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Abstract: Nowadays, the simultaneous inoculation of yeast and lactic acid bacteria (LAB) 

is considered a state-of-the-art strategy to reduce overall vinification time and improve 

microbiological stability of wines. This inoculation protocol  drew interest  as to  how the 

selection of yeast and LAB strains could modulate malic acid consumption rate and wine 

composition. The study presented here addresses the impact of combining Saccharomyces 

cerevisiae strains (with different fermentation rates and nutrition demands) with 

Lactobacillus plantarum and Oenococcus oeni strains on malic acid consumption and the 

production of metabolites. S. cerevisiae strains in pure culture fermentations without LAB 

inoculation exhibited different patterns of malic acid consumption rate and metabolites 

production. Simultaneous S. cerevisiae and LAB inoculation influenced the kinetics of lactic 

acid production and titratable acidity content in a manner dependent on the selected LAB 

strain. The wines undergoing MLF with L. plantarum ML PrimeTM finished  faster and 

contained higher levels of L-lactic acid, compared to the respective wines inoculated with 

O. oeni Lalvin® VP41TM, however the degree of acidification depended on the S. cerevisiae 

strain used to conduct the alcoholic fermentation. This study reveals new knowledge about 

the use of L. plantarum in winemaking and shows the effect of S. cerevisiae strains with 

different enological characteristics, accompanied by LAB or without LAB co-inoculation, 

on wine composition. 
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Introduction 

Malolactic fermentation (MLF) is a secondary fermentation carried out in most red 

grape wines (Sumby et al. 2010, Knoll et al. 2011), MLF is considered an important process 

in the winemaking industry for three reasons: (a) deacidification, (b) aroma and flavor 

modification and (c) microbial stability (Bauer and Dicks 2004, Swiegers et al. 2005, 

Cappello et al. 2017). It is conducted by lactic acid bacteria (LAB) and may occur 

spontaneously or be induced by inoculation of autochthonous or commercial strains (Sumby 

et al. 2014, Bartowsky et al. 2015, Lucio et al. 2017). Spontaneous MLF is the result of 

indigenous LAB strains, and its success depends greatly on grape sanitary conditions and 

physicochemical characteristics of musts and wines (Ruiz et al. 2010). Spontaneous MLF 

represent an unpredictable situation, the main risks are slow progression of MLF and 

potentially incomplete consumption of malic acid and production of high amounts of 

undesirable compounds (Bauer and Dicks 2004, Bartowsky et al. 2015). The use of LAB 

starter cultures together with nitrogen management can ensure more rapid onset and 

completion of MLF, reduce the potential spoilage by microorganisms and lead to overall 

more predictable MLF (Liu et al. 2017, Sumby et al. 2019). Since the introduction of these 

starter cultures, there has been considerable research to determine the optimal time point for 

inoculation in order to enhance MLF efficiency (Rosi et al. 2003, Abrahamse and Bartowsky 

2012). LAB starter cultures could be co-inoculated with yeasts (at the beginning of alcoholic 

fermentation (AF)) or sequentially inoculated (at the end of AF) (Bartowsky et al. 2015, 

Sumby et al. 2019).  However, due to the highly selective environment of wines, MLF 

remains difficult to accomplish, especially when LAB are sequentially inoculated, mainly 

due to the presence of high levels of inhibitory metabolites (mainly ethanol, sulphur dioxide 

(SO2) and pH) (Bartowsky et al. 2015, Bartle et al. 2019, Sumby et al. 2019). To this end, in 
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order to encourage MLF, wines have to be kept under conditions that may increase the risk 

of spoilage by other microorganisms (Ribéreau-Gayon et al. 2000). Simultaneous 

inoculation of yeasts and LAB starter cultures has gained attention in the recent years, since 

both AF and MLF are completed early and the wine can immediately be racked, stabilized 

and filtered for further storage or bottling, thus increasing microbial stability (Abrahamse 

and Bartowsky 2012). However, the application of this inoculation protocol poses risks, such 

as the presence of antagonistic interactions between yeasts and LAB, stuck AF before sugar 

depletion and production of excessive amounts of acetic acid under certain environmental 

and physicochemical  conditions (Sumby et al. 2014, Bartowsky et al. 2015). 

In the last decades, several studies reported the interactions between yeasts-LAB, and 

may range from inhibitory, to neutral, to  stimulatory (Liu et al. 2017, Bartle et al. 2019). 

Most of these studies, have demonstrated that the type and degree of interactions is 

dependent upon several factors: (a) the physicochemical composition of the medium, (b) the 

uptake and release of nutrients by yeasts, (c) the ability of the yeasts to produce metabolites 

(such as ethanol, SO2, medium-chain fatty acids and antibacterial proteins/peptides) able to 

inhibit or stimulate the growth of LAB (Tonon and Lonvaud-Funel 2000, Terrade and Mira 

de Orduña 2009, Liu et al. 2017, Balmaseda et al. 2018, Bartle et al. 2019). In addition, such 

studies have also highlighted the complexity of these interactions, showing that the same 

yeast strain may stimulate or inhibit different LAB strains under  wine making conditions 

(Larsen et al. 2003, Arnink and Henick-Kling 2005).  

In the present study, we performed MLF combining commercial Lactobacillus 

plantarum and Oenococcus oeni strains with five commercial Saccharomyces cerevisiae 

strains at the beginning of AF in order to evaluate the impact of their interactions on chemical 

and phenolic composition of the wines. S. cerevisiae strains were carefully chosen, with the 

intention of covering a wide range of fermentation rates and nutrition demands. 
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Materials and Methods 

Strains. Five S. cerevisiae strains and two LAB species namely O. oeni and L. 

plantarum were used in this study (Table 1). All strains are commercially available as pure 

freeze-dried cultures and were obtained from Lallemand Inc. (Montreal, Canada). 

Must preparation. Barbera grapes were harvested, destemmed, crushed and 30 

mg/L of SO2 were added in the yielded must. A cold maceration was performed at 5 oC for 

72 hours to promote color extraction (Boulton et al. 1996) and subsequently the grape juice 

was separated from the solid parts using a stainless-steel sieve, cooled down and frozen at - 

20 oC until use. The racked grape juice had a sugar content of 226 g/L, a total acidity of 7.15 

g/L as tartaric acid, a pH of 3.32, a YAN of 260 mg/L (composed of 75 mg/L of ammonium 

and 185 mg/L of amino acids) and 1.85 g/L of malic acid.  

Fermentation trials. Fifteen sets of fermentations (in duplicate), consisting of 

inoculating each S. cerevisiae strain in pure culture and combining each S. cerevisiae strain 

with L. plantarum ML PrimeTM or O. oeni Lalvin® VP41TM, were performed. LAB species 

were inoculated 24 h after S. cerevisiae inoculation. Fermentations were performed in 1 L 

sterile glass bottles, containing 900 mL of Barbera grape must. The absence of indigenous 

yeast and LAB populations prior inoculation was checked by plate counts using appropriate 

culture media (Englezos et al. 2019). Yeast and LAB inocula were prepared according to 

manufacturer’s recommendations using a dose of 20 g/L for S. cerevisiae strains, 1 g/hL for 

O. oeni Lalvin® VP41TM and 10 g/hL for L. plantarum ML Prime®. Organic nitrogen 

(Fermaid O, Lallemand Inc.) was added at a dose of 0.2 g/L (corresponds to 8 mg/L of YAN) 

together with yeast inoculum and when yeasts consumed about 30 % of the total sugars. Bottles 

were closed with sterile airlocks containing sterile paraffin oil to allow CO2 to escape from the 

fermenting must. Fermentations were performed at 23 ± 2 oC and considered finished when 

sugars and malic acid concentration were below 2.0 and 0.2 g/L, respectively. 
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Standard chemical parameters. Sugars, glycerol, ethanol, acetic, L-malic and D/L-

lactic acid concentrations were determined during (0, 2, 4 and 7 days) and at the end of AF 

and MLF by enzymatic kits (Megazyme International, Wicklow, Ireland). Must and wine 

parameters like total acidity (expressed as g/L of tartaric acid) (Method OIV-MA-AS313-

01), pH (Method OIV-MA-BS-13), volatile acidity (expressed as g/L of acetic acid) (Method 

OIV-MA-AS313-02), free and total SO2  (Method OIV-MA-AS323-04B) were determined 

according to the official protocols of the International Organization of Vine and Wine (OIV 

2015). Total YAN (ammonium and amino acids) was    analysed in the must before the 

alcoholic fermentation using enzymatic test kits (Megazyme International). 

Color analysis and phenolic profile of wines. The wine chromatic characteristics 

was assessed spectrophotometrically according to the OIV reference method (OIV 2015). 

These are colour intensity and CIELab space parameters: lightness (L*), red/green values 

(a*), blue/yellow (b*) and their derived magnitude hue angle (H*). The spectrophotometric 

measurements were carried out using 2 mm path cuvettes and absorbance values were 

recorded over the range of 380 – 780 nm wavelength at 5 nm intervals using an UV-1400 

spectrophotometer (Shimazdu Corporation, Kyoto, Japan). The phenolic composition of 

wines was determined by several spectrophotometric indices using the above-mentioned 

spectrophotometer and the protocols described by Rolle et al. (2018): absorbance at 280 nm 

(as A280), total anthocyanins (as mg/L of malvidin-3-glucoside chloride) and total 

flavonoids (as mg/L of (+)-catechin). Total phenols were determined by the reduction  of 

phosphotungstic and phosphomolybdic acids (Folin–Ciocalteu reagent) to blue pigments by 

phenolic substances in alkaline solution (Singleton and Rossi 1965). The concentrations of 

flavonoids and anthocyanins were determined after dilution with ethanol/water/HCl (37%) 

(70:30:1) (Rolle et al. 2018). 
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Statistical analysis. Analysis of variance (ANOVA) was used to determine 

differences between inoculation protocols. The ANOVA was performed by using IBM SPSS 

Statistics software package (Version 19.0; IBM Corp., Armonk, NY), while a Tukey-b post 

hoc multiple comparison was performed using 95% confidence interval. The effect and 

interaction of S. cerevisiae strains and LAB species were analyzed by factorial ANOVA. 

Results and discussion 

Metabolites evolution during fermentation. The evolution of sugars, malic and 

lactic acid during AF and MLF are shown in Figure 1 (A-O). Regardless of the inoculation 

protocol and combination of strains used, all fermentations, completed sugar consumption 

(< 2.0 g/L) in 7 days. S. cerevisiae strains exhibited quite similar sugar consumption rate in 

pure AF, except strains Lalvin ICV® D254 and Lalvin ICVK1 which consumed sugar faster 

during the first 4 days of AF, than the other strains. In AF without LAB inoculation, malic 

acid concentration decreased up to 30 % and 50 % at the end of fermentation with Lalvin 

ICV® D254 and Lalvin® 71BTM, respectively. This is in line with general observations that 

S. cerevisiae  is  capable of consuming small amounts of malic acid, but the concentrations 

are considered very low compared to LAB (Husnik et al. 2006, Rezdepovic et al. 2003). 

Malic acid passes through the yeast cellular membrane by simple diffusion (Pretorius 2000) 

where it is metabolized mainly to ethanol through the malo-ethanolic pathway (Main et al. 

2007). In the present study, the ability S. cerevisiae strains to degrade malic acid could be 

attributed to the efficient transport of dicarboxylic acid, as well as the efficacy of the 

intracellular malic enzyme (Ansanay et al. 1996). Wines fermented with the other S. 

cerevisiae strains, consumed lower levels of malic acid during the first 4 days of AF and 

then a slight final increase was seen at the end of AF. This increase may be explained by the 

formation of malic acid as secondary metabolite of the tricarboxylic acid pathway, as 

previously demonstrated by a previous study using synthetic must without malic acid or due 
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to the ability of cells to adsorb and release further malic acid (Fatichenti et al. 1984, 

Yeramian et al. 2007).  

The two LAB species exhibited different evolution patterns of malic and lactic acid 

in the co-inoculated musts with S. cerevisiae strains (Figure 1). The inoculation of LAB 

strains did not influence sugar consumption by S. cerevisiae. About 3 days  after  LAB 

inoculation were necessary to successfully complete MLF by L. plantarum, independently 

of the S. cerevisiae strain used. The use of L. plantarum ML PrimeTM was notable for the 

early start of the malic acid consumption over AF, as seen by the fact that consumption of 

malic acid began immediately after its inoculation. In particular, malic acid concentration 

ranged from 0.5 to 0.9 g/L after 1 day from L. plantarum inoculation and reduced to 0.1 – 

0.3  after 3 days. As a result, a sharp increase of lactic acid was observed during this time. 

This finding is in accordance with a previous study that demonstrated successful and fast 

MLF after co-inoculation of L. plantarum and S. cerevisiae (Lucio et al., 2018). The faster 

malic acid consumption by L. plantarum compared to O. oeni could also be explained by the 

higher inoculation rate of the first (10 g/hL versus 1 g/hL). Among wines that underwent 

MLF, S. cerevisiae Uvaferm® VRBTM and L. plantarum ML PrimeTM produced more lactic 

acid than the other wines, while the couples with Lalvin ICV® D254 and Lalvin® 71BTM 

achieved the lowest levels of lactic acid concentration.  

In contrast, consumption of malic acid by O. oeni Lalvin® VP41TM was generally 

slow during the first 3 days following its inoculation. It is worth noticing that the evolution 

of malic acid was very close to that observed in AF without LAB inoculation during this 

time interval. Malic acid consumption had a steep increase from day 4 of AF and onwards 

and was totally consumed on day 7. As expected, production of lactic acid by O. oeni in co-

inoculated wines was generally quite slow during the first 4 days  after  yeast inoculation  

(production ranged from 0.4 – 0.5 g/L) and a sharp increase was evident from day 4 of AF 
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and onwards. S. cerevisiae strain choice influenced greatly the final concentration of lactic 

acid concentration at the end of AF. As for L. plantarum, lactic acid production by O. oeni 

was significantly influenced by the strain of  S. cerevisiae  used. Comparing the two LAB 

strains tested here, it should be highlighted that L. plantarum ML PrimeTM, showed a shorter 

lag phase, compared to O. oeni Lalvin® VP41TM, since malic acid concentration dropped to 

very low levels (0.1 – 0.3 g/L) in the first 3 days after  LAB  inoculation . Early start of MLF 

gives LAB an advantage in colonizing must and is significant from a  technological point of 

view because of the shorter time required to conclude the total vinification process and the 

early microbiological stability conferred on wines (Bauer and Dicks 2004). The use of L. 

plantarum poses a distinct advantage over the O. oeni starter culture. The different pairs of 

S. cerevisiae and LAB showed different patterns of inhibition and stimulation of MLF 

depending on S. cerevisiae strain and LAB species chosen, in agreement with Lucio et al. 

2018. These results demonstrate that the same yeast strains could inhibit or stimulate 

different LAB strains, in agreement with Nehme et al. (2008).  

Analytical parameters of wines. The analytical parameters of wines are reported in 

Table 2. All fermentations ended up with residual sugar content of less than 2.0 g/L. The 

ethanol concentration ranged from 12.9 to 13.1 % (v/v). Volatile acidity ranged from 0.21 

to 0.42 g/L (expressed as acetic acid) in all wines that underwent MLF. Considering that 

during AF, the S. cerevisiae strains, produced from 0.24 to 0.34 g/L of acetic acid, it could 

be assumed that neither LAB strains produced significant levels of acetic acid from sugars 

and citric acid. These results are in agreement with previous studies, that demonstrated that 

simultaneous inoculation of yeasts and LAB does not necessarily lead to excessive 

production of metabolites such as acetic acid (Bartowsky et al. 2015). However, S. cerevisiae 

strain selection in pure AF significantly influenced acetic acid production, since wines 

fermented with Lalvin® 71BTM produced the highest concentration (0.35 g/L) and LalvinTM 
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ICV® K1® the lowest (0.24 g/L).  

SO2 is considered one of the inhibitory factors to LAB growth (Sumby et al. 2019); 

its concentration is generally associated with the yeast strain performing AF and the must or 

wine composition. In the present study, SO2 production was not influenced by the S. 

cerevisiae strain, since all wines produced from the different inoculation protocols gave 

values no greater than 5 mg/L of free SO2 (data not shown) and between 18-24 mg/L of total 

SO2, well below the concentration of 15 mg/L of free SO2 and 100 mg/L of total SO2, which 

were found to inhibit or limit LAB growth (Bauer and Dicks 2009, Sumby et al. 2019). The 

pH of wines ranged from 3.18 to 3.24, and a significant increase (from 0.03 to 0.07 units) 

was observed in wines that underwent MLF. On the other hand, MLF resulted in an average 

decrease of titratable acidity (expressed as g/L of tartaric acid) of 0.6 g/L, compared to 

respective control wines. Generally, wines that underwent MLF using L. plantarum ML 

PrimeTM had higher acidity levels compared to the respective wines inoculated with O. oeni 

Lalvin® VP41TM. This observation was notable when comparing pairs  Lalvin® 71BTM - O. 

oeni Lalvin® VP41TM and Lalvin® 71BTM – L. plantarum ML PrimeTM; a 0.4 g/L increase in 

titratable acidity was registered. The smallest difference in titratable acidity production was 

observed in MLF using LalvinTM ICV® K1® paired with LAB (ML PrimeTM 8.0 g/L and 

Lalvin® VP41TM 7.9 g/L). Among wines without MLF, S. cerevisiae LalvinTM ICV®K1® 

produced the highest levels of total acidity (8.8 g/L), while using  Lalvin® 71BTM (7.1 g/L) 

produced the lowest value for this parameter. The same trend was also observed in wines 

that underwent MLF with the above-mentioned S. cerevisiae strains indicating the ability of 

yeast strains to modulate total acidity in a strain-dependent manner. This finding agrees with 

those of Lucio et al. (2018) and indicate that choosing appropriate S. cerevisiae and LAB 

strains to conduct co-inoculated MLF could be considered as a smart strategy to solve 

problems associated with climate change, such as increased titratable acidity in wines from 



 11 

warm-climate regions (Mira de Orduna 2010).  

Malic and lactic acid composition of the wines at the end of the vinification period 

are presented in Table 3. Wines that underwent MLF completed malic acid consumption, 

while wines without LAB consumed malic acid in a S. cerevisiae strain-dependent way. 

Control wines with S. cerevisiae Lalvin® 71BTM and Lalvin ICV® D254, produced the 

highest reduction of malic acid (- 0.95 g/L, 53% reduction for Lalvin® 71BTM and -0.59 g/L, 

34% reduction for Lalvin ICV® D254) while the wine fermented with LalvinTM ICV® K1® 

had the lowest malic acid reduction registered in wines without MLF (- 0.08 g/L, -4% 

reduction). S. cerevisiae strains Uvaferm® VRBTM and Lalvin® EC1118TM consumed 

medium levels of malic acid, since the consumption of this organic acid ranged from 0.27 - 

0.32 g/L (15% and 18% reduction).  The decrease in malic acid concentration also correlated 

with the decrease in total acidity (Table 2). In the wines fermented Lalvin® 71BTM and Lalvin 

ICV® D254, total acidity ranged from 7.1 to 7.7 g/L while in the rest of wines ranged from 

8.0 to 8.8 g/L . These differences were also reflected in the pH of the wines. Wines fermented 

with Lalvin® 71BTM and Lalvin ICV® D254 had the highest pH values (3.18 to 3.21) whereas 

the other wines had the lowest pH values (3.12-3.17). Consequently, we can hypothesize 

that malic acid was converted into ethanol through malo-ethanolic fermentation (Main et al. 

2007). 

Concerning lactic acid production, AF without LAB contained up to 0.3 g/L 

regardless of the S. cerevisiae strain used to conduct AF, indicating that malic acid was not 

transformed in L-lactic acid and MLF was not performed. On the contrary, wines that 

underwent MLF contained significantly higher levels of L-lactic acid (1.2 - 1.9 g/L). Among 

wines produced by co-inoculation of yeast and L. plantarum ML PrimeTM, the pairs with 

LalvinTM ICV® K1® (1.5 g/L) and Uvaferm® VRBTM (1.5 g/L) contained the highest level 

of L-lactic acid, while the pairs with Lalvin ICV® D254 (1.1 g/L) and Lalvin® 71BTM (1.0 
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g/L) the lowest values. A significant decrease in L-lactic acid values was seen for wines that 

underwent MLF with O. oeni Lalvin® VP41TM, independently of the S. cerevisiae strain 

used, compared to the respective MLF with L. plantarum ML PrimeTM. This difference could 

be explained by the early start of MLF by L. plantarum compared to O. oeni, preventing S. 

cerevisiae to metabolize malic acid. Concerning co-inoculated wines with Lalvin® VP41TM, 

the pairs with LalvinTM ICV® K1® (1.26 g/L) and Uvaferm® VRBTM (1.12 g/L) accounted 

for significantly higher concentration, while the pair with Lalvin® 71BTM showed the lowest 

value (0.65 g/L), compared to the other couples with Lalvin® VP41TM. 

D- and L- lactic acid isomers were measured to identify the consumption of sugars 

by L. plantarum and O. oeni. From the literature, it is known that L. plantarum forms D,L -

lactic acid and only L-lactic acid from malic acid, while under certain conditions O. oeni 

forms D-lactic acid from sugars and only L-lactic acid from malic acid (du Toit et al. 2011). 

On average, MLF wines with Lalvin® VP41TM had a D- lactic acid of 0.3 and L-lactic acid 

of 1.02 g/L, MLF wines with ML PrimeTM had a D- lactic acid of 0.38 and L-lactic acid of 

1.28 g/L. The higher concentration of L-lactic acid in wines that co-inoculated with L. 

plantarum ML PrimeTM, could be explained by the early start of MLF compared to O. oeni. 

Low levels of malic acid in the medium, due to prompt MLF by L. plantarum, may prevent 

S. cerevisiae from utilizing it. Furthermore, the presence of D-lactic acid in the wines that 

underwent MLF (especially those with ML PrimeTM) could be explained by the fact that part 

of this organic acid derives from the degradation of sugars. Therefore, a corresponding 

portion of L-lactic may result from this pathway (du Toit et al. 2011). However, the 

consumption of sugars is safe as no acetic acid is produced when  L. plantarum consumes 

hexoses (du Toit et al. 2011). 

Color is an important parameter in red wine and is greatly influenced by numerous 

chemical and microbial factors, including phenolic substances, pH, free SO2 concentration, 
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yeast, and LAB metabolites (Ribéreau-Gayon et al. 2000). Table 4 shows the composition 

of the phenolic substances and chromatic characteristics of the wines, produced form the 

different inoculation protocols. As can be seen, total anthocyanins varied between 153 and 

280 mg/L and intensity ranged from 2.61 to 3.07 at the end of AF and MLF. S. cerevisiae 

strain choice had a great impact on these parameters. Wines produced from S. cerevisiae 

Lalvin ICV® D254 with or without the inoculation of LAB, generally had the lowest 

concentrations of total anthocyanins (153 – 163 mg/L and intensity 1.03 – 1.12, compared 

to other wines. The addition of LAB n’tn’t influence total anthocyanins. Only one exception 

was found: the induction of MLF in must fermented by LalvinTM ICV® K1® retains higher 

levels of total anthocyanin content of wines (from 269 to 281 mg/L), possibly by preventing 

oxidation. Concerning total phenolic content (A280) and total flavonoids, the wines produced 

by pure AF with LalvinTM ICV® K1® and Lalvin® 71BTM accounted for significantly higher 

concentration of these parameters compared to the other wines that did not undergo MLF. 

Additionally, the presence of LAB did not influence significantly the concentration of these 

parameters, with the exception of total phenolic content, which was found to be higher in 

wines produced by simultaneous inoculation of Lalvin ICV® D254 with O. oeni Lalvin® 

VP41TM compared to the respective wine produced by L. plantarum ML PrimeTM and that 

produced without LAB inoculation.  

Regarding CIELab parameters (Table 4), the maximum values of hue (H*) were 

obtained using Lalvin ICV® D254 and Uvaferm® VRBTM (only for L. plantarum ML 

PrimeTM) paired with LAB, compared to the other wines. Wine lightness (L*) increased 

significantly in wines produced by S. cerevisiae Lalvin ICV® D254, compared to those 

produced from the other pairs, while LAB choice had no impact on this parameter. An 

opposite tendency was reported for the red/green color component (a*). In this case, wines 

produced from the above-mentioned S. cerevisiae strain produced the lowest values, while 
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LAB choice had a great impact in wines that were co-inoculated with Lalvin® EC1118TM 

and Lalvin® 71BTM. Finally, the yellow/blue component (b*), is significantly influenced by 

the specific couple yeast-LAB. It is worth noticing that the greatest color differences were 

found in wines co-inoculated with Lalvin® EC1118TM and O. oeni Lalvin® VP41TM, since 

they had the lowest levels of h* and b* and the highest levels of a*, compared to the other 

wines. Many studies demonstrated a decrease in red wine color, mainly due to the increase 

of pH after MLF (Bartowsky et al. 2015). Other studies have demonstrated that O. oeni may 

impact the compounds involved in wine color, due to the production of metabolites like 

pyruvic acid and acetaldehyde (Osborne and Edwards, 2006). The results of this study, 

indicated that phenolic substances and chromatic characteristics of wines that underwent 

MLF did not differ significantly from those that underwent only AF and, therefore, the 

chromatic characteristics at the end of vinification are  dependent on the combination of S. 

cerevisiae and LAB. 

 

Conclusion 

The data supports the use of L. plantarum and O. oeni as early partners of S. 

cerevisiae, but at the same time the specific combination of S. cerevisiae with O. oeni and 

L. plantarum is important. In particular, we have demonstrated that L. plantarum completed 

MLF faster compared to O. oeni (probably due to the higher inoculation rate and shorter lag 

phase), however the concentration of lactic acid depended on the S. cerevisiae strain used to 

perform alcoholic fermentation. This data contributes to further understanding of yeast-LAB 

interactions during co-inoculated MLF and allows for better management of the specific 

metabolites to enhance wine quality.  
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Table 1 Origin of the five S. cerevisiae and two lactic acid bacteria strains used in this study. 

Strain Species Origin Fermentation rate b Nutrition demands b 

Lalvin ICV® D254 Saccharomyces cerevisiae Lallemanda Moderate Moderate 

Lalvin® 71BTM Saccharomyces cerevisiae Lallemand Moderate Low 

Uvaferm® VRBTM Saccharomyces cerevisiae Lallemand Moderate Moderate 

Lalvin® EC1118TM Saccharomyces cerevisiae Lallemand Fast Low 

LalvinTM ICV® K1® Saccharomyces cerevisiae Lallemand Fast Moderate 

Lalvin® VP41TM Oenococcus oeni Lallemand / Low 

ML PrimeTM Lactobacillus plantarum Lallemand / Very low 

a Lallemand Inc. (Montreal, Canada), b (http://www. lallemandwine.com)  
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Table 2 Chemical analysis of wines following alcoholic and malolactic fermentation. 

S. cerevisiae LAB 

Residual sugars 

(g/L) 

Acetic acid 

(g/L) 

Ethanol  

(% v/v) 

pH TA (g/L) 

Lalvin ICV® D254 

L. plantarum 0.8 ± 0.2 0.35 ± 0.03 12.9 ± 0.1 A 3.21 ± 0.01 b,ABC 7.7 ± 0.4 AB 

O. oeni 0.7 ± 0.1 B 0.34 ± 0.07 12.9 ± 0.2 3.21 ± 0.01 b,B 7.2 ± 0.1 B 

/ 0.7 ± 0.3 B 

0.30 ± 0.02 

AB 

13.2 ± 0.3 3.18 ± 0.01 a,C 7.7 ± 0.4 AB 

Lalvin® 71BTM 

L. plantarum 0.8 ± 0.1 a 0.35 ± 0.07 13.0 ± 0.1 B 3.23 ± 0.01 b,C 7.1 ± 0.1 b,A 

O. oeni 1.0 ± 0.1 b,C 0.42 ± 0.02 13.0 ± 0.1 3.24 ± 0.01 b,C 6.7 ± 0.1 a,A 

/ 0.9 ± 0.1 b,C 0.35 ± 0.02 B 13.0 ± 0.1 3.21 ± 0.02 a,D 7.1 ± 0.1 b,A 

Uvaferm® VRBTM 

L. plantarum 0.5 ± 0.1 a 0.3 ± 0.04 13.1 ± 0.1 C 3.18 ± 0.02 b,A 7.9 ± 0.1 ab,AB 

O. oeni 0.5 ± 0.2 a,A 0.36 ± 0.02 13.2 ± 0.1 3.19 ± 0.01 b,AB 7.5 ± 0.1 a,C 

/ 0.6 ± 0.1 b,A 

0.27 ± 0.03 

AB 

13.1 ± 0.2 3.12 ± 0.01 a,A 8.4 ± 0.3 b,BC 

Lalvin® EC1118TM 

L. plantarum 0.5 ± 0.1 0.21 ± 0.02 13.1 ± 0.1 a,C 3.21 ± 0.01 b,BC 7.4 ± 0.2 a,AB 

O. oeni 0.6 ± 0.2 AB 0.33 ± 0.02 13.1 ± 0.1a 3.21 ± 0.01 b,B 7.1 ± 0.1 a,B 

/ 0.6 ± 0.1 A 
0.28 ± 0.04 

AB 

13.2 ± 0.1b 3.17 ± 0.01 a,C 8.0 ± 0.1 b,BC 

LalvinTM ICV® K1® 

L. plantarum 0.6 ± 0.1 0.26 ± 0.01 13.1 ± 0.2 C 3.20 ± 0.01 b,AB 8.0 ± 0.1a,B 

O. oeni 0.7 ± 0.1 B 0.31 ± 0.05 13.1 ± 0.1 3.18 ± 0.01 b,A 7.9 ± 0.01 a,D 

/ 0.6 ± 0.2 A 0.24 ± 0.01 A 13.1 ± 0.1 3.14 ± 0.01 a,B 8.8 ± 0.01 b,C 

Statistical differences  
  

      

S. cerevisiae strain effect in 

wine (Sign) 

L. plantarum NS NS ** ** * 

O. oeni *** NS NS ** *** 

/ *** * NS *** ** 

LAB species effect in wine 

(Signε) 

Lalvin ICV® D254 NS NS NS * NS 

Lalvin® 71BTM * NS NS * ** 

Uvaferm® VRBTM * NS NS *** * 

Lalvin® EC1118TM NS NS ** * * 

LalvinTM ICV® K1® NS NS NS ** *** 

All data are expressed as average value ± standard deviation of two independent experiments. Sign,ε: *, **, 

*** and NS indicate significance at p < 0.05, p < 0.01, p < 0.001 and not significant respectively between the 

wines produced. TA: titratable acidity expressed as g/L of tartaric acid.  Malolactic fermentation with 

Lactobacillus plantarum ML PrimeTM,  Malolactic fermentation with Oenococcus oeni Lalvin® VP41TM,  

Fermentation without LAB inoculum, Latin letters indicate the statistical differences between LAB using the 
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same S. cerevisiae strain (Sign), Upper Latin letters indicate statistical differences between S. cerevisiae strains 

using the same LAB (Signε).  
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Table 3 Chemical analysis of wines following alcoholic and malolactic fermentation. 

S. cerevisiae LAB 

Malic acid 

(g/L) 

L -lactic acid 

(g/L) 

D-lactic acid 

 (g/L) 

Lactic acid  

(g/L) 

Lalvin ICV® D254 

L. plantarum 0.11 ± 0.01 a 1.10 ± 0.10 c,A 0.31 ± 0.12 b,A 1.40 ± 0.22 c,A 

O. oeni 0.14 ± 0.11 a,A 0.91 ± 0.14 b,B 0.33 ± 0.10 ab 1.20 ± 0.12 b,B 

/ 1.32 ± 0.16 b,B 0.02 ± 0.11 a 0.20 ± 0.11 a 0.21 ± 0.11 a 

Lalvin® 71BTM 

L. plantarum 0.12 ± 0.11 a 1.01 ± 0.10 c,A 0.40 ± 0.13 b,B 1.42 ± 0.14 c,A 

O. oeni 0.15 ± 0.12 a,A 0.72 ± 0.12 b,A 0.31 ± 0.11 a 1.00 ± 0.11 b,A 

/ 0.91 ± 0.02 b,A 0.02 ± 0.14 a 0.33 ± 0.12 a 0.32 ± 0.14 a 

Uvaferm® VRBTM 

L. plantarum 0.13 ± 0.10 a 1.54 ± 0.11 c,C 0.40 ± 0.02 b,B 1.80 ± 0.10 c,C 

O. oeni 0.11 ± 0.04 a,A 1.14 ± 0.21 b,C 0.31 ± 0.10 ab 1.40 ± 0.12 b,C 

/ 1.54 ± 0.11 b,C 0.02 ± 0.14 a 0.36 ± 0.11 a 0.32 ± 0.22 a 

Lalvin® EC1118TM 

L. plantarum 0.10 ± 0.10 a 1.37 ± 0.10 c,B 0.41 ± 0.12 b,B 1.7 0± 0.12 c,B 

O. oeni 0.12 ± 0.11 a,B 1.10 ± 0.11 b,C 0.32 ± 0.11 ab 1.41 ± 0.10 b,C 

/ 1.61 ± 0.12 b,C 0.03 ± 0.10 a 0.20 ± 0.11 a 0.32 ± 0.14 a 

LalvinTM ICV® K1® 

L. plantarum 0.01 ± 0.02 a 1.51 ± 0.21 c,C 0.42 ± 0.11 B 1.92 ± 0.13 c,C 

O. oeni 0.05 ± 0.12 a,B 1.31 ± 0.01 b,D 0.34 ± 0.11 1.50 ± 0.20 b,D 

/ 1.80 ± 0.11 b,C 0.04 ± 0.10 a 0.33 ± 0.10 0.31 ± 0.11 a 

Statistical differences (Sign)      

S. cerevisiae strain effect in wine 

(Sign) 

L. plantarum * *** * *** 

O. oeni *** *** NS *** 

/ *** NS NS NS 

LAB species effect in wine 

(Signε) 

Lalvin ICV® D254 *** *** * *** 

Lalvin® 71BTM *** *** ** *** 

Uvaferm® VRBTM *** *** * *** 

Lalvin® EC1118TM *** *** * *** 

LalvinTM ICV® K1® *** *** NS *** 

All data are expressed as average value ± standard deviation of two independent experiments. Sign,ε: *, **, 

*** and NS indicate significance at p < 0.05, p < 0.01, p < 0.001 and not significant respectively between the 

wines produced. TA: titratable acidity expressed as g/L of tartaric acid.  Malolactic fermentation with 

Lactobacillus plantarum ML PrimeTM,  Malolactic fermentation with Oenococcus oeni Lalvin® VP41TM,  

Fermentation without LAB inoculum, Latin letters indicate the statistical differences between LAB using the 



 22 

same S. cerevisiae strain (Sign), Upper Latin letters indicate statistical differences between S. cerevisiae strains 

using the same LAB (Signε).  
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Table 4 Chromatic characteristics of wines following alcoholic and malolactic fermentation. 1 

S. cerevisiae LAB 

 

Total anthocyanin 

[mg/L malvidin-3-

glucoside chloride] 

Total phenol [mg/L  

(+)-catechin] 

A 280 

Color intensity 

 (optical path 10mm) 

Color hue L* a* b* 

Lalvin ICV® D254 

L. plantarum 159 ± 4 A 390 ± 2 a 15.9 ± 0.1 2.61 ± 0.03 A 1.03 ± 0.03 C 52.6 ± 0.6 B 45.5 ± 0.6 A 34.3 ± 0.6 AB 

O. oeni 163 ± 15 A 407 ± 6 b 16.4 ± 0.6 2.41 ± 0.17 A 1.12 ± 0.07 C 56.5 ± 2.6 B 44.7 ± 2.6 A 37.1 ± 0.4 D 

/ 153 ± 4 A 388 ± 4 a,A 15.6 ± 0.4 AB 2.45 ± 0.11 A 1.09 ± 0.04 B 55.8 ± 1.4 B 45.7 ± 1.0 A 36.8 ± 1.1 B 

Lalvin® 71BTM 

L. plantarum 235 ± 13 B 426 ± 9 15.3 ± 0.4 2.98 ± 0.06 B 0.68 ± 0.02 AB 47.6 ± 0.5 A 57.6 ± 0.9 b,BC 28.7 ± 0.2 A 

O. oeni 260 ± 30 B 434 ± 42 16.0 ± 1.2 2.82 ± 0.08 AB 0.71 ± 0.01 AB 48.8 ± 0.8 A 55.9 ± 0.5 ab,B 28.0 ± 0.4 B 

/ 211 ± 7 B 396 ± 6 A 15.3 ± 0.1 A 2.79 ± 0.03 B 0.75 ± 0.03 A 49.5 ± 0.1 A 54.7 ± 0.5 a,B 29.6 ± 1.3 A 

Uvaferm® VRBTM 

L. plantarum 230 ± 1 B 417 ± 43 18.6 ± 3.3 3.05 ± 0.09 B 0.81 ± 0.02 C 46.0 ± 0.1 A 54.4 ± 1.5 B 31.9 ± 0.4 AB 

O. oeni 256 ± 11 B 453 ± 28 17.5 ± 0.1 3.23 ± 0.14 B 0.75 ± 0.03 B 45.4 ± 0.7 A 56.8 ± 1.9 BC 32.5 ± 1.2 C 

/ 241 ± 20 BC 426 ± 4 B 17.2 ± 0.1 C 3.12 ± 0.05 C 0.74 ± 0.01 A 46.6 ± 0.6 A 57.4 ± 0.3 BC 31.9 ± 0.3 AB 

Lalvin® EC1118TM 

L. plantarum 234 ± 8 B 430 ± 7 16.5 ± 0.3 3.16 ± 0.06 B 0.77 ± 0.01 c,AB 46.9 ± 0.6 A 56.5 ± 0.1 a,BC 35.2 ± 0.3 c,B 

O. oeni 279 ± 16 B 459 ± 16 16.8 ± 0.1 3.07 ± 0.1 B 0.60 ± 0.01 a,A 48.4 ± 0.8 A 61.9 ± 0.4 c,C 28.9 ± 0.7 a,B 

/ 247 ± 9 BC 439 ± 5 B 16.4 ± 0.2 B 3.05 ± 0.11 BC 0.70 ± 0.01 b,A 48.1 ± 1.2 A 58.9 ± 0.4 b,C 32.4 ± 0.3 b,AB 

LalvinTM ICV® K1® 

L. plantarum 281 ± 2 bC 449 ± 2 16.3 ± 0.1 2.99 ± 0.09 B 0.65 ± 0.08 A 48.3 ± 1.3 A 60.3 ± 2.1 C 28.4 ± 3.6 A 

O. oeni 280 ± 2 bB 453 ± 22 16.4 ± 0.2 2.8 ± 0.07 AB 0.61 ± 0.01 A 50.1 ± 0.8 A 61.1 ± 0.3 BC 24.7 ± 1.1 A 

/ 269 ± 1 a,C 435 ± 7 B 16.4 ± 0.1 B 2.85 ± 0.04 BC 0.64 ± 0.06 A 49.6 ± 0.8 A 60.4 ± 1.9 C 27.0 ± 2.7 A 

Statistical differences (Sign)          

L. plantarum *** NS NS ** ** ** *** * 
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S. cerevisiae strain effect in wine 

(Sign) 

O. oeni ** NS NS ** *** ** *** *** 

/ *** *** ** ** *** ** *** ** 

LAB species effect in wine (Signε) 

Lalvin ICV® D254 NS * NS NS NS NS NS NS 

Lalvin® 71BTM NS NS NS NS NS NS * NS 

Uvaferm® VRBTM NS NS NS NS NS NS NS NS 

Lalvin® EC1118TM NS NS NS NS *** NS ** ** 

LalvinTM ICV® K1® ** NS NS NS NS NS NS NS 

All data are expressed as average value ± standard deviation of two independent experiments. Sign,ε: *, **, *** and NS indicate significance at p < 0.05, p < 0.01, p < 0.001 2 

and not significant respectively between the wines produced. TA: titratable acidity expressed as g/L of tartaric acid.  Malolactic fermentation with Lactobacillus plantarum ML 3 

PrimeTM,  Malolactic fermentation with Oenococcus oeni Lalvin® VP41TM,  Fermentation without LAB inoculum, Latin letters indicate the statistical differences between LAB 4 

using the same S. cerevisiae strain (Sign), Upper Latin letters indicate statistical differences between S. cerevisiae strains using the same LAB (Signε). A280 absorbance at 280 nm, 5 

L*: luminosity; a*: red/green color component and b*: yellow/blue color component. ΔE* parameter was calculated considering average values of L*, a*, and b* color 6 

components, for each mixed fermentation sample with relation to the same variety pure fermentation sample.  7 

 8 

 9 

 10 

 11 

 12 

 13 
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Figure captions 

 

Figure 1 Metabolites evolution (sugars, malic and lactic acid) during fermentation without 

LAB inoculation (left panel), fermentation with LAB inoculation Oenococcus oeni Lalvin® 

VP41TM (central panel) and Lactobacillus plantarum ML PrimeTM (right panel), using 5 

different S. cerevisiae strains: S. cerevisiae Lalvin ICVD® D254 (A-C); S. cerevisiae Lalvin® 

71BTM (D-F); S. cerevisiae Uvaferm® VRBTM (G-I); S. cerevisiae Lalvin® EC1118TM (J-L); 

S. cerevisiae LalvinTM ICV® K1® (M-O). Data are the mean ± standard deviations. Data are 

representative of two independent experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

Figure 1 
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