugar beet yields

in all climate zones correspond well to other studies,

such as those by Oldfield et al. (2019), Hijbeek et al.

(2017a), and Verheijen (2005), who suggested that

there is more evidence of a positive effect of SOM on

yields of root and tuber crops than on cereal yields.

This was partly supported by this study but needs more

investigation as the finding relied on a small number of

data points and potato yield was not correlated with

SOM content.

There was no consistent correlation between the

other co-variables (such as soil texture, tillage inten-

sity or irrigation) and crop yield, except for the

influence of climate as discussed above. For example,

sugar beet and wheat yields were found to be higher

with finer soils, perhaps related to an improved water

or nutrient holding capacity of these soils. However, it

is surprising that a similar correlation was not found

for potato and maize. SOM content was found to differ

across climate zones, with highest SOM values being

reported in the Atlantic climate, followed by the

Continental and Mediterranean climate. This corre-

sponds well with observations that increasing SOM is

more difficult in a warmer climate (Leirós et al. 1999;

Miller et al. 2004). At the same time, less variation in

the reported SOM contents in the Mediterranean

climate might also explain why it was more

challenging to find correlations with crop yields. In

addition, as thresholds for SOM content are currently

uncertain (Hijbeek et al. 2017b), it is unknown if the

ranges of SOM content in the different climate zones

were sufficient to observe yield effects.

Similarity in findings between field experiments

and farmers’ observations

Whilst many studies have investigated the relation

between SOM content and crop yields using experi-

mental data (e.g. Dawe et al. 2003; Han et al. 2018;

Oelofse et al. 2015; Pan et al. 2009), we were not

aware of published studies which rely on farmers’

perceptions. The similarities between our results and

previous studies are therefore the more striking as

these previous studies were based on experimental

conditions, while this study was based on farmers

observations, often in more heterogeneous conditions.

Using minimum yield as an indicator the effect

of SOM on crop yields

In our study, the upper quantile of crop yields was

assumed to be representative for attainable yields

(highest farmers’ yields) at a given SOM content,

while the lower quantile was assumed to be represen-

tative for minimum crop yields at a certain SOM

content. Unlike previous studies who also used the

concept of attainable yield (i.e. Hijbeek et al. 2017a;

Oelofse et al. 2015; Schjønning et al. 2018), in our

study no significant effect of SOM on attainable yield

was found. This deviation might be caused by the

difference in measurement of attainable yield: previ-

ous studies based estimates of attainable yield on

nitrogen response curves in controlled experimental

settings, while we relied on the upper quantile of the

yield cloud of farmers’ observations, inherently con-

taining more variation. Our study did, however, find

that a higher SOM content was significantly positively

correlated with higher minimum wheat and slightly

positively correlated with minimum sugar beet yields.

This study therefore suggests that besides attainable

yield, minimum yield might also be a useful indicator

to assess yield effects of SOM.
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Limitations of this study

Confounding factors

Finding effects of SOM on crop yield across different

climates and soil types is inherently problematic as

soil types and climates not only influence the SOM

content but also have a direct impact on crop yields

and crop management, giving rise to potential con-

founding factors (Hijbeek et al. 2018). In our study,

where possible, we have assessed the effect of SOM on

crop yields within climate zones. In addition, we have

included soil texture as an explanatory variable in our

model and thereby assessed the added value of

including SOM, next to soil texture, in explaining

variation in observed crop yields.

Using farm survey data

With this study, we did not aim to give a definitive

answer to the question what the role of SOM is for crop

yields. Rather, we hope that by sharing farmers’

observations (a relatively underexploited data source

on this topic) and comparing these with findings from

agronomic field experiments, we have added one more

building block to the puzzle. Benefits of farm survey

data include gaining insight in actual on-farm situa-

tions and perceptions, and an improved ability to

explain effects to farmers. The use of farm survey data,

however, also has several limitations, of which we will

discuss the main ones below.

In this study, we relied on reported values for

average SOM content and representative crop yields at

farm level by farmers. First, this will have causedmore

variation in the data than if one researcher would have

made all the measurements using a more standardized

approach. For example, the reported values on SOM

might have been based on different sampling depths.

The effect of this on reported values is unknown and

could therefore not be included in the analysis. On the

other hand, our approach probably positively affected

the sample size of the dataset. To diminish the impact,

farmers were given the option to report if they were

aware or not of their average SOM content, which will

have led to more precise answers, but might also have

led to a bias in the data set towards farmers who

measure their SOM content more often. Moreover, as

representative crop yields of recent years were

requested, yield extremes might not always have been

included. It is not known to which extent this affects

the correlation between SOM and crop yield.

A second limitation of the approach is that average

SOM, crop yield and management (such as fertiliser

use, tillage and irrigation) information was requested

for the entire farm, rather than for individual fields. In

reality, farmers most likely differentiate crop man-

agement across fields and crops, and SOM and crop

yields may differ between fields within a farm. If field

and crop-level data would have been available,

possibly more of the variation in yield could have

been explained by management factors (e.g. Silva

et al. 2017), and better correlations might have been

found between SOM and crop yield. Also, we cannot

exclude that other attributes such as tillage depth and

date of application would affect the data. To account

for this variation in the farm survey data, quantile

regressions were performed. The conducted quantile

regression could have been improved when conducted

per climate zone or soil texture, however sample sizes

were too small to allow for this.

Finally, the farm survey could not account for

differences in soil life or fractions of SOM, whilst this

could be of importance when determining the rela-

tionship between SOM and crop yield (Six and Jastrow

2002).

Model selection

The effect of SOM on crop yields was analysed based

on a model selection. In literature, much uncertainty

exists about model selection strategies. Thoughtless

model selection is repeatedly mentioned as leading to

model overfitting, which results in finding effects that

are false in reality (Burnham and Anderson 2002). To

avoid this, we considered both the first selected model

and lower ranked models with a similar AICc value.

Additionally, we used a full model, which includes all

parameters, to compare with the selected models.

Conclusions and recommendations

SOM is often mentioned as a soil quality indicator, but

this study, based on farmers’ perceptions, only partly

supports the claim that SOM has a positive effect on

crop yield. Based on the presented results, increasing

SOM seems to be most relevant in Europe when

cultivating root or tuber crops (such as sugar beet) or
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wheat in a Continental climate. This study does not

intend to suggest that SOM should be ignored as a soil

quality indicator or does not provide other important

ecosystem services in current European farm prac-

tices, but our findings do provide little evidence for a

consistent causal relation between SOM and crop

yields across climates and crop types.

Our study was based on farmers’ reporting of the

SOM content of their soils. If research funds would

allow for more operational costs and logistics, future

research could improve our analysis by including soil

samples and in-field measurements of an array of soil

properties, potentially improving insights into under-

lying mechanisms. The study also relied on farmers’

reports on crop yields being representative for the last

few years. If possible, future research could investi-

gate the role of SOM on annual variation in crop

yields, especially focussing on more extreme weather

events (such as very dry or wet years), potentially

enhancing insights into the function of SOM for soil

resilience.

To increase SOM content in agricultural soils,

farmers’ support is essential. Our findings suggest that

only in specific conditions an effect of SOM on crop

yield is observed, either positive or negative. In the

positive cases, support from farmers to increase SOM

can be gained by highlighting these benefits. In other

cases, support has to be gained through other incen-

tives. Our findings therefore indicate the need for a

diversified strategy across soil types, crops and

climates when seeking farmers’ support to increase

SOM.
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